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Abstract

Climate change affects forest growth and yield, making it difficult to make

optimal harvest decisions without knowing the future climate. We propose a

multi-stage stochastic programming framework to address this uncertainty. Our

proposed framework requires an a priori construction of scenario trees where the

branches represent non-anticipativities of future climate paths affecting forest

growth. We illustrate our model with four climate paths using a case study in

Washington State, United States. Using this case, we study as to whether it

is optimal to expect a positive climate effect on yield or not. We find in this

particular case that it is optimal to be optimistic. We conclude that multi-stage

stochastic programs with non-anticipativity constraints can be used to analyze

the effects of decision makers’ perception of uncertain futures on the optimality

of their decisions.

Keywords: data driven optimization, climate change, harvest planning,

uncertainty, forest

1. Introduction1

The sustainable provision of forest products and services is at the core of2

strategic (long-term) forest planning. Although there are a multitude of stew-3

ardship objectives that might guide decision makers in charge of forest manage-4

ment, such as habitat conservation [46, 41, 47] or wildfire hazard reduction [42],5
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timber investment companies maximize net present value for their sharehold-6

ers. To manage forests as financial assets, these companies need to be able to7

forecast the future growth of their inventories with a certain level of accuracy.8

Using historical data from the past to predict the future has its limits because9

climate change increasingly affects forest growth via more frequent fires, slides,10

windstorms, drought or other “disturbances” [14]. Climate change is often cited11

as the primary concern for public forest sectors in the United States and beyond12

De Pellegrin Llorente et al. [11].13

Growth and yield parameters are used to parameterize forest harvest schedul-14

ing models. These models optimize as to which forest units or stands should15

be prescribed which treatments, e.g. harvest- or thinning actions, and when to16

best meet management objectives such as maximizing NPV. When these input17

parameters are known with certainty, deterministic harvest scheduling mod-18

els can be used (e.g., [45], [41], [36], and [5]). However, deterministic models19

are inadequate when forest growth is subject to considerable variation due to20

climate change. Multi-stage stochastic programming models allow analysts to21

make robust decisions in the present and have an optimal plan for future con-22

tingencies with limited information about future growth or productivity. The23

stochastic model considers the range of possible future growth and yield instead24

of a single deterministic one. These alternative futures, also known as scenarios,25

are simply discretizations of random parameters along their predicted but un-26

certain domains. The set of relevant scenarios can be structured as a scenario27

tree where each node is a possible future state of the forest in terms of volume28

and each branch is a possible trajectory of subsequent growth leading to the29

next state (node). Each ”path” through this tree is a scenario with computed30

probability. This structured discretization of future states of interest is crucial31

in multi-stage stochastic programming. Too coarse of a discretization can lead32

to sub-optimal decisions [40], whereas too high of a resolution can render the33

program computationally intractable.34

Previous studies that incorporated climate change uncertainty in forest har-35

vest scheduling (e.g., [2, 16]) used scenarios generated by experts without taking36
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into account the degree of change in forest growth resulting from climate varia-37

tions and whether the scenarios sufficiently captured the underlying growth un-38

certainty. The scenarios were identified as possible futures but without knowing39

the associated probabilities of these futures, it remains unclear how this infor-40

mation should be incorporated in the models. The unique challenge of building41

stochastic harvest scheduling models under climate change is that climate uncer-42

tainty occurs at three levels. First, climate change is forecast as climate paths or43

pathways each of which represents a set of assumptions about the future such as44

advancement in technology, human population growth, or CO2 emissions. The45

problem is that we have no information about the probability of these climate46

paths and thus it is not possible to incorporate them in the stochastic program47

with conventional methods.48

Second, there is uncertainty with regards to how forests would respond in49

terms of growth under each climate path. Thus, even if we knew which climate50

path would materialize, there is still uncertainty as to what degree actual growth51

would change under that path. A study conducted on how forest growth would52

change in the face of four different climate paths in the Pacific Northwest United53

States [28] illustrates this layer of uncertainty. The results showed that forest54

behavior under each one of those climate paths will be different depending on the55

location and the altitude of the forest. Similar results were obtained in Brazil56

[14]. Considering all possible climate paths, with all possible associated growth57

responses, could make the stochastic model too unwieldy and its solutions less58

than optimal.59

Lastly, because of climate change mitigation efforts and the advancement in60

technology, there is no guarantee that if the climate of the next decade repre-61

sents one of the climate paths, then the same climate will remain in the following62

decades. Indeed, because of mitigation efforts, it is possible to transition from63

one climate path to a different one in the same decade. It is important to high-64

light that the objective of generating the scenario tree is not to have a perfect65

scenario tree but a tree that adequately captures the underlying stochastic pro-66

cess that is suitable for strategic planning. Thus, it is important to determine67
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what the desired characteristics of a suitable tree should be and how one can de-68

termine whether or not a given given tree adequately represents the underlying69

stochastic space.70

The objective of this paper is to devise a method for incorporating forest71

growth uncertainty associated with climate change into harvest scheduling mod-72

els. The novelty of the approach stems from the unique characteristic of climate73

uncertainty and its layered effects on decision making in forestry as described74

above. In a nutshell, we propose that each climate path is considered individ-75

ually in its own stochastic program first. In the absence of empirical evidence76

with regards to the probability distribution of forest growth responses to specific77

climate scenarios, we assign arbitrary distributions, such as normal and uniform78

theoretical distributions, to the growth response under each scenario. We then79

solve the stochastic program for each distribution and each climate scenario. If80

using the stochastic solution from one climate path in place of the stochastic81

solution provided by a different climate path yields a stochastic objective func-82

tion value that is within the associated bounds, then we consolidate those two83

paths into one.84

We develop a very comprehensive harvest scheduling model that is suit-85

able for both tactical and strategical harvest planning which integrates all the86

constraints in the forest industry in particular the spatial constraints. To our87

knowledge, most papers limit themselves to simplified harvest models. We show88

as well that if the decision maker is more interested in maximizing their net89

present value, then the optimal attitude they should have is to expect an opti-90

mistic climate change which predicts an increase of forest growth.91

The rest of this paper is organized as follows. We start with a review of92

the scenario generation literature for stochastic programming in Section 2. In93

Section 3, we present the scenario generation procedure we propose specifically94

for forest harvest scheduling under climate change. In Section 4, we apply the95

methodology to a case study; and finally in Section 5, we discuss the results and96

provide some conclusions and recommendation for future work.97
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2. Literature review98

