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Abstract

The aim of this study is nonlinear passive control of galloping oscillation on over-
head transmission lines. The considered system is a linear beam subjected to
harmonic and aerodynamic excitations which is coupled to a nonlinear absorber
placed on an arbitrary position along the beam. Both extremities of the beam
present rotationally and translationally elastic boundary conditions. After pro-
jection of spatio-temporal equations of the system on an arbitrary mode of the
beam (the mode to be controlled), fast and slow system dynamics are traced
which predict periodic or non periodic regimes. All analytical developments are
compared with numerical results obtained from direct numerical integration of
system equations and also from �nite element modelling of the overall structure.
Then, nonlinear passive control process of galloping instability by a non smooth
nonlinear energy sink (NES) is investigated on a real case of galloping instability
on a transmission line cable due to accretion of ice on it.

Keywords:

Beam, elastic boundary conditions, transmission line, galloping, nonlinear
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1. Introduction

Control problems in civil and mechanical engineering systems covered large
spectrum ranging from active to passive control [1], [2], [3]. Active control solu-
tions need external energies for the activations while passive control strategies
rely on interactions between coupled oscillators or systems for energy reduc-
tions. Passive controllers are divided into two categories: linear and nonlinear
systems. For linear passive controllers, their restoring forcing function reads as
F(α) = kLα where α stands for generalized displacement. The most famous
passive control device is the Frahm system [4] which is named also a tuned
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mass damper (TMD) [5]. Such linear systems are very e�cient at the targeted
frequency but they lose their e�ciencies elsewhere notably for large frequency
bands. Roberson [6] supplemented the linear part of the absorber by a cubic
term reading as F(α) = kLα + kNLα

3. He showed that the working frequency
of such absorbers increases with respect to the TMD. Since then, di�erent types
of nonlinear absorbers were introduced: pendulum-type vibration absorbers [7],
[8], auto parametric vibration absorber [9],[10],[11], magnet type nonlinear ab-
sorber [12],[13], softening type nonlinear absorber [14], bow-type or shallow
buckled beam [15].
In the early 21st century a new type of nonlinear absorber has been developed
which contained pure cubic term reading as F(α) = kNLα

3 [16], [17], [18]. It
was named a nonlinear energy sink (NES). The NES has no special frequency
and can enter in resonance at any frequency. It is shown that the control process
by NES is functional for large frequency bands. Di�erent types of nonlinearities
are considered for the NES: vibro-impact NES [19],[20],[21],[22], piecewise linear
NES [23]. The NES has been applied successfully in di�erent systems covering
aerospace [24], mechanical [25], civil [26] and acoustical [27],[28] engineering.
Galloping oscillations on overhead power lines are a major issue, as they corre-
spond to large amplitudes at low-frequencies. They are caused by ice and snow
accretion on conductor cables [29]. The galloping instability was �rst studied by
Den Hartog that gave his theory on its vertical mechanism [30]. Since then, nu-
merous studies have studies the galloping mechanism with the consideration of
the coupling of the di�erent types of motions of the cable [31], [32], [33]. Recent
work has examined a continuous cable model under galloping instability which
points out the di�erent internal resonances [34]. A lack of control solutions
remains even if there are some widely used techniques to deal with galloping
oscillations. The interphase spacer [29] is a device designed to keep a clearance
between di�erent phases of an electric circuit. Most of the studies on interphase
spacers concentrate on the optimization of the location of the device along the
span concerning galloping mitigation [35]. The torsional pendulum is a small
eccentric mass attached to the conductor to modify the coupling between the
vertical and the torsional motion of the cable [36]. There are several categories
of vibrations which demand di�erent control strategy, for example aeolian vi-
bration can be mitigated by a tuned mass damper [37].
Beam-like structural elements have many applications in di�erent engineering
systems such as the wing of an airplane, the overall behaviour of homogenized
tall buildings, a simple model of the bridge deck, etc. The control process of
such elements with classical boundary conditions by cubic NES has been articu-
lated in [38], [39], [40]. In this paper, we propose the control strategy of a linear
beam with elastic boundary conditions (translational and rotational springs) by
considering a general form of nonlinearity for the restoring forcing function of
the NES, narrowed later on non-smooth nonlinearity, for numerical applications.
The linear beam with elastic boundary conditions have been chosen to study
the soft structures under aerodynamic instability as a cable of overhead trans-
mission line with ice-accretion. In addition the studied system is very similar
to an experimental test on galloping instability of overhead transmission line by
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Chabart et al. [41], and the aerodynamic coe�cients of this reference will be
used here to model the aerodynamic e�ects.
The organization of the paper is as follows: the global representation of the
system under two di�erent types of excitation coupled to a NES with a gen-
eral nonlinearity is presented in section 2. The primary treatments of system
equations are presented in the same section. Fast and slow system dynamics
are detected in section 3, then section 4 presents the numerical validation by
the �nite element method. In section 5 the nonlinear passive control of the
system submitted to galloping instability is investigated. Finally, the paper is
concluded in section 6.

2. Formulation of the problem

The system under consideration is a linear beam with elastic boundary con-
ditions, considered as the principal system, coupled to a NES at x = ln, as
it is illustrated on Fig. 1. The principal system is an Euler-Bernoulli beam
characterized by a �exural sti�ness EI, a length L, a linear mass density m(x)
considered to be constant all along the beam. Its boundary conditions are
de�ned by translational and rotational sti�nesses. Translation and rotational
sti�nesses of boundary conditions at x = 0, x = L are represented by (k0 and
kR0) and (kL and kRL) respectively. The motion of the beam is represented by
v(x, t) which is the vertical displacement between the equilibrium state and the
actual con�guration. The NES is composed of a small mass mNES , a nonlinear
sti�ness de�ned by a nonlinear restoring function F , and a viscous damping
cNES . The motion of the NES is characterized by u(t) which is the vertical
displacement between the equilibrium position and the actual con�guration.

EI

x

v(x, t)

L

ln

mNES
u(t)

k0

kR0

kL

kRL

ex

ey

Figure 1: The system under consideration: The linear Euler-Bernoulli beam with the length
of L and elastic boundary conditions is coupled to a NES at x = ln.

