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Abstract
During additive manufacturing of stainless steels, sub-micron sized oxide (i.e., MnSiO3, SiO2, and
CrMn2O4) and non-oxide (i.e., sulfide, in particular MnS, and possibly carbides, phosphides and ni-
trides) precipitates form during solidification. But do they evolve during the subsequent solid-state ther-
mal cycling (SSTC) until the end of the printing process? A recent study on subjecting thin-film lamellae
extracted from an additively manufactured stainless steel to heating-cooling treatments inside a transmis-
sion electron microscope (TEM) confirmed that precipitate composition can indeed evolve during SSTC.
However, that study could not provide any conclusive evidence on precipitate volume fraction, density,
and size evolution. In this work, we have quantified these changes using a novel experimental procedure
combining (i) micropillar extraction from an additively manufactured stainless steel, (ii) subjecting them
to different SSTC (including annealing) inside a TEM, (iii) performing synchrotron transmission X-ray
microscopy to identify precipitates, and (iv) using a machine learning model to segment precipitates and
quantify precipitate volume fraction, density, and size. Comparing these quantities before and after each
SSTC/annealing sequence reveals that new oxides nucleated during rapid SSTC with high maximum
temperature. However, during slow SSTC with high maximum temperature and annealing, precipitates
dissolve because of oxygen evaporation during SSTC inside the TEM. A new empirical relationship cor-
relating precipitate sizes and cooling rates is proposed. It is in good agreement with data collected from
conventional casting, directed energy deposition, and powder bed fusion processes.

1 Introduction
Austenitic stainless steels, in particular 316L, have attracted wide attention in additive manufacturing
(AM) because of their utilization in a large variety of applications and their corrosion resistance. AM
of 316L parts is mainly performed either by directed energy deposition, primarily using a laser, e.g., the
laser metal deposition process (LMD), or by laser powder bed fusion (LPBF). Both techniques result in
a hierarchical microstructure with physical and chemical heterogeneities across multiple length scales.
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Sub-micron sized oxide (i.e., MnSiO3, SiO2, and CrMn2O4) [1–5] and non-oxide (i.e., sulfide such
as MnS) [4, 5] precipitates are among the smallest chemical and physical heterogeneities present in any
as-built 316L. These precipitates play an important role in determining the mean free path of dislocations
and may contribute to an increase in the yield strength of the material [1, 2, 6, 7]. They can also act as
nucleation sites for cracks [8] and have deleterious effects on the corrosion resistance of 316L [9].

One of the main contributors to the formation of oxide precipitates in AM 316L is the oxygen in-
troduced into the solid-solution of the alloy during the gas atomization process used to manufacture the
powder feedstock [3]. Another contributor is the oxygen induced into the material from the environment
during the AM process and the amount added depends on the AM process parameters such as laser power,
scan speed, and shielding gas flow rate [1, 10, 11]. Oxide precipitates formed during the gas atomization
process can persist in the liquid phase during AM [3], and new oxides can nucleate and grow during the
rapid solidification phase of an AM process as shown via mean field nucleation and growth models [7].
Along with the oxides, non-oxide precipitates can also nucleate and grow during solidification, often in
the vicinity of the oxides [4, 12].

After building, AM parts are often heat-treated to obtain desired mechanical properties and reduce
residual stresses. The evolution of these precipitates (oxide and non-oxides) was investigated during
annealing treatments [2, 5, 6, 13] by scanning and transmission electron microscopy (SEM and TEM,
respectively). The results show coarsening and phase transformations of these precipitates to more stable
precipitates. In addition to these observations, faster coarsening kinetics of oxides were observed at the
early stage of recrystallization due to grain boundary diffusion [5] accompanied by the following effects
of the recrystallization on phase transformation [5]: MnSiO3 to CrMn2O4 for non-recrystallized grains
and MnSiO3 to Si-rich oxides in recrystallized grains.

However, the impact of an important part of the AM process on the formation of precipitates has not
yet been well studied. This part is the long period after solidification and until the end of the process
during which the material is subjected to multiple heating and cooling cycles at different temperature
amplitudes (up to the solidus) and heating and cooling rates (up to 103-106 ◦C/s) in the solid state, which
is called solid-state thermal cycling (SSTC) or intrinsic heat treatment. Thus far, only one study [4] has
reported on the effect of SSTC on precipitate evolution. In this study, TEM lamellae were subjected to
SSTC inside a TEM and the precipitate composition evolution before and after each SSTC was compared.
While such studies are well suited to understand precipitate composition evolution, it is not possible to
conclude on precipitate volume fraction, density, and size evolution during SSTC because of the thin
sample geometry and the limited number of precipitates studied.