To begin, it is worth emphasizing that though this paper deals with stochas-99

tic programming, the uncertainty in mathematical models can be addressed in100

different ways such as robust optimization, stochastic programming, and chance101

constrained optimization [3, 10, 34]. The aim of robust optimization is to guar-102

antee feasibility over the specified uncertainty set [44]. It is known that when103

the full set of uncertainty is considered, robust optimization results in the worst-104

case solution that will likely be very expensive in terms of foregone objective105

function value. This is because robust optimization produces solutions that106

must be feasible under every possible scenario no matter how unlikely. Accord-107

ing to Apap and Grossmann [3], robust optimization is only suitable for short108

term planning where feasibility is the main concern. In contrast, forest harvest109

scheduling is a very long-term planning problem.110

In stochastic programming, the decision maker must make a decision at the111

beginning of the planning horizon without knowing what values some uncertain112

parameter(s) affecting the model will take in subsequent planning periods. After113

a period in which the uncertainty might reveal itself, the decision maker can114

take a recourse action at a cost (to the objective function). Depending on115

whether the sequence of initial decisions and taking recourse actions occurs once116

or more than once, the model must be cast as a two- or multi-stage stochastic117

program. Because multistage stochastic programming does not fix all actions118

that should be taken in advance, it is a method suitable for long term planning119

such as harvest scheduling [3]. However, unlike robust optimization, stochastic120

programming relies on the discretization of the continuous uncertain parameters121

and the probability associated with each realization of the uncertainty. Each122

realization of the uncertain parameters is known as a scenario and the set of123

scenarios form the scenario tree. The scenario tree generation constitutes the124

first step for building multistage stochastic programming models.125

There are many methods for building scenario trees. These methods include126

moment matching, sampling average approximation, clustering and conditional127
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sampling. Moment matching is a method aiming at matching statistical mo-128

ments between the scenario tree and the distribution of the random parame-129

ter. The technique was developed by Fleishman [15] for univariates, however130

Høyland et al. [25] extended its use to multivariate cases. The principle of131

this method is to generate a scenario tree with certain properties (with mo-132

ments such as average, standard deviation, skewness and kurtosis) matching133

the ones of the theoretical distribution of the random parameter. A description134

of the steps to undertake for implementing moment matching is described in135

[25]. A shortcoming of the method is that the scenario generation step itself136

requires solving an optimization problem that is not linear. Furthermore, as137

shown by [21] and highlighted by [32] there could be many theoretical distribu-138

tions having the same first moments such as the one listed. The method has139

been mainly successfully applied for scenario generation in portfolio manage-140

ment [26, 25, 37]. Nevertheless, [40] tested the performance of the method for141

forest harvest scheduling with price uncertainty with limited success.142

The sampling average approximation (SAA) technique is relatively simple143

to implement. It consists of drawing repetitively many samples from the distri-144

bution of the random parameter and solving the optimization problem for each145

of these samples. If the sample size is large enough, the average solution will146

approximate the true solution [4]. To that end, Mak et al. [33] showed that the147

expectation of individual solutions corresponds to the lower bound on the true148

solution of the stochastic model and that the bound monotonically increases as149

the sample size increases (for minimization problems). For a formal description,150

the reader is referred to Löhndorf [32]. Sample average approximation (SAA)151

has been applied in several fields such as portfolio selection [49], supply chain152

design and supply chain network, transportation [43, 9], personnel assignment153

[38] and forest planning under climate change uncertainty [4]. One limitation of154

the method is that it may require solving hundreds or thousands of optimization155

problems in order to achieve stability. Although the method performs well for156

two-stage problems, it does not yield the level of flexibility a decision maker157

may need in multi-stage problems.158
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The idea of scenario clustering is to generate a set of data paths known as a159

‘fan’ [7] that represents possible futures and then to proceed into grouping these160

paths into a scenario tree. This technique is sometimes referred to as distribu-161

tion free scenario generation since it relies on generating paths that correspond162

to past scenarios [13] or experts view of the future [21, 20]. The advantage163

of scenario clustering is to reduce the computational burden a fully rendered164

scenario tree might impose on the stochastic program [44]. Nevertheless, the165

technique inherits the drawbacks of the methods used for generating the initial166

scenario tree [50]. The technique has been extensively employed in the field167

where the future behavior of the stochastic process is deemed to be identical to168

previous observations. Particular domains of applications of the method include169

portfolio management [18, 21, 7], interest rate management in investments [39],170

hydroelectric power management [12, 17, 50], and reservoir management [30].171

None of the aforementioned methods is suitable without modifications for172

harvest scheduling with climate uncertainty. For instance, in the case of [2,173

16], forest growth scenarios resulting from climate change were provided by174

an independent research. Therefore, the scenario tree might not be tailored175

to address the level of uncertainty in forest growth. In addition, because the176

scenario tree was given in these studies, they did not explicitly consider the177

two levels of uncertainty that are considered in this research. In the following178

section, we describe our methodological approach in overcoming the challenges179

that harvest scheduling under climate uncertainty poses especially when we180

consider forest growth prediction from statistical models.181

3. Methodology182

To formally introduce the scenario generation procedure, we present the

general form of the stochastic problem we intend to solve. Let us consider that

the stochastic problem of interest is presented as (1) where ξ is the continuous

random vector which does not depend on x; the expectation is taken with respect

to ξ. X is the set of constraints that the decision variable vector x needs to
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satisfy, and z∗ is the true objective function value of the stochastic program.

z∗ = min
x∈X

E f(x, ξ) (1)

However, we cannot solve directly problem (1) because of the presence of the

continuous random vector ξ, we can use the approximation of (1) by

z̃ = min
x∈X

E f(x, ξ̃), (2)

where ξ̃ is the discretization of the random continuous vector into a scenario183

tree (see Section 3.1 for formal definition of the scenario tree). Since ξ̃ is discrete184

realizations of the random vector ξ, we could rewrite (2) using the summation.185

However, we leave this definition for later once we have defined the structure of186

ξ̃.187

3.1. Scenario trees generation188

3.1.1. Scenario tree structure189

Before diving into how to build scenario trees, first let’s briefly describe the

scenario tree structure. The random process in multistage stochastic program-

ming can be represented as a “scenario tree” which has the following structure.

Let T denote the set of periods in the planning horizon with T = |T | being

the number of stages at which decisions can be made. A node of the scenario

tree represents the realization of the uncertain parameters and variables at a

given time period. It is a possible state of the forest at a given time t ∈ T .