In the next section, we will evaluate di�erent mode shapes Φn and frequencies
ωn of the principal system.
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2.1. Modal characteristics of the system

The equation of motion of the conservative beam reads as:

−EI
∂4v

∂x4
(x, t) = m(x)

∂2v

∂t2
(x, t) (1)

With the following boundary conditions:

At x = 0 :


k0v (0, t) = −EI

∂3v

∂x3
(0, t)

EI
∂2v

∂x2
(0, t) = kR0

∂v

∂x
(0, t)

(2)

At x = L :


kLv (L, t) = EI

∂3v

∂x3
(L, t)

EI
∂2v

∂x2
(L, t) = −kRL

∂v

∂x
(L, t)

(3)

After separation of spatiotemporal variable as v(x, t) = Φ(x)F (t), Eq. 1 leads
to:

d2F

dt2
(t) + ω2F (t) = 0 (4)

d4Φ

dx4
(x)− β4Φ(x) = 0 with β4 =

m

EI
ω2 (5)

To respect the �nite motion property of the non-excited system, the constant
ω has to be positive. The solutions of the di�erential equations Eq. 4 and 5 can
be written depending on constants a0, a1, a2, a3, a4 and θ0 as:

F (t) = a0 cos (ωt+ θ0) (6)

Φ (x) = a1 sin (βx) + a2 cos (βx) + a3 cosh (βx) + a4 sinh (βx) (7)

Then the mathematical expression of the boundary conditions de�ned in Eq.
2 and Eq. 3 can be rewritten in the matrix form as:

M


a1
a2
a3
a4

 =


0
0
0
0

 (8)

M is a 4 × 4 matrix which is presented in Appendix A. The non-trivial
solutions of Eq. 8 exist if the matrix M is non-invertible. The solutions of
det(M) = 0 lead to the determination of the natural frequencies which should be
obtained numerically. Then, constants a1, a2, a3 and a4 can be determined. The
details of all calculations are provided in Appendix A. The proof of orthogonality
of modes for considered boundary conditions is provided in Appendix B. Finally,
the normalized mode shapes can be de�ned by:∫ L

0

m(x)Φ2
i (x)dx = 1 (9)
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2.2. Projection of the system on one of its modes

Let us suppose that the overall system is under a distributed force fa(x, t)
that only sollicitate one of the natural modes of the principal system. Conse-
quently, we will study the mono-modal dynamics of the system. The general
dynamic equation of the beam can be written as: :

−EI
∂4v

∂x4
(x, t) + f(x, t) = m

∂2v

∂t2
(x, t) + C

∂v

∂t
(x, t) (10)

Where C is the linear viscous damping and f(x, t) stands for the applied reac-
tions along the beam. The restoring force function of the NES is de�ned by the
function F . So,

f(x, t) = −cNES

(
∂v

∂t
(ln, t)−

∂u

∂t
(t)

)
δ(x− ln)

−F(v(ln, t)− u(t))δ(x− ln) + fa(x, t)
(11)

The dynamic equilibrium of the NES reads:

mNES
∂2u

∂t2
(t) + cNES

(
∂u

∂t
(t)− ∂v

∂t
(ln, t)

)
−F(v(ln, t)− u(t)) = 0 (12)

The excitation is assumed to mainly bring the kth natural frequency. Moreover,
we assume that for this case the response of the system are governed only by
the kth mode. So, we set:

v(x, t) = qk(t)Φk(x) (13)

The system equations are projected on the kth mode which yield to:

−EIqkβ1 − cNES

(
∂qk
∂t

Φk(ln)−
∂u

∂t

)
Φk(ln)−F (qkΦk(ln)− u) Φk(ln)

+

∫ L

0

fa(x, t)Φk(x)dx = m
∂2qk
∂t2

β2 + C
∂qk
∂t

β2

(14)

mNES
∂2u

∂t2
(t) + cNES

(
∂u

∂t
(t)− ∂qk

∂t
Φk(ln)

)
−F(qkΦk(ln)− u(t)) = 0 (15)

Where,

β1 =

∫ L

0

∂4Φk

∂x4
Φkdx

β2 =

∫ L

0

Φ2
kdx

(16)

The mass of the NES is considered very small compared to the one of the primary

system i.e. ϵ =
mNES

mL
≪ 1. We introduce the following non-dimensionalized

space and time variables:

x̄ =
x

L
(17)
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τ = ωkt with, ω2
k =

EI

m

β1

β2
(18)

Then, Eqs. 14 and 15 read:

p̈k(τ) + ϵCpṗk + pk(τ) + ϵαc (ṗk(τ)− ˙̄u(τ)) + ϵαF̄ (pk(τ)− ū(τ)) = ϵΓ(τ) (19)

ϵ¨̄u(τ) + ϵc ( ˙̄u(τ)− ṗk(τ))− ϵF̄ (pk(τ)− ū(τ)) = 0 (20)

Where (̇) =
d

dτ
(). System parameters are reported in Appendix C. In the next

section, we will study the nonlinear equations with a multiple-scale method [42].

2.3. Harmonic excitation

The �rst type of external excitation is composed of two nodal vertical sinu-
soidal forces at both ends of the beam. The two forces are set with the same
frequency and the same phase. The distributed force fa can be expressed as:

fa(x, t) = F1 sin(Ωrt)δ(x) + F2 sin(Ωrt)δ(x− L) (21)

With F1, F2, Ωr, and δ the amplitudes of the forces, the angular frequency of
the forces and the Dirac function. In this case, the force term in the discrete
non-dimensional equation can be developed as:

ϵΓ =
L2Φ̄k

(
ln
L

)
EIβ̄1

(
F1Φ̄k (0) + F2Φ̄k (1)

)
sin

(
Ωr

ωk
τ

)
(22)

Then the parameters γ and Ω are introduced to simplify the mathematical
developments.

Γ = γ sin(Ωτ) (23)

With,

γ =
L2Φ̄k

(
ln
L

)
ϵEIβ̄1

(
F1Φ̄k (0) + F2Φ̄k (1)

)
(24)

And,

Ω =
Ωr

ωk
(25)

2.4. Aerodynamic excitation

The galloping phenomenon results from the wind-structure interaction. The
quasi-steady theory introduced by Den Hartog [30] is used here to evaluate the
vertical forces induced by the wind on the beam with ice accretion. According
to this theory, when the beam is moving in the vertical direction, the dynamic
forces caused by a horizontal wind are assumed to be equal to the static forces
caused by the relative wind. The relative wind is the initial wind (characterized
by its angle of attack and magnitude) with a modi�ed magnitude and angle of
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Figure 2: Dynamic forces on a beam with circular cross-section and ice-accretion where v̇, U ,
UR, α, FL, and FD are the vertical speed of the beam, the real wind speed, the relative wind
speed, the relative angle of attack, the lift force and the drag force.

attack depending on the vertical velocity of the section as it is shown in �gure
2.

The angle of attack, α, is de�ned as:

α = tan

(
v̇

U

)
(26)

The wind speed UR is de�ned as:

U2
R = U2 + v̇2 (27)

Then the distributed force reads:

fa(x, t) = −FD(α(x, t)) sin(α(x, t)) + FL(α(x, t)) cos(α(x, t)) (28)

The drag and the lift forces are expressed as:

FD =
1

2
ρfbU

2
RCD(α(x, t))

FL =
1

2
ρfbU

2
RCL(α(x, t))

(29)

With ρf , b, CD, and CL the density of air, the diameter of the beam with ice-
accretion, the drag coe�cient, and the lift coe�cient. Finally, we can consider
a polynomial development up to the order three of the force fa:

fa(x, t) =
1

2
ρfbU

2

(
A0 −A1

v̇

U
−A2

(
v̇

U

)2

−A3

(
v̇

U

)3
)

(30)

The coe�cients of the distributed force can be calculated with the drag and
the lift coe�cients at each angle of attack. Chabart [41] performed aerodynamic
and aeroelastic tests on a piece of cable with ice accretion. The data on the lift
and the drag coe�cients of reference [41] will be used to calculate the coe�cient
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of the distributed force. Those coe�cient are shown on the �gure 3, where f̃a
can be written as:

f̃a = −CD(α(x, t)) sin(α(x, t)) + CL(α(x, t)) cos(α(x, t)) (31)

-200 -150 -100 -50 0 50 100 150 200

-2

-1

0

1

2

3

Figure 3: The aerodynamic coe�cients of the beam cross section with ice-accretion and the
force coe�cient f̃a vs. angle of attack.

