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Abstract—Long Range (LoRa) is a wireless modulation used
to provide long-range connectivity to low-power devices of the
Internet of Things (IoT). LoRa gateways use hardware chips
called demodulators in order to demodulate concurrent frames on
different channels or spreading factors. In this paper, we establish
several theoretical results on the performance of fundamental
demodulator allocating strategies. In the single gateway scenario,
we first prove the optimality of the basic preemptive allocation
strategy. Next, in the multi-gateway scenario, the greedy non-
collaborative strategy, which is currently implemented in LoRa
gateways, is shown to achieve a very large approximation
ratio. As an alternative, we demonstrate that a preemptive
non-collaborative strategy has an approximation ratio of 2,
and furthermore, that a preemptive smart-collaborative strategy
reaches an approximation ratio of 3/2, for two gateways. These
seminal results imply that the current performance of multi-
gateway LoRa deployments can be largely improved by the
proposed collaborative demodulator allocation strategies.

I. INTRODUCTION

Low-Power Wide Area Networks (LPWANs) are networks
where low-power end-devices can communicate wirelessly
over long distances. LPWANs are largely used in the Internet
of Things (IoT), thanks to their long-range capabilities in
environmental monitoring applications, or to their low-cost and
scalability in smart cities. Long Range (LoRa) is one of the
main technologies for LPWANs: it is a very robust wireless
modulation that can achieve a communication range of tens of
kilometers outdoor. LoRa is often used in combination with
Long Range Wide Area Network (LoRaWAN), which defines a
simple medium access control protocol and network topology
on top of LoRa.

In LoRaWAN, the end-devices communicate to a network
server through gateways, as shown in Figure 1. Each gateway
in range of an end-device might intercept its frames, decode
them, and forward them to the network server. The network
server is in charge of removing frame duplicates. The gateways
have the ability to decode several incoming transmissions at
the same time, provided that they are sent on different channels
or that they use different spreading factors (SFs). To do so,
each gateway listens for preambles on all channels and SFs at
all time, and allocates a demodulator to each incoming frame.
The total number of demodulators per gateway is limited,
typically to eight [1].

Several researchers have shown that the limited number
of demodulators reduces the throughput of LoRa [2], [3],
[4]. Thus, there have been a few attempts to allocate the
demodulators efficiently [5], [6], [7]. This is a challenging
issue, as the demodulator allocation is an online scheduling
problem with specific constraints.

Figure 1. End-devices (EDs) communicate to all gateways (GWs) in range
through LoRa links (represented with dashed lines). The gateways are all
connected to the network server (NS) through an IP backhaul (represented
with solid lines).

In this paper, we investigate the theoretical performance of
demodulator allocating strategies, in terms of the number of
demodulated frames. We demonstrate the following results,
which are also summarized in Table I:

• In the single gateway scenario, with a single demodulator,
the approximation ratio of the greedy algorithm is equal
to fmax + 1 = 72, where fmax is the maximum number
of short frames (i.e., with SF7) that can fit during a
single long frame (i.e., with SF12). Meanwhile, a simple
preemptive algorithm is optimal.

• In the single gateway scenario with D = 2 demodulators,
the simple preemptive algorithm is still optimal.

• In the multi-gateway scenario with M ≥ 2 gateways,
the approximation ratio of the non-collaborative greedy
algorithm is at least Mfmax, and at least fmax with
simple collaboration. Meanwhile, the preemptive algo-
rithm achieves an approximation ratio of 2, even without
collaboration, for M = 2 gateways. By using a smart
collaboration, the preemptive algorithm reaches an ap-
proximation ratio of 1.5 for M = 2 gateways.

Finally, these theoretical findings have been validated and
illustrated through extensive computer simulation evaluations.
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Table I
SUMMARY OF OUR THEORETICAL RESULTS.

Number of
gateways

Number of
demodulators

Greedy Preemptive
non-collaborative simple collabora-

tion
non-collaborative simple collabora-

tion
smart collabora-
tion

1 1 =fmax + 1 (Theorem 1) =1 (Theorem 2)
1 D ≥ 2 ≥ fmax + 1 (corollary of Theorem 1) =1 for D = 2 (Theorem 3)
M ≥ 2 1 ≥ M × (fmax + 1) (corollary of Theorem 1) =2 for M = 2

(Theorem 4)
=2 for M = 2
(Theorem 5)

≤1.5 for M = 2
(Theorem 6)

The remainder of this paper is organized as follows. Sec-
tion II presents the existing works on demodulator allocation
strategies, as well as similar scheduling problems. Section III
presents our system model. Section IV presents the four
algorithms we consider, as well as an optimal solution using
a mixed integer linear program (MILP). Section V focuses
on the single gateway scenario, with either one or two de-
modulators for the gateway. Section VI focuses on the multi-
gateway scenario, with a single demodulator per gateway.
Section VII-B describes our simulation results. Finally, Sec-
tion VIII concludes our work.

II. STATE-OF-THE-ART

Several researchers have shown that the limited number of
demodulators in LoRa gateways reduces the overall network
performance. In [2], the authors included the number of
demodulators as a parameter of their mathematical model of
LoRaWAN, and showed that this parameter has a significant
impact on the throughput. In [3], the authors also considered
the limited number of demodulators as a practical hardware
limitation. In [4], the authors studied the impact of several
parameters, and notably the number of parallel reception
paths which is equal to the number of demodulators, on the
performance of LoRaWAN.

A. Related work on demodulator allocation strategies

Few research works attempted to improve the usage of
demodulators, probably due to the fact that the strategy im-
plemented in the firmware of existing LoRaWAN gateways is
not documented.