Let n and N describe the node and the lexicographically numbered set of nodes

{1, ..., |N |} in the tree, respectively. From each node n, for t ∈ T \ {T} there

is at least one branch leading to another node m with probability Pm. Let Ω

represent the finite set of representative scenarios in the tree. A scenario ω ∈ Ω

is a particular realization of the uncertain parameter represented as a path from

the root-node to a leaf-node (terminal nodes). Each scenario ω has a probability

or weight denoted by wω. Note that
∑
ω∈Ω w

ω = 1. We can now rewrite (2) as:

z̃ = min
x∈X

|Ω|∑
ω=1

wωf(x, ω), (3)
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where f(·, ω) is the optimization function evaluated for the scenario ω.190

Decisions are made at each stage and implemented in the subsequent period.191

For instance, in Figure 1, t = 1 represents the first stage (stage 1). At the first192

stage, the decision maker needs to decide which forest units will be harvested193

in the first period without knowing which scenario will occur. The period is the194

time between two consecutive stages. Hence, t = 1 marks the beginning of the195

first period and t = 2 marks its end. In the example of Figure 1, we have three196

stages and two periods. The value of the random parameter is only revealed in197

periods while the decision needs to be taken at the stage before the uncertainty198

is revealed. The natural question becomes: What is the procedure to generate199

the scenarios necessary for solving (3)? and what is the appropriate number of200

scenarios |Ω|? We address the two questions in the next sections.201

1
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9

scenario 1

scenario 2

scenario 3

scenario 4

scenario 5

t = 1

stage 1

t = 2

stage 2

t = 3

stage 3
Period 1 Period 2

P2

P3

P4

P5

P6

P7

P8

P9

Figure 1: Scenario tree representation of stochastic programming. The scenario tree

shows five scenarios with three stages
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3.1.2. Scenario generation procedure202

Scenario generation is more than a science, it is an art [8] that gives the203

modeler the flexibility to decide on the structure of the scenario tree through204

discretization of the random vector. Fine discretization of the continuous ran-205

dom vector leads to a computationally intractable stochastic program, while a206

coarse discretization leads to a tree that may completely alter the structure of207

the underlying stochastic process the scenario tree ought to represent. Although208

many researchers focused on scenarios’ generation for stochastic programming,209

the scenario tree is not an end but a wherewithal to solve stochastic programs.210

The scenario tree, therefore, ought to have some properties like stability, un-211

biasedness and minimal stochastic optimality gap1. These properties will be212

discussed in Section 3.2.213

The framework used for building scenario trees in this research is based214

on conditional sampling. The method consists of fitting at each node of the215

scenario tree a conditional probability density function and sampling from it216

the values that successor nodes will have. Hence, except the root-node which217

has no predecessor node, the value of each node depends on its predecessor’s218

value. This method has the advantage of controlling the range of values that219

each node may take depending on the process that led to it. In addition, the220

modeler could specify edge cases that should be represented by the scenario221

tree.222

The procedure implemented for scenario generation is inspired from [1], how-223

ever, with many differences. It consists of dividing the sampling space of for-224

est growth change into an equal number of parts corresponding to number of225

branches the scenario tree should have at the given stage. To illustrate the226

method, let’s suppose the random parameter is normally distributed as illus-227

trated in Figure 2. In the figure, t = {1, 2, 3} represents stages at which deci-228

sions are taken. Let L and U be the lower and the upper bounds, respectively, of229

the support of the random parameter ξ. The node a is the root-node and there230

1This is different from MIP optimality gap
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is no growth change associated with it. However, the values of nodes b, c and d231

are drawn from a normal distribution with mean µa, standard deviation σa and232

support Ξa. We denote by Φa the associated cumulative density function. For233

all nodes j in the scenario tree, we require that Ξj ⊆ [L,U ]. Notice that for234

normally distributed random variables with mean µa and variance σ2
a, 99.73%235

of the cumulative density is within the interval Ξ′a = [µa − 3σa, µa + 3σa]. Let236

β designate the number of branches that should originate from node a (β is237

the number of successor nodes). Let’s divide Ξ′a into equal intervals of width238

w = 6σa/β. The probability associated with each one of the successor nodes is239

given using the cumulative density for the interval in which the successor node240

is uniformly drawn from. For instance, the value of b ∈ [L, µa− 3σa +w] with a241

probability of Pb which is the cumulative density of that interval. For example,242

from Figure 2, β = 3, w = 2σa. Hence, nodes b and c, for instance, are uniformly243

drawn from interval [L, µa−σa] with a probability of 0.16 and [µa−σa, µa+σa]244

with a probability of 0.68, respectively, In other words, Pb = Φa(µa−σa) = 0.16245

and Pc = Φa(µa + σa) − Φa(µa − σa) = 0.68. To build the scenario tree, we246

repeat the process for each node until the leaf nodes corresponding to the ter-247

minal stage. As shown, in Figure 2, we arbitrarily chose the number of branches248

β = 3. One may wonder whether such a value of β, dictating the number of249

scenarios in the scenario tree, is justified. The question is what represents the250

appropriate number of branches suitable? To answer to this question, we need251

to assess the properties of the generated scenario tree.252

253

3.2. Properties of a good scenario tree254

Since the process of generating scenario trees described in Section 3.1 is255

stochastic, two runs of the scenario generation procedure might lead to two256

different scenario trees. However, this difference should not be significant as257

to affect the optimal solution of the stochastic programming. If the difference258

is substantial, then the scenario tree is not stable. This stability in scenario259

generation is measured through in-sample stability and out-of-sample stability260
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ξb ∼ N(−1.0, .672)

Figure 2: Growth change scenario generation process

[27].261

3.2.1. In-sample stability262

In-sample stability measures whether the difference in the solution using

two different scenario trees generated from the same process is just due to the

randomness in the process and not to the structure of the scenario tree. Let’s

suppose we generate two scenario trees ξ̃1 and ξ̃2 with the same structure (same

number of scenarios and same number of branches at each stage). By in-sample

stability, the objective function values of the two scenario trees are approxi-

mately equal as:

min
x∈X

E f(x, ξ̃1) ≈ min
x∈X

E f(x, ξ̃2). (4)

A different way of expressing in-sample stability is to consider ξ̃1, ξ̃2, . . . , ξ̃k

scenario trees with increasing size, such that |ξ̃1| < |ξ̃2| < · · · < |ξ̃k−1| < |ξ̃k|

where | · | is the number of scenarios. If there is in-sample stability then

min
x∈X

E f(x, ξ̃k−1) ≈ min
x∈X

E f(x, ξ̃k). (5)

12



In other words, increasing the size of the scenario tree does not alter the solution263

and therefore, the scenario tree reached in-sample stability.264

3.2.2. Out-of-sample stability265

Out-of-sample stability is guaranteed if for two scenario trees ξ̃1 and ξ̃2 with

the same structure, we can write:

E

[
f

(
arg min
x∈X

E
[
f(x, ξ̃1)

]
, ξ

)]
≈ E

[
f

(
arg min
x∈X

E
[
f(x, ξ̃2)

]
, ξ

)]
. (6)

In practice, (6) is impossible to evaluate because we cannot evaluate the value266

of the approximated solution on each value of the continuous random vector.267

After all, we would not need the scenario tree if we could solve directly the268

continuous random process expressed by ξ.269

Since (6) is impossible to verify, we can check out-of-sample stability by

implementing a Monte-Carlo like approach [33, 40] and assuming out-of-sample

stability if we can state that

1

n

n∑
i=1

f(x̃1, ξ̃i) ≈
1

n

n∑
i=1

f(x̃2, ξ̃i), (7)

where ξ̃1, ..., ξ̃n are i.i.d scenario tree samples of the same structure like ξ̃ and270

x̃k = arg min
x∈X

E
[
f(x, ξ̃k)