Then, the Γ(t) function in Eq. 19 yields to :

Γ = α0 − α1ṗk − α2ṗ
2
k − α3ṗ

3
k (32)

With,

ϵα0 =
Φ̄k

(
ln
L

)
ρfU

2bA0

2mLβ̄2ω2
k

∫ 1

0

Φ̄kdx̄

ϵα1 =
ρfbUA1

2mωk

ϵα2 =
ρfbA2L

2mβ̄2Φ̄k

(
ln
L

) ∫ 1

0

Φ̄3
kdx̄

ϵα3 =
ρfbA3L

2ωk

2mβ̄2U Φ̄k

(
ln
L

) ∫ 1

0

Φ̄4
kdx̄

(33)

3. General methodology used for detection of di�erent system dy-

namics

The dynamic equations of the system are nonlinear due to the nonlinearity of
the restoring force function F . To point out some characteristics of the system,
we will reduce the order of the system by using complex variables of Manevitch
[43]. We will study the system at di�erent time scales [42].
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3.1. Complexi�cation

Let us introduce new variables standing for displacement of the center of
the mass of the system (w) and the relative displacement between the principal
system and the NES (v):

w =
mNES ū+mLpk
mNES +mL

≈ pk + ϵū

v = pk − ū

(34)

Let us introduce Ω the angular frequency corresponding to the response of the
system. As we are interested to study the system behaviors around a 1:1 reso-
nance (with the mode k), we set Ω = 1+ ϵσ. Equations 19 and 20 with the new
variables read as:

ẅ + w + ϵv + ϵ(α− 1)F̄(v) + ϵc(α− 1)v̇ + ϵCp(ẇ + ϵv̇) = ϵΓ (35)

v̈ + w + ϵv + (ϵα+ 1)F̄(v) + c(ϵα+ 1)v̇ + ϵCp(ẇ + ϵv̇) = ϵΓ (36)

The complex variables of Manevitch [43] are introduced as (with i2 = −1):{
φ1e

iΩτ = ẇ + iΩw

φ2e
iΩτ = v̇ + iΩv

(37)

These variables are injected in Eqs. 35 and 36 and only the �rst harmonics are
kept by a Galerkin method. If Λ(φ1, φ2, φ

∗
1, φ

∗
2) is a general function, the �rst

harmonic λ is obtained via:

λ(φ1, φ2, φ
∗
1, φ

∗
2) =

Ω

2π

∫ 2π
Ω

0

Λ(φ1, φ2, φ
∗
1, φ

∗
2)e

−iΩτdτ (38)

We assume that the functions φ1 and φ2 do not depend on τ . This will be
validated during the multiple scale method, or we will look at system behaviors
at the in�nity of the fast time. After keeping only the �rst harmonic, the Eqs.
35 and 36 becomes:

φ̇1 −
Ω

2i
φ1 +

1

2iΩ
(φ1 + ϵφ2) + ϵ(α− 1)

φ2

2iΩ
G(|φ2|2) +

ϵc(α− 1)

2
φ2

+
ϵCp

2
(φ1 + ϵφ2) = ϵΓ1

(39)

φ̇2 −
Ω

2i
φ2 +

1

2iΩ
(φ1 + ϵφ2) + (ϵα+ 1)

φ2

2iΩ
G(|φ2|2) +

c(ϵα+ 1)

2
φ2

+
ϵCp

2
(φ1 + ϵφ2) = ϵΓ1

(40)

With Γ1 the �rst harmonic terms of Γ and the function G de�ned as:

G(|φ2|2) =
2iΩ

φ2

Ω

2π

∫ 2π
Ω

0

F̄
(
φ2e

iΩτ − φ∗
2e

−iΩτ

2iΩ

)
e−iΩτdτ (41)
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For the detection of di�erent dynamics of the system, the method of multiple
scales [42] is used. Di�erent times scales τn are introduced, τn = ϵnτ , with
n ∈ N. Eqs. 39 and 40 can be extended in series concerning ϵ and the terms
in the same order should be treated separately. The function G is extended in
series as:

G = G0 + ϵG1 +O(ϵ2) (42)

Here, the non-smooth NES is de�ned by its restoring force function that is
piecewise linear. Figure 4 shows its restoring force function depending on K1,
K2, the two slopes of the function, and the clearance 2δ standing for the position
where the slope changes. This function is de�ned as:

K1

K2

α

F(α)

δ

−δ

Figure 4: The restoring forcing function of considered non-smooth NES.

F(α) =

 K1α if α ∈ [−δ, δ]
K2α+ δ(K1 −K2) if α > δ
K2α+ δ(K2 −K1) if α < −δ

(43)

The non-dimensional restoring force function F̄ that was de�ned in section 2
reads:

F̄(α) =

 k1α if α ∈ [−δ̄, δ̄]
k2α+ δ̄(k1 − k2) if α > δ̄
k2α+ δ̄(k2 − k1) if α < −δ̄

(44)

With,

δ̄ =
δ

L
; ϵk1 =

K1L
3

EI
; ϵk2 =

K2L
3

EI
(45)

The function G (see Eq. 41) is de�ned as:

G(|φ2|2) =

 k1 if
|φ2|
Ω

≤ δ̄

g(|φ2|2) else
(46)
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Where,

g(|φ2|2) =
2δ̄Ω

N2
2π

(k1 − k2)
√
N2

2 − δ̄2Ω2

+
2

π

(
k2 arccos

(
δ̄Ω

N2

)
+ k1 arcsin

(
δ̄Ω

N2

)) (47)

Then the O(ϵ0) of the function G can be calculated.

G0(|φ2|2) =
{

k1 if |φ2| ≤ δ̄
g0(|φ2|2) else

(48)

g0(|φ2|2) =
2δ̄

N2
2π

(k1 − k2)
√
N2

2 − δ̄2

+
2

π

(
k2 arccos

(
δ̄

N2

)
+ k1 arcsin

(
δ̄

N2

)) (49)

In the following sections, di�erent system dynamics will be detected by
studying the system at di�erent orders of ϵ.

