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Abstract
How does the brain represent different modes of1

information? Can we design a system that au-2

tomatically understands what the user is think-3

ing? Such questions can be answered by study-4

ing brain recordings like functional magnetic res-5

onance imaging (fMRI). As a first step, the neu-6

roscience community has contributed several large7

cognitive neuroscience datasets related to passive8

reading/listening/viewing of concept words, narra-9

tives, pictures and movies. Encoding and decod-10

ing models using these datasets have also been pro-11

posed in the past two decades. These models serve12

as additional tools for basic research in cognitive13

science and neuroscience. Encoding models aim14

at generating fMRI brain representations given a15

stimulus automatically. They have several practi-16

cal applications in evaluating and diagnosing neu-17

rological conditions and thus also help design ther-18

apies for brain damage. Decoding models solve19

the inverse problem of reconstructing the stim-20

uli given the fMRI. They are useful for designing21

brain-machine or brain-computer interfaces. In-22

spired by the effectiveness of deep learning mod-23

els for natural language processing, computer vi-24

sion, and speech, recently several neural encoding25

and decoding models have been proposed. In this26

survey, we will first discuss popular representations27

of language, vision and speech stimuli, and present28

a summary of neuroscience datasets. Further, we29

will review popular deep learning based encoding30

and decoding architectures and note their benefits31

and limitations. Finally, we will conclude with a32

brief summary and discussion about future trends.33

Given the large amount of recently published work34

in the ‘computational cognitive neuroscience’ com-35

munity, we believe that this survey nicely organizes36

the plethora of work and presents it as a coherent37

story.38

1 Introduction39

Neuroscience is the field of science that studies the structure40

and function of the nervous system of different species. It41

involves answering interesting questions like the following1. 42

(1) How learning occurs during adolescence, and how it dif- 43

fers from the way adults learn and form memories. (2) Which 44

specific cells in the brain (and what connections they form 45

with other cells), have a role in how memories are formed? 46

(3) How animals cancel out irrelevant information arriving 47

from the senses and focus only on information that matters. 48

(4) How do humans make decisions? (5) How humans de- 49

velop speech and learn languages. Neuroscientists study di- 50

verse topics that help us understand how the brain and ner- 51

vous system work. 52

Motivation: The central aim of neuroscience is to unravel 53

how the brain represents information and processes it to carry 54

out various tasks (visual, linguistic, auditory, etc.). Deep neu- 55

ral networks (DNN) offer a computational medium to cap- 56

ture the unprecedented complexity and richness of brain ac- 57

tivity. Encoding and decoding stated as computational prob- 58

lems succinctly encapsulate this puzzle. As the previous sur- 59

veys systematically explore the brain encoding and decod- 60

ing studies with respect to only language [Cao et al., 2021; 61

Karamolegkou et al., 2023], this survey summarizes the 62

latest efforts in how DNNs begin to solve these problems 63

and thereby illuminate the computations that the unreachable 64

brain accomplishes effortlessly. 65

Brain encoding and decoding: Two main tasks studied in 66

cognitive neuroscience are brain encoding and brain decod- 67

ing, as shown in Figure 1. Encoding is the process of learn- 68

ing the mapping e from the stimuli S to the neural activation 69

F . The mapping can be learned using features engineering or 70

deep learning. On the other hand, decoding constitutes learn- 71

ing mapping d, which predicts stimuli S back from the brain 72

activation F . However, in most cases, brain decoding aims 73

at predicting a stimulus representation R rather than actually 74

reconstructing S. In both cases, the first step is to learn a se- 75

mantic representation R of the stimuli S at the train time. 76

Next, for encoding, a regression function e : R → F is 77

trained. For decoding, a function d : F → R is trained. 78

These functions e and d can then be used at test time to pro- 79

cess new stimuli and brain activations, respectively. 80

Techniques for recording brain activations: Popular tech- 81

niques for recording brain activations include single Micro- 82

1https://zuckermaninstitute.columbia.edu/file/5184/download?
token=qzId8vyR

https://zuckermaninstitute.columbia.edu/file/5184/download?token=qzId8vyR
https://zuckermaninstitute.columbia.edu/file/5184/download?token=qzId8vyR
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Figure 1: Computational Cognitive Neuroscience of Brain Encoding and Decoding: Datasets & Stimulus Representations