]
, k = 1, 2.271

3.2.3. Alternative stability measurement272

A different way we measured the scenario tree stability since we are confident273

the scenario generation procedure possesses sufficient randomness, was through274

relative stability measurement [19]. We generated a given number of scenarios of275

the same structure and computed the objective function for each one of them.276

We can find the largest (z+) and the smallest (z−) objective function values277

and compute the relative variability as (z+ − z−)/z+. Then, we picked the278

scenario structure with a minimum number of scenarios that leads to a relative279

variability lower than a threshold fixed, say 1% or 0.5% (low variability means280

high stability).281
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3.2.4. Unbiasedness282

Even when in-sample and out-of-sample stability are guaranteed, the dis-283

cretization could still lead to a biased solution. The scenario tree leads to unbi-284

ased solutions if the expected solution and the true solution are approximately285

equal such as:286

E

[
f

(
arg min
x∈X

[
E f(x, ξ̃)

]
, ξ

)]
≈ min
x∈X

E f(x, ξ). (8)

Although (8) is important for assuring that the scenario generation leads to287

a solution diverging little from the true solution, it cannot be evaluated since288

the original problem cannot be solved because of the presence of the continuous289

random vector ξ. Kaut and Wallace [27] recommend to approximate the con-290

tinuous variable through a ‘reference tree’. Such a tree is the biggest possible291

tree that can be solved and it must be generated from a process known to be292

unbiased. We can assume an unbiassed scenario tree if on one hand, the process293

that generates the tree is random and on the other hand, the scenario tree fulfills294

the aforementioned properties.295

3.3. Confidence interval on stochastic optimality gap296

We have stated that it is impossible to solve the original problem with the

continuous random vector ξ, as consequence, its approximation with ξ̃ was re-

quired. Even if the approximation leads to a scenario tree with the aforemen-

tioned properties (in-sample and out-of-sample stability, unbiasedness), we still

need to know to what extent the objective function value of the approxima-

tion diverges from the true optimal value. The stochastic optimality gap e(ξ̃, ξ)

evaluates the error (negative bias in the case of minimization problems) of ap-

proximating ξ by ξ̃. Hence, e(ξ̃, ξ) is computed as:

e(ξ̃, ξ) = E f(x̃, ξ)−min
x∈X

E f(x, ξ) (9)

= E f(x̃, ξ)− z∗ (10)

= µx̃ ; (11)

14



where µx̃ is the stochastic optimality gap of the solution x̃ obtained from the

scenario tree ξ̃. Since we cannot evaluate the stochastic optimality gap directly,

we can assess its bounds. The computation of those bounds are provided in

Bayraksan and Morton [6]. We can estimate the stochastic optimality gap by

computing its upper bound. We readily know that its lower bound is zero,

corresponding to the solution from the scenario tree approximation which is as

good as the true solution. The stochastic optimality gap of a candidate solution

x̂ is given by:

Gn(x̂) =
1

n

n∑
i=1

f(x̂, ξ̃i)−min
x∈X

1

n

n∑
i=1

f(x, ξ̃i) ; (12)

where ξ̃i is a scenario tree from the discretization of the random parameter297

ξ. Note that the term Gn(x̂) is always positive. In-sample stability increases298

with the number of scenarios (the number of branches at each stage) for the299

four climate paths (Figure 3). The relative stability presented in Table 4 shows300

that except for the climate path B1, when the random parameter is uniformly301

distributed, which has a relative stability less than 1% when considering three302

branches at Consequently, it is necessary to define its upper bound. There are303

many methods used to that end. Those methods include multiple replications304

procedure (MRP), two replications procedure (TRP) and single replication pro-305

cedure (SRP) [33, 6]. However, in this research, we focus on MRP presented in306

Algorithm 1 because it allows to compute more robust bounds.307
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Algorithm 1 MRP

Input: Candidate solution x̂, the number of samples n, the number of

replications nG and α ∈ [0, 1]

1: for i = 1, 2, ..., nG do

2: Sample i.i.d observations ξ̃i1, ξ̃i2, ..., ξ̃in from the distribution of ξ

3: Calculate Gin(x̂) using the (12)

4: end for

5: Calculate gap estimate GnG
and variance s2

G(nG)

GnG
=

1

nG

nG∑
i=1

Gin(x̂) s2
G(nG) =

1

nG − 1

nG∑
i=1

(
Gin(x̂)−GnG

)2

6: Output the one-sided confidence interval on µx̂

µx̂ =
[
0, GnG

+
tnG−1,αsG(nG)

√
nG

]

As highlighted by Bayraksan and Morton [6], although the stochastic op-308

timality gap is not normally distributed, from the central limit theorem, since309

GnG
is the mean of i.i.d random variables it can be approximated to a normal310

distribution.311

3.4. Convergence of two climate paths312

We have so far covered how to generate good scenario trees for the purpose313

of stochastic programming; we have computed the bounds on the stochastic314

optimality gap that arise from approximating the continuous random vector by315

a scenario tree. However, we still have an issue of how to deal with the different316

climate scenarios (climate paths) that are forecast by climate scientists. We317

present here a method for reducing the number of climate paths that are worthy318

of consideration. Let’s suppose two climate paths i and j (i 6= j). We can solve319

(2) for the two climate paths to obtain the tuple of solutions and objective320

function values (x̂i, ẑi) and (x̂j , ẑj) corresponding to climate paths i and j,321

respectively. We claim that the two climate paths are not different if they have322
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the same solution. However, because it is possible to have multiple optimal323

solutions or to have two different solutions that lead to the same objective324

function value, we use the objective function to evaluate the similarity between325

the two climate paths.326

Hence, we conclude convergence if using the solution x̂i from climate path

i in the function of climate path j leads to the same objective function as ẑi.