In [5], the authors described the conventional first-in-first-
out (FIFO) greedy strategy, as well as two improved strategies
called FIFO-RR1 and FIFO-RR2, for a single gateway sce-
nario. FIFO-RR1 and FIFO-RR2 make use of the unused time
between the detection of the preamble and the beginning of
the payload in order to demodulate short frames. The FIFO-
RR2 strategy can also plan in advance the demodulation of
a long frame before the end of the demodulation of another
frame.

In [6], the authors proposed two strategies for a multi-
gateway scenario: an explicit collaboration strategy, and a
random strategy. The explicit collaboration strategy enables a
gateway to ignore the demodulation of frames that are planned
to be demodulated by another gateway. This is achieved
through control messages, but requires long SFs. The random
strategy attempts to make gateways randomly choose different
frames to demodulate, and is intended for small SFs.

In [7], an auction-based optimization approach was designed
in order to pre-assign each IoT device to a unique gateway, so
as to maximize the total amount of demodulated transmissions
without redundancy at the network server, given the constraint
of the limited number of demodulators per gateway. This
optimization method was shown to significantly outperform
benchmark algorithms, and to be suitable for mobile IoT
applications.

B. Similar scheduling problems

The demodulator allocation can be seen as a special form of
online scheduling problem with strict deadlines, where each
task is an incoming frame, and each gateway can process up
to eight tasks at the same time, given that existing LoRaWAN
gateways are equipped with only eight demodulators [1].
Tasks have varying durations (depending on the SF and on
the payload length), and are released at the time when the
preamble is detected by the gateway.

Compared to usual scheduling problems, the main speci-
ficity of the demodulator allocation problem is that the pro-
cessing of our tasks cannot be postponed. Indeed, our tasks
have to be processed exactly from the preamble start to the
preamble end. To the best of our knowledge, this specificity
has not been studied deeply by the research community on
scheduling problems.

However, some results from the literature are still related to
ours. For instance, in [8], the authors prove that the problem is
NP-hard on a single processor (that is, with a single gateway).
However, they show that it becomes polynomial if the task
have to be scheduled upon arrival and if there is no preemption,
which is similar to a case we consider. In [9], the author proves
the NP-hardness of the problem when tasks have deadlines
(in addition to due dates). Finally, our problem is also related
to soft real-time scheduling [10], where the real-time comes
from the fact that tasks cannot be postponed, and the softness
comes from the fact that some tasks are allowed to be dropped.
Unfortunately, we did not find algorithms that can solve our
problem, nor fundamental results on the performance of such
algorithms.

III. SYSTEM MODEL AND NOTATIONS

According to the specifications of the hardware component
of LoRaWAN gateways (that is, either the SX1301 or the
SX1302 chip) [1], we consider that each gateway listens
for preambles on all channels and spreading factors, at all
times. Each time a new frame is detected (which occurs
during the preamble of the frame), the gateway decides
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whether it allocates a demodulator for this frame or not.
To be successfully demodulated, at least one gateway has to
demodulate the whole payload of a frame, without interruption
nor demodulator change.

In order to simplify the proofs, we take a number of
assumptions as follows:

• different frames cannot start or finish at exactly the same
time, which corresponds to the reality.

• in the algorithms, the preamble detection time is equal to
the payload starting time (although in practice, the pream-
ble is detected at about half of the preamble duration [11],
[12]).

• there is no loss of payload for a frame whose preamble
was detected, hence a frame is successfully decoded as
long as at least one gateway has allocated a demodulator
during the whole frame payload.

• for collaborative strategies, we consider that two gate-
ways can determine whether two preambles received by
two gateways correspond to the same frame or not1.

Notations: Let F be a set of frames. The payload of each
frame f ∈ F starts at t(s)f and ends at t(e)f . Given an algorithm
A, let us denote by Γt(A) the total number of frames that have
been demodulated by A until time t (included). Note that if t
is omitted, it is assumed to be equal to maxf∈F t

(e)
f . Finally,

let Γt′,t(A) be the number of frames successfully demodulated
by an algorithm A and whose ending times are within ]t′; t].

In the following, we will show that some algorithms are
optimal in some conditions.
Definition: An algorithm OPT is said to be optimal if, for
all sets of frames F and for all algorithms A, we have

Γ(OPT (F)) ≥ Γ(A(F)). (1)

We will also compute the approximation ratio of some
algorithms in some conditions.
Definition: An algorithm A is said to have an approximation
ratio r ≥ 1 for a maximization problem if for all sets of frames
F , we have

Γ(OPT (F))
Γ(A(F))

≤ r. (2)

This means that the solution obtained by A for any set of
frames F cannot be r times lower than the optimal solution.
This notion is very important as it gives a worst bound on
the quality of the solution computed by A, compared to the
optimal solution.

IV. ALGORITHMS

In the following, we will consider the following algorithms:
• G (see Algorithm 1) is a greedy algorithm: demodulators

are allocated using a FIFO strategy. Algorithm G models
the method implemented in current LoRaWAN gateways.

1We believe this is possible by identifying the channel, spreading factor,
preamble detection time, and Carrier Frequency Offset (CFO). Notably, each
gateway can estimate the CFO of each node through a training period, and
use this CFO later to help determine whether two preambles received by two
gateways correspond to the same frame. A more detailed discussion on frame
identification is in [7].

• P (see Algorithm 2) is a greedy algorithm with preemp-
tion: a demodulator can drop its current frame c in order
to demodulate f , if f ends earlier than c.