3.2. Fast dynamics of the system

In the previous section, the truncated forms of the system equations are
presented (Eqs. 39 and 40). The O(ϵ0) of these equations reads:

∂φ1

∂τ0
− φ1

2i
+

φ1

2i
= 0

∂φ2

∂τ0
− φ2

2i
+

φ1

2i
+

φ2G0(|φ2|2)
2i

+
c

2
φ2 = 0

(50)

The �rst equation gives
∂φ1

∂τ0
= 0. Let us seek �xed points of the system. This

means that when τ0 → ∞, then
∂φ2

∂τ0
= 0. Then, the second equation of 50

provides:
H (φ1, φ2, φ

∗
1, φ

∗
2) = 0 (51)

With,

H =
φ1

2i
− φ2

2i
+

φ2G0(|φ2|2)
2i

+
c

2
φ2 (52)

H is named Slow Invariant Manifold (SIM) in the complex domain. As φ1 and
φ2 are complex variables, we set φj = Nje

iδj with j = 1, 2, Nj ∈ R+, δj ∈ R.
By separating the real parts and the imaginary parts of H following relation is
obtained:

N1 = N2

√
c2 + (1−G0(N2

2 ))
2

(53)

Equation 53 is the representation of the SIM in the real domain, it collects all
equilibrium points that the system can reach. To perform a stability analysis of
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the SIM, we linearly perturb φ2 (respectively φ∗
2) as φ2+∆φ2 with |∆φ2| ≪ |φ2|

(respectively φ∗
2 +∆φ∗

2 with |∆φ∗
2| ≪ |φ∗

2|). The Eq. 50 rewrites as:

∂(φ2 +∆φ2)

∂τ0
− 1

2i
(φ2 +∆φ2) +

φ1

2i

+
(φ2 +∆φ2)

2i
G0((φ2 +∆φ2)(φ

∗
2 +∆φ∗

2)) +
c

2
(φ2 +∆φ2) = 0

(54)

And,

∂(φ∗
2 +∆φ∗

2)

∂τ0
+

1

2i
(φ∗

2 +∆φ∗
2)−

φ∗
1

2i

− (φ∗
2 +∆φ∗

2)

2i
G0((φ2 +∆φ2)(φ

∗
2 +∆φ∗

2)) +
c

2
(φ∗

2 +∆φ∗
2) = 0

(55)

We perform the following Taylor development:

G0((φ2+∆φ2)(φ
∗
2+∆φ∗

2)) = G0(φ2φ
∗
2)+(φ∗

2∆φ2+φ2∆φ∗
2)G

′
0(φ2φ

∗
2)+O(|∆φ2|2)

(56)
These two equations Eqs. 54 and 55 can be simpli�ed by neglecting the terms
at the order O(|∆φ2|2). The equations can be expressed in matrix form, where
components of the matrix M are de�ned in Appendix D.

∂∆φ2

∂τ0

∂∆φ∗
2

∂τ0

 = M

 ∆φ2

∆φ∗
2

 (57)

The reduced order system is stable if the real parts of the eigenvalues of M are
negatives. The characteristic polynomial of the matrix M via det(M − XI2)
reads as (I2 is the 2× 2 identity matrix):

X2 + cX + P (N2) (58)

With,

P (N2) = −N2
2

2
G′

0(N
2
2 ) +N2

2

G0(N
2
2 )G

′
0(N

2
2 )

2
+

G0(N
2
2 )

2

4

−G0(N
2
2 )

2
+

c2

4
+

1

4

(59)

The order of the characteristic polynomial is two. So, the sign of its roots can
be determined. As −c is always negative, then the sum of the two eigenvalues is
negative. P (N2) is the product of the eigenvalues. Then, if P (N2) is negative,
the two real parts of the eigenvalues are in opposite signs and one is positive so
the �xed point is unstable. On the contrary, if P (N2) is positive, the two real
parts of the eigenvalues have the same signs and they are negatives (as their
sum is always negative) so the �xed point is stable.
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3.3. Slow dynamics of the system

The multiple scale study started with the investigation on the fast time scale
study in the previous section permitted us to obtain the SIM and its stability
borders. Now, the slow time scale will be studied. TheO(ϵ1) of the �rst equation
of Eq. 39 reads:

∂φ1

∂τ1
= E1(φ1, φ2, φ

∗
1, φ

∗
2) (60)

With,

E1 =
σ

2i
φ1−

1

2i
(φ2−σφ1)−

α− 1

2i
G0(|φ2|2)φ2−

Cpφ1

2
− c(α− 1)

2
φ2+Γ1 (61)

The fast dynamics must be taken into account: let us study the evolution of
the SIM at the time scale τ1.

∂H

∂τ1
=

∂H

∂φ1

∂φ1

∂τ1
+

∂H

∂φ2

∂φ2

∂τ1
+

∂H

∂φ∗
1

∂φ∗
1

∂τ1
+

∂H

∂φ∗
2

∂φ∗
2

∂τ1
= 0

∂H ∗

∂τ1
=

∂H ∗

∂φ1

∂φ1

∂τ1
+

∂H ∗

∂φ2

∂φ2

∂τ1
+

∂H ∗

∂φ∗
1

∂φ∗
1

∂τ1
+

∂H ∗

∂φ∗
2

∂φ∗
2

∂τ1
= 0

(62)

This system can be expressed in the matrix form:
∂H

∂φ2

∂H

∂φ∗
2

∂H ∗

∂φ2

∂H ∗

∂φ∗
2


︸ ︷︷ ︸

B2

 ∂φ2

∂τ1
∂φ∗

2

∂τ1

 = −


∂H

∂φ1

∂H

∂φ∗
1

∂H ∗

∂φ1

∂H ∗

∂φ∗
1


︸ ︷︷ ︸

B1

 ∂φ1

∂τ1
∂φ∗

1

∂τ1

 (63)

Matrix B1 and B2 are detailed in Appendix E. According to this equation, two
types of characteristic points can be de�ned:

Equilibrium point: E1 = 0
H = 0
det(B2) ̸= 0

Singular point: E1 = 0
H = 0
det(B2) = 0

It can be seen that B2 = −M where M is the matrix de�ned in Eq. 57. So,
the matrix B2 has the same characteristic equation which is de�ned in Eq. 58,
i.e. det(B2) = P (N2). Hence, the amplitudes of singular points are situated on
the boundary of the unstable zone of the SIM. To �nd the equilibrium points, the
equation E1 = 0 has to be solved, in terms of amplitude N2 including the fast
dynamics (H = 0). Fast and slow dynamics are clari�ed for the system coupled
with a NES with general excitation. In the following sections, the results will
be detailed for the two types of excitation.
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3.4. Dynamics of the system without the NES under the aerodynamic excitation

In this section, the multiple scale method described in the previous section
will be used to detect the dynamical behavior of the system without the NES
under aerodynamic excitation. The general dynamic equation of this case can
be deducted from Eqs. 19 and 32 by eliminating terms related to the NES:

p̈k(τ) + ϵCpṗk + pk(τ) = ϵ
(
α0 − α1ṗk − α2ṗ

2
k − α3ṗ

3
k

)
(64)

The complex variable φ1 is introduced:

φ1e
iΩτ = ṗk + iΩpk (65)

Where i is the imaginary number with i2 = −1 and Ω is the angular frequency
of the system. The detuning parameter σ is introduced as: Ω = 1 + ϵσ. The
Eq. 64 is rewritten with the complex variable and only the �rst harmonic is
retained involving the following equation:

∂φ1

∂τ
− Ωφ1

2i
+ ϵ

Cpφ1

2
+

φ1

2iΩ
= −ϵ

α1φ1

2
− ϵ

3α3φ
2
1φ

∗
1

8
(66)

O(ϵ0) of Eq. 66 becomes:

∂φ1

∂τ0
− φ1

2i
+

φ1

2i
= 0 ⇒ ∂φ1

∂τ0
= 0 (67)

Then, O(ϵ1) of Eq. 66 reads:

∂φ1

∂τ1
− σ

2i
φ1 +

Cp

2
φ1 −

σ

2i
φ1 =

α1

2
φ1 −

3α3

8
φ2
1φ

∗
1 (68)

The equilibrium points of this system can be found by setting
∂φ1

∂τ1
= 0. Con-

sidering φ1 = N1e
iδ1 , N1 ∈ R+, δ1 ∈ R, we will have:

N1

(
Cp

2
− σ

i
+

α1

2

)
= −3α3

8
N3

1 (69)

This complex equation provides σ = 0. Then, the equation has a trivial solution
N1 = 0. The non-trivial solutions of the system are de�ned as:

N2
1 = − 8

3α3

(
Cp

2
+

α1

2

)
(70)

This equation can be easily solved if the following condition is respected:

− 8

3α3

(
Cp

2
+

α1

2

)
> 0 (71)

We can distinguish all cases concerning the sign of α1 and α3 but we concentrate
on one case. That is the case mentioned in the paper of Chabart [41] when the
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initial angle of attack of the wind is −165◦ where α1 < 0 and α3 > 0. In this
case, The condition from the Eq. 71 will be respected if the wind speed is higher
that a certain value called the critical wind speed Uc. The critical wind speed
is expressed as:

Uc = −2ϵmωkCp

ρfbA1
(72)

So, when the wind speed is lower than the critical wind speed, the only equi-
librium point is N1 = 0 and when the wind speed is higher, there are two
equilibrium points, one is N1 = 0 and the second can be expressed as:

N1 =

√
− 8

3α3

(
Cp

2
+

α1

2

)
(73)

A stability analysis of these equilibrium points reveals that before the critical
wind speed, the solution is stable and after the critical wind speed, the solution
N1 = 0 is unstable but the other solution is stable. In other words, we have
here a super-critical Hopf bifurcation.

3.5. The slow dynamics of the system coupled to a NES with the two considered

excitations

In this section, developed techniques for the detection of slow dynamics of
a coupled system described in section 3, will be used for the system under two
di�erent types of excitation namely, harmonic and aerodynamic excitation.

3.5.1. The system under harmonic excitation

Setting Ω = 1 + σϵ in Eq. 23 and keeping its �rst harmonic, we will have:

Γ1 =
γ

2i
(74)

Then Eq. 62 which provides equilibrium points of the system yields to:

N2
2

(
G0(|φ2|2)(2σ + (α− 1))

2
− σ +

Cpc

2
+

1

2

)2

+N2
2

(
CpG0(|φ2|2)

2
− σc− Cp + c(α− 1)

2

)2

=
γ2

4

(75)

Eq. 75 can be solved numerically. The simplest way is to organize this equation
as a second order polynomial with respect to σ, so a certain range of N2 values
can be considered and di�erent σ value can be obtained for each N2 value. Then,
with the SIM for each N2 value, the corresponding N1 value can be calculated.
The reorganized equation reads:

Λ1σ
2 + Λ2σ + Λ3 = 0 (76)
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With,
Λ1 = N2

2 (1−G0)
2 +N2

2 c
2

Λ2 = −2N2
2 (1−G0)

(
Cpc

2
+

1

2
+

α− 1

2
G0

)
+2N2

2 c

(
Cpc

2
(1−G0) +

c(α− 1)

2

)
Λ3 = N2

2

(
Cpc

2
+

1

2
+

α− 1

2
G0

)2

+N2
2

(
Cpc

2
(1−G0) +

c(α− 1)

2

)2

− γ2

4

(77)

3.5.2. The system under aerodynamic excitation

The non-dimensional expression of the aerodynamic force was given in the
section 2 (see Eq. 32), reads:

ϵΓ = ϵ
(
α0 − α1(ẇ + ϵv̇)− α2(ẇ + ϵv̇)2 − α3(ẇ + ϵv̇)3

)
(78)

The �rst harmonic of this function becomes:

Γ1 =
Ω

2π

∫ 2π
Ω

0

Γe−iΩτdτ = −α1
φ1

2
− α3

3φ2
1φ

∗
1

8
+O(ϵ) (79)

After introducing Γ1 in the equation E1 = 0, and taking account of the relation
between φ1 and φ2 (Eq. 51), a complex equation which can be factorized by
φ2 is obtained. Hence, φ2 = 0 is always a solution of this system. As we are
looking for non zero solutions, the equation E1 = 0 can be divided by φ2 and
separated in two real equations:

σ =
1− α

2
− 1

c

(
1−G0(|φ2|2)

)
h(N2)

h(N2)

(
c+

1

c

(
1−G0(|φ2|2)

)2)
+

α

2
= 0

(80)

With,

h(N2) =
Cp

2
+

α1

2
+

3α3

8
φ2φ

∗
2

((
1−G0(|φ2|2)

)2
+ c2

)
(81)

This equation is nonlinear, the three main variables are N2, σ and U the energy
of the NES, the detuning parameter ans the wind speed. The wind speed U is
hidden in α3 and α1, so we set:

α1 = Uα̃1

α3 =
α̃3

U

(82)

Where α̃1 and α̃3 do not depend on U . It is seen that Eq. 80 is a second order
polynomial with respect to U . The second equation of Eq. 80 can be rewritten
as:

ξ1U
2 + ξ2U + ξ3 = 0 (83)
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With,

ξ1 =
α̃1

2

ξ2 =
Cp

2
+

α

2
(
c+ 1

c (1−G0)2
)

ξ3 =
3α̃3

8
N2

2

(
(1−G0)

2 + c2
)

(84)

So, for a range of N2 values the solutions of Eq. 83 can be found for each N2

values. This procedure leads to bifurcation diagrams of the overall system. In
addition of the calculated equilibrium points the trivial solutions (N2, N1) =
(0, 0) remains. We will assume that those solutions are stable if there are no
other solutions and unstable if we can �nd non zero equilibrium points.

4. Finite element modelling of the system and validation of the ana-

lytical predictions

In the last sections, the analytical results have been presented for the detec-
tion of di�erent dynamics of a beam with elastic boundary conditions coupled
to non-smooth NES. In this part, a �nite element model of the system is pre-
sented and obtained numerical results are compared with those obtained from
analytical predictions. The �nite element software (Code_Aster) that we are
using does not permit to model aerodynamic excitation. For this reason, this
section will be only on the harmonic excitation.

