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We consider an inverse problem of determining the isotropic inhomogeneous electromagnetic coefficients of the non-stationary Maxwell's equations in a bounded domain of R 3 by means of a finite number of interior data of as less as possible components of the solutions. Our main result is a Lipschitz stability estimate for the inverse problem and our proof relies on a Carleman estimate for the heterogeneous Maxwell's equations.

INTRODUCTION

In this paper, we discuss the uniqueness and stability in determining the isotropic electromagnetic coefficients of the dynamical Maxwell's equations by local measurement of as less as possible components of their solutions. Let Ω ⊂ R 3 be a non-empty simply-connected bounded domain with C 2 boundary Γ = ∂Ω, T > 0, and let ω be a non-empty subdomain of Ω such that (1.1) ∂ω ⊃ ∂Ω, that is, ω is a neighborhood of ∂Ω. We introduce the following notations : Ω T := Ω × (-T, T ), Σ := Γ × (-T, T ) and ω T := ω × (-T, T ).

We understand that Ω is occupied by an inhomogeneous medium with dielectric permittivity ε, magnetic permeability µ and conductivity σ which depend on x but are time-independent. Throughout this paper, we assume that ρ is given.

We consider the problem for the linear system of Maxwell's equations (1.2)

                   ∂ t D -curl ( 1 µ B) + σ ε D = 0, in Ω T , ∂ t B + curl ( 1 ε D) = 0, in Ω T , div D = ρ, div B = 0, in Ω T , D × ν = q(x, t),
on Σ, B(0, x) = B 0 (x), D(0, x) = D 0 (x), in Ω.

Here the electric flux density D(t, x) and the magnetic flux density B(t, x) are three-dimensional vector-valued functions of the time t and the space variable x = (x 1 , x 2 , x 3 ). By ν = ν(x, t) we denotes the unit outward normal vector to Γ. Moreover B 0 , D 0 and q are given vector-valued functions and ρ denotes the electric charge density. We assume that B 0 , D 0 , ρ and q are sufficiently smooth and satisfy compatibility conditions so that the solution (D, B) to (1.2) is in Date: July 12, 2023.

((W 2,∞ (Ω T )) 3 ) 2 (see e.g., [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF], [START_REF] Lasiecka | Recent advances in regularity of second order hyperbolic mixed problems and applications[END_REF]).

Henceforth the subscript j ∈ {1, 2, 3} denotes the j th component of a vector under consideration.

We assume that µ, ε and σ are scalar functions in C 2 (Ω) verifying (1.3) µ(x) ≥ α 0 , ε(x) ≥ α 0 , σ(x) ≥ σ 0 , x ∈ Ω for some fixed constant α 0 > 0.

In the following, we consider the inverse problem of determining simultaneously the dielectric permittivity ε = ε(x), the magnetic permeability µ = µ(x) and the conductivity σ = σ(x) from a finite number of observations in ω T of the solution (B, D) to (1.2). Furthermore, our goal is to reduce the number of components to be observed and we prove a reconstruction result of three coefficients (µ, λ, σ) by the knowledge of only selected components.

1.1. Notations and main result. Let us choose two suitable sets

B k 0 , D k 0 , k = 1, 2 of initial data. By B k = (B k 1 , B k 2 , B k 3 ) and D = (D k 1 , D k 2 , D k 3 )
we denote the magnetic flux density and the electric flux density respectively with initial values B k 0 , D k 0 . In this paper, we consider the following inverse problem:Determine ε(x), µ(x) and σ(x) for x ∈ Ω from the observations for two sets of initial conditions of the 2 components: D k j (t, x), (t, x) ∈ ω × (-T, T ), k = 1, 2, and j = 2, 3.

We now introduce some notations used throughout this paper and state our results. We consider x 0 ∈ R 3 \Ω and a non-empty subdomain ω of Ω such that ω = Ω ∩ O for some neighbourhood O of Γ in R 3 and ω ⊂ ω. Then, for a fixed function ε ∈ C 2 ( ω) and given constants M 0 , M 1 > 0, 0 < C 0 < 1, we define an admissible set of unknown coefficients µ, ε and σ:

A = (µ, ε, σ) ∈ (C 2 (Ω)) 3 ; (1.3) holds, (1.4) µ C 2 (Ω) , ε C 2 (Ω) , σ C 2 (Ω) ≤ M 0 , ε = ε in ω |∇(ε(x)µ(x))| < M 1 and (x -x 0 ) • ∇(ε(x)µ(x)) 2ε(x)µ(x) > -C 0 , ∀x ∈ Ω, x 0 ∈ R 3 \ Ω .
Condition (1.4) is one sufficient condition for a key Carleman estimate (Lemma 2.2), and does not necessarily exclude other choices of conditions (e.g., Amirov and Yamamoto [START_REF] Kh | A timelike Cauchy problem and an inverse problem for general hyperbolic equations[END_REF]).

