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Introduction

Control problems in civil and mechanical engineering systems covered large spectrum ranging from active to passive control [START_REF] Housner | Structural control: Past, present, and future[END_REF], [START_REF] Chu | Active, Hybrid, and Semi-active Structural Control: A Design and Implementation Handbook[END_REF], [START_REF] Korkmaz | A review of active structural control: challenges for engineering informatics[END_REF]. Active control solutions need external energies for the activations while passive control strategies rely on interactions between coupled oscillators or systems for energy reductions. Passive controllers are divided into two categories: linear and nonlinear systems. For linear passive controllers, their restoring forcing function reads as F(α) = k L α where α stands for generalized displacement. The most famous passive control device is the Frahm system [START_REF] Frahm | Device for damping vibrations of bodies[END_REF] which is named also a tuned mass damper (TMD) [START_REF] Hartog | Mechanical vibrations[END_REF]. Such linear systems are very ecient at the targeted frequency but they lose their eciencies elsewhere notably for large frequency bands. Roberson [START_REF] Roberson | Synthesis of a nonlinear dynamic vibration absorber[END_REF] supplemented the linear part of the absorber by a cubic term reading as F(α) = k L α + k N L α 3 . He showed that the working frequency of such absorbers increases with respect to the TMD. Since then, dierent types of nonlinear absorbers were introduced: pendulum-type vibration absorbers [START_REF] Sevin | On the parametric excitation of pendulum-type vibration absorber[END_REF], [START_REF] Struble | Resonant oscillations of a beam-pendulum system[END_REF], auto parametric vibration absorber [START_REF] Haxton | The autoparametric vibration absorber[END_REF], [START_REF] Vyas | Dynamics of autoparametric vibration absorbers using multiple pendulums[END_REF], [START_REF] Song | The response of a dynamic vibration absorber system with a parametrically excited pendulum[END_REF], magnet type nonlinear absorber [START_REF] Yamakawa | Behavior of a new type dynamic vibration absorber consisting of three permanent magnets[END_REF], [START_REF] Kojima | A study on the torsional dynamic vibration absorber consisting of rare-earth magnets[END_REF], softening type nonlinear absorber [START_REF] Hunt | The broadband dynamic vibration absorber[END_REF], bow-type or shallow buckled beam [START_REF] Rice | Practical non-linear vibration absorber design[END_REF]. In the early 21st century a new type of nonlinear absorber has been developed which contained pure cubic term reading as F(α) = k N L α 3 [START_REF] Gendelman | Energy pumping in nonlinear mechanical oscillators: part idynamics of the underlying hamiltonian systems[END_REF], [START_REF] Vakakis | Energy pumping in nonlinear mechanical oscillators: part iiresonance capture[END_REF], [START_REF] Wierschem | Passive damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment[END_REF]. It was named a nonlinear energy sink (NES). The NES has no special frequency and can enter in resonance at any frequency. It is shown that the control process by NES is functional for large frequency bands. Dierent types of nonlinearities are considered for the NES: vibro-impact NES [START_REF] Nucera | Targeted energy transfers in vibro-impact oscillators for seismic mitigation[END_REF], [START_REF] Gendelman | Dynamics of forced system with vibro-impact energy sink[END_REF], [START_REF] Gourc | Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: analytical and experimental developments[END_REF], [START_REF] Gourc | Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink[END_REF], piecewise linear NES [START_REF] Lamarque | Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink[END_REF]. The NES has been applied successfully in dierent systems covering aerospace [START_REF] Gendelman | Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic ow[END_REF], mechanical [START_REF] Savadkoohi | Vibratory energy exchange between a linear and a nonsmooth system in the presence of the gravity[END_REF], civil [START_REF] Vaurigaud | Passive control of aeroelastic instability in a long span bridge model prone to coupled utter using targeted energy transfer[END_REF] and acoustical [START_REF] Cochelin | Experimental evidence of energy pumping in acoustics[END_REF], [START_REF] Labetoulle | Detection of dierent dynamics of two coupled oscillators including a time-dependent cubic nonlinearity[END_REF] engineering. Galloping oscillations on overhead power lines are a major issue, as they correspond to large amplitudes at low-frequencies. They are caused by ice and snow accretion on conductor cables [START_REF] Van Dyke | Eect of Ice and Snow on the Dynamics of~Transmission Line Conductors[END_REF]. The galloping instability was rst studied by Den Hartog that gave his theory on its vertical mechanism [START_REF] Hartog | Transmission Line Vibration Due to Sleet[END_REF]. Since then, numerous studies have studies the galloping mechanism with the consideration of the coupling of the dierent types of motions of the cable [START_REF] Nigol | Conductor galloping and control based on torsional mechanism[END_REF], [START_REF] Yu | Three-Degree-of-Freedom Model for Galloping. Part I: Formulation[END_REF], [START_REF] Jones | Coupled Vertical and Horizontal Galloping[END_REF]. Recent work has examined a continuous cable model under galloping instability which points out the dierent internal resonances [START_REF] Zulli | On the nonlinear eects of the mean wind force on the galloping onset in shallow cables[END_REF]. A lack of control solutions remains even if there are some widely used techniques to deal with galloping oscillations. The interphase spacer [START_REF] Van Dyke | Eect of Ice and Snow on the Dynamics of~Transmission Line Conductors[END_REF] is a device designed to keep a clearance between dierent phases of an electric circuit. Most of the studies on interphase spacers concentrate on the optimization of the location of the device along the span concerning galloping mitigation [START_REF] Zhou | Wind tunnel test of the inuence of an interphase spacer on the galloping control of iced eight-bundled conductors[END_REF]. The torsional pendulum is a small eccentric mass attached to the conductor to modify the coupling between the vertical and the torsional motion of the cable [START_REF] Havard | Five Years' Field Trials of Detuning Pendulums for Galloping Control[END_REF]. There are several categories of vibrations which demand dierent control strategy, for example aeolian vibration can be mitigated by a tuned mass damper [START_REF] Langlois | Prediction of aeolian vibration on transmission-line conductors using a nonlinear time history modelpart i: Damper model[END_REF]. Beam-like structural elements have many applications in dierent engineering systems such as the wing of an airplane, the overall behaviour of homogenized tall buildings, a simple model of the bridge deck, etc. The control process of such elements with classical boundary conditions by cubic NES has been articulated in [START_REF] Kani | Vibration control of a nonlinear beam with a nonlinear energy sink[END_REF], [START_REF] Ahmadabadi | Nonlinear vibration control of a cantilever beam by a nonlinear energy sink[END_REF], [START_REF] Georgiades | Dynamics of a linear beam with an attached local nonlinear energy sink[END_REF]. In this paper, we propose the control strategy of a linear beam with elastic boundary conditions (translational and rotational springs) by considering a general form of nonlinearity for the restoring forcing function of the NES, narrowed later on non-smooth nonlinearity, for numerical applications. The linear beam with elastic boundary conditions have been chosen to study the soft structures under aerodynamic instability as a cable of overhead transmission line with ice-accretion. In addition the studied system is very similar to an experimental test on galloping instability of overhead transmission line by Chabart et al. [START_REF] Chabart | Galloping of electrical lines in wind tunnel facilities[END_REF], and the aerodynamic coecients of this reference will be used here to model the aerodynamic eects. The organization of the paper is as follows: the global representation of the system under two dierent types of excitation coupled to a NES with a general nonlinearity is presented in section 2. The primary treatments of system equations are presented in the same section. Fast and slow system dynamics are detected in section 3, then section 4 presents the numerical validation by the nite element method. In section 5 the nonlinear passive control of the system submitted to galloping instability is investigated. Finally, the paper is concluded in section 6.

