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On Cross-Dimensional Random Walks Taking Place on Random Fractionary Spaces

Random walks constitute a topic of central interest in several areas including physics, dynamical systems, graph theory and complex networks, as well as probability and statistics. While these walks have been often considered in traditional geometric spaces, as well as topological spaces such as graphs, it is also interesting to consider them in fractionary spaces, characterized by having intermediate dimensions between the possible integer-valued topological dimensions. The present work describes a type of discrete random fractionary spaces involving progressive extensions into the next topological dimension emanating from uniformly random chosen points, and then develop a study of diffusion in these spaces in terms of non-preferential, uniform random walks. Special attention is given to random fractionary spaces with dimensions comprised between the topological dimensions 1 and 2, which are then characterized in terms of marginal probability density functions along the two axes. Several interesting results are described, including the characterization, in terms of marginal density probability functions along each of the two axis of the considered spaces, which indicates a concentration of visits to points near the x-axis that tends to undergo an abrupt expansion when the fractionary space dimension gets close to the next topological dimension.

Introduction

Traditional geometric spaces have integer topological dimensions extending as 0, 1, 2, ... Though we live in a world underlain by 3D geometry, there are real-world and abstract dynamics that take place in spaces with virtually any possible topological dimension. A problem that has attracted special interest concerns how the properties of a same type of dynamics, such as diffusion among many other possibilities, can be influenced by the dimension of the space in which it takes place.

Being mostly motivated by developments in fractals research (e.g. [START_REF] Mandelbrot | The fractal geometry of nature[END_REF][START_REF] Peitgen | Chaos and Fractals: New Frontiers of Science[END_REF][START_REF] Feder | Fractals[END_REF]), the concept of fractionary, or fractal, structures has also been attracting continuous interest from the scientific and technological communities . Several fractal structures, including Koch curves and Mandelbrot sets, have been found to have non-negative real-valued fractal dimensions that fall between the traditional integer-valued topological dimensions. For instance, the triadic Koch curve has fractal dimension equal to log(4)/ log(3) = 1.26186..., therefore being intermediate between 1 and 2.

Fractal structures can be taken as underlying respective spaces, in which a variety of specific dynamics can then take place (e.g. [START_REF] Auriac | Random walk on fractals: numerical studies in two dimensions[END_REF][START_REF] Rammal | Selfavoiding walks on fractal spaces: exact results and flory approximation[END_REF][START_REF]Harmonic analysis in fractal spaces: random walk statistics and spectrum of the schrödinger equation[END_REF][START_REF] Kanno | Representation of random walk in fractal space-time[END_REF][START_REF] Ord | Fractal space-time and the statistical mechanics of random walks[END_REF]). The modeling of realworld and abstract complex systems in terms dynamics taking place on fractionary spaces therefore constitutes a particularly interesting modeling approach (e.g. [START_REF] Da | Modeling: The human approach to science[END_REF]).

In the present work, we describe a type of random fractionary spaces, henceforth referred to as RFS, with dimension D extending progressively between any pair of increasing (but not necessarily; successive) topological dimensions, such as D ∈ [START_REF] Mandelbrot | The fractal geometry of nature[END_REF][START_REF] Peitgen | Chaos and Fractals: New Frontiers of Science[END_REF] or D ∈ [START_REF] Mandelbrot | The fractal geometry of nature[END_REF][START_REF] Feder | Fractals[END_REF]. Discrete such spaces are considered henceforth, with focus being placed on the situation D ∈ [START_REF] Mandelbrot | The fractal geometry of nature[END_REF][START_REF] Peitgen | Chaos and Fractals: New Frontiers of Science[END_REF]. Observe that RFSs can also be understood as corresponding to specific types of compartmentalized spaces in which random walks have been also considered [START_REF] Ślęzak | From diffusion in compartmentalized media to non-gaussian random walks[END_REF].

The basic idea in the present work is to extend a portion r of the points belonging to the initial space with a given topological dimension across the next dimensions. Figure 1(a) illustrates an RFS with dimension D = 1.82.

Though the RFS considered in the present work have fractionary dimension, they do not present a self-similar (or self-affine) structure as otherwise satisfied by traditional fractal structures. For this reason, the term 'fractionary', instead of 'fractal, has been here adopted for RFSs. After describing and illustrating RFSs, the present work focuses on studying non-preferential random walks performed on these spaces, while assuming RFSs with dimension between 1 and 2. Several interesting results are described, including the identification that the marginal probability distribution obtained for the y-values corresponds to a symmetric polygonal probability distribution characterized by a central peak. In addition to providing approximations of this function, we also discuss how the identification of this type of probability densities can suggest that the respective dynamics is taking place in a RFS. Another interesting possibility regards using the described cross-dimensional random walks on RFSs as a means to generate random walks with probability distributions characterized by polygonal structures.

Random Fractionary Spaces (RFS)

In this section, the concept of discrete random fractionary spaces -RFSs -is introduced respectively to the subsequent topological dimensions 1 and 2. The extension to subsequent cases can be readily obtained.