Electrode (ME), Micro-Electrode array (MEA), Electro-83

Cortico Graphy (ECoG), Positron emission tomography84

(PET), functional MRI (fMRI), Magneto-encephalography85

(MEG), Electro-encephalography (EEG) and Near-Infrared86

Spectroscopy (NIRS). These techniques differ in their spatial87

resolution of neural recording and temporal resolution.88

fMRIs enable high spatial but low time resolution. Hence,89

they are good for examining which parts of the brain handle90

critical functions. fMRI takes 1-4 seconds to complete a scan.91

This is far lower than the speed at which humans can process92

language. On the other hand, both MEG and EEG have high93

time but low spatial resolution. They can preserve rich syn-94

tactic information [Hale et al., 2018] but cannot be used for95

source analysis. fNIRS are a compromise option. Their time96

resolution is better than fMRI, and spatial resolution is bet-97

ter than EEG. However, this spatial and temporal resolution98

balance may not compensate for the loss in both.99

Stimulus Representations: Neuroscience datasets contain100

stimuli across various modalities: text, visual, audio, video101

and other multimodal forms. Representations differ based on102

modality. Older methods for text-based stimulus representa-103

tion include text corpus co-occurrence counts, topic models,104

syntactic, and discourse features. In recent times, both se-105

mantic and experiential attribute models have been explored106

for text-based stimuli. Semantic representation models in-107

clude distributed word embeddings, sentence representation108

models, recurrent neural networks (RNNs), and Transformer-109

based language models. Experiential attribute models rep-110

resent words in terms of human ratings of their degree of111

association with different attributes of experience, typically112

on a scale of 0-6 or binary. Older methods for visual stim-113

ulus representation used visual field filter bank and Gabor 114

wavelet pyramid for visual stimuli, but recent methods use 115

models like ImageNet-pretrained convolutional neural net- 116

works (CNNs) and concept recognition methods. For audio 117

stimuli, phoneme rate and the presence of phonemes have 118

been leveraged, besides deep learning models like Sound- 119

Net. Finally, for multimodal stimulus representations, re- 120

searchers have used both early fusion and late fusion deep 121

learning methods. In the early fusion methods, information 122

across modalities is combined in the early steps of process- 123

ing. While in late fusion, the combination is performed only 124

at the end. We discuss stimulus representation methods in 125

detail in Sec. 2. 126

Naturalistic Neuroscience Datasets: Several neuroscience 127

datasets have been proposed across modalities (see Figure 2). 128

These datasets differ in terms of the following criteria: (1) 129

Method for recording activations: fMRI, EEG, MEG, etc. (2) 130

Repetition time (TR), i.e. the sampling rate. (3) Character- 131

istics of fixation points: location, color, shape. (4) Form of 132

stimuli presentation: text, video, audio, images, or other mul- 133

timodality. (5) Task that participant performs during record- 134

ing sessions: question answering, property generation, rating 135

quality, etc. (6) Time given to participants for the task, e.g., 136

1 minute to list properties. (7) Demography of participants: 137

males/females, sighted/blind, etc. (8) Number of times the re- 138

sponse to stimuli was recorded. (9) Natural language associ- 139

ated with the stimuli. We discuss details of proposed datasets 140

in Sec. 3. 141

Brain Encoding: Other than using the standard stimuli repre- 142

sentation architectures, brain encoding literature has focused 143

on studying a few important aspects: (1) Which models lead 144



Figure 2: Representative Samples of Naturalistic Brain Dataset: (LEFT) Brain activity recorded when subjects are reading and listening to
the same narrative (Deniz et al. 2019), and (RIGHT) example naturalistic image stimuli from various public repositories: BOLD5000 (Chang
et al. 2019), SSfMRI (Beliy et al., 2019), and VIM-1 (Kay et al., 2008).