Formulation of the problem

The system under consideration is a linear beam with elastic boundary conditions, considered as the principal system, coupled to a NES at x = l n , as it is illustrated on Fig. 1. The principal system is an Euler-Bernoulli beam characterized by a exural stiness EI, a length L, a linear mass density m(x) considered to be constant all along the beam. Its boundary conditions are dened by translational and rotational stinesses. Translation and rotational stinesses of boundary conditions at x = 0, x = L are represented by (k 0 and k R0 ) and (k L and k RL ) respectively. The motion of the beam is represented by v(x, t) which is the vertical displacement between the equilibrium state and the actual conguration. The NES is composed of a small mass m N ES , a nonlinear stiness dened by a nonlinear restoring function F, and a viscous damping c N ES . The motion of the NES is characterized by u(t) which is the vertical displacement between the equilibrium position and the actual conguration. In the next section, we will evaluate dierent mode shapes Φ n and frequencies ω n of the principal system. 
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Modal characteristics of the system

The equation of motion of the conservative beam reads as:

-EI ∂ 4 v ∂x 4 (x, t) = m(x) ∂ 2 v ∂t 2 (x, t) (1) 
With the following boundary conditions:

At x = 0 :      k 0 v (0, t) = -EI ∂ 3 v ∂x 3 (0, t) EI ∂ 2 v ∂x 2 (0, t) = k R0 ∂v ∂x (0, t) (2) 
At x = L :      k L v (L, t) = EI ∂ 3 v ∂x 3 (L, t) EI ∂ 2 v ∂x 2 (L, t) = -k RL ∂v ∂x (L, t) (3) 
After separation of spatiotemporal variable as v(x, t) = Φ(x)F (t), Eq. 1 leads to:

d 2 F dt 2 (t) + ω 2 F (t) = 0 (4) 
d 4 Φ dx 4 (x) -β 4 Φ(x) = 0 with β 4 = m EI ω 2 (5) 
To respect the nite motion property of the non-excited system, the constant ω has to be positive. The solutions of the dierential equations Eq. 4 and 5 can be written depending on constants a 0 , a 1 , a 2 , a 3 , a 4 and θ 0 as:

F (t) = a 0 cos (ωt + θ 0 ) (6) 
Φ (x) = a 1 sin (βx) + a 2 cos (βx) + a 3 cosh (βx) + a 4 sinh (βx)

Then the mathematical expression of the boundary conditions dened in Eq. 2 and Eq. 3 can be rewritten in the matrix form as:

M     a 1 a 2 a 3 a 4     =     0 0 0 0     (8)
M is a 4 × 4 matrix which is presented in Appendix A. The non-trivial solutions of Eq. 8 exist if the matrix M is non-invertible. The solutions of det(M ) = 0 lead to the determination of the natural frequencies which should be obtained numerically. Then, constants a 1 , a 2 , a 3 and a 4 can be determined. The details of all calculations are provided in Appendix A. The proof of orthogonality of modes for considered boundary conditions is provided in Appendix B. Finally, the normalized mode shapes can be dened by:

L 0 m(x)Φ 2 i (x)dx = 1 (9) 

Projection of the system on one of its modes

Let us suppose that the overall system is under a distributed force f a (x, t) that only sollicitate one of the natural modes of the principal system. Consequently, we will study the mono-modal dynamics of the system. The general dynamic equation of the beam can be written as: :

-EI ∂ 4 v ∂x 4 (x, t) + f (x, t) = m ∂ 2 v ∂t 2 (x, t) + C ∂v ∂t (x, t) (10) 
Where C is the linear viscous damping and f (x, t) stands for the applied reactions along the beam. The restoring force function of the NES is dened by the function F. So,

f (x, t) = -c N ES ∂v ∂t (l n , t) - ∂u ∂t (t) δ(x -l n ) -F(v(l n , t) -u(t))δ(x -l n ) + f a (x, t) (11) 
The dynamic equilibrium of the NES reads:

m N ES ∂ 2 u ∂t 2 (t) + c N ES ∂u ∂t (t) - ∂v ∂t (l n , t) -F(v(l n , t) -u(t)) = 0 (12) 
The excitation is assumed to mainly bring the k th natural frequency. Moreover, we assume that for this case the response of the system are governed only by the k th mode. So, we set:

v(x, t) = q k (t)Φ k (x) (13) 
The system equations are projected on the k th mode which yield to:

-EIq k β 1 -c N ES ∂q k ∂t Φ k (l n ) - ∂u ∂t Φ k (l n ) -F (q k Φ k (l n ) -u) Φ k (l n ) + L 0 f a (x, t)Φ k (x)dx = m ∂ 2 q k ∂t 2 β 2 + C ∂q k ∂t β 2 (14) 
m N ES ∂ 2 u ∂t 2 (t) + c N ES ∂u ∂t (t) - ∂q k ∂t Φ k (l n ) -F(q k Φ k (l n ) -u(t)) = 0 (15)
Where,

β 1 = L 0 ∂ 4 Φ k ∂x 4 Φ k dx β 2 = L 0 Φ 2 k dx (16) 
The mass of the NES is considered very small compared to the one of the primary system i.e. ϵ = m N ES mL ≪ 1. We introduce the following non-dimensionalized space and time variables:

x = x L (17) 
τ = ω k t with, ω 2 k = EI m β 1 β 2 (18) 
Then, Eqs. 14 and 15 read:

pk (τ ) + ϵC p ṗk + p k (τ ) + ϵαc ( ṗk (τ ) -u(τ )) + ϵα F (p k (τ ) -ū(τ )) = ϵΓ(τ ) (19) ϵ ü(τ ) + ϵc ( u(τ ) -ṗk (τ )) -ϵ F (p k (τ ) -ū(τ )) = 0 (20) 
Where () = d dτ (). System parameters are reported in Appendix C. In the next section, we will study the nonlinear equations with a multiple-scale method [START_REF] Nayfeh | Perturbation Methods[END_REF].

Harmonic excitation

The rst type of external excitation is composed of two nodal vertical sinusoidal forces at both ends of the beam. The two forces are set with the same frequency and the same phase. The distributed force f a can be expressed as:

f a (x, t) = F 1 sin(Ω r t)δ(x) + F 2 sin(Ω r t)δ(x -L) (21) 
With F 1 , F 2 , Ω r , and δ the amplitudes of the forces, the angular frequency of the forces and the Dirac function. In this case, the force term in the discrete non-dimensional equation can be developed as:

ϵΓ = L 2 Φk ln L EI β1 F 1 Φk (0) + F 2 Φk (1) sin Ω r ω k τ (22) 
Then the parameters γ and Ω are introduced to simplify the mathematical developments.