Our main result, Theorem 1.1, establishes Lipschitz stability for the three coefficients µ, ε and σ in suitable norms by partial measurement data of two components of D(t, x). Henceforth • denotes the transpose of a matrix under consideration and we set e 1 = (1, 0, 0) , e 2 = (0, 1, 0) and e 3 = (0, 0, 1) . From now, C > 0 denotes generic constants which may change from line to line.

For the identification of (ε, µ, σ), we need to take observations twice, that is, we consider two sets of initial data (D k 0 , B k 0 ), k = 1, 2:

(1.5) D k 0 (x) := D k 1 (x), D k 2 (x), D k 3 (x) , B k 0 (x) := B k 1 (x), B k 2 (x), B k 3 (x) .
For the statement of the main results, we define the 12 × 7 matrix 

(1.6) G(x) =       e 1 × B 1 0 e 2 × B 1 0 e 3 × B 1 0 0 0 0 D 1 0 0 0 0 e 1 × D 1 0 e 2 × D 1 0 e 3 × D 1 0 0 e 1 × B 2 0 e 2 × B 2 0 e 3 × B 2 0 0 0 0 D 2 0 0 0 0 e 1 × D 2 0 e 2 × D 2 0 e 3 × D 2 0 0       for x ∈ Ω, where a × b denotes the exterior product: a × b = (a 2 b 3 -a 3 b 2 , a 3 b 1 -a 1 b 3 , a 1 b 2 - a 2 b 1 ) for a = (a 1 ,
(B k 0 , D k 0 ) ∈ (H 2 (Ω) 3 ) 2 , k = 1, 2
such that there exists a 7 × 7 minor m(x) of the matrix G(x) defined by (1.6) such that

(1.7) m(x) = 0 for x ∈ Ω\ ω.
We choose ((µ, ε, σ), ( µ, ε, σ)) ∈ A 2 such that

(1.8) µ = µ, ε = ε on ∂Ω and (1.9) B k , D k C 3 ([-T,T ];W 2,∞ (Ω)) , B k , D k C 3 ([-T,T ];W 2,∞ (Ω)) ≤ M 1 , k = 1, 2,
for some M 1 > 0. Then there exists an open set ω and a constant C > 0 depending on Ω, ω, T, C 0 , α, M 0 and M 1 , such that we have

µ -µ H 1 (Ω) + ε -ε H 1 (Ω) + σ -σ H 1 (Ω) ≤ C 2 k=1 3 j=2 D k j -D k j H 1 (-T,T ;L 2 (ω))
.

Theorems 1.1 asserts Lipschitz stability in determining coefficients of Maxwell's equations within the class defined by (1.4). The proof is based on a Carleman estimate stated in Lemma 2.2. Concerning inverse problems for Maxwell's equations, we can refer to Romanov [START_REF] Romanov | Inverse Problem of Mathematical Physics[END_REF], [START_REF] Romanov | An inverse problem for Maxwell's equation[END_REF], Romanov and Kabainikhin [START_REF] Romanov | Inverse problems for Maxwell's equations[END_REF], Sun and Uhlmann [START_REF] Sun | An inverse boundary problem for Maxwell's equations[END_REF], Yamamoto [START_REF] Yamamoto | A mathematical aspect of inverse problems for non-stationary Maxwell's equations[END_REF], [START_REF] Yamamoto | On an inverse problem of determining source terms in Maxwell's equations with a single measurement[END_REF]. However, there are few results on inverse problems of determining the coefficients of Maxwell's equations with a reduced number of measurements. Li and Yamamoto [START_REF] Li | Carleman estimate for Maxwell's Equations in anisotropic media and the observability inequality[END_REF], [START_REF] Li | An inverse source problem for Maxwell's equations in anisotropic media[END_REF] establish Lipschitz stability for the determination of the dielectric permittivity ε and the magnetic permeability µ with a finite number of measurements provided that unknown coefficients satisfy some a priori conditions. They extend their results in [START_REF] Li | An inverse problem for Maxwell's equation in isotropic and non-stationary media[END_REF] to non-stationary media. In [START_REF] Bellassoued | Inverse boundary value problem for the dynamical heterogeneous Maxwell system[END_REF], Bellassoued, Cristofol and Soccorsi give a Hölder stability estimate for the determination of the dielectric permittivity and the magnetic permeability in heterogeneous Maxwell's equations by some partial boundary measurements, and in [START_REF] Beilina | Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations[END_REF], the authors established a similar stability inequality using less observations and provide numerical simulations. Recently in [START_REF] Shang | An inverse problem for Maxwell's equations in a uniaxially anisotropic medium[END_REF] the case of uniaxially anisotropic medium was addressed.