Put differently, we claim convergence of two climate paths i and j if

ẑi ≈ E
[
fi

(
arg min
x∈X

E[fj(x, ξ̃)], ξ̃
)]

; (13)

where fi and fj are the objective functions of the optimization problem for

climate paths i and j, respectively. If there is convergence, then one of the

climate paths is sufficient to capture the underlying random process and there

is no need to consider both climate paths. In practice, we can conclude that the

two scenario paths lead to the same solution if the right hand side term of (13)

belongs to the confidence interval of z∗i . From the previous sections, we have all

the material to compute the confidence interval on the true objective function

value z∗i of the climate path i using a candidate solution x̂i as follows:

z∗i ∈

[
ẑi, ẑi +

(
GnG

(x̂i) +
tn−1,αsG(nG)
√
nG

)]
. (14)

327

The confidence interval in (14) is one sided. It is computed taking into328

account the stochastic optimality gap from Algorithm 1. For minimization329

problems, ẑ is negatively biased; which means that E ẑ ≤ z∗ [33, Theorem330

1]. This stems from the fact that the solution from the discretization is more331

optimistic because it only considers a finite number of scenarios we optimize332

against.333

3.5. Practical considerations334

In practice, it is difficult to compute the stochastic optimality gap (Gn(x̂)

arising from the discretization of the random parameter), as defined in (12)

. The difficulty stems from the impossibility to solve certain mixed integer
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programs to the full optimality in a reasonable clock time. Here, we need

to highlight that the optimality gap discussed is related to the mixed integer

program (MIP) and the solver used to solve the MIP. That gap (g) is computed

by comparing the objective value of the incumbent solution (x) to the best lower

bound L (for minimization problems) as follows:

g =
f(x)− L
f(x) + ε

, (15)

where ε is a small quantity that prevents from dividing by zero. g = 0 means335

that the incumbent solution x is the optimal solution of the MIP. However, for336

harvest scheduling MIPs, it is difficult to achieve such a solution in a reasonable337

time. The common practice is to set an acceptable stopping optimality gap,338

g > 0. Unfortunately, this simplification affects (12). We cannot guarantee339

anymore that each Gn(x̂) is positive because the solution to min
x∈X

∑n
i f(x, ξ̃i)340

might not be the true optimal solution. We solve this issue by computing the341

lower bound on the stochastic optimality gap as computed in (12) by only using342

positive Gi(x̂). We compute both the lower bound (Gln(x̂)) and upper bound343

(Gun(x̂)) on the stochastic optimality gap using (16)344

Gn(x̂) =


Gln(x̂) = 1

n

∑n
i=1 f(x̂, ξ̃i)−min

x∈X
1
n

∑n
i=1 f(x, ξ̃i) if (12) is positive

Gun(x̂) = 1
n

∑n
i=1 f(x̂, ξ̃i)− 1

n

∑n
i=1 Li, Otherwise

(16)

345

where x̂ is a candidate solution of the stochastic program, ξ̃i is a scenario tree346

from the discretization of the uncertain parameter, and Li is the lower bound347

obtained while solving the stochastic mixed integer program with an optimality348

gap g. As a consequence, from the Algorithm 1, we have to compute the mean349

stochastic optimality gap by computing its lower and upper values as G
l

nG
and350

G
u

nG
, respectively.351
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4. Case study352

4.1. Climate change data353

Although climate experts define several potential climate paths known as354

representative concentration pathways [48], in this research, we are more in-355

terested in how climate change influences forest growth rather than the actual356

climate change parameters such as precipitation, temperature, etc. There exist357

two paradigms to translate climate data into forest growth. The two paradigms358

are known as process-based modeling and statistical or empirical modeling.359

Process-based models are known for offering the flexibility to integrate different360

interactions that explain forest growth. However, these models are mostly suit-361

able for short rotation forests such as eucalyptus plantations [35, 2, 16] which362

are not the kind of forests in the Pacific Northwest. It goes without saying that363

the empirical modeling is more suitable for this study. Hence, using empirical364

modeling, Latta et al. [28] showed that in the Pacific Northwest, the four cli-365

mate paths forecast by climate experts will affect forest growth disparately. The366

authors predicted also what the change of potential forest growth will be in 100367

years. As results, they provided the potential mean annual increment (pMAI)368

of forests for the year 2100.369

In Table 1, pMAI refers to the potential mean annual increment change,370

which is the average forest growth change in one year. The value in the table371

represents the potential mean annual increment change that will be observed in372

100 years. It is assumed that the change will be linear from now (year 2020)373

up to that year. The four climate paths, A1B, A2, B1, and Commit (hereafter374

referred to as C) correspond to different climate forecast in response to human375

activities, technological advancement, population growth, etc. The values in376

Table 1, represents the expected pMAI, however, the values were calculated377

from a spatial auto-regressive model developed in Latta et al. [29]. The model378

used as input environmental parameters such as the slope, air moisture, tem-379

perature, precipitation, and predicted forest growth. As results, there is a large380

uncertainty on the predicted pMAI and the prediction interval is quite large381
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[29]. To account for this uncertainty, we use the prediction interval instead of382

the expected pMAI in harvest scheduling models.383

Table 1: Potential mean annual increment change

A1B A2 B1 Commit

pMAI (m3/ha/year) 2.5 3.1 1.3 0.2

4.2. Scenario trees384

To generate scenario trees, we use the conditional sampling method described385

in Section 3.1. Forest growth change used is the one presented in Table 1. The386

statistical model predicting the forest growth change had a root mean squared387

error δ. We use the error term δ to build the 99% prediction interval of the388

growth change associated with each climate path. For practicality, we used the389

predicted growth change ±3δ (pMAI ±3δ) to build the lower and upper bounds390

of the predicted growth change. We generated scenario trees for each climate391

path by sampling within the lower and upper bounds of the prediction interval392

(see Section 3.1 for more details).393

To generate the scenarios for each climate path, we propose supposing for-394

est growth change ξ, within each prediction interval follows either a normal or395

uniform distribution. The normal distribution assigns high probabilities to sce-396

narios that are closer to the expected predicted forest growth change, whereas397

uniform distribution assigns the same probabilities to all scenarios within the398

prediction interval. The objective of having the two distributions is to test the399

sensitivity of the solutions to different probability schemes.400

The planning horizon adopted in this experiment is 50 years divided into five401

periods (with five decision stages as well). For each distribution, we generated402

scenario trees by using β = {2, 3, 4, 5} corresponding to two, three, four, and five403

branches at each stage and leading to 16, 81, 256, and 625 scenarios, respectively.404

For each branching scheme, we proceeded into generating ten replications of the405

20



scenario tree with the same structure. These replications served into computing406

in-sample, out-of-sample stability and the convergence of two climate paths.407

There are a few assumptions this research relies on. First, we assume the408

forest of interest is small enough in size that our management decisions do not409

significantly affect climate change. Consequently, the stochastic programming410

is the one with exogenous uncertainty [22, 3]. If we were interested in managing411

forests at a global level, then we would have had to consider a case where412

our decisions may affect back climate change. In this latter case, the stochastic413

programming is known as stochastic programming with endogenous uncertainty414

[24, 23]. Second, the growth change is linear from one period to another. Third,415

although forest growth changes, the forest site will still be suitable for the species416

of interest and therefore there is no need to worry about species shifting from417

one site to another. This assumption is warranted by the first assumption that418

the study area is relatively small.419

4.3. Optimization model420

In this section, we present the optimization model that served as harvest421

scheduling model. The main objective of harvest scheduling in commercial422

forests is the maximization of the net present value from the harvest actions423

during the planning horizon. The list of parameters, variables and sets is re-424

ported in Table 2.425

4.3.1. Objective function426

The objective function which aims at maximizing the expected net present

value considering all the scenarios can be written in the form of:

max
∑
ω∈Ω

wω

[∑
t∈T

(
ptH

ω
t −

∑
s∈S

cstx
ω
st

)
+
∑
s∈S

p0n
ω
s

]
. (17)

