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Abstract— A photovoltaic (PV) array with multiple modules 
in series with bypass diodes may present multiple power peaks 
under uneven shading and requires a control schema to regulate 
the system to global maximum power point (GMPP). While a lot 
of methods have been proposed in the literature, they are usually 
quite complex and does not fully take advantage of available 
characteristics of the PV array. This work will highlight a 
method to plot the probability distribution of MPP voltage under 
various shading conditions and temperatures for an array of 4 
custom made PV modules using MATLAB. From this 
distribution, we propose a fast GMPPT algorithm that can reach 
true MPP more than 90% of the time for both an assumed equal 
probability distribution as well as for a real-world irradiation 
measurement. An experimental test to compare our method 
against several others like deterministic particle swarm 
optimization (DPSO), grey wolf optimization (GWO) and 
perturb and observe (P&O) is presented.  

Keywords—Partial shading, Lambert W function, probability 

distribution, MATLAB/Simulink, experimental results, global 
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I. INTRODUCTION  

Harvesting energy using photovoltaics is usually the 
simplest and sometimes only viable source of energy for 
systems away from the grid (i.e., bioresearch sensors in the 
wild, portable solar power banks). Unlike PV power plant, the 
harvestable PV area is low and irradiation levels may not be 
very stable. Therefore, the power conditioning algorithm must 
be resilient against varying irradiation and partial shading, yet 
simple enough to be put on low power microcontrollers (µC) 
like PIC18 8-bit µC family from Microchip.  

To increase the power output per converter, PV modules 
are usually connected in series which has a slight advantage 
over parallel installation which requires an anti-reverse diode 
which may incur extra power loss. But, when one module is 
shaded in the series, the entire array’s current output is limited 
by the shaded module which incur severe power loss [1]. 
Bypass diodes are therefore installed in parallel with PV 
modules to provide a path for current to flow around them in 
case of shading and alleviate the hotspot problems due to 
mismatched irradiation , but this leads to multiple power peaks 
which complicates the control scheme [2] (Fig. 1).   

 

Fig. 1. Power output of 4 PV modules in series with bypass diodes under 
different irradiation conditions 

Seeing that under even irradiation the PV array still exhibit 
a maximum power point, there are great interest on optimizing 
PV systems in the literature which can be classified into 2 
categories: single peak capable and multiple peaks capable. 
For the former category, the most notable is Perturb and 
Observer (P&O) which is the simplest schema out there that 
basically involves slighting disturbing the operating point, 
measure the power obtained and move toward one that yield 
better power [3]. Due to its proven efficacy, it received a lot 
of optimization over the years like reduced convergence time 
[4], reduced oscillations around MPP [5] and reduced loss of 
tracking on fast varying irradiation [6]. Other methods in the 
single peak capable class are Incremental Conduction [7], β-
parameter method [8], fractional open circuit voltage (Voc) 
[9], MPP locus characterization [10] and temperature based 
approximation of MPP [11]. In general, these algorithms are 
easy to implement, efficient under stable weather condition, 
but they may not give optimal power acquisition under bad 
weather conditions. That is why there exist the multiple peak 
capable methods designed to tackle the complex power-
voltage profile caused by bypass diodes under uneven 
irradiation. The first type of algorithms is those based on 
optimization algorithms like genetic algorithm [12], 
differential evolution [13], particle swarm optimization (PSO) 
[14], deterministic PSO (DPSO) [15], artificial bee colony 
(ABC) [16], grasshopper optimization [17], grey-wolf 
optimization (GWO) [18], [19], flower pollination algorithm 
(FPA) [20], student psychology based optimization [21], 
dragonfly algorithm [22], ant colony optimization [23], Henry 
gas solubility optimization (HGO) [24] and cuckoo search 
algorithm [25]. These approaches can identify GMPP albeit 
not a sure guarantee due to their stochastic nature, and they 
also suffer from several drawbacks like implementation 
complexity (e.g., heavy floating points operations, 
exponentials, logarithms) and heavy power swings during the 
search phase. There are also several works that seek to 
mitigate P&O’s inability to find true MPP in case of multiple 
peaks by extending the search zone [26] or by adding an 
optimization based algorithm phase before the P&O [16], 
[27], [28], which take well advantage of P&O’s reliability but 
the optimization phase still has the same drawbacks. Another 
class of methods are fuzzy logic controllers like [29]–[31] 
which provide extra flexibility while being reasonably 
lightweight but requires a complex tuning phase. Finally, we 
have the powerful yet resource intensive neural network based 
controllers [32]–[36] that are regrettably only tested for single 
MPP cases and not for complex partial shading conditions.  