The remainder of the paper is organized as follows: a Carleman estimate for Maxwell's equations (1.2) is given in Section 2. In Section 3, we prove our main Theorem 1.1.

CARLEMAN ESTIMATE FOR MAXWEL'S EQUATIONS

We now consider the solutions

(B k , D k , µ, ε, σ) and ( B k , D k , µ, ε, σ), k = 1, 2 to (1.2) asso- ciated with initial data (B k 0 , D k 0 ) ∈ (H 2 (Ω) 3
) 2 , and we set

D k (t, x) = D k -D k , B k (t, x) = B k -B k , d mp = 1 µ - 1 µ , d dp = 1 ε - 1 ε , d c = σ ε - σ ε .
In the following, for simplicity, we will omit the superscript k and we deal with the system :

(2.1)

                   ∂ t D -curl ( 1 µ B) + σ ε D = R 1 , in Ω T , ∂ t B + curl ( 1 ε D) = R 2 , in Ω T , div D = 0, div B = 0, in Ω T , D × ν = 0, on Σ, B(x, 0) = 0, D(x, 0) = 0, in Ω,
where

R 1 = curl (d mp B) -d c D and R 2 = -curl (d dp D).
To this form of Maxwel's equations, we apply a Carleman estimate in the H -1 norm for a second-order hyperbolic equation. Indeed, we can reduce Maxwell's equations to a weakly coupled system of hyperbolic equations. More precisely, taking the time derivative in (2.1) this leads to the following system:

(2.2)

εµ∂ 2 t D -∆D = f (B, D, R 1 , R 2 , ε, µ, σ), εµ∂ 2 t B -∆B = g(B, D, R 1 , R 2 , ε, µ, σ), where f (B, D, R 1 , R 2 , ε, µ, σ) = εµ∂ t R 1 + εµcurl ( 1 µ R 2 ) +σµ -curl ( 1 µ B) - σ ε D -R 1 -εµ ∇( 1 µ ) × (∇( 1 ε ) × D) + ∇( 1 µ ) × ( 1 ε curl D) -ε curl (∇( 1 ε ) × D + ∇( 1 ε ) × curl D and g(B, D, R 1 , R 2 , ε, µ, σ) = εµ∂ t R 2 + εµ curl ( σ 2 D) -curl ( R 1 ) -εµ ∇( 1 ) × curl ( 1 µ B) + 1 curl (∇( 1 µ ) × B) + 1 ∇( 1 µ ) × curl B .
We detail the calculation for

f (B, D, R 1 , R 2 , ε, µ, σ) as follows. In ∂ 2 t D-curl ( 1 µ ∂ t B)+ σ ε ∂ t D = ∂ t R 1 , we substitute ∂ t D = curl ( 1 µ B) -σ ε D + R 1 and ∂ t B = -curl ( 1 ε D) + R 2 , to obtain ∂ 2 t D -curl (-1 µ curl ( 1 ε D) + 1 µ R 2 ) + σ ε (curl ( 1 µ B) -σ ε D + R 1 ) = ∂ t R. Thus ∂ 2 t D + curl ( 1 µ curl ( 1 ε D)) -curl ( 1 µ R 2 ) σ ε curl ( 1 µ B) -σ 2 ε 2 D + σ ε R 1 = ∂ t R. Therefore, curl ( 1 µ (curl ( 1 ε D))) = curl ( 1 µ (∇( 1 ε ) × D + 1 ε curl D)) = ∇( 1 µ ) × (∇( 1 ε ) × D + 1 ε curl D) + 1 µ curl (∇( 1 ε ) × D + 1 ε curl D) = ∇( 1 µ ) × (∇( 1 ε ) × D) + ∇( 1 µ ) × ( 1 ε curl D) + 1 µ curl (∇( 1 ε ) × D) + 1 µ curl ( 1 ε curl D),
where