We start with a topological space with dimension D = 1, such as R. More specifically, we shall consider a limited and sampled region of this space, which is understood to be embedded in a larger space into which it will cross extend. In particular, without loss of generality, we adopt the latter space as corresponding to the orthogonal lattice defined by the coordinate tuples (x, y) with x, y = 1, 2, . . . , N . The thus delimited, sampled 1D region is henceforth referred to as S D=1,N .

Given the space S 1 , we henceforth define its crossexpansion at a point p ∈ S 1,N as the set:

C p = {(p, 1); (p, 2); . . . ; (p, N )} . (1) 
Figure 2 illustrates a discrete 1D space concept respectively to N = 31 incorporating a respective 1D cross expansion (a bundle) taking place at the lattice point (p = 19, 16).

This expansion implements what is henceforth referred to as a crossing from the dimensionality from 1D into 2D. Other possibilities are also possible, such as having 2D cross expansions from 1D spaces towards 3D spaces. These cross-expansions form a A-dimension to a B-dimension, with A, B ∈ 1, 2, . . ., B > A, and respectively defined fractionary spaces, are henceforth identified as A → B. The dimension of the cross expansions progressively interconnecting the two spaces therefore has dimension

D C = B -A.
For instance, in case A = 1 and B = 3, we have that the respective cross-expansions correspond to B -A = 2dimensional spaces, in which case each of the expansions correspond to a respective plane. In the case A = 1 and B = 2, which is henceforth adopted in the current work, we have that D C = 2-1 = 1, so that the cross-expansions correspond to 1D lines. This type of cross expansion is henceforth called bundle expansion.

The dimension D of a topological space S D,N can be expressed as:

P = N D , (2) 
where P is the total number of distinct lattice points. It follows that:

D = log P log N = log N P. (3) 
In order to obtain an 1 → 2 fractionary expansion of S 1,N to a space with generic dimension D ∈ [1, 2], yielding the respective fractionary space S D , we first need to identifying the number n of respectively required cross expansions which, in this specific case, correspond to bundle expansions.

The incorporation of n distinct bundles into S 1,D yields a total number of available lattice points equal to:

P = n N + N -n = n(N -1) + N = N (n + 1) -n. (4) 
It follows from Equations 2 and 4 that:

n = round N D -N N -1 . (5) 
We also have from Equation 3 that:

D = log (n(N -1) + N ) log N . (6) 
Therefore, the incorporation of the n bundle extensions into the original 1D discrete space yields a fractionary space with P points and respective fractionary dimension D given as in the above expression.

3 Cross-Dimensional Random Walks .

Having defined the discrete RFSs S D,N as described in the previous section, several types of linear and nonlinear dynamics can be respectively implemented on those structures.

In the present work, we focus on non-preferential and uniform random walks (e.g. [START_REF] Spitzer | Principles of random walk[END_REF][START_REF] Révész | Random walk in random and non-random environments[END_REF][START_REF] Zinn-Justin | From random walks to random matrices[END_REF]) starting at the central point of the space. Therefore, at each time step t ∈ {1, 2, . . . , N t }, the moving agent chooses a next point with uniform probability among the available adjacent (4or 8-neighborhood) points. The present work focuses on 4-neighborhood. In addition, observe that once an agent reaches one of the four borders of the discrete lattice, it is removed and no longer taken into account.

An example of cross-dimensional random walk in a 1 → 2 RFS is shown in Figure 1(b), respectively to N a = 5000 agents, each of which developing a respective random walk until N t = 50000 steps are taken, or the agent reaches the border of the space, whichever comes first. All agents start at the central point (x 0 , y 0 ) = (16, 16). The agent occupancy probabilities are shown in respective gray-levels.

While the distribution of agent occupancies is shown in gray-levels in Figure 1(b) respectively to each available cell with coordinates [x, y], it becomes of particular interest to summarize these distributions in terms of the respective marginal density probability functions p(x) and p(y). Figure 3 illustrates the average ± standard deviation of these marginal functions obtained for the same experiment configuration as described above, respectively to increasing fractionary dimensions D = 1.5, 1.8, 1.9, 1.95, and 2.00.

Several interesting results can be inferred from Figure 3. First, we have that the x-marginal distributions, shown along the first column, are mostly bilaterally symmetric while presenting a peak at the central position x = 16. As could be expected, the standard deviation (shown to 1/10 of the original values for the sake of better visualization) around the obtained averages tends to decrease steadily with the fractionary dimension D.

The obtained y-marginal distributions are also bilaterally symmetric, with a peak at y = 16, but with the difference of presenting substantially smaller dispersions. Interestingly, these marginal distributions also correspond mostly to polygonal density probabilities composed of 5 points, which are further characterized in the following section. In addition, observe that these marginal distributions undergo an abrupt change as D becomes closer to the next topological dimension D = 2. 