We make sure to subtract from the revenue we get from the harvest of each427

forest unit, the cost of replanting the same unit. Hence, we balance between the428

revenue from harvesting a unit and the cost of replanting it. The objective func-429

tion (17) maximizes the net present value while meeting various sustainability430

and logical restrictions.431
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Table 2: Nomenclature

Indices

s Stand

t Time of harvest or the year

ω, ω′ Scenario

Variables

Hω
t Volume harvested in year t under scenario ω (m3)

nω
s Binary variable: 1 if stand s should not be harvested during the whole planning horizon

under scenario ω; and 0 otherwise

xω
st Binary variable: 1 if stand s is scheduled to be harvested in year t under scenario ω; and 0

otherwise

zst Binary: 1 if stand s has been harvested before the current management such that the stand

is not green-up yet at time t; and 0 otherwise. It is not an actual variable since it is defined

while building the model

Parameters

Amax Maximum contiguous area that should not be exceeded during harvest for green-up (120

acres in Washington state)

as Area of stand s (ha)

agest Age of stand s at the end of the planning horizon if harvested in year t (yr)

ages. Current age of the stand s (yr)

ages0 Age of stand s at the end of the planning if not harvested during the planning horizon (yr)

b Minimum age that a stand can have before it is considered green-up or old enough to not

be considered as an opening

cst Discounted cost of regenerating stand s in year t ($)

fmax Allowable upper bound of percentage of fluctuation of volume of wood

fmin Allowable lower bound of percentage of fluctuation of volume of wood

p0 Discounted value of the forest at the end of the planning horizon if it is not harvested ($)

pt Discounted price of wood in year t under scenario ω ($)

vωst Productivity of stand s if harvested in year t according to scenario ω (m3/ha)

wω Weight or probability of scenario ω

Sets

B Set of stands that are big such that their area exceeds Amax

C Set of stands forming a minimum infeasible cluster. (They don’t include large units which

size exceeds Amax)

Ks Set of stands neighbor to the stand s

Λ Set of minimally infeasible clusters. (They don’t include large units which area exceed the

maximum opening size)

S Set of stands

T Set of years for the planning horizon

Ω Set of scenarios in the scenario tree
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4.3.2. Constraints432

(a) A stand can be harvested only once during the planning horizon

nωs +
∑
t∈T

xωst = 1 ∀s ∈ S ∀ω ∈ Ω (18)

(b) Volume of wood harvested each period∑
s∈S

asv
ω
stx

ω
st = Hω

t ∀t ∈ T ∀ω ∈ Ω (19)

(c) Wood flow constraints

Hω
t − (1− fmin)Hω

t+1 ≥ 0 ∀t ≤ |T | − 1, ∀ω ∈ Ω (20)

Hω
t − (1 + fmax)Hω

t+1 ≤ 0 ∀t ≤ |T | − 1, ∀ω ∈ Ω (21)

(d) Spatial configuration restrictions (Adjacency rules)∑
s∈C

(
zst +

t∑
q=t−b

q>0

xωsq

)
≤ |C| − 1 ∀t ∈ T , ∀C ∈ Λ, ∀ω ∈ Ω (22)

xωst + zit +

t∑
q=t−b

q>0

xωiq ≤ 1 ∀t ∈ T , ∀s ∈ B, ∀i ∈ Ks, ∀ω ∈ Ω (23)

∑
i∈Ks

t∑
q=t−b

q>0

xωiq ≤M(1− xωst − zst) ∀t ∈ T , ∀s ∈ B, ∀ω ∈ Ω (24)

zst = 1 if s harvested in t′ and t < b+ t′ with t′ ∈ [−b, 0] (25)

(e) Ending inventory (ending age)∑
s∈S

as

[∑
t∈T

agestx
ω
st + ages0n

ω
s

]
≥
∑
s

asages. ∀ω ∈ Ω (26)

(f) Non anticipativity

xωst = xω
′

st ω 6= ω′ ∀s, t (27)

If two scenarios ω and ω′ are indistinguishable at time t, then the decision433

in the two scenarios should be the same at that time t.434
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(g) Nature of variables

Hω
t ∈ R+, xωst ∈ {0, 1}, nωst ∈ {0, 1} ∀t ∈ T , ∀s ∈ S, ∀ω ∈ Ω (28)

4.3.3. Meaning of the constraints435

Constraint set (18) states that each forest unit can only be harvested once436

for each scenario. We use the variable nωs as a counter of the stands that are not437

scheduled for harvest during the whole planning horizon. The set of constraints438

(19) computes the volume of wood harvested in each period for each scenario.439

As we can see, the parameter vωst depends on the scenario ω. Constraint sets (20)440

and (21) are volume flow restrictions and they ensure that the volume of wood441

harvested in period t is within fmin and fmax percentage of the one harvested442

in the period t− 1. The set of constraints (26) states that the age of the forest443

at the end of the planning horizon should be greater or equal to the current444

age of the forest. This set of constraints is a proxy for sustainability; it ensures445

that resources are not depleted during the planning horizon. Constraint set (27)446

imposes non-anticipativity for scenario ω and ω′. It states that if there are two447

scenarios ω and ω′ that are indistinguishable in time t, then the decision should448

be the same for the two scenarios up to that time t.449

Constraints (22), (23), (24) and (25) refer to the green-up constraints. Green-450

up constraints or green-up rules are a set of regulations that aim at limiting the451

size of the openings and the length of time before adjacent forest units can be452

harvested. Amax is the maximum opening area that contiguous forest units453

harvested can create. A forest unit is considered as an opening if the forest in454

that unit is not older than b. In practice we do not need the variable zst since455

its values will be defined while building the model. However, for easiness of456

the model and its readability, that variable was necessary. Constraints (22) say457

only a feasible cluster is allowed. It includes the fact that there might be stands458

that have not yet reached the green-up requirement at the start of the planning459

because those stands were harvested in the previous planning. Constraints (23)460

impose that a large unit cannot be scheduled for harvest if it is adjacent to461

any other unit that is not green-up yet. The units that are adjacent and not462
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green-up yet could be of two sources. They could originate from the previous463

harvest planning in which case the stands on that unit are less than b years old464

prior to this planning. The second case is that the stand is harvested either465

in an anterior or the current year. Constraint set (24) says that if there is a466

large stand harvested then no neighbor to that stand can be eligible for harvest.467