1 µ curl ( 1 ε curl D) = 1 µ (∇( 1 ε ) × curl D + 1 ε curl curl D) = 1 µ ∇( 1 ε ) × curl D + 1 εµ (-∆D + ∇div D).
As div D = 0, we reach

curl ( 1 µ (curl ( 1 ε D))) = ∇( 1 µ ) × (∇( 1 ε ) × D) + ∇( 1 µ ) × ( 1 ε curl D) + 1 µ curl (∇( 1 ε ) × D) + 1 µ ∇( 1 ε ) × curl D - 1 εµ ∆D.
Finally,

∂ 2 t D - 1 εµ ∆D + ∇( 1 µ ) × (∇( 1 ε ) × D) + ∇( 1 µ ) × ( 1 ε curl D) + 1 µ curl (∇( 1 ε ) × D) + 1 µ ∇( 1 ε ) × curl D + σ ε curl ( 1 µ B) - σ 2 ε 2 D = ∂ t R 1 - σ ε R 1 + curl ( 1 µ R 2 ).
We obtain g(B, D, R 1 , R 2 , ε, µ, σ) similarly, after taking the time derivative of

∂ t B + curl ( 1 ε D) = R 2 . Therefore ∂ 2 t B = -curl 1 ε [curl ( 1 µ B) -σ ε D + R 1 ] + ∂ t R 2 . We obtain ∂ 2 t B = -curl ( 1 ε curl ( 1 µ B)) + curl ( σ ε 2 D) -curl ( 1 ε R 1 ) + ∂ t R 2 and ∂ 2 t B = -∇( 1 ε ) × curl ( 1 µ B) -1 ε curl [curl ( 1 µ B)] + curl ( σ ε 2 D) -curl ( 1 ε R 1 ) + ∂ t R 2 .
Multiplying by εµ, we obtain

εµ∂ 2 t B = -εµ[∇( 1 ε ) × curl ( 1 µ B)] -µcurl ∇( 1 µ ) × B + 1 µ curl B +εµ curl ( σ ε 2 D) -curl ( 1 ε R 1 ) + ∂ t R 2 .
Then, using curl (curl B) = ∇(div B) -∆B = -∆B, we reach the desired result.

For x 0 ∈ R 3 \Ω and a constant β 0 > 0, we define the weight function ψ(t, x) by

(2.3) ψ(x, t) = |x -x 0 | 2 -βt 2 + β 0 , x ∈ Ω, t ∈ [-T, T ].
Then

min x∈Ω ψ(x, 0) ≥ β 0 . Furthermore we set ϕ : Ω × [-T, T ] -→ R defined as (2.4) ϕ(x, t) = e λψ(x,t) , t ∈ [-T, T ], x ∈ Ω
with some fixed λ > 0.

Recall the Carleman estimate in the H -1 norm for a second-order hyperbolic equation:

Lemma 2.1. Let x 0 ∈ R 3 \ Ω and ϕ be given by (2.4). We assume that a ∈ C 2 (Ω T ) satisfies the following conditions

• 0 < βa(t, x) ≤ 1, • β 2 (a 2 (t, x) + a(t, x)t∂ t a(t, x) + 2 |t| |∇a(t, x)|) < 1 + (x -x 0 ) • ∇a(t, x) a(t, x) Let v ∈ H 2 0 (Ω T ) such that (2.5) P v(t, x) = a 2 (t, x)∂ 2 t v(t, x) -∆v(t, x) = g(t, x) + k ∂ k g k , x ∈ Ω, t ∈ R.
Then there exists λ 0 > 0 such that for all λ > λ 0 , there exist two constants C 0 > 0 and s 0 > 0 such that the following Carleman estimate holds

s Ω T e 2sϕ |v| 2 dxdt ≤ C 0 Ω T e 2sϕ 1 s 2 |g(x, t)| 2 + k |g k | 2 dxdt (2.6)
for all s ≥ s 0 .

For the proof, we can refer to [START_REF] Yu | An inverse problem for the dynamical Lamé system with two sets of boundary data[END_REF] or [START_REF] Isakov | Carleman type estimates and their applications[END_REF].

We deduce now a Carleman estimate for Maxwell system (2.2) which is one of the main ingredients in our proof. Lemma 2.2. Let D, B ∈ H 1 0 (Ω T ) 3 be solutions of system (2.1). We assume that (ε, µ, σ) ∈ A. Then there exist s 1 > 0 and C 1 > 0 such that

s Ω T (|D| 2 + |B| 2 )e 2sϕ dxdt ≤ C 1 Ω T (|R 1 | 2 + |R 2 | 2 )e 2sϕ dxdt
for all s > s 1 .