• PC (see Algorithm 3) is a greedy algorithm with pre-
emption, which takes into account a simple form of col-
laboration among gateways (through the network sever):
each frame is demodulated by a single gateway (chosen
arbitrarily).

• PS (see Algorithm 4) is a greedy algorithm with preemp-
tion, which takes into account a more complex form of
collaboration among gateways: when a frame is demod-
ulated by several gateways, these gateways (except one)
can later drop the common frame to accept a new frame.

• OPT denotes the optimal algorithm, namely the one with
maximal gain Γ.

Algorithm 1 Algorithm G

Upon detecting the preamble of a new frame f :
if a demodulator is idle then

demodulate f
end if

Algorithm 2 Algorithm P

Upon detecting the preamble of a new frame f :
if a demodulator is idle then

demodulate f
else

if there exists a demodulator with a frame c such that
t
(e)
f < t

(e)
c then

δ ←the demodulator demodulating the frame c with
the largest t(e)c

make demodulator δ drop its frame
demodulate f (with δ)

end if
end if

Algorithm 3 Algorithm PC

Upon detecting the preamble of a new frame f :
apply algorithm P
if several gateways demodulate f then

drop f for all but one gateway (chosen arbitrarily)
end if

The optimal algorithm is defined as a mixed-integer linear
programming (MILP) problem, as follows. The inputs are the
number of frames F , the number of demodulators D, the
number of gateways M , an array Col such that Col[f1, f2] is
true if and only if frames f1 and f2 overlap in time (i.e., there
is a collision between f1 and f2), and an array Rx such that
Rx[f, g] is true if and only if frame f is received by gateway
g. Note that F is modeled indirectly through the array Col.

The MILP uses three arrays of binary variables:
Dem[g, d, f ] is true if and only if the d-th demodulator of
gateway g demodulates frame f , Dem1d[g, f ] is true if and
only if at least one demodulator of gateway g demodulates



4

Algorithm 4 Algorithm PS

Upon detecting the preamble of a new frame f :
if a demodulator is idle then

demodulate f
else

if a demodulator is demodulating a frame c which is also
demodulated by at least another gateway then

drop c
demodulate f

else
if there exists a demodulator with a frame c such that
t
(e)
f < t

(e)
c then

δ ←the demodulator demodulating the frame c with
the largest t(e)c

make demodulator δ drop its frame
demodulate f (with δ)

end if
end if

end if

frame f , and Dem1g[f ] is true if and only if at least one
gateway demodulates frame f .

The MILP is defined by the following equations. Equation
(3) is the objective function: the goal of OPT is to maximize
the number of frames demodulated by any gateway. Equation
(4) states the constraint that a demodulator d of a gateway g
cannot demodulate a frame f if f is not received by gateway
g. Equation (5) constrains that it is not possible for two frames
f1 and f2 to be demodulated by the same demodulator d if
Col[f1, f2] is true, that is if f1 and f2 overlap in time. Indeed,
if f1 is not chosen by d, then the right part of the equation is
equal to F , which does not impose any constraint on the left
part of the equation. However, if f1 is chosen by d (and thus,
Dem[g, d, f1] = 1), all other frames f2 chosen by d have to
be such that Col[f1, f2] = 0. Equations (6) and (7) ensure
that Dem1d[g, f ] is true when at least one demodulator of g
demodulates f , based on the value of Dem. Equations (8) and
(9) ensure that Dem1g[f ] is true when at least one gateway
demodulates f , depending on the value of Dem1d.

max
∑

f∈[1;F ] Dem1g[f ] (3)

s.t. Dem[g, d, f ] ≤ Rx[f, g], ∀g ∈ [1;M ], d ∈ [1;D], f ∈ [1;F ](4)∑
f2 ̸=f1

Dem[g, d, f2]Col[f1, f2] ≤ (1−Dem[g, d, f1])F,

∀g ∈ [1;M ], d ∈ [1;D], f1 ∈ [1;F ] (5)
Dem1d[g, f ] ≥ Dem[g, d, f ], ∀g ∈ [1;M ], d ∈ [1;D], f ∈ [1;F ](6)
Dem1d[g, f ] ≤

∑
d∈[1;D] Dem[g, d, f ], ∀g ∈ [1;M ], f ∈ [1;F ](7)

Dem1g[f ] ≥ Dem1d[g, f ], ∀g ∈ [1;M ], f ∈ [1;F ] (8)
Dem1g[f ] ≤

∑
g∈[1;M ] Dem1d[g, f ], ∀f ∈ [1;F ]. (9)

V. SINGLE GATEWAY SCENARIO

In this section, we consider a single gateway. We will show
three results: algorithm G has a large approximation ratio for
D = 1 demodulator (see Theorem 1), P is optimal for D = 1

demodulator (see Theorem 2), and P is also optimal for D = 2
demodulators (see Theorem 3).

Theorem 1 (Approximation ratio of Algorithm G for D = 1).
For all F , Γ(OPT (F))

Γ(G(F)) ≤ fmax + 1 for D = 1, with fmax the
maximum number of short frames that can fit in a single long
frame. This bound is tight.