4.1. The �nite element model of the system

The beam with elastic boundary conditions coupled to a NES that is de-
scribed in Fig. 1 is modeled with a �nite element method using the software
Code_Aster. One-dimensional linear beam elements are used for modeling the
primary system and the boundary conditions are modeled by discrete elements
that behave as linear rotational and translational springs. The non-smooth NES
is designed with a material which changes its rigidity after a clearance of 2δ from
K1 to K2, hence the behavior of the NES is the same as the one described in
Fig. 4 with K1 = 0 and K2 = K.
Table 1 provides the physical characteristics of the beam and its boundary con-
ditions. The mode shapes are calculated by the analytic method described in
section 2 and also by a modal analysis via the �nite element method. Fig. 5
shows that the results of both methods are in good agreement.

In this study, the behavior of the system is examined around the �rst mode
whose frequency is 0.407 Hz. The NES is attached to the middle of the beam,
so ln = 2 m. The analytical equations are projected on the �rst mode of the
beam and the excitation frequency is close to the frequency of the �rst mode.
The parameters of the NES used for analytical developments are presented in
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Figure 5: The mode shape of the linear beam with elastic boundary conditions determined
by the �nite element method (FEM) and the analytical method.
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k0 (N.m−1) kL (N.m−1) kR0 (N.m.rad−1) kRL (N.m.rad−1)
18.27 18.27 286.6 286.6

L (m) E (GPa) I (m4) m (Kg.m−1)

4 68.3 8.3923× 10−9 1.369

Table 1: Physical characteristics of the linear beam and its boundary conditions.

Table 2,while the correspondences of the same parameters in physical domain
are summarized in Table 3. The excitation F1 and F2 reads as:

F1(t) = F2(t) = F sin(Ωrt) (85)

With F the amplitude of the force and Ωr the angular frequency of the external
excitations.

k1 k2 c δ̄ ϵ Cp γ
0 1.5 0.25 0.2 0.001 20 5

Table 2: Analytical parameters for the study of the non-smooth NES and the system.

cNES K1 K2

3.502× 10−3 N.m−1.s 0 N.m−1 5.374× 10−2 N.m−1

δ mNES F

0.8 m 5.476× 10−3 Kg 0.3611 N

Table 3: Physical characteristics of the non-smooth NES.

Finally, the damping of the primary system is provided by a function of
Code_Aster that enables to add modal damping. In the analytic model, damp-
ing of the primary system is de�ned by a viscous term C. Let us suppose that
ξ is the coe�cient of Rayleigh damping of the primary system:

ξ =
C

2mωk
(86)

The analytical damping parameter of the primary system is Cp = 20 which
correspond to ξ = 1%. So, a model damping of 1% is provided on the studied
mode by the function of Code_Aster. In the next subsection, obtained results
for the system coupled to chosen non-smooth NES will be presented.

4.2. The system with coupled non-smooth NES under harmonic excitation

In this section, the results obtained with the non-smooth NES are presented.
All the analytical parameters of the system have been de�ned in Table 2. They
correspond to the physical parameters in Table 3.
First, we have the results for the free vibration system obtained by the nu-
merical integration of Eqs. 35 and 36 by a Runge-Kutta method (ODE45 in
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cNES (N.m−1) kNES (N.m−1) mNES (Kg) F (N)

3.502× 10−3 5.598× 10−4 5.476× 10−3 1.625

Table 4: Physical characteristics of the cubic NES.
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Figure 6: Numerical simulation by numerical integration of the free vibration system (nons-
mooth NES) for di�erent initial boundary conditions.

Matlab). In Fig. 6, the evolution of N1 versus N2 is plotted for di�erent initial
conditions. The trajectory follows the stable branch of the SIM and bifurcates
at the stability border to the other stable branch. We can see that the di�erent
trajectories end at di�erent points, this is because gravity is not taken into ac-
count and k1 = 0 so there is an in�nity of static equilibrium position. For the
beam, only v = 0 is the solution for the static, but for the NES, if k1 = 0 all
the values in the interval [−δ, δ] are the solution for u of the static problem.
The equilibrium points for the system under the harmonic excitation are in-
vestigated. Fig. 7 and 8 shows the equilibrium points of the system obtained
from analytical predictions and the equilibrium state obtained for di�erent fre-
quency via numerical methods. The numerical results �t well with the analytical
predictions.

5. Control of aerodynamic instability with a non smooth NES

The purpose of this section is to study the control potential of the piecewise
linear NES on aerodynamic instability of a cable. Chabart et al. [41] generated
experimentally an aerodynamic instability on a portion of a cable with ice-
accretion. The outside layer of a conductor is installed on a 0.8 meters long
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Figure 7: Comparison of the equilibrium points of the system with the non-smooth NES for
sweeping frequency obtained from analytical, the �nite element, and the numerical integra-
tions.
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Figure 8: Comparison of the equilibrium points of the system with the non-smooth NES for
sweeping frequency obtained from analytical, the �nite element and the numerical integrations.
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rigid tube, and an arti�cial ice cross-section is added. First, an aerodynamic
test was performed to provide the aerodynamic coe�cients given on the Fig. 3.
Then, the cable portion was suspended by springs and placed on the wind tunnel
to perform aeroelastic tests at di�erent angles of attack. For the aeroelastic
test, the natural frequency of the vertical motion is 0.845 Hz, the total mass
of the device is 2.99 Kg, and the damping of the system is about 0.08%. The
experimental device was placed in a wind tunnel. In this section, our model
will be adapted to be similar to the aeroelastic test which was performed by
Chabart [41]. The test that we are interested on is the one with an inital angle
of attack of −165◦, as it shows a vertical galloping behavior. As our model only
takes into account vertical motion, this study is focused on this case. The Table
5 shows the parameters of the linear beam with elastic boundary conditions.
Compared to the con�guration of the previous section, the length of the beam,

k0 (N.m−1) kL (N.m−1) kR0 (N.m.rad−1) kRL (N.m.rad−1)
42.14 42.14 0 0

L (m) E (GPa) I (m4) m (Kg.m−1)

0.8 68.3 8.3923× 10−9 3.7375

Table 5: Physical characteristics of the linear beam and its boundary conditions for the
aeroelastic test.

the linear mass, and the translational springs have been adjusted in order to
have the same natural frequency and the same mass as the experimental test.
The damping coe�cient of the system is set to 0, 08%. The coe�cient of the
aerodynamic force de�ned in the Eq. 30 can be calculated by interpolation of
the aerodynamic function (Fig. 3) concerning α around the angle of attack
α = 165◦ (which corresponds to the angle of attack −165◦ in the paper). The
coe�cients are given as:

A0 = 0.131
A1 = −0.9233
A2 = 2.8354
A3 = 1.4718

(87)

The analytical results from section 3.4 allow to determine the bifurcation
diagram of this system without a NES. The physical properties needed in the
analytic procedure are listed in the Table 6. The analytical parameters de�ned

ωk (rad.s−1) ρf (Kg.m−3) b (m)

5.31 1.184 32.5× 10−3

Table 6: Physical properties of the system for the aeroelastic con�guration.

in section 2 are shown in Table 7. The parameters ϵ and ln are related to the
NES, they are arbitrary chosen when there is no NES. Here, they will be the
same as the con�guration with the NES.
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α0/U
2 (m−2.s2) α1/U (m−1.s) α2 α3.U (m.s−1)

0.0539 −0.1119 1.1677 2.5745

ϵ Cp ln/L
0.01 0.16 0.5

Table 7: Necessary parameters of the system under aerodynamic excitation (for analytical
predictions).