Notice that for any t, xωst + zst ≤ 1,∀ω, s. This equation is deactivated if the468

large stand is unscheduled for harvest (M is a big number). Constraint set (25)469

just informs that the values of z are defined while building the model. zst = 1470

if the stand has been harvested in the prior management such that it is still471

considered not green-up yet in time t.472

During implementation, Constraint set (22) is written slightly differently as473

follows:474 ∑
s∈C

t∑
q=t−b

q>0

xωsq ≤ max
(

0, |C| − 1−
∑
s∈C

zst

)
t ∈ T , ∀C ∈ Λ, ∀ω ∈ Ω (29)

This reformulation is important because the value of
∑
s∈C zst can be greater475

than |C| − 1. Let’s for example have a cluster of two stands (|C| = 2) that476

were harvested in the previous planning such that the two stands are not green-477

up yet at t∗, thus
∑
s∈C zst∗ = 2. With the new formulation, the right-hand478

side will be zero; as a result, the cluster cannot be harvested until the stands479

have reached the harvestable age. This situation arises because we do not have480

control over previous managements and how minimally infeasible clusters were481

defined. Equations (28) define the domain of the variables.482

4.3.4. Recourse constraints483

Although the above model is sufficient to define the harvest scheduling, we484

still need to define the structure of the recourse variables in case the decision485

maker assumes a climate path, say A2, will occur and actually climate path C,486

for instance, materializes. Notice that except the wood flow constraints (Con-487

straint sets (20) and (21)), all other constraints will remain satisfied. Hence, to488

satisfy the wood flow constraints, we suppose that in case of shortage of wood489

in any time period, because we were expecting one climate path and a different490
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one occurred, we have to purchase wood on the market from a competitor to491

fulfill the demand. It goes without saying that the price at which we buy the492

wood exceeds the price at which we would sell ours. The rational behind this493

reasoning is that the competitor has no incentive to sell to us their wood. In494

sum, we incur a high cost for not having enough inventory to fulfill the implicit495

demand. Similarly, in case of excess of wood, we incur a cost of holding excessive496

inventory. Wood flow constraints are one of the most important policy in forest497

management planning. It ensures employment and the stability of the involved498

local communities [31]. To implement these policies, we need to define a set of499

variables and parameters.500

First, let π+
t be the cost of holding inventory e+ω

t in case the wood we501

produce in period t exceeds the maximum allowable harvest in period t (H
ω

t )502

from the wood flow constraints of the scenario ω. Second, let π−t be the price at503

which we buy wood on the market in case we have a shortage of production if504

the wood we produce in period t is bellow the minimum volume, Hω
t , required505

by the wood flow constraints by a value of e−ωt . We can compute the shortage506

volume and the excess of inventory by using (30) and (31), respectively.507

e−ωt = max(Hω
t −Hω

t , 0) (30)

e+ω
t = max(Hω

t −H
ω

t , 0) (31)

Note that e+ω
t ∗ e−ωt = 0, ∀t, ω because we cannot have at the same time

shortage and excess. The new objective function becomes

max
∑
ω∈Ω

wω

[∑
t∈T

(
ptH

ω
t − π+

t e
+ω
t − π−t e−ωt −

∑
s∈S

cstx
ω
st

)]
. (32)

This objective is necessary in computing the net present value if the decision508

maker plans for one climate path and actually a different climate path occurs.509

Since the decision variables are fixed, this is just computing the new objective510

function value of wrongly assuming the future climate path.511
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4.3.5. Values of the model’s parameters512

The methodology was tested on Phyllis Perry forest with 89 stands at differ-513

ent maturity age. The planning horizon was 50 years divided into five planning514

periods of ten years each.

Table 3: Optimization model parameters

Parameter Value

b 5 years

fmin 15%

fmax 15%

π+
t 0.8pt

π−t 2pt

Discount rate 3.5%

Planning horizon 50 years

Length of a period 10 years

515

We solved the models for all data sets using IBM ILOG CPLEX 64-bit 12.9.0516

on a Dell Power Edge 510 Server with an Intel Xeon(R) CPU, E5-2680 v3 @2.50517

GHz (two processors) with 256 GB RAM and the Windows Server 2012R2 64-518

bit operating system. The optimization model was implemented on Python.519

We ran CPLEX using the default settings except limiting the run time to 24h520

(wall clock time) and setting the optimality gap (g) to 2% for each model. We521

excluded from the analysis all models that terminated because of time limit.522

Table 3 summarises the values of several parameters used in the optimization523

model. To check for stability, we generated ten replications of each scenario tree524

structure.525

4.4. Experimental results526

4.4.1. In-sample stability527

In-sample stability increases with the number of scenarios (the number of528

branches at each stage) for the four climate paths (Figure 3). The relative529

27



stability presented in Table 4 shows that except for the climate path B1, when530

the random parameter is uniformly distributed, which has a relative stability less531

than 1% when considering three branches at each stage (β = 3), all other climate532

paths reach that stability level when four branching is considered (β = 4). The533

four branching at each stage corresponds to 256 growth scenarios.534

Figure 3: In-sample stability analysis

Table 4: Percentage of stability using maximum and minimum values for both normal

and uniform distributions (relative stability)

Normal Uniform

Branch (# scenarios) A1B A2 B1 C A1B A2 B1 C

2 (16) 1.21 2.15 3.06 1.65 1.63 1.88 2.49 2.34

3 (81) 1.20 1.37 1.34 1.11 1.05 1.09 0.86 1.46

4 (256) 0.69 0.44 0.66 0.73 0.43 0.40 0.31 0.59

5 (625) 0.45 0.34 0.35 0.50 0.39 0.38 0.37 0.43
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4.4.2. Out-of-sample stability535

We get high out-of-sample stability when considering four branching (or 256536

scenarios) compared to five branching (β = 5 or 625 scenarios). However, these537

stabilities do not appear to be statistically different. The trade-off between538

the time required to solve the problem with 625 scenarios and the increase of539

out-of-sample stability does not motivate the adoption of the scheme with five540

branching. Hence, the best sampling schema is four branching at each stage541

leading to 256 scenarios (Figure 4).542

Figure 4: Out-of-sample stability analysis

4.4.3. Stochastic optimality gap543

The results of the upper and lower bounds on stochastic optimality gap for544

the four climate paths are reported in Table 5. The lower bound of the stochastic545

optimality gap ranges from 0.09% to 0.18% corresponding to the climate path546

A1B and C, respectively, when the growth is normally distributed. However,547

the upper bound on the stochastic optimality is less than 2%.548
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Table 5: Stochastic optimality gap on each climate path. The percentage of the bound

is relative to the mean NPV

Distribution Climate path Mean NPV($) G
l

30($) G
l

30(%) G
u

30($) G
u

30(%)