The PS5 and PS3 Probability Distributions

The above reported experiments indicate that the distribution of y-values obtained during the 1 → 2 crossdimensional random walks has a characteristic shape as shown in Figure 4(a) respectively to N = 9. For simplicity's sake, we henceforth restrict our study to odd values of N . Observe that the center point is henceforth referred to as M = (N -1)/2.

The type of polygonal distribution shown in Figure 4(a) is henceforth referred to as being of PS5 type, standing for 'polygonal, symmetric distribution with 5 points'. This type of density can be readily approximated in terms of the PS3 distribution shown in Figure 4 Therefore, given the value of the parameter a, it becomes possible to estimate the respective d parameter. Figure 5 illustrates the relationship between parameters a and b for a = 0.35, 0.14, 0.095, 0.08, 0.07, which correspond to the maximum values in Figure 3. The estimated values of d can be found to have provided a good adherence to the results shown in Figure 3.

Concluding Remarks

The present work has described a type of random fractionary spaces -RFSs -with dimension comprised between topological dimensions, and how non-preferential random walks can be performed in these spaces. Because this type of dynamics involves transitions between the two nearest topological dimensions, here they have been called cross-dimensional random walks.

In addition to presenting and illustrating RFSs, crossdimensional random walks have also been implemented on these spaces, allowing the identification of the interesting property that the marginal probability distribution of the agents occupancy along the y-dimension correspond to symmetric polygonal probability density functions (of type PS5), characterized by two first-derivative discontinuities.

Interestingly, the eventual identification of probability distributions similar to those observed above can provide suggestions that the respective dynamics takes place cross-dimensionally between two spaces with distinct topological dimensions (i.e. a fractionary space). In addition, the described concepts and methods also provide a means for generating random walks with occupancy density probability functions corresponding to symmetric polygonal densities.

The results reported in the present work are respective to a specific configuration of S 1,N space and need to be extended and further validated in several aspects. Among the several possible further related investigations, we have the consideration of other configurations of RFSs (e.g. 2 → 3 and 1 → 3), the extension to larger values of N , as well as the consideration of other types of random walks.

It would also be or particular interest to extend the concepts of fractionary spaces and cross-dimensional random walks described in the present work respectively to topological spaces including graphs and complex networks. With this respect, it would also be of interest to consider situations analogous to those studied in [START_REF] Da | Learning about knowledge: A complex network approach[END_REF], in which the random walk dynamics can imply cross-dimensional expansions, or as in [START_REF] Lima | The dynamics of knowledge acquisition via self-learning in complex networks[END_REF], where agents interact in order to self-learn the respective space. These possibilities can be also considered respectively to geometrical fractionary spaces.
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 1 Figure 1: (a): Example of random fractionary space (RFS) with support 31 and dimension D = 1.82. (b): The density of visits obtained by a random walks on the space in (a) considering Na = 5000 agents, each of which developing a respective random walk until Nt = 50000 steps are performed, or the agent reaches the border of the space, whichever comes first. All agents start at the central point (x 0 , y 0 ) = (16, 16). The occupancy probabilities at each lattice cell is shown in respective gray-scale intensities.
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 2 Figure 2: Example of a 1D cross expansion of S 1,31 taking place at the lattice point (p = 19, 16). This expansion increases the fractionary dimension of the original 1D space to D = log(61)/log(30) ≈ 1.197.
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 3 Figure 3: The average ± standard deviation (the latter shown to 1/10 of its original value for better visualization) obtained from 500 repetitions of random walks involving Na = 5000 agents starting at the central point (16, 16), as obtained for increasing fractionary dimensions D.
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 4 Figure 4: The bilaterally symmetric polygonal probability density function for N = 9 (a) which serves as a model for the y-marginal distributions obtained from the cross-dimensional random walks described in Section 3. This function, henceforth referred to as being of PS5 type, presents a peak of heigh a observed at the central point y = M = (N -1)/2 = 5, with four additional break points being found at (M -2, c), (M -1, b), (M + 1, b), (M + 2, c). This function can be readily approximated in terms of the simplified PS3 distribution shown in (b), in which the latter four polygonal points are summarized in terms of only two respective break points corresponded into their paired averages (M -1.5, d) and (M + 1.5, d).

  (b), in which the two pairs of side-lobe points are replaces by their respective arithmetic means (M -1.5, d) and (M + 1.5, d). On immediate advantage of adopting this approxima-tion is that it becomes possible to interrelate the two involved parameters a and d (instead of the three parameters a, b and c implied by the PS5 functions) by taking into account that the area of the PS3 density needs to have unit area A = 1, which leads to: A = (M -1.5)(d) + (a + d)(1.5) = 1 =⇒ =⇒ M d -1.5 d + 1.5 a + 1.5 d = 1 =⇒ =⇒ M d + 1.5 a = 1

Figure 5 :

 5 Figure 5: The interrelationship between the parameters a and d respectively to the values of a observed in Fig. 3. Observe that the values of parameter a follow from the respective cross-dimensional random walks.
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