Considering the status of the literature and the use case, we 
would like to propose a novel simple and lightweight method 
based on P&O that can quickly identify the GMPP. For this, 
we have developed an efficient method to visualize the 
distribution of GMPP on the voltage range using MATLAB. 



Even though our work was based on a system of 4 PV modules 
in series with 4 bypass diodes, it is extendable in a reasonable 
degree to a higher number of modules with more bypass 
diodes. Using the distribution information, we will be 
proposing a fast sweep that coupled with a P&O phase can 
most of the time identify the GMPP, as well as proposing a 
way to evaluate this probability. A comparison with several 
algorithms will also be proposed in this paper, notably 
conventional P&O, DPSO and GWO, both via a Simulink 
simulation and an experimental setup using the solar simulator 
Keysight E4360 and a buck converter.  

II.  MODELING THE PV MODULE 

Our PV modules are based on a single SunPower C60 cell 
cut into 6 parts and then connected in series without any 
bypass (Fig. 2). To model our module, we used a variation of 
the PV cell model as shown in Fig. 3 and from the work of 
[37], we arrive at the mathematical equations describing 
system (1).  

 

Fig. 2. PV module used in this research 

 

Fig. 3. PV module with its bypass diode model 
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Since we need to quickly simulate a multitude of weather 
conditions of our system, it is necessary to solve (1) to have 
an acceptable simulation time using MATLAB. Having an 
exponential and polynomial term, Lambert function is the go-
to option and allows us to solve current for a given voltage 
(V), temperature (T) and irradiation (G) [38]. The final 
expression describing the current output of the PV module and 
its bypass diode can be found in (2). We used the simplified 
Shockley diode equation in this model.   

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝑋 −
𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝐾𝑌𝑅𝑠𝑒𝐾𝑋𝑅𝑠)

𝐾𝑅𝑠
+ 𝐼𝑟𝑒

−𝑞𝑉
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with 𝑋 =
𝐼𝐿+𝐼0−

𝑉

𝑅𝑝

(1+
𝑅𝑠
𝑅𝑝

)
, 𝑌 =

𝐼0𝑒𝐾𝑉

(1+
𝑅𝑠
𝑅𝑝

)
 and 𝐾 =

𝑞

𝐴𝑘𝑇
 

Since each of these PV module + bypass diode blocks are 
connected in series, their combined output voltage 
corresponds to each module’s voltage operating under a given 
current. However, (2) only gives us 𝐼𝑡𝑜𝑡𝑎𝑙 = 𝑓(𝑉, 𝐺, 𝑇) and 
we need 𝑉 = 𝑔(𝐼𝑡𝑜𝑡𝑎𝑙 , 𝐺, 𝑇) (3) to deduce the array’s voltage 
output. The reason we could not work directly with the latter 
expression is due to double precision numerical limit being 
exceeded during intermediary calculations. Therefore, we 
chose to first use (2) and then perform an interpolation using 
MATLAB’s built-in interp1() to find relationship (3). By 
storing the pre-calculated table of V-I pairs for all G and T, 
quick additions can be made to generate the voltage output 
profile of the array under any conditions imaginable (Fig. 4). 
Since our PV modules were not standard made, we had to 
extract their parameters from characterization and SunPower 
C60 datasheet. Bypass diodes parameters are also extracted 
from characterization in the lab. All necessary parameters for 
this research can be found in TABLE I.  