To that end, in this work, a novel experimental procedure is proposed. It involves subjecting micropil-
lars extracted from AM 316L to SSTCs in a controlled environment (vacuum) and measuring precipitate
evolution in them by performing nanotomography using transmission X-ray microscopy (TXM), before
and after each SSTC. The micropillars are ∼25 µm in diameter and ∼75 µm in height, which is more
than 3 orders of magnitude larger than TEM lamellae and hence, more representative; thus, TXM studies
on micropillars are better suited to study the volume fraction, density, and size evolution of precipitates
in AM 316L than TEM studies on thin-film lamellae. The nature of the SSTCs performed on the mi-
cropillars is determined with the help of heat transfer finite element (FE) simulations. A 3D U-net deep
convolutional neural network (DCNN) model developed in [14] was used to segment precipitates from the
TXM data.

2 Material and methods
Material composition, AM process parameters, experimental techniques, and setups used in the present
work have been already presented in our previous works [4, 12, 14]. Thus, only a brief recapitulation of
the material and methods is provided here.

2.1 Material and sample preparation
A 316L powder produced via inert gas atomization was investigated. The chemical composition of
the powder is (wt%): Fe-16.9Cr-12.7Ni-2.5Mo-1.5Mn-0.7Si-0.015P-0.011C-0.005S; oxygen up to 0.05 %
may be added to the powder during atomization. A single track bidirectionally printed wall of 3 layers
(100×0.6×0.6 mm3) was manufactured via LMD using a "Mobile" machine from BeAM with the following
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parameters: laser power = 225 W, powder flow rate = 6.5 g/min, deposition speed = 2000 mm/min, and
vertical displacement of focusing head = 0.2 mm between each layer. This wall is the same as the one
used in [4, 12,14].

After cutting (normal to the build and print directions) and polishing (SiC paper up to 4000 grit,
followed by 3 µm and 1 µm grit diamond paste, and finally Ar ion polishing), the as-built wall was
characterized by SEM and electron back-scattered diffraction (Oxford Instruments) analysis using an
environmental-SEM Quanta 650 FEG microscope; the images can be found in [4,12]. Regions of interest
close to the center of the wall thickness in the first, second, and third layer were defined and cylindrical
micropillars of ∼ 25 µm diameter and ∼ 75 µm height were extracted from these regions using a focused
ion beam (FIB) inside a FEI Helios Nanolab 660 dualbeam SEM-FIB. To reduce the time to manufacture
micropillars, a 30 kV high voltage and a 65 nA beam current have been used to mill the surrounding
area. Then, a beam current of 21 nA has been used to extract the micropillars and to do surface
polishing. Figures 1a and b show the secondary electron micrographs taken during the FIB preparation
and extraction of a micropillar. The micropillars were then attached onto MEMS-based heating/cooling
chips (called thermal chips in the following), which are transparent to electrons, using tungsten via ion
beam-induced deposition at 30 kV and 0.43 nA (see Figure 1c). Micropillars 1, 2, and 3 were extracted
from the top, middle, and bottom layers of the LMD 316L wall, respectively. Thus, micropillars 2 and 3
were already subjected to SSTC during AM (e.g., for micropillar 2 see Figure 7 in [4]). In the following,
micropillars 1, 2, and 3 will be denoted as µP1, µP2, and µP3, respectively.

50 µm

a)

50 µm

b)

50 µm

c)

Figure 1: Secondary electron micrographs of a micropillar: a) after milling and before its extraction from
the sample, b) attached to the FIB manipulator to be transferred onto a thermal chip, and c) attached
onto a thermal chip. The micropillars are ∼ 25 µm in diameter and ∼ 75 µm in height.

2.2 Setup to perform SSTC inside a TEM
To perform SSTC, each micropillar was attached to a thermal chip (Figure 1c), which can be mounted
onto a thermal chip holder (Fusion Select Protochips) developed for TEM. The holder can heat the chip
from room temperature (RT) to a maximum of 1200 ◦C and cool it back down to RT, with maximum
heating and cooling rates of 106 ◦C/s. A FEI Titan3 G2 60-300 TEM was used with this holder to
perform SSTC in primary vacuum (at about 10-8 mbar).

This setup to perform SSTC on micropillars has the following advantages: (i) the primary vacuum
inside the TEM ensures that the micropillar is not oxidized during SSTC, (ii) the thermal chip has been
benchmarked (by Protochips) for temperature amplitude and heating and cooling rates mentioned above,
and (iii) the micropillars are uniformly heated and cooled everywhere, which has been confirmed via FE
based heat transfer simulations described in Section 2.3 and presented in Section 3.1.

2.3 Heat transfer simulation setup
The electrothermal chips used to perform SSTC have been designed to uniformly heat and cool TEM
lamellae, which have a typical surface area of ∼ 5 × 5 µm2 and thickness of ∼ 0.1 µm. However, it is not
sure whether the chip can uniformly heat (cool) micropillars of diameter 25 µm and height 75 µm up to
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the maximum temperature at the highest heating (cooling) rate. To gain insight on this aspect, transient
heat transfer FE simulations were performed.