Γ = γ sin(Ωτ ) (23) 
With,

γ = L 2 Φk ln L ϵEI β1 F 1 Φk (0) + F 2 Φk (1) (24) 
And,

Ω = Ω r ω k (25) 

Aerodynamic excitation

The galloping phenomenon results from the wind-structure interaction. The quasi-steady theory introduced by Den Hartog [START_REF] Hartog | Transmission Line Vibration Due to Sleet[END_REF] is used here to evaluate the vertical forces induced by the wind on the beam with ice accretion. According to this theory, when the beam is moving in the vertical direction, the dynamic forces caused by a horizontal wind are assumed to be equal to the static forces caused by the relative wind. The relative wind is the initial wind (characterized by its angle of attack and magnitude) with a modied magnitude and angle of Figure 2: Dynamic forces on a beam with circular cross-section and ice-accretion where v, U , U R , α, F L , and F D are the vertical speed of the beam, the real wind speed, the relative wind speed, the relative angle of attack, the lift force and the drag force. attack depending on the vertical velocity of the section as it is shown in gure 2.

The angle of attack, α, is dened as:

α = tan v U (26) 
The wind speed U R is dened as:

U 2 R = U 2 + v2 (27) 
Then the distributed force reads:

f a (x, t) = -F D (α(x, t)) sin(α(x, t)) + F L (α(x, t)) cos(α(x, t)) (28) 
The drag and the lift forces are expressed as:

F D = 1 2 ρ f bU 2 R C D (α(x, t)) F L = 1 2 ρ f bU 2 R C L (α(x, t)) (29) 
With ρ f , b, C D , and C L the density of air, the diameter of the beam with iceaccretion, the drag coecient, and the lift coecient. Finally, we can consider a polynomial development up to the order three of the force f a :

f a (x, t) = 1 2 ρ f bU 2 A 0 -A 1 v U -A 2 v U 2 -A 3 v U 3 ( 30 
)
The coecients of the distributed force can be calculated with the drag and the lift coecients at each angle of attack. Chabart [START_REF] Chabart | Galloping of electrical lines in wind tunnel facilities[END_REF] performed aerodynamic and aeroelastic tests on a piece of cable with ice accretion. The data on the lift and the drag coecients of reference [START_REF] Chabart | Galloping of electrical lines in wind tunnel facilities[END_REF] will be used to calculate the coecient of the distributed force. Those coecient are shown on the gure 3, where fa can be written as: Then, the Γ(t) function in Eq. 19 yields to :

fa = -C D (α(x, t)) sin(α(x, t)) + C L (α(x, t)) cos(α(x, t)) (31) 
Γ = α 0 -α 1 ṗk -α 2 ṗ2 k -α 3 ṗ3 k (32)
With,

ϵα 0 = Φk ln L ρ f U 2 bA 0 2mL β2 ω 2 k 1 0 Φk dx ϵα 1 = ρ f bU A 1 2mω k ϵα 2 = ρ f bA 2 L 2m β2 Φk ln L 1 0 Φ3 k dx ϵα 3 = ρ f bA 3 L 2 ω k 2m β2 U Φk ln L 1 0 Φ4 k dx (33) 

General methodology used for detection of dierent system dynamics

The dynamic equations of the system are nonlinear due to the nonlinearity of the restoring force function F. To point out some characteristics of the system, we will reduce the order of the system by using complex variables of Manevitch [START_REF] Manevitch | The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables[END_REF]. We will study the system at dierent time scales [START_REF] Nayfeh | Perturbation Methods[END_REF].

Complexication

Let us introduce new variables standing for displacement of the center of the mass of the system (w) and the relative displacement between the principal system and the NES (v):

w = m N ES ū + mLp k m N ES + mL ≈ p k + ϵū v = p k - ū (34) 
Let us introduce Ω the angular frequency corresponding to the response of the system. As we are interested to study the system behaviors around a 1:1 resonance (with the mode k), we set Ω = 1 + ϵσ. Equations 19 and 20 with the new variables read as:

ẅ + w + ϵv + ϵ(α -1) F(v) + ϵc(α -1) v + ϵC p ( ẇ + ϵ v) = ϵΓ (35) v + w + ϵv + (ϵα + 1) F(v) + c(ϵα + 1) v + ϵC p ( ẇ + ϵ v) = ϵΓ (36) 
The complex variables of Manevitch [START_REF] Manevitch | The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables[END_REF] are introduced as (with i 2 = -1):

φ 1 e iΩτ = ẇ + iΩw φ 2 e iΩτ = v + iΩv (37) 
These variables are injected in Eqs. 35 and 36 and only the rst harmonics are kept by a Galerkin method. If Λ(φ 1 , φ 2 , φ * 1 , φ * 2 ) is a general function, the rst harmonic λ is obtained via:

λ(φ 1 , φ 2 , φ * 1 , φ * 2 ) = Ω 2π 2π Ω 0 Λ(φ 1 , φ 2 , φ * 1 , φ * 2 )e -iΩτ dτ (38) 
We assume that the functions φ 1 and φ 2 do not depend on τ . This will be validated during the multiple scale method, or we will look at system behaviors at the innity of the fast time. After keeping only the rst harmonic, the Eqs. 35 and 36 becomes:

φ1 - Ω 2i φ 1 + 1 2iΩ (φ 1 + ϵφ 2 ) + ϵ(α -1) φ 2 2iΩ G(|φ 2 | 2 ) + ϵc(α -1) 2 φ 2 + ϵC p 2 (φ 1 + ϵφ 2 ) = ϵΓ 1 (39) φ2 - Ω 2i φ 2 + 1 2iΩ (φ 1 + ϵφ 2 ) + (ϵα + 1) φ 2 2iΩ G(|φ 2 | 2 ) + c(ϵα + 1) 2 φ 2 + ϵC p 2 (φ 1 + ϵφ 2 ) = ϵΓ 1 (40) 
With Γ 1 the rst harmonic terms of Γ and the function G dened as:

G(|φ 2 | 2 ) = 2iΩ φ 2 Ω 2π 2π Ω 0 F φ 2 e iΩτ -φ * 2 e -iΩτ 2iΩ e -iΩτ dτ (41) 
For the detection of dierent dynamics of the system, the method of multiple scales [START_REF] Nayfeh | Perturbation Methods[END_REF] is used. Dierent times scales τ n are introduced, τ n = ϵ n τ , with n ∈ N. Eqs. 39 and 40 can be extended in series concerning ϵ and the terms in the same order should be treated separately. The function G is extended in series as:

G = G 0 + ϵG 1 + O(ϵ 2 ) (42) 
Here, the non-smooth NES is dened by its restoring force function that is piecewise linear. Figure 4 shows its restoring force function depending on K 1 , K 2 , the two slopes of the function, and the clearance 2δ standing for the position where the slope changes. This function is dened as: 

K 1 K 2 α F(α) δ -δ
F(α) =    K 1 α if α ∈ [-δ, δ] K 2 α + δ(K 1 -K 2 ) if α > δ K 2 α + δ(K 2 -K 1 ) if α < -δ (43) 
The non-dimensional restoring force function F that was dened in section 2 reads:

F(α) =    k 1 α if α ∈ [-δ, δ] k 2 α + δ(k 1 -k 2 ) if α > δ k 2 α + δ(k 2 -k 1 ) if α < - δ (44) 
With,

δ = δ L ; ϵk 1 = K 1 L 3 EI ; ϵk 2 = K 2 L 3 EI (45)
The function G (see Eq. 41) is dened as:

G(|φ 2 | 2 ) =    k 1 if |φ 2 | Ω ≤ δ g(|φ 2 | 2 ) else (46)
Where,

g(|φ 2 | 2 ) = 2 δΩ N 2 2 π (k 1 -k 2 ) N 2 2 -δ2 Ω 2 + 2 π k 2 arccos δΩ N 2 + k 1 arcsin δΩ N 2 (47) 
Then the O(ϵ 0 ) of the function G can be calculated.

G 0 (|φ 2 | 2 ) = k 1 if |φ 2 | ≤ δ g 0 (|φ 2 | 2 ) else (48) g 0 (|φ 2 | 2 ) = 2 δ N 2 2 π (k 1 -k 2 ) N 2 2 -δ2 + 2 π k 2 arccos δ N 2 + k 1 arcsin δ N 2 (49) 
In the following sections, dierent system dynamics will be detected by studying the system at dierent orders of ϵ.

Fast dynamics of the system

In the previous section, the truncated forms of the system equations are presented (Eqs. 39 and 40). The O(ϵ 0 ) of these equations reads:

     ∂φ 1 ∂τ 0 - φ 1 2i + φ 1 2i = 0 ∂φ 2 ∂τ 0 - φ 2 2i + φ 1 2i + φ 2 G 0 (|φ 2 | 2 ) 2i + c 2 φ 2 = 0 (50) 
The rst equation gives ∂φ 1 ∂τ 0 = 0. Let us seek xed points of the system. This means that when τ 0 → ∞, then ∂φ 2 ∂τ 0 = 0. Then, the second equation of 50

provides:

H (φ 1 , φ 2 , φ * 1 , φ * 2 ) = 0 (51) 
With,

H = φ 1 2i - φ 2 2i + φ 2 G 0 (|φ 2 | 2 ) 2i + c 2 φ 2 (52) 
H is named Slow Invariant Manifold (SIM) in the complex domain. As φ 1 and φ 2 are complex variables, we set φ j = N j e iδj with j = 1, 2,

N j ∈ R + , δ j ∈ R.
By separating the real parts and the imaginary parts of H following relation is obtained:

N 1 = N 2 c 2 + (1 -G 0 (N 2 2 ))
the SIM, we linearly perturb φ 2 (respectively

φ * 2 ) as φ 2 +∆φ 2 with |∆φ 2 | ≪ |φ 2 | (respectively φ * 2 + ∆φ * 2 with |∆φ * 2 | ≪ |φ * 2 |
). The Eq. 50 rewrites as:

∂(φ 2 + ∆φ 2 ) ∂τ 0 - 1 2i (φ 2 + ∆φ 2 ) + φ 1 2i + (φ 2 + ∆φ 2 ) 2i G 0 ((φ 2 + ∆φ 2 )(φ * 2 + ∆φ * 2 )) + c 2 (φ 2 + ∆φ 2 ) = 0 (54) 
And,

∂(φ * 2 + ∆φ * 2 ) ∂τ 0 + 1 2i (φ * 2 + ∆φ * 2 ) - φ * 1 2i - (φ * 2 + ∆φ * 2 ) 2i G 0 ((φ 2 + ∆φ 2 )(φ * 2 + ∆φ * 2 )) + c 2 (φ * 2 + ∆φ * 2 ) = 0 (55) 
We perform the following Taylor development:

G 0 ((φ 2 +∆φ 2 )(φ * 2 +∆φ * 2 )) = G 0 (φ 2 φ * 2 )+(φ * 2 ∆φ 2 +φ 2 ∆φ * 2 )G ′ 0 (φ 2 φ * 2 )+O(|∆φ 2 | 2 )
(56) These two equations Eqs. 54 and 55 can be simplied by neglecting the terms at the order O(|∆φ 2 | 2 ). The equations can be expressed in matrix form, where components of the matrix M are dened in Appendix D.

     ∂∆φ 2 ∂τ 0 ∂∆φ * 2 ∂τ 0      = M   ∆φ 2 ∆φ * 2   (57) 
The reduced order system is stable if the real parts of the eigenvalues of M are negatives. The characteristic polynomial of the matrix M via det(M -XI 2 ) reads as (I 2 is the 2 × 2 identity matrix):

X 2 + cX + P (N 2 ) (58) 
With,

P (N 2 ) = - N 2 2 2 G ′ 0 (N 2 2 ) + N 2 2 G 0 (N 2 2 )G ′ 0 (N 2 2 ) 2 + G 0 (N 2 2 ) 2 4 - G 0 (N 2 2 ) 2 + c 2 4 + 1 4 (59) 
The order of the characteristic polynomial is two. So, the sign of its roots can be determined. As -c is always negative, then the sum of the two eigenvalues is negative. P (N 2 ) is the product of the eigenvalues. Then, if P (N 2 ) is negative, the two real parts of the eigenvalues are in opposite signs and one is positive so the xed point is unstable. On the contrary, if P (N 2 ) is positive, the two real parts of the eigenvalues have the same signs and they are negatives (as their sum is always negative) so the xed point is stable.

Slow dynamics of the system

The multiple scale study started with the investigation on the fast time scale study in the previous section permitted us to obtain the SIM and its stability borders. Now, the slow time scale will be studied. The O(ϵ 1 ) of the rst equation of Eq. 39 reads:

∂φ 1 ∂τ 1 = E 1 (φ 1 , φ 2 , φ * 1 , φ * 2 ) (60) 
With,

E 1 = σ 2i φ 1 - 1 2i (φ 2 -σφ 1 ) - α -1 2i G 0 (|φ 2 | 2 )φ 2 - C p φ 1 2 - c(α -1) 2 φ 2 + Γ 1 (61)
The fast dynamics must be taken into account: let us study the evolution of the SIM at the time scale τ 1 .