TABLE I. PARAMETER DESCRIPTION AND NUMERICAL VALUES OF THE 

PV MODULE AND BYPASS DIODES USED 

Name Description Value Unit 

G PV module irradiation Variable Wm-2 

Gref Standard irradiation  1000 Wm-2 

T PV module temperature Variable K 

Tref Reference temperature 298.15 K 

Vocn Open circuit voltage 3.8 V 

Iscn Short circuit current 1 A 

Rs Equivalent serial resistance of PV 
module 

0.2 Ω 

Rp Equivalent parallel resistance of PV 
module 

1200 Ω 

kv Voltage temperature coefficient -0.0026 VK-1 

ki Current temperature coefficient 0.0023 AK-1 

A PV module equivalent diode ideality 
factor 

9.5  

q Electron charge 1.6x10-19 C 

k Boltzmann constant 1.38x10-23 JK-1 

Ir Bypass diode reverse saturation 
current 

0.017 A 

N Bypass diode ideality factor 4.23  

 

 

Fig. 4. Illustration of the method to construct voltage output of the array 
under any condition 

III. GMPP DISTRIBUTION OF THE PV ARRAY 

Using the previously described method, we vary the 
irradiation of each module from 0 to 1000Wm-2 in steps of 
10Wm-2. For the array’s temperature, we assume that they are 
homogenous, or each module’s temperature is at least close 
enough to one another to be considered homogenous. We plot 
the distribution of voltage at GMPP for 5 different 
temperatures and obtain the following the result as observed 



in Fig. 5. A total of around 22 million operating conditions 
were simulated in this result. We also assumed that each 
irradiation and temperature condition are equally probable, 
which does not perfectly reflect reality. However, it still 
confirms that GMPP can be found in clear clusters on the 
voltage range and therefore a limited search space could 
guarantee a high probability of finding true MPP. While this 
is not the first work to consider the probability aspect of 
GMPP position [39], this is the first time such a wide range of 
conditions were checked to visualize the GMPP zones with 
such clear delineation. Furthermore, this also confirmed the 
zoning theories that were used in works like [6], [26] and may 
also be used in tandem with them to improve implementation. 

To increase the predicting capabilities of our program, we 
also performed a bicycle test ride to estimate the irradiation 
that each PV module should receive during operation. The 
bicycle test ride is great for this purpose because of the 
randomness nature of shading patterns. Measurements were 
made using 4 SP Lite2 pyranometers strapped on a wooden 
board on the back of our bicycle, spaced out properly to 
represent where the 4 PV modules should be. The test ride was 
made on 21/06/2021 in Toulouse, France and lasted around 
1h. The sampling frequency used was 5kHz per pyranometer 
and later filtering made the effective sampling frequency 
100Hz. We had to filtered out power peaks below 1W because 
realistically, our converter and its on-board measurement will 
have difficulty regulating such a small amount of power. The 
resulting distribution graph can be found in Fig. 6.  

 

Fig. 5. GMPP probability distribution of 4 PV modules in series with 4 
bypass diodes (equal probability) 

 

Fig. 6. GMPP probability distribution of 4 PV modules in series with 4 
bypass diodes (real test ride) 

IV. PROPOSED IMPROVED P&O FAST GMPPT METHOD 

From the distribution in Fig. 5, randomly searching the 
voltage range is clearly inefficient and we should be limiting 

our search space to only a few points. Therefore, we propose 
a fast heuristic where we only measure the power obtained in 
3 specific voltage values and just choose the operating point 
yielding highest power. Since only have direct control over the 
duty cycle and not input voltage, an extra regulation phase to 
find the 3 voltage levels is needed. By saving the duty cycles 
that allowed us to reach the 3 correct voltage values, we can 
reuse them for a later search phase which should drastically 
reduce the time necessary to find them again. After having 
measured the power at these 3 voltage values and chosen the 
operating point yielding max power, we then apply P&O to 
help converter reach the GMPP given that it has no problem 
handling local peaks with zoning [4]. For the algorithm to 
properly start a search phase, it is necessary to have a steady 
state phase which can be implemented via an oscillation 
detection mechanism like what was proposed in [5]. After 
oscillation is detected, we can safely assume that P&O has 
found the GMPP, and the converter can enter steady state. 
Another known problem of P&O is the tracking loss [6] which 
is handled via a time limit for the P&O to converge. Exceeding 
this limit, the converter will revert to the sweep phase to try 
and find a new starting point for P&O. 