During the experiment, each micropillar had been placed in such a way that one of its circular surfaces
was in contact with the chip and they were held in place using three “+”-shaped tungsten contacts (see
Figure 1c). The micropillars were heated via their contact with the chip through the tungsten contacts
and via radiative heat transfer from the chip. However, in the simulations, we assume the most adverse
scenario, which is that the micropillars are only heated via the “+”-shaped contacts; this assumption
results in the highest temperature gradients. It is further assumed that these tungsten contacts conduct
heat perfectly from the chip to the micropillar i.e., at any given instant, the tungsten contacts have the
same temperature as the chip. Even further, it is assumed that the portion of each of these tungsten
contacts at the bottom of the curved surface of the micropillar is a square of size 6×6 µm2 with negligible
thickness. Two contacts are placed at 180◦ with respect to each other and the third one is at 90◦ to the
other two about the micropillar axis (see Figure 2). In the simulation, the tungsten contacts are mimicked
by imposing temperature (Dirichlet) boundary condition at their location. The remainder of the curved
surface and the flat surfaces are imposed with zero heat flux (Neumann) boundary condition. The initial,
ambient, and reference temperatures are all set to 20 ◦C.

Since radiation and other heat sources and sinks are neglected, the governing equation to be solved
is:

ρcvṪ = −k∆T (1)

where T is the temperature, ρ ≡ ρ(T ), cv ≡ cv(T ), and k ≡ k(T ) are the temperature dependent
density, specific heat at constant volume, and thermal conductivity, respectively, as shown below. The
heat conduction is assumed to be isotropic and any spatial variation in k is assumed to be negligible in
comparison to spatial variations in T . The temperature dependency of ρ, cv, and k for 316L are given
by [15]:

cv(T ) = 458.98 + 0.1328 T J/(kg.K)
ρ(T ) = 8084.2 − 0.4208 T − 3.8942 × 10−5 T 2 kg/m
k(T ) = 9.248 + 0.0157 T W/(m.K)

(2)

ABAQUS/Standard (time implicit) software [16] from Dassault Systèmes was used to perform the
FE simulations. The simulated micropillar was meshed using 120932 non-uniformly sized 4-node linear
tetrahedral elements (type DC3D4 in ABAQUS) as shown in Figure 2.

Tungsten contacts 6×6 µm2

Nodes used to extract
temperature

•

•

75 µm

∅ 25 µm

Figure 2: Illustration of the meshed micropillar geometry used for FE simulations; 120932 non-uniformly
sized 4-node linear tetrahedral elements (type DC3D4 in ABAQUS) were used. The location of tungsten
contacts (2 out of 3) used to impose temperature boundary conditions as well as the two nodes used to
extract temperature are indicated.

2.4 TXM: Transmission X-ray Microscopy
TXM has been used to characterize precipitate evolution inside samples before and after each SSTC
performed on each micropillar. The experiments were conducted at the ANATOMIX beamline [17] of
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the synchrotron SOLEIL (Saint-Aubin, France) using the absorption contrast TXM approach [18]. A
monochromatic X-ray beam energy of 16.87 keV was used. The samples were illuminated by placing
the condenser 2 m in front of the sample. The objective zone plate was 69.68 mm from the sample. A
Hamamatsu C12849-112U detector (2048 × 2048 pixels with a pixel size of 6.5 × 6.5 µm2) was placed at
30 m from the sample. It provided a field-of-view of 30 × 30 µm2 and a pixel size of 29.33 nm (using
a 2 × 2 binning). While the field-of-view was sufficiently larger than the diameter of the micropillars,
it was however insufficient to cover their height. To that end, three measurements along the height
of the micropillars were necessary. For each measurement, 1000 projections of 1 s exposure time each
were acquired at RT over an angular range of 180◦ to guarantee the best spatial resolution possible
during the reconstruction and a good signal-to-noise ratio. A resolution of 81 nm, i.e., the minimum
precipitate diameter that can be measured, was achieved with the current setup and analysis workflow
(see Section 2.5). This was confirmed with SEM investigations accounting for stereological corrections.
In order to improve the signal-to-noise ratio, each measurement was repeated four times and the four
sets of data were merged during reconstruction. The PyHST software package [19] was used for data
pre-processing and tomographic reconstruction. Figure 3a shows an image slice of 1024 × 1024 pixels of
the TXM data after reconstruction and merging. Bright contrast in gray is a slice of the micropillar while
the surrounding dark contrast is the environment and region outside of the reconstruction. Precipitates
have a spherical morphology and are visible as dark contrast within the micropillar slice.

5 µm

a)

5 µm

b) c)

10 µm

Figure 3: Example of a) an image slice (1024 × 1024 pixels) from a TXM tomograph of a micropillar,
b) corresponding precipitate segmentation using the 3D U-net DCNN from a micropillar, and c) a 3D
view of the reconstructed TXM data (1024 × 1024 × 540 voxels) with spherical segmented precipitates
highlighted in blue.