The bifurcation diagram of the system is shown on the Fig. 9. The equilib-
rium points of the system obtained by numerical integration of Eq. 64 are also
shown on the same �gure. The two zones separated by the critical wind speed
Uc = 1.4298 m.s−1 can be clearly distinguished. The �rst zone only has one
stable branch where N1 = 0. The second zone also called the post-critical zone,
contains two branches, one is unstable with N1 = 0 and the other is non zero.
As the initial condition for the numerical integration is non zero, the system is
systematically attracted by the stables solutions.
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Figure 9: Bifurcation diagram of the system without NES obtained with the analytic method
and equilibrium points obtained by numerical integration.

The same study is carried out for the system with a coupled NES. The pa-
rameters of the chosen NES are shown on the Table 8. The bifurcation diagrams
for the system with (the same as Fig. 9) and without the NES are shown on the
Fig. 10. The equilibrium points of the system with the NES are obtained by the
analytic procedure described in the section 3.5. Two types of equilibrium points
are shown, in blue they are coming from the stable zones of the SIM, and in red
which correspond to these coming from the unstable zone of the SIM. We can see
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ϵ ln/L k c δ̄
0.01 0.5 2 0.3 0.3

Table 8: Analytical parameters of the NES for the aeroelastic con�guration.

that for a given wind speed, several equilibrium points can exist. The Fig. 10
also shows the equilibrium points provided by the numerical integration of the
Eqs. 35 and 36. The numerical integration of the system with the NES shows
that the system is attracted by the non-zero solution when there is one zero
solution and one non-zero solution. When there are several non-zero solutions,
the system is attracted by the solution coming from the unstable zone of the
SIM. To obtain the equilibrium points of the system by numerical integration,
an averaging of the last periods of the signal has been carried out. So when the
system is attracted by the equilibrium points coming from the unstable zone of
the SIM, it will present strong modulated response (SMR) and presented results
in Fig. 10, correspond to the average of SMR during a given time interval. Let
us consider a case with U = 10 m.s−1 which is presented in Fig. 11. It is
seen that the SMR oscillates between the two stable branches of the SIM by a
recurrence of bifurcations from one stable branch to the other.
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Figure 10: Bifurcation diagram of the system with and without the NES obtained with the
analytic method and equilibrium points obtained by numerical integration.

If we look a the temporal response of the system with and without the
NES of a wind speed of U = 10 m.s−1 (Fig. 12), we can see the signi�cant
reduction of the amplitude of the primary system due to the non smooth NES.
This section shows the results system behavior under aerodynamic instability
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Figure 11: Response of the system with NES when U = 10 m.s−1 obtained by numerical
integration (black curve) in the 2D-plan N1 vs. N2, with the SIM (stable zones in blue and
unstable zone in red).
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Figure 12: Time history response of the system with (magenta and cyan curves) and without
(red and blue curves) NES when U = 10 m.s−1 obtained by numerical integration.
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and the impact of the NES in terms of galloping mitigation. We have to point
out that some assumptions have been made here which make the system a bit
far from the reality. The gravity is neglected and the real nonlinear behaviors
of a suspended cable are not taken into account [34], [44]. However, some major
characteristics of the galloping oscillations of a cable are well modeled here as
the really soft behavior of the system, the self excited behavior and the large
oscillations amplitude. Even if the NES is not optimized here, the results show
a great potential for galloping mitigation.

6. Conclusion

The passive control of a linear beam element with elastic boundary condi-
tions by a nonlinear energy sink with piecewise linear nonlinearity is studied.
First the system is studied under harmonic excitation. As the goal is to study
galloping oscillations on overhead transmission lines, the system is also studied
under aerodynamic excitation. After the projection of the overall system on an
arbitrary mode of interest, a complexed form of the coupled governing equa-
tions are treated by multiple scale method. Then, di�erent system dynamics
are detected leading to the tracing of slow invariant manifold and equilibrium
singular points of the system. Obtained frequency response curves allow having
predictions on possible system behaviors for given driving frequency and forc-
ing amplitude. All analytical predictions are confronted by numerical results
obtained by direct numerical integration of system equations and also those
which are obtained by �nite element modeling of overall structure showing a
good agreement between all results. Experimental data from literature are used
to implement an aerodynamic excitation which leads to an aerodynamic insta-
bility. Bifurcation diagram are obtained for the system with and without the
nonlinear energy sink. The post-critical behavior of the system with the nonlin-
ear energy sink present periodic and quasi-periodic solutions. Results shows the
great potential of the piecewise linear nonlinear energy sink to mitigate galloping
oscillations. This work provides a complete analytical tools to investigate the
impact of a nonlinear energy sink on continuous structure as a cable or a beam.
Finally, this study gives prospects to study galloping control of a transmission
line conductor with a piecewise linear nonlinear energy sink. The non linear
behavior of the suspended cable can be taken into account by implementing a
nonlinear cable model with zero bending sti�ness, only axial stress in traction,
and with geometrical nonlinearities induced by the static deformed shape which
is the consequence of gravity on the cable.
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Appendix A. Mode Shape of primary system

The terms of the matrix M = (mij)i,j∈[1..4]2 from Eq. 8 can be calculated,
the boundary conditions from Eq. 2 and Eq. 3 with the form of F and Φ from
Eq. 6 and Eq. 7. To simplify the expressions the following non-dimensional
parameters are introduced :

k̄0 =
k0L

3

EI
; k̄L =

kLL
3

EI
; k̄R0 =

kR0L

EI
; k̄RL =

kRLL

EI
; β̄ = βL (A.1)

m14 = −m11 = β̄3

m12 = m13 = k̄0
m21 = m24 = k̄R0

m22 = −m23 = β̄
m31 = −β̄3 cos β̄ − k̄L sin β̄
m32 = β̄3 sin β̄ − k̄L cos β̄
m33 = β̄3 sinh β̄ − k̄L cosh β̄
m34 = β̄3 cosh β̄ − k̄L sinh β̄
m41 = −β̄ sin β̄ + k̄RL cos β̄
m42 = −β̄ cos β̄ − k̄RL sin β̄
m43 = β̄ cosh β̄ + k̄RL sinh β̄
m44 = β̄ sinh β̄ + k̄RL cosh β̄

(A.2)

The solutions βi of the equation det(M) = 0 gives the natural frequencies ωi.
Then, by inverting the system of Eq. 8 the expression of the modes shapes are
given depending on a constant α.