         ∂H ∂τ 1 = ∂H ∂φ 1 ∂φ 1 ∂τ 1 + ∂H ∂φ 2 ∂φ 2 ∂τ 1 + ∂H ∂φ * 1 ∂φ * 1 ∂τ 1 + ∂H ∂φ * 2 ∂φ * 2 ∂τ 1 = 0 ∂H * ∂τ 1 = ∂H * ∂φ 1 ∂φ 1 ∂τ 1 + ∂H * ∂φ 2 ∂φ 2 ∂τ 1 + ∂H * ∂φ * 1 ∂φ * 1 ∂τ 1 + ∂H * ∂φ * 2 ∂φ * 2 ∂τ 1 = 0 (62) 
This system can be expressed in the matrix form:

   ∂H ∂φ 2 ∂H ∂φ * 2 ∂H * ∂φ 2 ∂H * ∂φ * 2    B2    ∂φ 2 ∂τ 1 ∂φ * 2 ∂τ 1    = -    ∂H ∂φ 1 ∂H ∂φ * 1 ∂H * ∂φ 1 ∂H * ∂φ * 1    B1    ∂φ 1 ∂τ 1 ∂φ * 1 ∂τ 1    (63) 
Matrix B 1 and B 2 are detailed in Appendix E. According to this equation, two types of characteristic points can be dened:

Equilibrium point:    E 1 = 0 H = 0 det(B 2 ) ̸ = 0 Singular point:    E 1 = 0 H = 0 det(B 2 ) = 0
It can be seen that B 2 = -M where M is the matrix dened in Eq. 57. So, the matrix B 2 has the same characteristic equation which is dened in Eq. 58, i.e. det(B 2 ) = P (N 2 ). Hence, the amplitudes of singular points are situated on the boundary of the unstable zone of the SIM. To nd the equilibrium points, the equation E 1 = 0 has to be solved, in terms of amplitude N 2 including the fast dynamics (H = 0). Fast and slow dynamics are claried for the system coupled with a NES with general excitation. In the following sections, the results will be detailed for the two types of excitation.

Dynamics of the system without the NES under the aerodynamic excitation

In this section, the multiple scale method described in the previous section will be used to detect the dynamical behavior of the system without the NES under aerodynamic excitation. The general dynamic equation of this case can be deducted from Eqs. 19 and 32 by eliminating terms related to the NES:

pk (τ ) + ϵC p ṗk + p k (τ ) = ϵ α 0 -α 1 ṗk -α 2 ṗ2 k -α 3 ṗ3 k ( 64 
)
The complex variable φ 1 is introduced:

φ 1 e iΩτ = ṗk + iΩp k ( 65 
)
Where i is the imaginary number with i 2 = -1 and Ω is the angular frequency of the system. The detuning parameter σ is introduced as: Ω = 1 + ϵσ. The Eq. 64 is rewritten with the complex variable and only the rst harmonic is retained involving the following equation:

∂φ 1 ∂τ - Ωφ 1 2i + ϵ C p φ 1 2 + φ 1 2iΩ = -ϵ α 1 φ 1 2 -ϵ 3α 3 φ 2 1 φ * 1 8 (66) 
O(ϵ 0 ) of Eq. 66 becomes:

∂φ 1 ∂τ 0 - φ 1 2i + φ 1 2i = 0 ⇒ ∂φ 1 ∂τ 0 = 0 (67) 
Then, O(ϵ 1 ) of Eq. 66 reads:

∂φ 1 ∂τ 1 - σ 2i φ 1 + C p 2 φ 1 - σ 2i φ 1 = α 1 2 φ 1 - 3α 3 8 φ 2 1 φ * 1 ( 68 
)
The equilibrium points of this system can be found by setting ∂φ 1 ∂τ 1 = 0. Considering φ 1 = N 1 e iδ1 , N 1 ∈ R + , δ 1 ∈ R, we will have:

N 1 C p 2 - σ i + α 1 2 = - 3α 3 8 N 3 1 (69) 
This complex equation provides σ = 0. Then, the equation has a trivial solution N 1 = 0. The non-trivial solutions of the system are dened as:

N 2 1 = - 8 3α 3 C p 2 + α 1 2 (70) 
This equation can be easily solved if the following condition is respected:

- 8 3α 3 C p 2 + α 1 2 > 0 (71) 
We can distinguish all cases concerning the sign of α 1 and α 3 but we concentrate on one case. That is the case mentioned in the paper of Chabart [START_REF] Chabart | Galloping of electrical lines in wind tunnel facilities[END_REF] when the initial angle of attack of the wind is -165 • where α 1 < 0 and α 3 > 0. In this case, The condition from the Eq. 71 will be respected if the wind speed is higher that a certain value called the critical wind speed U c . The critical wind speed is expressed as:

U c = - 2ϵmω k C p ρ f bA 1 (72)
So, when the wind speed is lower than the critical wind speed, the only equilibrium point is N 1 = 0 and when the wind speed is higher, there are two equilibrium points, one is N 1 = 0 and the second can be expressed as:

N 1 = - 8 3α 3 C p 2 + α 1 2 (73) 
A stability analysis of these equilibrium points reveals that before the critical wind speed, the solution is stable and after the critical wind speed, the solution N 1 = 0 is unstable but the other solution is stable. In other words, we have here a super-critical Hopf bifurcation.

The slow dynamics of the system coupled to a NES with the two considered excitations

In this section, developed techniques for the detection of slow dynamics of a coupled system described in section 3, will be used for the system under two dierent types of excitation namely, harmonic and aerodynamic excitation.

The system under harmonic excitation

Setting Ω = 1 + σϵ in Eq. 23 and keeping its rst harmonic, we will have:

Γ 1 = γ 2i (74) 
Then Eq. 62 which provides equilibrium points of the system yields to:

N 2 2 G 0 (|φ 2 | 2 )(2σ + (α -1)) 2 -σ + C p c 2 + 1 2 2 +N 2 2 C p G 0 (|φ 2 | 2 ) 2 -σc - C p + c(α -1) 2 2 = γ 2 4 (75) 
Eq. 75 can be solved numerically. The simplest way is to organize this equation as a second order polynomial with respect to σ, so a certain range of N 2 values can be considered and dierent σ value can be obtained for each N 2 value. Then, with the SIM for each N 2 value, the corresponding N 1 value can be calculated. The reorganized equation reads:

Λ 1 σ 2 + Λ 2 σ + Λ 3 = 0 (76)
With,

Λ 1 = N 2 2 (1 -G 0 ) 2 + N 2 2 c 2 Λ 2 = -2N 2 2 (1 -G 0 ) C p c 2 + 1 2 + α -1 2 G 0 +2N 2 2 c C p c 2 (1 -G 0 ) + c(α -1) 2 Λ 3 = N 2 2 C p c 2 + 1 2 + α -1 2 G 0 2 +N 2 2 C p c 2 (1 -G 0 ) + c(α -1) 2 2 - γ 2 4 
(77)

The system under aerodynamic excitation

The non-dimensional expression of the aerodynamic force was given in the section 2 (see Eq. 32), reads:

ϵΓ = ϵ α 0 -α 1 ( ẇ + ϵ v) -α 2 ( ẇ + ϵ v) 2 -α 3 ( ẇ + ϵ v) 3 (78) 
The rst harmonic of this function becomes:

Γ 1 = Ω 2π 2π Ω 0 Γe -iΩτ dτ = -α 1 φ 1 2 -α 3 3φ 2 1 φ * 1 8 + O(ϵ) (79) 
After introducing Γ 1 in the equation E 1 = 0, and taking account of the relation between φ 1 and φ 2 (Eq. 51), a complex equation which can be factorized by φ 2 is obtained. Hence, φ 2 = 0 is always a solution of this system. As we are looking for non zero solutions, the equation E 1 = 0 can be divided by φ 2 and separated in two real equations:

         σ = 1 -α 2 - 1 c 1 -G 0 (|φ 2 | 2 ) h(N 2 ) h(N 2 ) c + 1 c 1 -G 0 (|φ 2 | 2 ) 2 + α 2 = 0 (80) With, h(N 2 ) = C p 2 + α 1 2 + 3α 3 8 φ 2 φ * 2 1 -G 0 (|φ 2 | 2 ) 2 + c 2 (81) 
This equation is nonlinear, the three main variables are N 2 , σ and U the energy of the NES, the detuning parameter ans the wind speed. The wind speed U is hidden in α 3 and α 1 , so we set:

α 1 = U α1 α 3 = α3 U (82) 
Where α1 and α3 do not depend on U . It is seen that Eq. 80 is a second order polynomial with respect to U . The second equation of Eq. 80 can be rewritten as:

ξ 1 U 2 + ξ 2 U + ξ 3 = 0 (83) 
With,

ξ 1 = α1 2 ξ 2 = C p 2 + α 2 c + 1 c (1 -G 0 ) 2 ξ 3 = 3α 3 8 N 2 2 (1 -G 0 ) 2 + c 2 (84) 
So, for a range of N 2 values the solutions of Eq. 83 can be found for each N 2 values. This procedure leads to bifurcation diagrams of the overall system. In addition of the calculated equilibrium points the trivial solutions (N 2 , N 1 ) = (0, 0) remains. We will assume that those solutions are stable if there are no other solutions and unstable if we can nd non zero equilibrium points.

Finite element modelling of the system and validation of the analytical predictions

In the last sections, the analytical results have been presented for the detection of dierent dynamics of a beam with elastic boundary conditions coupled to non-smooth NES. In this part, a nite element model of the system is presented and obtained numerical results are compared with those obtained from analytical predictions. The nite element software (Code_Aster) that we are using does not permit to model aerodynamic excitation. For this reason, this section will be only on the harmonic excitation.

The nite element model of the system

The beam with elastic boundary conditions coupled to a NES that is described in Fig. 1 is modeled with a nite element method using the software Code_Aster. One-dimensional linear beam elements are used for modeling the primary system and the boundary conditions are modeled by discrete elements that behave as linear rotational and translational springs. The non-smooth NES is designed with a material which changes its rigidity after a clearance of 2δ from K 1 to K 2 , hence the behavior of the NES is the same as the one described in Fig. 4 with K 1 = 0 and K 2 = K. Table 1 provides the physical characteristics of the beam and its boundary conditions. The mode shapes are calculated by the analytic method described in section 2 and also by a modal analysis via the nite element method. Fig. 5 shows that the results of both methods are in good agreement.

In this study, the behavior of the system is examined around the rst mode whose frequency is 0.407 Hz. The NES is attached to the middle of the beam, so l n = 2 m. The analytical equations are projected on the rst mode of the beam and the excitation frequency is close to the frequency of the rst mode. The parameters of the NES used for analytical developments are presented in Table 1: Physical characteristics of the linear beam and its boundary conditions.

Table 2,while the correspondences of the same parameters in physical domain are summarized in Table 3. The excitation F 1 and F 2 reads as:

F 1 (t) = F 2 (t) = F sin(Ω r t) (85) 
With F the amplitude of the force and Ω r the angular frequency of the external excitations.

k 1 k 2 c δ ϵ C p γ 0 1.5 0.25 0.2 0.001 20 5
Table 2: Analytical parameters for the study of the non-smooth NES and the system.

c N ES K 1 K 2 3.502 × 10 -3 N.m -1 .s 0 N.m -1 5.374 × 10 -2 N.m -1 δ m N ES F 0.8 m
5.476 × 10 -3 Kg 0.3611 N Table 3: Physical characteristics of the non-smooth NES.

Finally, the damping of the primary system is provided by a function of Code_Aster that enables to add modal damping. In the analytic model, damping of the primary system is dened by a viscous term C. Let us suppose that ξ is the coecient of Rayleigh damping of the primary system:

ξ = C 2mω k (86)
The analytical damping parameter of the primary system is C p = 20 which correspond to ξ = 1%. So, a model damping of 1% is provided on the studied mode by the function of Code_Aster. In the next subsection, obtained results for the system coupled to chosen non-smooth NES will be presented.

The system with coupled non-smooth NES under harmonic excitation

In this section, the results obtained with the non-smooth NES are presented. All the analytical parameters of the system have been dened in Table 2. They correspond to the physical parameters in Table 3. First, we have the results for the free vibration system obtained by the numerical integration of Eqs. 35 and 36 by a Runge-Kutta method (ODE45 in

c N ES (N.m -1 ) k N ES (N.m -1 ) m N ES (Kg) F (N ) 3.502 × 10 -3
5.598 × 10 -4 5.476 × 10 -3 1.625

Table 4: Physical characteristics of the cubic NES. Matlab). In Fig. 6, the evolution of N 1 versus N 2 is plotted for dierent initial conditions. The trajectory follows the stable branch of the SIM and bifurcates at the stability border to the other stable branch. We can see that the dierent trajectories end at dierent points, this is because gravity is not taken into account and k 1 = 0 so there is an innity of static equilibrium position. For the beam, only v = 0 is the solution for the static, but for the NES, if k 1 = 0 all the values in the interval [-δ, δ] are the solution for u of the static problem. The equilibrium points for the system under the harmonic excitation are investigated. Fig. 7 and8 shows the equilibrium points of the system obtained from analytical predictions and the equilibrium state obtained for dierent frequency via numerical methods. The numerical results t well with the analytical predictions.