2.5 Segmentation and analysis
Precipitate segmentation of TXM micrograms have been performed using the 3D U-net DCNN model1
presented in [14]. The segmented volumes returned by the 3D-DCNN were analyzed with the ImageJ
software [20] to obtain characteristic feature information such as the volume fraction, the average diam-
eter, and the number of precipitates. The 3D U-net DCNN model takes into account the neighboring
volume during segmentation of a voxel; therefore, objects near the edges of the investigated data are
not well segmented. This bias is corrected by removing the first five and last five slices of the volume
after segmentation. In addition, large precipitates (V ≥ 2000 voxels) are not well segmented by the
model and were manually segmented as they are sparse in the volume. An example of a segmented image
slice is shown in Figure 3b and an example of a segmented volume is shown in Figure 3c. Precipitate
analysis was performed with the 3D object counter plugin available in ImageJ including objects on edges.
A minimum volume size of 8 voxels was defined corresponding to an equivalent sphere with a diameter
of 81.1 nm. The precipitates present a spherical morphology in the as build that remains after heat-
treatments independently of the conditions. The following quantities are presented and analyzed in this
work:

1The python code for this model along with fitted weights for segmenting precipitates in micropillars has been made
available for users via a CC-by-4.0 license at https://github.com/manasvupadhyay/erc-gamma-3D-DCNN.
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• Volume fraction (f): the ratio of the sum of the volume of all precipitates and the volume of the
part of the micropillar investigated.

• Particle density (ρ): the ratio of the weighted number of precipitates and the volume of the part
of the micropillar investigated. Precipitates in contact with edges were weighted by 0.5 while
precipitates in the bulk were weighted by 1.

• Average equivalent diameter (φ): computed from the equivalent diameter of each precipitate, which
is calculated from the segmented volume of the precipitate. The precipitates in contact with edges
have been excluded because they are incomplete i.e., a part of the volume is missing from the
analyzed volume.

As the aforementioned quantities are similar along the height of each micropillar, due to their small sizes
compared to the bulk sample, only their mean value is studied. The error bars of f and ρ represent the
dispersion (standard deviation) of the three experimental measures obtained from the three experiments
performed to cover each micropillar. The error bars in φ represent the dispersion (standard deviation)
of all considered precipitates in a micropillar.

3 Results
3.1 Heat transfer simulation
FE heat transfer simulations are first performed to understand up to what heating rates can the mi-
cropillars be uniformly heated by the thermal chips used to subject micropillars to SSTC; as presented
in Section 2.2, the thermal chip can reach a maximum temperature of 1200 ◦C and maximum heating
and cooling rates of 106 ◦C/s. Using the simulation setup presented in Section 2.3, four rapid heating
simulations were performed. The temperature at the location of the tungsten contacts (Figures 1c and
2) is increased from 20 ◦C (RT) to 1200 ◦C at four different heating rates: 103 ◦C/s, 104 ◦C/s, 105 ◦C/s,
and 106 ◦C/s; the respective simulation times are 1.18 s, 1.18×10−1 s, 1.18×10−2 s, and 1.18×10−3 s.
Figure 4a shows the temperature as a function of time (normalized with respect to maximum simulation
time) extracted from the bottom and the top position of the simulated micropillar (see Figure 2) for
each heating rate. Figure 4b shows the temperature difference between the top and the location of the
tungsten contacts. Simulation predictions show that as the applied heating rate increases, the tempera-
ture difference also increases. Table 1 reports the highest temperature difference (∆Tmax) predicted from
each simulation and the temperature (T ) at the tungsten contact points. For a heating rate of 103 ◦C/s,
the maximum difference is lower than 1 ◦C. It increases by an order of magnitude with a corresponding
increase in the order of magnitude of the heating rate.

The temperature difference can be considered to be negligibly small in the case of 103 ◦C/s. However,
it becomes significant in the case of higher heating rates. Therefore, in order to restrict ourselves to the
case of uniform heating of the micropillars, the maximum heating and cooling rates used to perform any
SSTC were less than or equal to 103 ◦C/s.
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Figure 4: Heat transfer FE simulation predictions during heating of the micropillar with heating rates
ranging from 103 ◦C/s to 106 ◦C/s from 20 ◦C to 1200 ◦C: a) temperature evolution at the location of
tungsten contacts (continuous lines) and at the top (dashed lines) of the micropillar (the two nodes used
to extract temperature are shown in Figure 2), and b) the temperature difference between the two nodes
as a function of time (normalized with respect to the maximum simulation time: 1.18 s, 1.18×10−1 s,
1.18×10−2 s, and 1.18×10−3 s respectively for 103 ◦C/s, 104 ◦C/s, 105 ◦C/s, and 106 ◦C/s).

Table 1: The highest temperature difference along the micropillar (∆Tmax) and the applied temperature
on the tungsten contact points at the bottom of the micropillar at which ∆Tmax occurs, predicted from
heat conduction FE simulations.