We will apply the Carleman estimate Lemma 2.2 to the system (2.2) for a sufficiently large s. We also recall a Carleman estimate for a first order differential equation (see [START_REF] Yu | An inverse problem for the dynamical Lamé system with two sets of boundary data[END_REF]) : Lemma 2.3. Let ϕ be given by (2.4). Then there exist s 1 > 0 and K 1 > 0 such that

s Ω |w| 2 e 2sϕ(•,0) dx ≤ K 1 3 k=1 Ω |∂ k w| 2 e 2sϕ(•,0) dx
for all s > s 1 and w ∈ C 1 0 (Ω). We need now two technical lemma involving initial conditions and pointwise observations (see [START_REF] Li | An Inverse Problem for Maxwell's Equations in Bi-isotropic Media[END_REF] and [START_REF] Li | An inverse problem for Maxwell's equation in isotropic and non-stationary media[END_REF]).

Lemma 2.4. We assume that (ε, µ, σ) ∈ A. Let D, B ∈ H 1 0 (Ω T ) 3 satisfy (2.1). Then there exist s 2 > 0 and C 2 > 0 such that

Ω (|D(•, 0)| 2 + |B(•, 0)| 2 )e 2sϕ(•,0) dx ≤ C 2 Ω T (|R 1 | 2 + |R 2 | 2 )e 2sϕ dxdt
for all s > s 2 .

Lemma 2.5. We assume that (ε, µ, σ) ∈ A. Let D, B satisfy (2.1). Then there exists a constant

C 3 > 0 such that Ω (|D(•, t 2 )| 2 +|B(•, t 2 )| 2 )dx ≤ C 3 Ω (|D(•, t 1 )| 2 + |B(•, t 1 )| 2 )dx + Ω * T (|R 1 | 2 + |R 2 | 2 )dxdt for -T ≤ t 1 , t 2 ≤ T . Here Ω * T = Ω × (min(t 1 , t 2 ), max(t 1 , t 2 )) ⊂ Ω T .

MAIN STABILITY RESULT

In the following, we consider a new system obtained by differentiating the system (2.1) with respect to t.

Setting D 1 = ∂ t D and B 1 = ∂ t B, we deduce (3.1)                          ∂ t D 1 -curl ( 1 µ B 1 ) + σ ε D 1 = R 1,1 , in Ω T , ∂ t B 1 + curl ( 1 ε D 1 ) = R 2,1 , in Ω T , div D 1 = 0, div B 1 = 0, in Ω T , D 1 × ν = 0, on Σ, B 1 (x, 0) = R 2 (x, 0) = -curl (d dp B 0 (x)), in Ω, D 1 (x, 0) = R 1 (x, 0) = curl (d mp B 0 (x)) -d c D 0 (x), in Ω, with R 1,1 = ∂ t R 1 and R 2,1 = ∂ t R 2 .
We are now dealing with systems (2.1) and (3.1) and we consider a cut-off function χ 1 (x) such that χ 1 ∈ C ∞ 0 (Ω), 0 ≤ χ 1 (x) < 1 on ω, and χ 1 (x) = 1 for x ∈ Ω\ω. We set 3 , and we have

D 1,1 = χ 1 D 1 , B 1,1 = χ 1 B 1 ∈ (W 1,∞ (Q))
(3.2)                              ∂ t D 1,1 -curl ( 1 µ B 1,1 ) + σ ε D 1,1 , = χ 1 curl (d mp ∂ t B) -χ 1 d c ∂ t D -(∇χ 1 ) × ( 1 µ B 1 ), in Ω T , ∂ t B 1,1 + curl ( 1 ε D 1,1 ) = -χ 1 curl (d dp ∂ t D) + (∇χ 1 ) × ( 1 ε D 1 ), in Ω T , div D 1,1 = ∇χ 1 • D 1 , div B 1,1 = ∇χ 1 • B 1 , in Ω T , D 1,1 = 0, B 1,1 = 0, on Σ, B 1,1 (x, 0) = R 2 (x, 0) = -curl (d dp B 0 (x)), in Ω, D 1,1 (x, 0) = R 1 (x, 0) = curl (d mp B 0 (x)) -d c D 0 (x), in Ω.
Then, we use a cut-off function in time χ 2 (t) satisfying

χ 2 ∈ C ∞ (R), 0 ≤ χ 2 (t) ≤ 1 for t ∈ R, and 
χ 2 (t) = 0, t ∈ [-T, -T + δ] ∪ [T -δ, T ], 1, t ∈ [-T + 2δ, T -2δ].
Remark 3.1. We have