To evaluate the success rate of this method, we added a 
section checking whether our proposed algorithm can 
theoretically reach GMPP under each condition during 
distribution sweep. The criteria for success will be whether the 
power gradient between the chosen point and true MPP is 
constantly increasing or decreasing, as illustrated in Fig. 7. 
Next, we need to remove conditions where our buck converter 
cannot properly harvest, notably where power at GMPP is 
below 1W and where voltage at GMPP is below the battery 
voltage (around 4V). From this result, supposing equal 
probability and excluding invalid conditions, we achieved a 
96.43% success rate. As for the theoretical capability of our 
algorithm on the experimental test ride, it manages 99.4% 
success rate. However, these numbers still assumes that the 
algorithm has the necessary time to converge, meaning that 
after the search phase is launched, the power output condition 
is stable so that the algorithm can enter steady state.  

 

Fig. 7. Illustration of success criteria to evaluate the proposed algorithm 

V. TEST RESULTS 

To verify the algorithms capabilities, we performed an 
experimental test using a buck converter controlled by a 
PIC18LF1320 and compare our GMPPT (called Fast GMPPT 
in later sections) with regular P&O, DPSO and GWO. The 
latter two were chosen for their relatively simple 
implementation suitable for the PIC18. The most complex 
operation would be the intensive array manipulation in DPSO 
[15] and random number generation as required by GWO [19], 
which is already significantly less complex than other 
algorithms requirements like floating point divisions in ABC 
[16], trigonometric functions in FPA [20] or 
logarithms/exponentials in HGO [24]. Furthermore, the 
respective papers for DPSO and GWO have demonstrated 
experimental potentials, albeit on different hardware setup, 
which is not the case with a lot of literatures referenced in this 



work that only provided limited testing with simulations (e.g. 
[16], [21], [22], [24], [25], etc.). All algorithms will be tested 
at the same sampling time of 8ms to make sure that the results 
represent a fair comparison. The solar input is generated by 
the Agilent E4360A Solar Simulator and the output is a battery 
simulated using a pair of Keithley 2440 Source Meter, one 
sinking current and one forcing a battery voltage of 4V. 
Measurements were done using Keysight DSOX3014T 
oscilloscope with one channel measuring the input voltage and 
another channel measuring the input current with a Hall effect 
sensor. All instruments were synchronized and piloted using a 
MATLAB interface.  

The first test result is done using the 3 power profiles 
shown in Fig. 1, with each one being sent during 1s in order 
from (1) to (3). The results for this test can be found in Fig. 9 
and a result summary can be found in  

TABLE II. The orange signal is the experimental 
measurements, and the blue signal is the theoretical voltage 
max or power max that the algorithm should find. We 
conclude that our method slightly trails behind DPSO in 
convergence time for all 3 conditions, but with much less 
power variations during the search phase, beats out P&O in 
condition (1) and (2) on convergence time and power output 
respectively and consistently performed better than GWO in 
convergence time in all 3 test conditions. As for power output 
at steady state, only P&O has a GMPP tracking failure at 
condition (2), which can be easily explained when we look at 
that condition’s power output. 