Heating rate (◦C/s) ∆Tmax (◦C) T (◦C)
103 0.9 56
104 8.5 85
105 76 256
106 533 1062
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3.2 Subjecting micropillars to SSTC inside a TEM
Each micropillar has been subjected to different SSTCs in order to mimic what could occur during AM or
post-process annealing. The SSTCs were designed to investigate the effect of heating rate, temperature
amplitude, the number and type of cycles, and annealing on the evolution of precipitates. Figure 5 shows
the temperature as a function of time curves of the SSTCs applied on each micropillar via the thermal
chips.
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Figure 5: Temperature as a function of time curves of SSTC conducted under vacuum with the thermal
chip for each micropillar. TXM measurements (TXM •) have been performed before and after each
SSTC.

µP1 has been subjected to three SSTCs:

1. µP1-SSTC1: Single fast heating and cooling cycle up to 1000 ◦C with a heating and cooling rate
of 1000 ◦C/s, starting and ending at RT.

2. µP1-SSTC2: Repeated heating and cooling cycles. The first cycle consists of heating up to 1000 ◦C
and cooling down to 50 ◦C at 1 ◦C/s. Then, the maximum and minimum temperature reached has
been respectively decreased and increased by 50 ◦C until 600 ◦C was reached. The heating and
cooling rates were reduced after each cycle to maintain a 1950 s long cycle.

3. µP1-SSTC3: Annealing for 2 hours at 1100 ◦C. A heating rate of 10 ◦C/s was used to reach the
annealing temperature from RT. At the end, the micropillar was cooled down to RT at 1000 ◦C/s.

µP2 has been subjected to two SSTCs:

1. µP2-SSTC1: Repeated heating and cooling cycles. The first cycle consists of heating up to 1000 ◦C,
a cooling down to 50 ◦C at 1000 ◦C/s, and finally a cooling down to 25 ◦C at 5 ◦C/s. Then, the
maximum and minimum temperature reached has been respectively decreased and increased by
50 ◦C until 650 ◦C was reached. The heating and cooling rate was reduced after each cycle to
maintain a 7 s long cycle. Then, cycles between 650 ◦C and 550 ◦C with a heating and cooling rate
of 30 ◦C/s were repeated until the end.
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2. µP2-SSTC2: Repeated heating and cooling cycles. The first cycle involves heating up to 1000 ◦C
and cooling down to 50 ◦C, both at 10 ◦C/s. Then, the maximum and minimum temperature
reached has been respectively decreased and increased by 50 ◦C until 650 ◦C was reached. Then,
cycles between 650 ◦C and 550 ◦C are repeated. The heating and cooling rate was reduced after
each cycle to maintain a 195 s long cycle.

µP3 has been subjected to one SSTC:

1. µP3-SSTC1: Annealing for 10 minutes at 1100 ◦C. A heating rate of 1000 ◦C/s was used to reach
the annealing temperature from RT. At the end, the micropillar was cooled down to RT at 10 ◦C/s.

3.3 Precipitate evolution in micropillars via TXM
Figure 6 shows the evolution of the volume fraction f (vol%), particle number density ρ (#/µm3), and
average equivalent diameter φ (µm), respectively, of the precipitates in µP1, µP2, and µP3 after their
respective SSTCs. The results are summarized in Table 2.

The initial f , ρ, and φ for all micropillars are ∼ 0.197 ± 0.017 vol%, ∼ 0.547 ± 0.08 #/µm3, and
∼ 175.3 ± 4.6 nm, respectively. Furthermore, the initial f , ρ, and φ increase from µP1 to µP3. These
differences should be a consequence of the fact that these micropillars have been extracted from different
layers and they have experienced different SSTCs during fabrication; recall that µP1 has been extracted
from the topmost layer and µP3 has been extracted from the bottommost layer. However, these differences
are comprised within the measurement dispersion.

While in our previous TEM studies it was observed non-oxide precipitates together with Mn-Si-rich
oxides [4, 12], the ones that are observed in the TXM micrograms in this work are mainly oxides for the
following three reasons: (i) the initial φ for all micropillars is similar to the one reported for Mn-Si-rich
oxide precipitates in our previous TEM study performed on the same 3-layer LMD 316L wall [4], (ii) at
the temperatures and times investigated the precipitates should be mainly oxide [12], and (iii) based on
the composition of the investigated steel, the initial f is in agreement with the equilibrium f for MnSiO3
and one order of magnitude higher than the equilibrium fraction of sulfide expected (see Figure 8 in [4]).
Due to the amorphous nature of the precipitates, it was not possible to investigate their nature and
their phase fraction with X-ray diffraction. This observation does not imply that there are no non-oxide
precipitates or no spinel precipitates in the micropillars but that the phase contrast between oxide, non-
oxides, spinels and the TXM resolution may not be sufficiently large for this technique to allow separating
them.

Table 2: Volume fraction (f), particle density (ρ), average equivalent diameter (φ), and contribution to
increasing the yield stress (∆σp) of the precipitates investigated for each micropillar before and after each
SSTC.