Proof. Let F be any set of frames, and let us compare the
solution found by algorithm G with the optimal solution found
by OPT . Let us denote by n1 the number of frames of OPT
that start while G is not demodulating, and by n2 the number
of frames of OPT that start while G is demodulating. Let us
further refine n2 by having n3 denote the number of frames
of OPT that start and finish while G is demodulating the
same frame, and n4 denote the other frames of n2. If we
denote by fmax the maximum number of short frames that can
fit during a single long frame (with the assumption that two
frames cannot start exactly at the same time), then for each
frame of G, there can be at most fmax frames in OPT . In
other words, n3 ≤ fmaxΓ(G(F)). Moreover, n4 ≤ Γ(G(F))
since each frame counted in n4 corresponds to at most one
starting frame in G. Finally, n1 = 0, as it is not possible for
OPT to choose a frame while G is not demodulating, since
G is a greedy algorithm. Thus, we have Γ(OPT (F)) = n1 +
n2 = n1 + n3 + n4 ≤ (fmax + 1)Γ(G(F)), and consequently
Γ(OPT (F))
Γ(G(F)) ≤ fmax + 1.
This bound is tight, and can be obtained with the following

set of frames F : an SF12-frame starts first, and then fmax+1
SF7-frames follow shortly after. Note that the (fmax + 1)-
th SF7-frame has to start before the single SF12-frame fin-
ishes. Then, G selects the single SF12-frame (resulting into
Γ(G(F)) = 1), and OPT selects the (fmax + 1) SF7-frames
(resulting into Γ(OPT (F)) = fmax + 1).

Note that fmax = 71 with the European LoRaWAN regional
settings. Indeed, the payload duration of a short frame (payload
of 10 bytes with SF7) is 28.68 ms, and the payload duration of
a long frame (payload of 51 bytes with SF12) is 2064.38 ms,
as shown on Table II. In both cases, we considered a coding
rate of 4/5 and a bandwidth of 125 kHz.

Table II
PAYLOAD DURATION OF LORA FRAMES AS A FUNCTION OF THE PAYLOAD

SIZE.

SF Largest payload (bytes) Payload duration
(10 bytes) (largest payload)

7 242 28.68 ms 366.60 ms
8 242 47.10 ms 641.02 ms
9 115 94.20 ms 565.24 ms

10 51 188.42 ms 516.10 ms
11 51 376.84 ms 1114.12 ms
12 51 589.82 ms 2064.38 ms

Theorem 2. Algorithm P is optimal for D = 1.

Lemma 1. Let F be a set of frames and A be an algorithm.
Let t be a time such that Γt(OPT (F)) > Γt(A(F)), and let
t′ < t. If Γt′,t(OPT (F)) ≤ Γt′,t(A(F)), then t′ is a time
where Γt′(OPT (F)) > Γt′(A(F)).
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Proof. By assumption, we have Γt(OPT (F)) ≥ Γt(A(F))+
1. We also have Γt(OPT (F)) = Γt′(OPT (F)) +
Γt′,t(OPT (F)) by definition of Γt′,t. Then, we have
Γt′(OPT (F)) = Γt(OPT (F)) − Γt′,t(OPT (F)) ≥
Γt(OPT (F))−Γt′,t(A(F)) ≥ Γt(A(F))+1−Γt′,t(A(F)) =
Γt′(A(F)) + 1, with t′ < t. Thus, Γt′(OPT (F)) >
Γt′(A(F)).

Proof of Theorem 2. Let us reason by contradiction, and as-
sume that for a given F , there is a first time t such that
Γt(OPT (F)) > Γt(P (F)). This means that at t, OPT
finished demodulating a frame x that was not chosen by P .
Either P was busy demodulating another frame y when x
started, or P also chose x but dropped it later by preemption
for another frame y. Note that since P is a greedy algorithm,
it is not possible for P to have an available demodulator and
not choose x. In both cases, y is a frame ending before t

(e)
x .

Let t′ = t
(s)
x < t. We have Γt′,t(OPT (F)) = 1 since D = 1

and OPT demodulates only x during ]t′; t]. We also have
Γt′,t(A(F)) ≥ 1 since P demodulates at least y during ]t′; t].
Thus, Lemma 1 holds, which brings a contradiction since t
is the first time such that Γt(OPT (F)) > Γt(P (F)). Conse-
quently, there is no time t where Γt(OPT (F)) > Γt(P (F)),
which means that P is optimal.

Theorem 3. Algorithm P is optimal for D = 2.

Proof. Let t be the first time where Γt(OPT (F)) >
Γt(P (F)). Let x be the last demodulated frame of OPT , and
x′ be the one before2.

If x was chosen by P , then let t′ = t
(e)
x′ . In this case,

Γt′,t(OPT (F)) = 1 (corresponding to frame x, since x′ is
the last demodulated frame before x) and Γt′,t(P (F)) ≥ 1
(corresponding to x and possibly others). Thus, Lemma 1
holds and we have a contradiction with the definition of t.
Note that this requires P to apply the best preemption, that is
to preempt with the demodulator having the frame finishing
the latest. Indeed, a badly-designed preemptive algorithm
could select a very long frame y on one demodulator (with
t
(e)
y > t), choose x on the second demodulator, then drop x

(instead of y) to preempt frame x′, as shown on Figure 2.
This badly-designed preemptive algorithm would not have
finished demodulating y at t, and thus would be such that
Γt′,t(P (F)) = 0.

t

OPT

bad preempt.

OPT

P

t

y

y

t′

x′

x′

x

x

t′

y
x′

x

x′

xy

Figure 2. Comparison of a badly-designed preemptive algorithm (left) and P
(right) in the proof of Theorem 3. Frames are depicted with colored rectangles.
Demodulated frames are highlighted with thick edges.

2Note that if Γt(OPT (F)) > Γt(P (F)), then there are at least two
frames demodulated by OPT . If there was only one frame demodulated by
OPT , P would have chosen this short frame (possibly by preemption).