ϕ(x, t) -ϕ(x, 0) = e λ|x-x 0 | 2 e -λβt 2 -1 ≤ e -λβt 2 -1 ≤ 0 for x ∈ Ω.
Then,

(3.3) Ω T |d dp | 2 + |∇d dp | 2 + |d mp | 2 + |∇d mp | 2 + |d c | 2 e 2sϕ dxdt ≤ C 9 Ω T |d dp | 2 + |∇d dp | 2 + |d mp | 2 + |∇d mp | 2 + |d c | 2 ×e 2sϕ(•,0) T -T e 2s(ϕ(•,t)-ϕ(•,0) dt dx ≤ C 10 κ 1 (s) Ω |d dp | 2 + |∇d dp | 2 + |d mp | 2 + |∇d mp | 2 + |d c | 2 e 2sϕ(0,x) dx where κ 1 (s) = T -T e 2s(e -λβt 2 -1) dt.
On the other hand, using the hypothesis and the definition of ϕ, we can write :

(3.4) ϕ(x, 0) ≥ α and 0 < ϕ(x, -T ) = ϕ(x, T ) < α := exp(λ(inf Ω |x -x 0 | 2 + β 0 )).
Thus, for η ∈ (0, α -sup Ω ϕ(x, T )) we can choose δ = δ(α) such that :

(3.5) ϕ(x, t) ≤ α -η, (x, t) ∈ Ω × ([-T, -T + 2δ] ∪ [T -2δ, T ])
and if we set Φ = sup Ω T ϕ, then Φ ≥ α.

Now we set

D 1,2 = χ 2 D 1,1 , B 1,2 = χ 2 B 1,1 ∈ (W 2,∞ (Ω T )) 3 . The system (3.2) becomes (3.6) 
                                   ∂ t D 1,2 -curl ( 1 µ B 1,2 ) + σ ε D 1,2 = χ 2 χ 1 curl (d mp ∂ t B) -χ 2 χ 1 d c ∂ t D -χ 2 (∇χ 1 ) × ( 1 µ B 2 ) + ∂ t χ 2 D 1,1 , in Ω T , ∂ t B 1,2 + curl ( 1 ε D 1,2 ) = -χ 2 χ 1 curl (d dp ∂ t D) + χ 2 (∇χ 1 ) × ( 1 ε D 1 ) + ∂ t χ 2 B 1,1 , in Ω T , div D 1,2 = χ 2 ∇χ 1 • D 1 , div B 1,2 = χ 2 ∇χ 1 • B 1 , in Ω T , D 1,2 = 0, B 1,2 = 0, on Σ, B 1,2 (x, 0) = R 2 (x, 0) = -curl (d dp B 0 (x)), in Ω, D 1,2 (x, 0) = R 1 (x, 0) = curl (d mp B 0 (x)) -d c D 0 (x), in Ω.
Now, we can apply Lemma 2.4 to the solutions of the previous system to obtain (3.7)

Ω |D 1,2 (x, 0)| 2 + |B 1,2 (x, 0)| 2 e 2sϕ(0,x) dx ≤ C 14 ω T |∇χ 1 | 2 |D 1 | 2 + |B 1 | 2 e 2sϕ dxdt +C 14 Ω |d dp | 2 + |∇d dp | 2 + |d mp | 2 + |∇d mp | 2 + |d c | 2 e 2sϕ dxdt +C 14 -T +2δ -T +δ + T +δ T -2δ Ω |∂ t χ 2 | 2 |D 1,1 | 2 + |B 1,1 | 2 e 2sϕ dxdt.
Then we deal with the last integral and

(3.8) -T +2δ -T +δ + T +δ T -2δ Ω |∂ t χ 2 | 2 |D 1,1 | 2 + |B 1,1 | 2 e 2sϕ dxdt ≤ C 15 e 2s(α-η) -T +2δ -T +δ + T +δ T -2δ Ω |D 1,1 | 2 + |B 1,1 | 2 dxdt
It turns out by using Lemma 2.5 and (3.5) that (3.9)

C 15 e 2s(α-η)