µP SSTC f (vol%) φ (nm) ρ (#/µm3) ∆σp (MPa)
1 Init. 0.179 169.9 0.539 17.2

1 0.232 172.1 0.659 19.5
2 0.209 170.2 0.608 18.6
3 0.113 157.1 0.327 14.4

2 Init. 0.199 177.8 0.546 17.5
1 0.239 184.3 0.609 18.7
2 0.136 164.6 0.437 15.3

3 Init. 0.212 178.0 0.557 18.1
1 0.155 167.3 0.336 16.2
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Figure 6: Volume fraction (f), particle density (ρ), and average equivalent diameter (φ) of precipitates
in a) µP1, b) µP2, and c) µP3, before and after each applied SSTC of the respective micropillars. The
gray line is the equilibrium volume fraction of MnSiO3 at RT.

The first SSTCs of µP1 and µP2 were applied to study the effect of single versus multiple SSTCs on
precipitate evolution. After µP1-SSTC1, f and ρ have increased and φ remains nearly the same. These
observations could be rationalized in the following manner. At the end of solidification during LMD,
supersaturated oxygen should still be present in the solid solution in austenite [3] or at defects such as
dislocations and grain boundaries (as observed in cast steel [21]). This oxygen led to oxide precipitation
during µP1-SSTC1. Due to the high heating rate during µP1-SSTC1, precipitate nucleation occurred at
a temperature higher than the one during slow heating. This higher temperature resulted in an increase
in the driving force for precipitate nucleation, which in turn resulted in an increase in the number of
finer precipitates. In addition, there was less time for recovery, which caused an increase in the number
of nucleation sites at crystal defects (e.g., dislocations) as well as the nucleation potency. Meanwhile,
pre-existing precipitates grew during SSTC; note that these pre-existing precipitates also include the ones
whose φ is lower than 81.1 nm and could not be resolved via TXM.

The first cycle of µP2-SSTC1 (heating to 1000 ◦C and cooling to RT at 1000 ◦C/s) is the same as
µP1-SSTC1. Then, this cycle was followed by multiple cycles with a continuous increase of the average
temperature and finally reaching a low amplitude cycle between 550 ◦C and 650 ◦C until the end of
µP2-SSTC1. After this first cycle, it is expected the same f , φ, and ρ evolution as µP1-SSTC1. Thus,
the highest φ and lowest ρ for a similar f than µP1-SSTC1 observed at the end of the µP2-SSTC1 suggest
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that precipitate coarsening has occurred.
After each of µP1-SSTC2, µP1-SSTC3, µP2-SSTC2, and µP3-SSTC1, there is a decrease in f , ρ, and φ,

which indicates that precipitates have dissolved. This result is unexpected since additional heat treatment
should result in precipitate coarsening and an increase in f to reach the equilibrium fraction. Furthermore,
these observations contradict those reported in studies that investigated precipitate evolution in 316L
[2, 5, 6, 22]; in those studies, f remains constant while φ increases and ρ decreases due to precipitates
coarsening. The explanation for this unexpected result is provided in Section 4.

Figure 7 shows the evolution of φ of the oxide precipitates as a function of the cooling rate (Ṫ ) of
solidification. The data presented encompasses conventional casting, directed energy deposition, and
powder bed fusion processes. The φ reported in this work is found to be in good agreement with our
previous TEM work [4] and follows well the evolution trend, which is found to be linear. Based on this
linear trend, we propose an empirical relationship correlating φ and the cooling rate (Ṫ ). To avoid bias,
only measured or computed cooling rates based on experimental data (filled symbols in Figure 7) were
used. The empirical relationship reads:

φ = 3.609 Ṫ −0.344 (3)

where φ is in µm and Ṫ in K/s.
The φ predicted from the cooling rates of solidification with Equation 3 (see Figure 7) is in good

agreement with the entire range of experimental data presented. This relationship can be used to estimate
the cooling rates of solidification occurring during different processing conditions; a similar approach was
initially developed and used to predict cooling rates during solidification from secondary cellular arm
spacing [23] and primary cellular arm spacing [24] during casting and from primary cellular arm spacing
during AM [25,26].
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Figure 7: Comparison of φ of the Mn-Si-rich oxides in 316L as a function of the cooling rate encompassing
conventional casting (red), direct energy deposition (green), and powder bed fusion (blue) processes.
Cooling rates (Ṫ in K/s) were estimated from primary cellular arms spacing (λ in µm) using Ṫ =
(80/λ)1/0.33 [24,26] whenever they were not reported in the initial work. However, only the filled symbols
were used to evaluate the correlation between Ṫ and φ, since Ṫ were not estimated from λ in these
studies. The references used are [1, 2, 4, 7, 10,11,26–30].