If x was not chosen by P , let us consider the following
cases.

• Case 1: x′ was chosen by P and t
(s)
x′ < t

(s)
x , as shown

on the left of Figure 3. Let t′ = t
(s)
x . Γt′,t(OPT (F)) ≤

2 (one frame is x, and the other is x′ if and only if
t
(s)
x < t

(e)
x′ ). At t′, both demodulators of P were busy with

frames finishing before t
(e)
x (one of them possibly being

x′) since x was not chosen, even by preemption. Thus,
Γt′,t(P (F)) ≥ 2 (corresponding to these two frames).
Thus, Lemma 1 holds.

x′

x′

t′ t

x

x
OPT

P x′

x′

t′

OPT

P

t

x

x

Figure 3. Illustration of Case 1 (left) and Case 3 (right) of the proof of
Theorem 3.

• Case 2: x′ was chosen by P and t
(s)
x < t

(s)
x′ , as shown on

Figure 4. Let t′ = t
(s)
x . Since x was not chosen by P at

t′, the two demodulators of P were busy demodulating
frames whose ending time are before t

(e)
x : let us denote

them y1 and y2. Let us denote by n the number of frames
demodulated by OPT between t

(s)
x and t

(s)
x′ , and let us

call them x1, . . . , xn. For each frame xi, either xi is
also demodulated by P , or P is busy demodulating a
frame starting before t

(s)
xi (due to the greediness of P )

and finishing before t
(e)
xi (due to the preemptiveness of

P )3. Thus, during ]t′; t], P demodulates y1 and y2, as
well as x′ and at least n− 1 other frames corresponding
to each xi except x1. Overall, Γt′,t(OPT (F)) = n + 2
(including all the xi frames, as well as x and x′), and
Γt′,t(P (F)) = (n− 1)+3 = n+2 (including x′, y1 and
y2). Thus, Lemma 1 holds.

t′ t

P
x

x′x3

y2

y1

x
x′x1 x2 x3 OPT

Figure 4. Illustration of Case 2 of the proof of Theorem 3.

• Case 3: x′ was not chosen by P , as shown on
the right side of Figure 3. Let t′ = max(t

(s)
x , t

(s)
x′ ),

Γt′,t(OPT (F)) ≤ 2. Since neither x nor x′ were chosen
by P , it means that when x and x′ started, the two
demodulators of P were used. Thus, at t′, the two
demodulators are busy with frames finishing before the

3For x1, this frame could be y1 or y2.
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end of the frame starting at t′. Since max(t
(e)
x , t

(e)
x′ ) ≤ t,

we have Γt′,t(P (F)) ≥ 2, and Lemma 1 holds.
In all cases, we have a contradiction with the definition of t as
the earliest time where Γt(OPT (F)) > Γt(P (F)). In other
words, there is no such time t, and thus P is optimal.

VI. MULTI-GATEWAY SCENARIO

In this section, we consider M ≥ 2 gateways. We will show
three results: the non-collaborative algorithm P has an approx-
imation ratio of 2 for D = 1 demodulator (see Theorem 4),
the collaborative algorithm PC also has an approximation
ratio of 2 for D = 1 demodulator (see Theorem 5), and the
collaborative algorithm PS has an approximation ratio of 1.5
for D = 1 demodulator (see Theorem 6).

Theorem 4 (Approximation ratio of algorithm P for M = 2
and D = 1). For all F , Γ(OPT (F))

Γ(P (F)) ≤ 2 for M = 2 and
D = 1. This bound is tight.

Proof. Let F be an arbitrary set of frames. From P (F),
we will build the solution OPT (F) with the largest gain,
and show that Γ(OPT (F))

Γ(P (F)) ≤ 2. Let us divide the time into
intervals depending on P (F): a new interval δi starts each
time P finishes demodulating a new frame on any gateway,
for i ∈ [1;F ]. Let t(s)δi

be the starting time of δi, and t
(e)
δi

the
ending time of δi. Let us denote by Γδi(A(F)) the number
of frames that finish their demodulation within ]t

(s)
δi
; t

(e)
δi

] for
algorithm A. By definition of δi, we have Γδi(P (F)) = 1 (for
all gateways), for every δi. This equality to one is obtained
thanks to the assumption that two different frames cannot start
or finish at exactly the same time, as stated in Section III.

Let us introduce the following three notations concerning
OPT (F):

1) n
(sbef )
δi

is the number of frames that started strictly before
t
(s)
δi

and are demodulated within ]t
(s)
δi
; t

(e)
δi

],
2) n

(edur)
δi

is the number of frames that started and ended
within ]t

(s)
δi
; t

(e)
δi

],
3) n

(eaft)
δi

is the number of frames that started before or at
t
(e)
δi

and that will end strictly after t(e)δi
.

Let us consider any interval δi, for i ∈ [1;F ]. For each
of the following cases, let us show that n

(edur)
δi

+ n
(eaft)
δi

≤
2Γδi(P (F)) = 2.