Normal

A1B 3,354,555 2,980 0.09 62,593 1.87

A2 3,387,797 6,063 0.18 65,974 1.95

B1 3,278,346 3,914 0.12 60,970 1.86

C 3,208,195 5,743 0.18 58,427 1.82

Uniform

A1B 3,355,126 4,677 0.14 63,121 1.88

A2 3,391,432 4,401 0.13 65,150 1.92

B1 3,272,744 5,609 0.17 63,356 1.94

C 3,200,770 4,444 0.14 60,942 1.90

4.4.4. Convergence of climate paths549

Table 6 displays the expected net present value that we get if we commit to550

each of the climate paths. The expected NPV is high when we manage the forest551

expecting climate path A2 regardless of if that climate path actually materializes552

or not. Managing the forest expecting climate path C leads to the lowest NPV.553

The results of two-way ANOVA shows that the expected NPV we get depends554

on the climate path we commit to (Table 7). However, the distribution of the555

random parameter for each climate path has no significant effect. In other556

words, the probabilities of the scenarios did not have any significance on the557

value of the NPV.558

Figure 5 presents the summary of the net present value (NPV) of managing559

the forest expecting one climate path while the materialized climate path may560

be the same or a different one. For instance, if we manage the forest expecting561

climate path A1B and climate path A2 occurs, the NPV is expected to increase,562

although it remains in the uncertainty margin. However, if climate path B1 or563

C occurs, then the obtained NPV will be much lower than the one we would564

get if actually the climate A1B had occurred. Similarly, if we expect climate565

A2, for instance, and climate path C occurs, the NPV obtained is much higher566
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Table 6: Expected NPV when the forest is managed expecting a specific climate path

regardless of which climate path actually materializes for both the normal

and the uniform distributions. SD = standard deviation

Distribution Climate NPV($) SD(NPV)

Normal

A1B 3,335,126 30,825.77

A2 3,352,117 33,563.86

B1 3,288,788 27,300.93

C 3,244,643 26,940.26

Uniform

A1B 3,333,478 33,689.93

A2 3,350,849 38,496.11

B1 3,285,235 29,311.52

C 3,238,941 28,359.64

Table 7: Two-way ANOVA of the NPV distribution and the climate path (climate)

as factors

df Sum Sq Mean Sq F Value Pr(>F)

Distribution 1 3.70E+08 3.70E+08 0.3784 0.5394

Climate 3 2.93E+11 9.77E+10 99.888 <2e-16

Distribution × Climate 3 1.24E+08 4.14E+07 0.0423 0.9884

Residuals 152 4.87E+10 9.79E+08

than the NPV we would get if we managed the forest expecting climate path C567

and it actually materialized. This second analysis may be counter intuitive. It568

seems like if we knew which climate path would occur, we would make the best569

decision here and now, and therefore the NPV should be higher for such a good570

foresee. The second thing one may wonder is whether we are not over-harvesting571

if we plan foreseeing an optimistic forest growth climate path, say climate path572

A2, and actually climate path C materializes. The following paragraphs address573

these two points.574

First, when we plan for an optimistic climate path, the best decision is to575
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Figure 5: Net present value from a management expecting one climate path versus the

materialization of a different climate path. Dashed blue lines correspond to

the confidence of the NPV from a correct prediction of the climate path.

increase the volume of forest harvested here and now (harvested in the first576

period) because the future forest growth will increase and compensate the vol-577

ume we may have over-harvested here and now. Second, the discounting affects578

revenues and costs that we incur in the future, hence the future actions are579

less significant. It is clear, therefore, that if we only care about the ending age580

inventory requirement (constraint set (26)) and the wood flow, the best decision581

is to plan for optimistic future forest growth and if we lack forest material in the582

future, we can still purchase wood even at a higher cost as long as the ending583

age constraint is satisfied.584

Second, we can see as illustrated on Figure 6, that the volume of wood585

harvested is the same by the end of the planning horizon, regardless of if the586

management anticipated correctly the climate path to occur or not. Indeed, if587

we expect an optimistic climate path, say A2, we tend to increase the volume of588

wood harvested in the first period. However, if a less optimistic climate path,589

say C, occurs, we will harvest less volume in the future compared to the volume590
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we would have harvested if we knew from the beginning that the climate path591

C would occur.592

Figure 6: Cumulative volume of wood harvested in each period when planning for

either climate paths A2 and C and actually any of the two materializes for

normally distributed growth change. The letters on the bars designate the

actual climate path that occurred

5. Conclusions and discussion593

In this study, we have developed a framework for incorporating forest growth594

and yield uncertainty due to climate change in harvest scheduling models. We595

considered forest growth change with different climate paths separately. We596

generate growth scenarios within the prediction interval of each climate path.597

Increasing the number of scenarios allows to capture the variability of the forest598

growth that affects optimal management decisions. However, there is no real599

benefit at increasing that number beyond a given point since it increases the600

problem computational complexity without significantly increasing the quality601

of the scenario tree. The analysis showed that out of the four climate paths602

considered, one may just focus on the two extreme climate paths, namely climate603
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path A2 and C since the decisions one makes considering the two others (climate604

path A1B and B2) are included in the decision if these two climate paths.605

Subsequently, at the high level, it does not really matter which climate606

path will materialize; the optimal decision is to plan forest harvests expecting607

an optimistic climate, which in this study is climate path A2. Whether the608

uncertainty of the forest response is normally or uniformly distributed around609

its expected value, the results have shown that there is no significant impact610

considering one or the other.611

Although, we advocate that the decision maker ought to have an optimistic612

attitude expecting a future increase of the forest growth in the context of Pa-613

cific northwest, this recommendation can be viewed with skepticism especially614

for a large forestry company. The idea of purchasing forest products in case615

of shortage makes sense for a small company but may not be appealing to a616

large company that is the leading in the industry. Similarly, we would like to617

stress that this recommendation has to be taken with caution since it is not a618

sustainable practice if the whole forest industry adopt it. One way this caution619

can be integrated in the model is to reinforce the wood flow constraints to be620

feasible for all climate paths.621

One of the limitations of this research is that we supposed that climate622

change will affect forest growth without any feedback from our management623

decisions. Although this assumption was valid for our case, it is a limitation624

of this research. Similarly, we supposed that if there is a shortage of wood625

supply because of our management decisions, then we could procure some wood626

from competitors. This might not be true if all decision makers adopt this627

attitude. Moreover, supposing just two distributions of the random variable may628

be limiting. In the continuation of this research, we intend to use distributionally629

robust optimization to integrate more distributions in the harvest scheduling and630

at the same time consider all the climate paths at once. Finally, we supposed631

in this research that the price of wood is independent from climate change.632

Although we do not have enough evidence to refute this assumption, we do633

think it might not be the case. Wood can become a prime commodity if climate634
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change leads to a substantial reduction in forest growth. However, this change635

can be attenuated by the technological advancement that can reduce the need636

of wood for construction.637
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