Mn-Si-rich oxide precipitates in additively manufactured 316L have been reported to be mainly amor-
phous in nature [3–5, 7, 8, 13] as suggested by the thermodynamic calculations performed in [10]. They
may act as obstacles for dislocation motion resulting in strengthening of the material as observed in [6,7].
This contribution can be estimated based on the Orowan strengthening mechanism [31]. The increase in
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strength (reported in Table 2) resulting from dislocations bowing out between non-shearable amorphous
spherical precipitates was calculated following [6] using the following parameters: Taylor factor M =
3.06, shear modulus G = 76 GPa, Burgers vector b = 2.55 nm, and Poisson’s ratio ν = 0.291 [32]. In
all cases, the contribution to increase in the yield strength from oxide precipitates is relatively small
(< 20 MPa), which is in accordance with previous results in the literature on precipitate strengthening
in LMD 316L [6, 7]. Note however that this contribution is typically higher in laser powder bed fusion
process of 316L because of smaller precipitate sizes (< 60 nm) [2, 3, 5, 7, 22] due to higher solidification
and cooling rates.

4 Discussion
In Section 3, it was observed that f , φ, and ρ decreased after µP1-SSTC2, µP1-SSTC3, µP2-SSTC2,
and µP3-SSTC1. These observations contradict our initial expectation about precipitate evolution and
previous works on heat-treatment of an additively manufactured 316L [2, 5, 6, 22]. For a fixed alloy
composition and temperature during a thermal treatment, and in absence of precipitation of other phases,
f should tend to its equilibrium value. Assuming that oxygen content is the limiting factor, the fraction
of oxide precipitates at equilibrium with austenite is given by:

fp = xalloy
O − xγ

O

xp
O − xγ

O

(4)

where fp is the mole fraction of precipitates, xalloy
O is the average initial oxygen content of the alloy, xγ

O

is the oxygen content of austenite in moles, and xp
O is the oxygen content of the precipitate in moles.

After oxide precipitation due to SSTC, xγ
O ≪ 1 due to the very low soluble-oxygen content of austenite.

Then, fp can be approximated as:

fp ∼
xalloy

O

xp
O

(5)

The decrease in fp can occur either by increasing the amount of oxygen of the precipitate by solid
phase transformation or by decreasing the average oxygen content of investigated steel or both. The two
approaches are independently discussed in the following.

4.1 Phase transformation to a more stable precipitate
After annealing at high temperature (T = 1065 ◦C and 1150 ◦C) during 2 hours, Deng et al. [5] reported
the evolution of MnSiO3 to CrMn2O4 in non-recrystallized grains and the evolution of MnSiO3 to Si-rich
precipitates in recrystallized grains. Evolution towards richer Si and Cr-Mn precipitates is also observed
by [12] after subjecting the sample to SSTCs that could occur during AM. According to the Ellingham
diagram, SiO2 by itself is the most stable oxide amongst all possible MnxSiyOz (x, y ≥ 0, and z > 0) [33].
However, oxides present in 316L at equilibrium are highly dependent on the composition [5] and, to a lesser
extent, on the temperature in the range investigated [2,5] (650◦C to 1100◦C). Preferential segregation of
Cr and Mo occurs at the interdendritic regions in any as-built 316L microstructure. These segregations
affect the solubility limit between oxides and the matrix, and hence their stability [5]. In addition, the
equilibrium stability of oxides highly depends on the Si content [2]: depending of the Si content the
most stable precipitate could be MnSiO3, CrMn2O4, SiO2, or quartz. Finally, if recrystallization occurs
during the thermal treatments, then it would affect the evolution of MnSiO3 precipitates [5]. Due to
the metastable nature of any additively manufactured microstructure, evolution towards more stable
phases is then expected during annealing of 316L. Assuming the transformation occurs from MnSiO3 to
SiO2, a lower mole fraction of precipitates for a fixed alloy oxygen content is then expected due to the
higher molar oxygen content of SiO2 (2/3 at% O) than MnSiO3 (3/5 at% O). Conversely, precipitation
of CrMn2O4 (4/7 at% O) would result in a higher mole fraction of precipitates for a fixed alloy oxygen
content. However, these differences between the oxygen content of precipitates are small and they cannot
explain the observed decrease in f and dissolution of precipitates. In addition, the molar volumes of
the oxide precipitates considered are similar and do not result in a strong change in f . These claims
are supported by thermodynamic calculations for 316L showing that similar f are observed between the
precipitates considered [2, 5].
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4.2 Decrease of the average oxygen content of the steel
Micropillars were heat-treated inside a TEM operating under primary vacuum (∼ 10-8 mbar). Heat
treatments under such an environment can result in the evaporation of elements [34]. This phenomenon
has been observed in stainless steels annealed at high temperatures with the evaporation of Mn, Cr, Si,
and O elements [35–37] accompanied with the reduction of oxides [36, 37]. Evaporation is a time and
temperature dependent mechanism; longer is the treatment or higher is the temperature or both, higher
is the amount of released elements [34]. This mechanism could explain oxide dissolution (i.e., decrease in
f) within micropillars observed during heat-treatments in the TEM.