• Case 1: both gateways demodulate the same frame f .
This means that all other frames f ′ starting during δi
are such that t

(e)
f ′ > t

(e)
f . If f is chosen by OPT , we

have n
(edur)
δi

= 1 and n
(eaft)
δi

≤ 1. Otherwise, we have
n
(edur)
δi

= 0 and n
(eaft)
δi

≤ 2.
• Case 2: the frame f finishing in P is demodulated by

GW1, but not by GW2. If OPT chooses f on GW1,
then n

(edur)
δi

= 1 and n
(eaft)
δi

≤ 1 for GW2. If OPT does
not choose f on GW1, then there can be another frame f ′

starting on GW1. For this frame, t(e)f ′ > t
(e)
f otherwise P

would have chosen f ′ by preemption. There might also be
another frame f ′′ starting on GW2, but then t

(e)
f ′′ > t

(e)
f ,

otherwise either P would have chosen f ′′, or P would

have dropped its potential frame on GW2 for this one.
Thus, n(edur)

δi
= 0 and n

(eaft)
δi

≤ 2.
• Case 3: the frame f finishing in P is demodulated by

GW2, but not by GW1. This is similar to Case 2.
• Case 4: no more frames are demodulated during δi, which

occurs only for i = n. This means that no frame can start
for OPT from t

(s)
δn

. Thus, n(edur)
δn

= 0 and n
(eaft)
δn

= 0.

In all cases, we have n
(edur)
δi

+ n
(eaft)
δi

≤ 2 = 2Γδi(P (F)).
Finally, we have:

Γ(OPT (F)) =
∑

δi,i∈[1;F ]

Γδi(OPT (F))

=
∑

δi,i∈[1;F ]

(
n
(sbef )
δi

+ n
(edur)
δi

)
=

∑
δi,i∈[2;F ]

n
(sbef )
δi

+
∑

δi,i∈[1;F ]

n
(edur)
δi

≤
∑

δi,i∈[1;F−1]

n
(eaft)
δi

+
∑

δi,i∈[1;F ]

n
(edur)
δi

≤
∑

δi,i∈[1;F ]

(
n
(edur)
δi

+ n
(eaft)
δi

)
≤

∑
δi,i∈[1;F ]

2Γδi(P (F)) = 2Γ(P (F)),

since n
(sbef )
δ1

= 0, n
(sbef )
δi+1

≤ n
(eaft)
δi

and n
(eaft)
δF

= 0. This
completes the proof.

This bound is tight, and can be obtained with the following
set F . A frame x is received by both gateways, and another
frame y such that t(s)

x < t(s)
y < t(e)

x < t(e)
y is received by GW2

only. P chooses x on both gateways, and does not choose y
(as y does not preempt x). In the meanwhile, OPT chooses
both x on GW1 and y on GW2.

Theorem 5 (Approximation ratio of algorithm PC for M = 2
and D = 1). For all F , Γ(OPT (F))

Γ(PC(F))
≤ 2 for M = 2 and

D = 1. This bound is tight.

Proof. The proof of the approximation ratio is the same as the
proof of Theorem 4, without the possibility of Case 1.

This bound is tight, and can be obtained with the following
set F . A frame x is received by both gateways, and another
frame y such that t(s)

x < t(s)
y < t(e)

x < t(e)
y is received by GW2

only. PC sees x on both gateways, and decides to demodulate
x on GW2. Then, PC can not choose y, as y is not received by
GW1 and y does not preempt x on GW2. In the meanwhile,
OPT chooses both x and y, on GW1 and GW2 respectively.

Theorem 6 (Approximation ratio of algorithm PS for M = 2
and D = 1). For all F , Γ(OPT (F))

Γ(PS(F))
≤ 1.5 for M = 2 and

D = 1.

Lemma 2. Let x1, x2, . . . , xn and y1, y2, . . . , yn be two non-
empty sequences of n strictly positive integers. Let X

(n)
1 =∑

i∈[1;n](xi + 1), X
(n)
2 =

∑
i∈[1;n](xi + 2) and Y (n) =∑

i∈[1;n] yi.

Then, X
(n)
2 +Y (n)

X
(n)
1 +Y (n)

≤ X
(n)
2

X
(n)
1

.
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Proof.

X
(n)
2 + Y (n)

X
(n)
1 + Y (n)

− X
(n)
2

X
(n)
1

=
(X

(n)
2 + Y (n))X

(n)
1

(X
(n)
1 + Y (n))X

(n)
1

− X
(n)
2 (X

(n)
1 + Y (n))

X
(n)
1 (X

(n)
1 + Y (n))

=
Y (n)(X

(n)
1 −X

(n)
2 )

X
(n)
1 (X

(n)
1 + Y (n))

≤ 0.

Indeed, X(n)
1 (X

(n)
1 +Y (n)) > 0, Y (n) ≥ 0 and X

(n)
1 ≤ X

(n)
2 .

Lemma 3. Let x1, x2, . . . , xn be a non-empty sequence of n
strictly positive integers. Let X

(n)
1 =

∑
i∈[1;n](xi + 1) and

X
(n)
2 =

∑
i∈[1;n](xi + 2). Then, X

(n)
2

X
(n)
1

≤ 3
2 .

Proof. Let us prove this lemma by recursion on n. When n =
1, we have:

X
(1)
2

X
(1)
1

− 3

2
=

x1 + 2

x1 + 1
− 3

2
=

1− x1

2(x1 + 1)
≤ 0.

Indeed, x1 ≥ 1 since each integer of the sequence is strictly
positive.
Let us now assume that the property is true for n − 1 ≥ 1,
that is X

(n−1)
2

X
(n−1)
1

≤ 3
2 . Let us show that the property is true for

n too. We have:

X
(n)
2

X
(n)
1

− 3

2
=

2X
(n)
2 − 3X

(n)
1

2X
(n)
1

=
2
(
X

(n−1)
2 + xn + 2

)
− 3

(
X

(n−1)
1 + xn + 1

)
2X

(n)
1

=
1− xn + 2X

(n−1)
2 − 3X

(n−1)
1

2X
(n)
1

≤ 1− xn

2X
(n)
1

≤ 0.