Even though the above tests are sometimes presented as 
the only setups to showcase an algorithm’s performance (e.g. 
[13], [17]–[22], [24], [25], etc.), it is usually insufficient 
because it does not represent a realistic condition that the 
converter may have to handle. Therefore, we propose a test 
condition as shown in Fig. 8 where a shading blob such as a 
small branch passes by and covers 2 out of the 4 PV modules. 
By using the Agilent E4360A Solar Simulator to ensure that 
the shading pattern over time is consistent, we managed to 
produce the results as shown in Fig. 10. Again, the orange 
signal is the experimental measurements, and the blue signal 
being the theoretical estimations for MPP voltage and power. 
For this test, DPSO managed to stick very close to the 
theoretical MPP, but it also generates a lot of power 
disturbances during the search phase. The result for P&O 
showcases its ineffectiveness against partial shading 
conditions, particularly ones that change over time. Even 
though this is already discussed consistently in the literature 
(e.g. ),  For GWO, its stochastic nature shows some weakness 
in these slower varying situations where it presents quite an 
inconsistent response where it sometimes can hit the GMPP 
and others it cannot. Our algorithm performs well under this 
situation, sticking to the MPP most of the time. However, a 
common weakness of Fast GMPPT, DPSO and GWO can be 
found at around 3s and 4s where we can see that the max 
power is increasing and the voltage at MPP has changed but 
none of the three manages to respond in time. This is 

explained by the nature of the shading situation: when both 
G3 and G4 are shaded, we are effectively harvesting the MPP 
of G1 and G2 under stable irradiation (Fig. 8). Supposing that 
loss to bypass diode is negligible comparing to array’s output, 
when the shading is gone on G3 and G4, the same operating 
point that the converter is operating at does not see any 
significant power variation. This problem was not discussed 
in the original papers of DPSO [15] nor GWO [18], as well as 
many others because most proposed the observation of the 
power variation during steady state and starting GMPPT only 
when this variation exceeds a certain limit (e.g. [12], [13], 
[20]–[22], [24], etc.). However, this only works consistently 
when we started from an evenly irradiated array. So far, we 
have not yet arrived at an elegant solution to this problem, and 
it will be the subject of on-going research.  

 

Fig. 8.  A more realistic test case where 2 PV modules are covered by 
something like a branch over time 

VI. CONCLUSION  

This paper presents a novel MPPT based on the 
distribution of MPP voltage in wide array of temperature and 
irradiation patterns. Even though the result was done on an 
example of only 4 PV modules, the MATLAB program was 
optimized enough to ensure that the time needed to plot the 
distribution of up to 20 PV modules in series stay within a 
reasonable limit (around 24h). It also allows us to evaluate that 
the newly proposed method can reach the MPP more than 90% 
of the time, under both equal probability assumption as well 
as on a real-world distribution. Of course, more extensive real-
world distribution measurements are needed because the test 
was done in a limited time window (around 1h) and using 
pyranometers is not the best way to estimate the output of the 
PV module. From Fig. 2, we see that a shadow of around 50% 
that covers evenly all 6 smaller cells should still means that 
the current output of the module is around 50%, but the output 
would be near zero if it covers 3 out of the 6 cells. Finally, an 
experimental test result for 2 test setup is presented and shows 
that our algorithm is competitive with other compared 
methods while being significantly less resource intensive. The 
problem of detecting changing shading patterns when 
operating under an already partially shaded array seen in Fig. 
10 is still a subject of on-going investigation and refinements. 

 

TABLE II. TEST RESULT RECAP OF 4 ALGORITHMS (DPSO, P&O, GWO, FAST GMPPT) UNDER 3 DIFFERENT POWER PROFILES 

Algorithm name Convergence time 
(ms) (1) 

Power at steady 
state (W) (1) 

Convergence time 
(ms) (2) 

Power at steady 
state (W) (2) 

Convergence time 
(ms) (3) 

Power at steady 
state (W) (3) 

DPSO 165 10.6 145 3.8 138 6.4 

P&O 199 10.6 173 3.2 114 6.4 

GWO 311 10.6 317 3.8 316 6.4 

Fast GMPPT 167 10.6 178 3.8 153 6.4 



 

Fig. 9. Comparative test results of 4 algorithms (DPSO, P&O, GWO, Fast GMPPT) under 3 different power profiles

 

Fig. 10. Comparative test results of 4 algorithms (DPSO, P&O, GWO, Fast GMPPT) for the test condition shown in Fig. 8. 
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