Φi(x) = α (V1 sin(βix) + V2 cos(βix) + V3 cosh(βix) + V4 sinh(βix)) (A.3)

V =


V1

V2

V3

V4

 =



(
K

β̄4
i − k̄R0k̄0

k̄R0k̄0 + β̄4
i

− 2k̄R0β̄
3
i

k̄R0k̄0 + β̄4
i

)
k̄0
β̄3
i

+K
k̄0
β̄3
i

+ 1

K
β̄4
i − k̄R0k̄0

k̄R0k̄0 + β̄4
i

− 2k̄R0β̄
3
i

k̄R0k̄0 + β̄4
i

K
1

 (A.4)

K =

2k̄R0β̄
3
i

k̄R0k̄0+β̄4
i
− β̄3

i (β̄i sinh β̄i+k̄RL cosh β̄i)+β̄3
i (−β̄i sin β̄i+k̄RL cos β̄i)

−β̄3
i (β̄i cos β̄i+k̄RL sin β̄i)+k̄0(−β̄i sin β̄i+k̄RL cos β̄i)

β̄3
i (β̄i cosh β̄i+k̄RL sinh β̄i)+k̄0(−β̄i sin β̄i+k̄RL cos β̄i)
−β̄3

i (β̄i cos β̄i+k̄RL sin β̄i)+k̄0(−β̄i sin β̄i+k̄RL cos β̄i)
− k̄R0k̄0−β̄4

i

k̄R0k̄0+β̄4
i

(A.5)

The constant α can be determined when the mode shapes are normalized by
the mass.
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α =
−1
√
mA (A.6)

A =

∫ L

0

(V1 sin(βix) + V2 cos(βix) + V3 cosh(βix) + V4 sinh(βix))
2
dx

= V 2
1

(
L

2
− sin(2βiL)

4βi

)
+ V1V3

(
sin(βiL) sinh(βiL)− cos(βiL) cosh(βiL) + 1

βi

)
+ V 2

2

(
L

2
+

sin(2βiL)

4βi

)
+ V1V4

(
sin(βiL) cosh(βiL)− cos(βiL) sinh(βiL)

βi

)
+ V 2

3

(
sinh(2βiL)

4βi
+

L

2

)
+ V2V3

(
cos(βiL) sinh(βiL) + sin(βiL) cosh(βiL)

βi

)
+ V 2

4

(
sinh(2βiL)

4βi
− L

2

)
+ V2V4

(
sin(βiL) sinh(βiL) + cos(βiL) cosh(βiL)− 1

βi

)
+ V1V2

(
1− cos2(βiL)

βi

)
+ V3V4

(
cosh2(βiL)− 1

βi

)

Appendix B. Orthogonality of mode shapes

In this appendix the proof of orthogonality of modes for considered general

boundary conditions is given:

∫ L

0

ΦiΦjdx = 0 for i ̸= j. Eq. 5 rewrites as:

d4Φi

dx4
= β4

i Φi ⇒
∫ L

0

d4Φi

dx4
Φjdx = β4

i

∫ L

0

ΦiΦjdx

By two integrations by parts we show that

∫ L

0

d4Φi

dx4
Φjdx is symmetric by the

index i et j. We use the boundary conditions shown in Eqs. 2 and 3.∫ L

0

d4Φi

dx4
Φjdx =

[
Φj

d3Φi

dx3

]L
0

−
[
dΦj

dx

d2Φi

dx2

]L
0

+

∫ 0

L

d2Φi

dx2

d2Φj

dx2
dx

= Φj(L)
d3Φi

dx3
(L)− Φj(0)

d3Φi

dx3
(0)− dΦj

dx
(L)

d2Φi

dx2
(L)

+
dΦj

dx
(0)

d2Φi

dx2
(0) +

∫ 0

L

d2Φi

dx2

d2Φj

dx2
dx

= − kL
EI

Φj(L)Φi(L) +
k0
EI

Φj(0)Φi(0) +
kRL

EI

dΦj

dx
(L)

dΦi

dx
(L)

−kR0

EI

dΦj

dx
(0)

dΦi

dx
(0) +

∫ 0

L

d2Φi

dx2

d2Φj

dx2
dx

(B.1)
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The last expression of Eq. B.1 is symmetric by the index i et j. So we can
write: ∫ L

0

d4Φi

dx4
Φjdx−

∫ L

0

d4Φj

dx4
Φidx = (β4

i − β4
j )

∫ L

0

ΦiΦjdx

⇔ 0 = (β4
i − β4

j )

∫ L

0

ΦiΦjdx

⇔
∫ L

0

ΦiΦjdx = 0 as βi ̸= βj

The modes shapes are orthogonal.

Appendix C. Non-dimentionalized parameters

ū(τ) =
u(t)

L
; Φ̄k(x̄) = Φk(x) ; pk(τ) =

qk(t)

L
Φ̄k

(
ln
L

)
β̄1 =

∫ 1

0

∂4Φ̄k

∂x̄4
(x̄)Φ̄k(x̄)dx̄ ; β̄2 =

∫ 1

0

Φ̄2
k(x̄)dx̄

ϵc =
cNES

mLωk
; ϵCp =

C

mωk
; α =

Φ̄2
k

(
ln
L

)
β̄2

ϵΓ(τ) =
L2Φ̄k

(
ln
L

)
EIβ̄1

∫ L

0

fa(x, t)Φk(x)dx

ϵF̄ : X 7→ L2

EI

β̄2

β̄1
F (LX)

(C.1)

Appendix D. Matrix M

M =

[
M11 M12

M21 M22

]
(D.1)

M11 =
1

2i
− c

2
− φ2φ

∗
2G

′
0(φ2φ

∗
2)

2i
− G0(φ2φ

∗
2)

2i

M12 = −φ2
2G

′
0(φ2φ

∗
2)

2i

M21 =
φ∗
2
2G′

0(φ2φ
∗
2)

2i

M22 = − 1

2i
− c

2
+

φ2φ
∗
2G

′
0(φ2φ

∗
2)

2i
+

G0(φ2φ
∗
2)

2i

(D.2)
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Appendix E. Matrix B1 and B2

B1 =

 1

2i
0

0 − 1

2i

 (E.1)

B2 =

[
b11 b12
b21 b22

]
(E.2)

b11 =
c

2
− 1

2i
+

1

2i

(
∂G0(|φ2|2)

∂φ2
φ2 +G0(|φ2|2)

)
b12 =

φ2

2i

∂G0(|φ2|2)
∂φ∗

2

b21 = −φ∗
2

2i

∂G0(|φ2|2)
∂φ2

b22 =
c

2
+

1

2i
− 1

2i

(
∂G0(|φ2|2)

∂φ∗
2

φ∗
2 +G0(|φ2|2)

)
(E.3)
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