This comes from the fact that 2X
(n−1)
2 − 3X

(n−1)
1 ≤ 0,

according to the recursion hypothesis, and that xn ≥ 1.

Proof of Theorem 6. Let F be an arbitrary set of frames.
From PS(F), we will build the solution OPT (F) with the
largest gain, and show that Γ(OPT (F))

Γ(PS(F))
≤ 3/2. Let us divide the

time into new intervals depending on PS(F): a new interval
starts as soon as both gateways GW1 and GW2 demodulated
at least a frame each. Then, for any time interval δi, we use
the same notations as in Theorem 4 for t(s)δi

, t(e)δi
, Γδi(A(F)),

n
(sbef )
δi

, n
(edur)
δi

and n
(eaft)
δi

. Note that, unlike for intervals
defined for P , it is here possible to have Γδi(P

S(F)) > 1
since both gateways should decode at least one frame each
during δi.

Let us consider any interval δi, for i ∈ [1;n]. For
each of the following cases, we will show that n

(edur)
δi

+

n
(eaft)
δi

≤ Γδi(P
S(F)) in some cases, that n(edur)

δi
+ n

(eaft)
δi

≤
Γδi(P

S(F)) + 1 in the other cases, and that we always have
Γδi(P

S(F)) ≥ 1.
• Case 1: both gateways demodulate the same frame f . This

means that no other frame started during δi, otherwise one
of the gateway would have dropped f with PS . Thus,
n
(edur)
δi

≤ 1, n(eaft)
δi

= 0 and Γδi(P
S(F)) = 1.

• Case 2: the last demodulated frame f finishing in PS is
demodulated by GW2, but not by GW1. According to
the construction of δi, this means that GW1 demodulated
x ≥ 1 frames with PS , denoted a1, a2, . . . , ax, while
GW2 demodulated only one, denoted f .

– On GW1, there can be no frame f ′ in OPT such
that t(s)f ′ < t

(e)
aj and t

(e)
f ′ < t

(s)
aj+1 , nor such that t(s)aj <

t
(s)
f ′ and t

(e)
f ′ < t

(e)
aj , for all j ∈ [1;x]. However, for

each j ∈ [1;x], OPT can choose either aj or a
frame starting after t

(s)
aj and ending after t

(e)
aj . Thus,

n
(edur)
δi,GW1

+ n
(eaft)
δi,GW1

≤ x.
– On GW2, there can be no frame f ′ such that

t
(s)
f < t

(s)
f ′ and t

(e)
f ′ < t

(e)
f , otherwise PS would have

dropped f for this f ′. OPT can choose either to
demodulate f on GW2, or a frame starting after t(s)f

and finishing after t
(e)
f . OPT can also demodulate

a frame aj of PS , if this frame was received by
both GW1 and GW2, provided that this frame was
dropped by PS on GW2 in order to start frame f .
Thus, n(edur)

δi,GW2
+ n

(eaft)
δi,GW2

≤ 2.
– Overall, when considering both GW1 and GW2, we

have: n(edur)
δi

+ n
(eaft)
δi

≤ x+ 2, with Γδi(P
S(F)) =

x+ 1 and x ≥ 1.

• Case 3: the last demodulated frame f finishing in PS is
demodulated by GW1, but not by GW2. This is similar
to Case 2.

• Case 4: no more frame is demodulated on GW1 during
δi, which occurs only when i = n. This means that
no frame can start for OPT from t

(s)
δn

on GW1. In this
case, PS works on the single gateway GW2, and is thus
optimal according to Theorem 2. Thus, Γδi(P

S(F)) =
Γδi(OPT (F)).

• Case 5: no more frame is demodulated on GW2 during
δi, which occurs only when i = n. This is similar to Case
4.

Let C1,4,5 be the indexes such that δi is in Case 1, Case 4
or Case 5, and let C2,3 be the indexes such that δi is in Case
2 or Case 3. We have

Γ(PS(F)) =
∑

i∈C1,4,5

Γδi(P
S(F)) +

∑
i∈C2,3

Γδi(P
S(F))

= Y (n) +
∑

i∈C2,3

(xi + 1),

where we define Y (n) =
∑

i∈C1,4,5
Γδi(P

S(F)), and it was
shown that xi = Γδi(P

S(F))−1. With the same argument as
in Theorem 4, we also have

Γ(OPT (F)) =
∑

i∈[1;n]

(
n
(edur)
δi

+ n
(eaft)
δi

)
.

From the fact that n(edur)
δi

+ n
(eaft)
δi

≤ Γδi(P
S(F)) for Cases

1, 4 and 5, and that n(edur)
δi

+ n
(eaft)
δi

≤ Γδi(P
S(F)) + 1 for
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Cases 2 and 3, we have:

Γ(OPT (F)) =
∑

i∈C1,4,5

Γδi(OPT (F)) +
∑

i∈C2,3

Γδi(OPT (F))

≤ Y (n) +
∑

i∈C2,3

(xi + 2).

Then, setting X
(n)
1 =

∑
i∈C2,3

(xi + 1) and X
(n)
2 =∑

i∈C2,3
(xi + 2), we get

Γ(OPT (F))
Γ(PS(F))

≤ Y (n) +X
(n)
2

Y (n) +X
(n)
1

≤ X
(n)
2

X
(n)
1

,

Finally, we obtain Γ(OPT (F))
Γ(PS(F))

≤ 3
2 , according to Lemma 3.

VII. NUMERICAL EVALUATIONS

This section describes our numerical evaluations.