0 0.5 1 1.5 2 2.5 3 N 2 0 0.2 0.4 0.6 0.8 1 1.2 N 

Control of aerodynamic instability with a non smooth NES

The purpose of this section is to study the control potential of the piecewise linear NES on aerodynamic instability of a cable. Chabart et al. [START_REF] Chabart | Galloping of electrical lines in wind tunnel facilities[END_REF] generated experimentally an aerodynamic instability on a portion of a cable with iceaccretion. The outside layer of a conductor is installed on a 0.8 meters long rigid tube, and an articial ice cross-section is added. First, an aerodynamic test was performed to provide the aerodynamic coecients given on the Fig. 3. Then, the cable portion was suspended by springs and placed on the wind tunnel to perform aeroelastic tests at dierent angles of attack. For the aeroelastic test, the natural frequency of the vertical motion is 0.845 Hz, the total mass of the device is 2.99 Kg, and the damping of the system is about 0.08%. The experimental device was placed in a wind tunnel. In this section, our model will be adapted to be similar to the aeroelastic test which was performed by Chabart [START_REF] Chabart | Galloping of electrical lines in wind tunnel facilities[END_REF]. The test that we are interested on is the one with an inital angle of attack of -165 • , as it shows a vertical galloping behavior. As our model only takes into account vertical motion, this study is focused on this case. The Table 5 shows the parameters of the linear beam with elastic boundary conditions. Compared to the conguration of the previous section, the length of the beam, the linear mass, and the translational springs have been adjusted in order to have the same natural frequency and the same mass as the experimental test.

k 0 (N.m -1 ) k L (N.m -1 ) k R0 (N.m.rad -1 ) k RL (N.m.
The damping coecient of the system is set to 0, 08%. The coecient of the aerodynamic force dened in the Eq. 30 can be calculated by interpolation of the aerodynamic function (Fig. 3) concerning α around the angle of attack α = 165 • (which corresponds to the angle of attack -165 • in the paper). The coecients are given as:

A 0 = 0.131 A 1 = -0.9233 A 2 = 2.8354 A 3 = 1.4718 (87) 
The analytical results from section 3.4 allow to determine the bifurcation diagram of this system without a NES. The physical properties needed in the analytic procedure are listed in the Table 6. The analytical parameters dened ω k (rad.s -1 ) ρ f (Kg.m -3 ) b (m) 5. [START_REF] Nigol | Conductor galloping and control based on torsional mechanism[END_REF] 1.184 32.5 × 10 -3

Table 6: Physical properties of the system for the aeroelastic conguration.

in section 2 are shown in Table 7. The parameters ϵ and l n are related to the NES, they are arbitrary chosen when there is no NES. Here, they will be the same as the conguration with the NES. The bifurcation diagram of the system is shown on the Fig. 9. The equilibrium points of the system obtained by numerical integration of Eq. 64 are also shown on the same gure. The two zones separated by the critical wind speed U c = 1.4298 m.s -1 can be clearly distinguished. The rst zone only has one stable branch where N 1 = 0. The second zone also called the post-critical zone, contains two branches, one is unstable with N 1 = 0 and the other is non zero. As the initial condition for the numerical integration is non zero, the system is systematically attracted by the stables solutions. The same study is carried out for the system with a coupled NES. The parameters of the chosen NES are shown on the Table 8. The bifurcation diagrams for the system with (the same as Fig. 9) and without the NES are shown on the Fig. 10. The equilibrium points of the system with the NES are obtained by the analytic procedure described in the section 3.5. Two types of equilibrium points are shown, in blue they are coming from the stable zones of the SIM, and in red which correspond to these coming from the unstable zone of the SIM. We can see ϵ l n /L k c δ 0.01 0.5 2 0.3 0.3

α 0 /U 2 (m -2 .s 2 ) α 1 /U (m -1 .s) α 2 α 3 .U (m.
Table 8: Analytical parameters of the NES for the aeroelastic conguration.

that for a given wind speed, several equilibrium points can exist. The Fig. 10 also shows the equilibrium points provided by the numerical integration of the Eqs. 35 and 36. The numerical integration of the system with the NES shows that the system is attracted by the non-zero solution when there is one zero solution and one non-zero solution. When there are several non-zero solutions, the system is attracted by the solution coming from the unstable zone of the SIM. To obtain the equilibrium points of the system by numerical integration, an averaging of the last periods of the signal has been carried out. So when the system is attracted by the equilibrium points coming from the unstable zone of the SIM, it will present strong modulated response (SMR) and presented results in Fig. 10, correspond to the average of SMR during a given time interval. Let us consider a case with U = 10 m.s -1 which is presented in Fig. 11. It is seen that the SMR oscillates between the two stable branches of the SIM by a recurrence of bifurcations from one stable branch to the other. If we look a the temporal response of the system with and without the NES of a wind speed of U = 10 m.s -1 (Fig. 12), we can see the signicant reduction of the amplitude of the primary system due to the non smooth NES. This section shows the results system behavior under aerodynamic instability Figure 12: Time history response of the system with (magenta and cyan curves) and without (red and blue curves) NES when U = 10 m.s -1 obtained by numerical integration. and the impact of the NES in terms of galloping mitigation. We have to point out that some assumptions have been made here which make the system a bit far from the reality. The gravity is neglected and the real nonlinear behaviors of a suspended cable are not taken into account [START_REF] Zulli | On the nonlinear eects of the mean wind force on the galloping onset in shallow cables[END_REF], [START_REF] Bertrand | Reducedorder model for the nonlinear dynamics of cables[END_REF]. However, some major characteristics of the galloping oscillations of a cable are well modeled here as the really soft behavior of the system, the self excited behavior and the large oscillations amplitude. Even if the NES is not optimized here, the results show a great potential for galloping mitigation.

Conclusion

The passive control of a linear beam element with elastic boundary conditions by a nonlinear energy sink with piecewise linear nonlinearity is studied. First the system is studied under harmonic excitation. As the goal is to study galloping oscillations on overhead transmission lines, the system is also studied under aerodynamic excitation. After the projection of the overall system on an arbitrary mode of interest, a complexed form of the coupled governing equations are treated by multiple scale method. Then, dierent system dynamics are detected leading to the tracing of slow invariant manifold and equilibrium singular points of the system. Obtained frequency response curves allow having predictions on possible system behaviors for given driving frequency and forcing amplitude. All analytical predictions are confronted by numerical results obtained by direct numerical integration of system equations and also those which are obtained by nite element modeling of overall structure showing a good agreement between all results. Experimental data from literature are used to implement an aerodynamic excitation which leads to an aerodynamic instability. Bifurcation diagram are obtained for the system with and the nonlinear energy sink. The post-critical behavior of the system with the nonlinear energy sink present periodic and quasi-periodic solutions. Results shows the great potential of the piecewise linear nonlinear energy sink to mitigate galloping oscillations. This work provides a complete analytical tools to investigate the impact of a nonlinear energy sink on continuous structure as a cable or a beam. Finally, this study gives prospects to study galloping control of a transmission line conductor with a piecewise linear nonlinear energy sink. The non linear behavior of the suspended cable can be taken into account by implementing a nonlinear cable model with zero bending stiness, only axial stress in traction, and with geometrical nonlinearities induced by the static deformed shape which is the consequence of gravity on the cable.

Appendix A. Mode Shape of primary system

The terms of the matrix M = (m ij ) i,j∈[1..4] 2 from Eq. 8 can be calculated, the boundary conditions from Eq. 2 and Eq. 3 with the form of F and Φ from Eq. 6 and Eq. 7. To simplify the expressions the following non-dimensional parameters are introduced : The solutions β i of the equation det(M ) = 0 gives the natural frequencies ω i . Then, by inverting the system of Eq. 8 the expression of the modes shapes are given depending on a constant α.