To assess this mechanism, finite difference simulations were performed to track chemical species evo-
lution across the micropillar under vacuum. An infinitely-long cylinder with a radius (r) of 12.5 µm was
assumed to describe the micropillar. Finite difference approximation formulae for a cylinder provided by
Crank were used [38]. At t = 0, wCr = 16.9 wt%, wMn = 1.5 wt%, wSi = 0.7 wt%, and wO = 0.05
wt% were set for the steel composition investigated. At r = 12.5 µm, wi = 0 was imposed as a boundary
condition to simplify the evaporation mechanism (i.e., solid-state diffusion is assumed to be the limiting
factor). Diffusion coefficients within austenite were taken from [39] for Cr, Mn, and Si, and from [40] for
O.

Figure 8 shows the chemical species evolution as a function of the distance from the center of the
micropillar at different time for two temperatures: a) 600 ◦C (mean quasi-steady-state temperature of
µP1-SSTC2, µP2-SSTC1, and µP2-SSTC2) and b) 1100 ◦C (annealing temperature of µP1-SSTC3 and
µP3-SSTC1) calculated using the finite difference model. At 600 ◦C, there is no evaporation or diffusion
at the length scale investigated for Cr, Mn, and Si after holding during 7200 s, in agreement with [35–37].
Meanwhile, a gradient in O at the interface (between micropillar and vacuum), as well as a decrease
in the amount of O within the micropillar, are predicted due to evaporation and solid-state diffusion.
At 1100 ◦C, the gradient of Cr and Mn are respectively restricted to the interface over ∼ 4.5 µm and
∼ 2.5 µm while evaporation and diffusion of Si are more pronounced after holding during 7200 s. Due to
the higher diffusion coefficient of O, the amount of O within the micropillar decreases fast and becomes
negligible after 2 s.
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Figure 8: Chemical profile evolution along the radius of the micropillar as a function of time for Mn,
Si, and O elements at a) 600 ◦C, and b) 1100 ◦C. Initial compositions (t = 0) are wCr = 16.9 wt%,
wMn = 1.5 wt%, wSi = 0.7 wt%, and wO = 0.05 wt% according to the steel composition and wi has been
set to 0 at r = 12.5 µm as a simplification for evaporation.

These results show that the kinetics of oxygen evaporation at the interface and diffusion within the
micropillars are fast and will affect the composition of the steel, thus changing the thermodynamic
equilibrium. Due to the decrease in the average oxygen content, oxide dissolution can occur and may be
delayed by the slower diffusion of Mn, Si, and Cr. Evaporation of Cr, Mn, and Si at high temperatures
will affect the equilibrium of the investigated steel. Decreasing the Si content of the alloy affects the
precipitates present at equilibrium (e.g., reducing the Si content from 4 to 0 wt% in a 316L alloy at
700 ◦C leads to the transformation of precipitates from Quartz to MnSiO3, and then to CrMnO4 [5]),
but the phase fraction of the precipitates remains similar as discussed before and reported by [5]. Similar
results can be expected for Cr and Mn.
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One possibility to reduce or prevent the evaporation of oxygen is to perform SSTCs in an inert
environment. However, performing these type of tests requires special setups e.g., sealed gas holders,
which were not available for this work.

5 Conclusions
In this work, we have developed and used a combination of (i) SSTC of micropillars inside a TEM, (ii)
synchrotron TXM to identify sub-micron sized precipitates in micropillars, and (iii) a 3D U-net DCNN
model to segment precipitates, in order to gain insight on precipitate evolution that could occur due to
SSTC during AM of a 316L.

Micropillars were extracted from as-built LMD 316L samples and subjected to different controlled
SSTCs inside the TEM that mimicked additional heating and cooling of the material that could occur
during AM or post-process annealing. Guided by FE simulations, the highest heating and cooling rates
during these SSTCs were restricted to 1000 ◦C/s in order to ensure uniform heating or cooling of the
micropillar at any given instant. TXM was performed before and after each SSTC in order to characterize
the precipitates present in all the micropillars and track their evolution due to SSTC. Coupled with a
3D U-net DCNN model to segment precipitates, the proposed experimental procedure has proven to be
a powerful tool to statistically investigate the evolution of precipitates. In this study, more than 80000
precipitates of equivalent diameters lower than 200 nm were investigated. The experimental results show
a good agreement between the equivalent average diameter measured via TXM from micropillars in
as-built condition and our previous TEM study.

During short SSTC involving heating and cooling rates of 1000 ◦C/s precipitation was observed, i.e., an
increase of the phase fraction and density of precipitate, indicating that oxygen remained supersaturated
in solid solution after solidification. However, during long SSTCs and annealing treatments, the fraction,
density, and average diameter of precipitates decreased, indicating their dissolution. This dissolution
is caused by the evaporation of elements from the surface of the micropillars into the primary vacuum
of the TEM during SSTC. This problem could be reduced by performing e.g., the SSTCs in an inert
environment. Nevertheless, the experimental-modeling-simulation synergy technique developed in this
work can be very useful to study precipitate evolution of any alloy in 3D during rapid and slow SSTCs.

An empirical relationship between the cooling rate of solidification and precipitate diameter was
proposed. This relationship can complement the relationship between primary cellular arm spacing and
cooling rates during solidification in order to predict these rates from the measured precipitate diameters.
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