-T +2δ -T +δ + T +δ T -2δ Ω |D 1,1 | 2 + |B 1,1 | 2 dxdt ≤ C 16 δe 2s(α-η) Ω |D 1,1 (x, 0)| 2 + |B 1,1 (x, 0)| 2 dx + ω T |D 1 | 2 + |B 1 | 2 dxdt + Ω |d dp | 2 + |∇d dp | 2 + |d mp | 2 + |∇d mp | 2 + |d c | 2 dx ≤ C 17 δe -2sη Ω |D 1,1 (x, 0)| 2 + |B 1,1 (x, 0)| 2 e 2sϕ(x,0) dx + Ω |d dp | 2 + |∇d dp | 2 + |d mp | 2 + |∇d mp | 2 + |d c | 2 e 2sϕ(x,0) dx +C 17 δe 2sΦ ω T |D 1 | 2 + |B 1 | 2 dxdt.
Since D 1,1 (x, 0) = D 1,2 (x, 0) and B 1,1 (x, 0) = B 1,2 (x, 0), gathering (3.3), (3.7), (3.9) and the definition of Φ, we have (3.10)

Ω |D 1,1 (x, 0)| 2 + |B 1,1 (x, 0)| 2 e 2sϕ(x,0) dx = Ω |D 1,2 (x, 0)| 2 + |B 1,2 (x, 0)| 2 e 2sϕ(x,0) dx ≤ C 18 δe -2sη Ω |D 1,1 (x, 0)| 2 + |B 1,1 (x, 0)| 2 e 2sϕ(x,0) dx +κ 2 (s) Ω |d dp | 2 + |∇d dp | 2 + |d mp | 2 + |∇d mp | 2 + |d c | 2 e 2sϕ(x,0) dx +e 2sΦ ω T |D 1 | 2 + |B 1 | 2 dxdt .
Here κ 2 (s) = κ 1 (s) + δe -2sη . Finally, for sufficiently large s, we obtain (3.11)

Ω |D 1,1 (x, 0)| 2 + |B 1,1 (x, 0)| 2 e 2sϕ(x,0) dx ≤ C 19 κ 2 (s) Ω |d dp | 2 + |∇d dp | 2 + |d mp | 2 + |∇d mp | 2 + |d c | 2 e 2sϕ(x,0) dx +e 2sΦ ω T |D 1 | 2 + |B 1 | 2 dxdt .
Now using the definition of the cut-off function in space χ 1 (x), we have

D 1 (x, 0) = D 1,1 (x, 0) + (1 -χ 1 (x))D 1 (x, 0) and B 1 (x, 0) = B 1,1 (x, 0) + (1 -χ 1 (x))B 1 (x, 0).
Since 1 -χ 1 (x) = 0 for x ∈ Ω \ ω, we deduce (3.12)

Ω |D 1 (x, 0)| 2 + |B 1 (x, 0)| 2 e 2sϕ(x,0) dx ≤ C Ω |D 1,1 (x, 0)| 2 + |B 1,1 (x, 0)| 2 e 2sϕ(x,0) dx + ω (1 -χ 1 (x)) 2 |D 1 (x, 0)| 2 + |B 1 (x, 0)| 2 e 2sϕ(x,0) dx ,
and by the Sobolev imbedding we obtain

(3.13) ω (1 -χ 1 (x)) 2 |D 1 (x, 0)| 2 + |B 1 (x, 0)| 2 e 2sϕ(x,0) dx ≤ C 20 e 2sΦ ω T |D 1 | 2 + |B 1 | 2 dxdt.
Finally, from (3.11), (3.12) and (3.13), we deduce 

(3.14) Ω |D 1 (x, 0)| 2 + |B 1 (x, 0)| 2 e 2sϕ(x,0) dx ≤ C 21 κ 2 (s) Ω |d dp | 2 + |∇d dp | 2 + |d mp | 2 + |∇d mp | 2 + |d c | 2 e 2sϕ(x,0) dx +e 2sΦ ω T |D 1 | 2 + |B 1 | 2 dxdt .
D k 1 (x, 0) = R k 1 (x, 0) = curl (d mp B k 0 ) -d c D k 0 = d mp curl (B k 0 ) + ∇d mp × B k 0 -d c D k 0 = d mp curl (B k 0 ) + 3 j=1 (∂ j d mp )(e j × B k 0 ) -d c D k 0 , B k 1 (x, 0) = R k 2 (x, 0) = -curl (d dp D k 0 ) = -d dp curl (D k 0 ) -∇d dp × D k 0 = -d dp curl (D k 0 ) -3 j=1 (∂ j d dp )(e j × D k 0 )
, where the subscript k = 1, 2 corresponds to the choice of two sets of different initial data. We deduce the following linear systems