Φ i (x) = α (V 1 sin(β i x) + V 2 cos(β i x) + V 3 cosh(β i x) + V 4 sinh(β i x)) (A.3)

V =     V 1 V 2 V 3 V 4     =         K β4 i -kR0 k0 kR0 k0 + β4 i - 2 kR0 β3 i kR0 k0 + β4 i k0 β3 i + K k0 β3 i + 1 K β4 i -kR0 k0 kR0 k0 + β4 i - 2 kR0 β3 i kR0 k0 + β4 i K 1         (A.4) K = 2 kR0 β3 i kR0 k0+ β4 i - β3 
i ( βi sinh βi+ kRL cosh βi)+ β3 i (βi sin βi+ kRL cos βi) -β3

i ( βi cos βi+ kRL sin βi)+ k0(-βi sin βi+ kRL cos βi) β3 i ( βi cosh βi+ kRL sinh βi)+ k0(-βi sin βi+ kRL cos βi) -β3

i ( βi cos βi+ kRL sin βi)+ k0(-βi sin βi+ kRL cos βi) -kR0 k0-β4 i kR0 k0+ β4 i (A.5)

The constant α can be determined when the mode shapes are normalized by the mass. 

A = L 0 (V 1 sin(β i x) + V 2 cos(β i x) + V 3 cosh(β i x) + V 4 sinh(β i x)) 2 dx = V 2 1 L 2 - sin(2β i L) 4β i + V 1 V 3 sin(β i L) sinh(β i L) -cos(β i L) cosh(β i L) + 1 β i + V 2 2 L 2 + sin(2β i L) 4β i + V 1 V 4 sin(β i L) cosh(β i L) -cos(β i L) sinh(β i L) β i + V 2 3 sinh(2β i L) 4β i + L 2 + V 2 V 3 cos(β i L) sinh(β i L) + sin(β i L) cosh(β i L) β i + V 2 4 sinh(2β i L) 4β i - L 2 + V 2 V 4 sin(β i L) sinh(β i L) + cos(β i L) cosh(β i L) -1 β i + V 1 V 2 1 -cos 2 (β i L) β i + V 3 V 4 cosh 2 (β i L) -1 β i

Appendix B. Orthogonality of mode shapes

In this appendix the proof of orthogonality of modes for considered general boundary conditions is given: L 0 Φ i Φ j dx = 0 for i ̸ = j. Eq. 5 rewrites as:

d 4 Φ i dx 4 = β 4 i Φ i ⇒ L 0 d 4 Φ i dx 4 Φ j dx = β 4 i L 0 Φ i Φ j dx
By two integrations by parts we show that L 0 d 4 Φ i dx 4 Φ j dx is symmetric by the index i et j. We use the boundary conditions shown in Eqs. 2 and 3.

L 0 d 4 Φ i dx 4 Φ j dx = Φ j d 3 Φ i dx 3 L 0 - dΦ j dx d 2 Φ i dx 2 L 0 + 0 L d 2 Φ i dx 2 d 2 Φ j dx 2 dx = Φ j (L) d 3 Φ i dx 3 (L) -Φ j (0) d 3 Φ i dx 3 (0) - dΦ j dx (L) d 2 Φ i dx 2 (L) + dΦ j dx (0) d 2 Φ i dx 2 (0) + 0 L d 2 Φ i dx 2 d 2 Φ j dx 2 dx = - k L EI Φ j (L)Φ i (L) + k 0 EI Φ j (0)Φ i (0) + k RL EI dΦ j dx (L) dΦ i dx (L) - k R0 EI dΦ j dx (0) dΦ i dx (0) + 0 L d 2 Φ i dx 2 d 2 Φ j dx 2 dx (B.1)
The last expression of Eq. B.1 is symmetric by the index i et j. So we can write: 

M 11 = 1 2i - c 2 - φ 2 φ * 2 G ′ 0 (φ 2 φ * 2 ) 2i - G 0 (φ 2 φ * 2 ) 2i M 12 = - φ 2 2 G ′ 0 (φ 2 φ * 2 ) 2i M 21 = φ * 2 2 G ′ 0 (φ 2 φ * 2 ) 2i M 22 = - 1 2i - c 2 + φ 2 φ * 2 G ′ 0 (φ 2 φ * 2 ) 2i + G 0 (φ 2 φ * 2 ) 2i (D.2)
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 1 Figure 1: The system under consideration: The linear Euler-Bernoulli beam with the length of L and elastic boundary conditions is coupled to a NES at x = ln.
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Figure 3 :

 3 Figure 3: The aerodynamic coecients of the beam cross section with ice-accretion and the force coecient fa vs. angle of attack.

Figure 4 :

 4 Figure 4: The restoring forcing function of considered non-smooth NES.

Figure 5 :

 5 Figure 5: The mode shape of the linear beam with elastic boundary conditions determined by the nite element method (FEM) and the analytical method.

Figure 6 :

 6 Figure 6: Numerical simulation by numerical integration of the free vibration system (nonsmooth NES) for dierent initial boundary conditions.

Figure 7 :Figure 8 :

 78 Figure7: Comparison of the equilibrium points of the system with the non-smooth NES for sweeping frequency obtained from analytical, the nite element, and the numerical integrations.

Figure 9 :

 9 Figure 9: Bifurcation diagram of the system without NES obtained with the analytic method and equilibrium points obtained by numerical integration.

Figure 10 :

 10 Figure 10: Bifurcation diagram of the system with and without the NES obtained with the analytic method and equilibrium points obtained by numerical integration.

Figure 11 :

 11 Figure11: Response of the system with NES when U = 10 m.s -1 obtained by numerical integration (black curve) in the 2D-plan N 1 vs. N 2 , with the SIM (stable zones in blue and unstable zone in red).

m 14 =

 14 -m 11 = β3 m 12 = m 13 = k0 m 21 = m 24 = kR0 m 22 = -m 23 = β m 31 = -β3 cos β -kL sin β m 32 = β3 sin β -kL cos β m 33 = β3 sinh β -kL cosh β m 34 = β3 cosh β -kL sinh β m 41 = -β sin β + kRL cos β m 42 = -β cos β -kRL sin β m 43 = β cosh β + kRL sinh β m 44 = β sinh β + kRL cosh β (A.2)

L 0 d 4 Φ i dx 4 Φ j dx - L 0 d 4 Φ j dx 4 Φ 0 Φ

 0440440 i dx = (β 4 iβ 4 j ) i Φ j dx = 0 as β i ̸ = β jThe modes shapes are orthogonal.Appendix C. Non-dimentionalized parametersū(τ ) = u(t) L ; Φk (x) = Φ k (x) ; p k (τ ) = q k (t)

Table 5 :

 5 Physical characteristics of the linear beam and its boundary conditions for the aeroelastic test.

	rad -1 )

Table 7 :

 7 Necessary parameters of the system under aerodynamic excitation (for analytical predictions).

	s -1 )

(53) Equation 53 is the representation of the SIM in the real domain, it collects all equilibrium points that the system can reach. To perform a stability analysis of
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Appendix E. Matrix B 1 and B