A. Simulation settings

We consider the following six configurations corresponding
to various pairs (M,D):

• one gateway and one demodulator (condition of applica-
tion of Theorem 1 and Theorem 2),

• one gateway and two demodulators per gateway (for
Theorem 3),

• one gateway and three demodulators per gateway,
• two gateways and one demodulator per gateway (for

Theorem 4, Theorem 5 and Theorem 6),
• two gateways and three demodulators per gateway,
• three gateways and three demodulators per gateway.

For each configuration, we generated a given number of
frames, either equal to 100×M×D (in order to have a charge
proportional to the overall demodulation capacity) or to 100
(in order to evaluate the impact of adding more gateways, or
of more demodulators per gateway). Each frame has a random
payload size varying from 10 to 51 bytes (where 51 bytes is
the maximum payload size in LoRaWAN) and corresponds to
a random SF from 7 to 12, as shown in Table II [13], [14].
We considered a bandwidth of 125 kHz and a coding rate of
4/5. The starting time of each frame is chosen randomly. When
M ≥ 2, the frame is received by at least one gateway chosen at
random, and by every other gateway with a probability of 30%.
Each simulation lasts for 100 seconds. For each repetition, we
use the MILP solver GLPK [15] to solve Problem (3)-(9), in
order to obtain the optimal solution (or an interval in which the
optimal solution lies). GLPK is used with a timeout of 60 s,
on a computer with an Intel(R) Core(TM) i7-4790 CPU at
3.60GHz. When the solver does not reach an optimal solution,
it still outputs an interval [LB;UB] (hereafter referred to as
the optimality interval), where LB is a lower bound, namely
the gain of a good solution (possibly sub-optimal), and UB is
an upper bound of the optimal solution (possibly unreachable).
We generated 100 repetitions in order to obtain average values.

B. Simulation results

Figure 5 shows the percentage of demodulated frames with
a traffic load proportional to the demodulation capacity (and
computed as 100 ×M × D frames). Overall, the algorithms
can always be ranked by performance as follows : G < P <
PC < PS .

For M = 1, P , PC and PS yield the same results,
as expected. Moreover, it can be seen that they achieve an
excellent percentage of demodulated frames. They appear to
be optimal for D = 1 (which is expected from Theorem 2),
and are within the optimality interval for D = 2 (which is
expected from Theorem 3), and D = 3. Please note that more
simulations results are provided for M = 1 and D = 2 in the
sequel.

For M = 2 and D = 1, the algorithms are clearly sub-
optimal since they are below the LB level, and decode from
about 70% to about 75% of the frames, while LB is slightly
above 80%. This shows that while the approximation ratio
of these algorithms is between 1.5 and 2, they still perform
well. For the two configurations with multiple gateways and
D = 3, the solver was not able to obtain a tight interval, and
was even rarely able to find a solution before the timeout of
60 s expired. However, all algorithms are able to demodulate
a very large number of frames, namely around 85% or more.

Figure 5. Performance of all algorithms with a traffic load proportional to
the demodulation capacity.

Figure 6 shows the performance of all algorithms, with a
constant traffic load, in two cases:

• with M = 1 gateway and a varying number of demodu-
lators (on the left),

• with a varying number of gateways and D = 3 demodu-
lators (on the right).

Obviously, as the demodulation capacity increases (either
when M or D increases), the performance of all algorithms
increases. On the left side of Fig. 5 (that is, when M = 1), P ,
PC and PS have the same performance, and are all within the
optimality interval. On the right side of Fig. 5 (that is, when
D = 3), the solver was not able to obtain a tight interval.
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Moreover, it can be seen that algorithm PS ensures the best
performance among all algorithms, in all cases.

Figure 6. Performance of all algorithms, with a varying number of demod-
ulators (left) or with a varying number of gateways (right), with a constant
traffic load.

Note that we also explicitly tested Theorem 3 by running
many repetitions comparing OPT and P with M = 1 and
D = 2. We used relatively small instances of 20 frames and
a simulation time of 20 seconds in order to obtain optimal
solutions faster, and we set a longer timeout of 10 minutes
for the solver. Repetitions for which the optimal solution was
not found before the timeout were discarded, until we obtained
1000 repetitions with the optimal solution. For each repetition,
we verified that the optimal gain was equal to the gain of P .
The average gain was 80.08% for both algorithms.

VIII. CONCLUSION

Given their limited number of demodulators, when Lo-
RaWAN gateways detect more than eight incoming frames,
they have to decide which ones to demodulate and which ones
to discard. We showed that the default behavior of LoRaWAN
gateways, which is to demodulate the earliest frames in a FIFO
manner, is far from optimal as it is possible to demodulate up
to 72 times more frames (in the worst case). In the single
gateway case, the simple preemptive algorithm P is optimal
for one and two demodulators, and reaches good performance
with a larger number of demodulators. In the multi-gateway
case, both the non-collaborative algorithm P and the simple-
collaborative algorithm PC yield an approximation ratio of 2
(for two gateways and one demodulator per gateway), while
the smart-collaborative algorithm PS has a lower approxi-
mation ratio of 1.5 (under the same conditions). We believe
that designing simple collaborative strategies for demodulator
allocation can help to enhance LoRaWAN throughput, with
minimal additional overhead in order to implement this col-
laboration framework. The optimality or approximation ratios
of the proposed collaborative algorithms have not only been
analyzed theoretically, but also validated through extensive
simulations. The proposed approach thus appears as an ef-
fective solution towards the future challenges of massive IoT

connectivity, by smartly leveraging the increasing density of
LoRaWAN gateways.
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