3 j=1 (∂ j d mp )(e j × B k 0 ) -d c D k 0 = D k 1 (x, 0) -d mp curl (B k 0 ), 3 j=1 (∂ j d dp )(e j × D k 0 ) = -B k 1 (x, 0) -d dp curl (D k 0 ), k = 1, 2. It can be rewritten in the form G(x)U =       D 1 1 (x, 0) -d mp curl (B 1 0 ) -B 1 1 (x, 0) -d dp curl (D 1 0 ) D 2 1 (x, 0) -d mp curl (B 2 0 ) -B 2 1 (x, 0) -d dp curl (D 2 0 )       with U = (∂ 1 d mp , ∂ 2 d mp , ∂ 3 d mp , ∂ 1 d dp , ∂ 2 d dp , ∂ 3 d dp , -d c ) T .
Thanks to the hypothesis (1.7), it follows that there exists a positive constant C 22 such that:

(3.15)

|∇d dp | 2 + |∇d mp | 2 + |d c | 2 ≤ C 22 k=1,2 D k 1 (x, 0) 2 + B k 1 (x, 0) 2 + |d dp | 2 + |d mp | 2 in Ω.
Now, from (3.15) we obtain (3.16) 

Ω |d dp | 2 + |∇d dp | 2 + |d mp | 2 + |∇d mp | 2 + |d c | 2 e 2sϕ(x,0) dx ≤ C 23 Ω k=1,2 D k 1 (x, 0) 2 + B k 1 (x, 0) 2 + |d dp | 2 + |d mp | 2 e 2sϕ(
|D k 1 | 2 + |B k 1 | 2 dxdt
for sufficiently large s > 0. Here C 24 > 0 depends on Ω, ω, T, C 0 , ε, α, M 0 and M 1 .

On the other hand, from the definition of d c , we can write σ -σ = ε(d c -σd dp ).

Then, it is easy to verify

σ -σ H 1 (Ω) ≤ C( d c H 1 (Ω) + d dp H 1 (Ω) ),
where C > 0 is a constant depending on M 0 . Now, we are going to improve the observation term in (3.17) and get rid of the observation by the component B.

In a neighborhood ω of the boundary ∂Ω such that ω ⊂ ω, we can write

∂ t B k = -curl (ε -1 D k ), in ω × (-T, T ) and ∂ t B k = -curl ( ε -1 D k ), in ω × (-T, T ) for k = 1, 2. Since ε = ε = ε in ω, we can have ∂ t (B k -B k ) = -curl 1 ε (D k -D k ) in ω × (-T, T ) for k = 1, 2.
Moreover we readily obtain Actually the geometry of ∂Ω allows us to choose the component D i that we are going to recover from the two others D j for j = i. For simplicity, we will give the proof of this result in the simplest case where the direction (x 1 , x 2 ) is normal to the x 3 -direction and this direction corresponds to the boundary ∂ω of ω which intersects ∂Ω. Since ρ is done, and D 2 , D 3 are known on ω T , from the relation div D = ρ, we obtain ∂ 1 D 1 on ω T . Then, the boundary condition on D 1 gives D 1 on Σ, and then we see D 1 on ω T . This ends the proof of Theorem 1.1.

∂ t (B k -B k ) = - 1 ε curl (D k -D k ) -∇ 1 ε × (D k -D k

Now, in light

  of the two sets of initial conditions, we are going to get rid of the integrals of |d c | 2 , |∇d dp | 2 and |∇d mp | 2 in terms of integrals depending on |D 1 (x, 0)| 2 , |B 1 (x, 0)| 2 , |d mp | 2 and |d dp | 2 . From system (3.1) we have

2 D k -D k 2 H 1

 221 ) in ω × (-T, T ) for k = 1, 2 and we deduce the estimatek=1,2 ω T |B k 1 | 2 dxdt ≤ C 25 k=1,(-T,T ;L 2 (ω)), where C 25 > 0 depends on M 0 . Finally, we get rid of the observation by the first component D 1 of D.

  a 2 , a 3 ) and b = (b 1 , b 2 , b 3 ) .

	Moreover by (B k (t, x), D k (t, x)) and ( B k (t, x), D k (t, x)) we denote the solutions to (1.2)
	with initial data (B k 0 , D k 0 ), k = 1, 2, associated to (µ, ε, σ) and ( µ, ε, σ), respectively.
	Theorem 1.1. Let (B k (t, x), D k (t, x)), k = 1, 2, be the solutions to (1.2) with initial data

  x,0) dx in Ω for sufficiently large s > 0. By Lemma 2.3 and (3.14) applied to d dp and d mp , since lim s→+∞ κ 2 (s) = 0, we obtain (3.17)Ω |d dp | 2 + |∇d dp | 2 + |d mp | 2 + |∇d mp | 2 + |d c | 2 dx ≤ C 24 e 2sΦ k=1,2 ω T
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