to better predictive accuracy across modalities? (2) How145

can we disentangle the contributions of syntax and seman-146

tics from language model representations to the alignment147

between brain recordings and language models? (3) Why do148

some representations lead to better brain predictions? How149

are deep learning models and brains aligned in terms of their150

information processing pipelines? (4) Does joint encoding151

of task and stimulus representations help? We discuss these152

details of encoding methods in Sec. 5.153

Brain Decoding: Ridge regression is the most popular brain154

decoder. Recently, a fully connected layer [Beliy et al., 2019]155

or multi-layered perceptrons (MLPs) [Sun et al., 2019] have156

also been used. While older methods attempted to decode to157

a vector representation using stimuli of a single mode, newer158

methods focus on multimodal stimuli decoding [Pereira et159

al., 2016; Oota et al., 2022c]. Decoding using Transform-160

ers [Gauthier and Levy, 2019; Toneva and Wehbe, 2019;161

Défossez et al., 2022; Tang et al., 2022], and decoding to ac-162

tual stimuli (word, passage, image, dialogues) have also been163

explored. We discuss details of these decoding methods in164

Sec. 6.165

Figure 3: Alignment between deep learning systems and human
brains [Toneva et al. 2019].

Computational Cognitive Science (CCS) Research goals: 166

CCS researchers have primarily focused on two main ar- 167

eas [Doerig et al., 2022] (also, see Figure 3). (1) Improving 168

predictive Accuracy. In this area, the work is around the fol- 169

lowing questions. (a) Compare feature sets: Which feature 170

set provides the most faithful reflection of the neural repre- 171

sentational space? (b) Test feature decodability: “Does neu- 172



Figure 4: Language Model

ral data Y contain information about features X?” (c) Build173

accurate models of brain data: The aim is to enable simula-174

tion of neuroscience experiments. (2) Interpretability. In this175

area, the work is around the following questions. (a) Examine176

individual features: Which features contribute most to neural177

activity? (b) Test correspondences between representational178

spaces: “CNNs vs ventral visual stream” or “Two text rep-179

resentations”. (c) Interpret feature sets: Do features X, gen-180

erated by a known process, accurately describe the space of181

neural responses Y? Do voxels respond to a single feature or182

exhibit mixed selectivity? (d) How does the mapping relate to183

other models or theories of brain function? We discuss some184

of these questions in Sections 5 and 6.185

2 Stimulus Representations186

In this section, we discuss types of stimulus representations187

that have been proposed in the literature across different188

modalities: text, visual, audio, video and other multimodal189

stimuli.190

Text Stimulus Representations: Older methods for191

text-based stimuli representation include text corpus co-192

occurrence counts [Mitchell et al., 2008; Pereira et al., 2013;193

Huth et al., 2016], topic models [Pereira et al., 2013], syn-194

tactic features and discourse features [Wehbe et al., 2014].195

In recent times, for text-based stimuli, both semantic mod-196

els as well as experiential attribute models have been ex-197

plored. Semantic representation models include word em-198

bedding methods [Pereira et al., 2018; Wang et al., 2020;199

Pereira et al., 2016; Toneva and Wehbe, 2019; Anderson200

et al., 2017a; Oota et al., 2018], sentence representation201

models (see Figure 4) [Sun et al., 2020; Sun et al., 2019;202

Toneva and Wehbe, 2019], RNNs [Jain and Huth, 2018;203

Oota et al., 2019] and Transformer methods [Gauthier and204

Levy, 2019; Toneva and Wehbe, 2019; Schwartz et al., 2019;205

Schrimpf et al., 2021a; Antonello et al., 2021; Oota et206

al., 2022b; Aw and Toneva, 2022]. Popular word em-207

bedding methods include textual (i.e., Word2Vec, fastText,208

and GloVe), linguistic (i.e., dependency), conceptual (i.e.,209

RWSGwn and ConceptNet), contextual (i.e., ELMo). Pop-210

ular sentence embedding models include average, max, con-211

cat of avg and max, SIF, fairseq, skip, GenSen, InferSent,212

ELMo, BERT, RoBERTa, USE, QuickThoughts and GPT-213

2. Transformer-based methods include pretrained BERT with214

various NLU tasks, finetuned BERT, Transformer-XL, GPT-215

2, BART, BigBird, LED, and LongT5. Experiential attribute216

models represent words in terms of human ratings of their217

degree of association with different attributes of experience, 218

typically on a scale of 0-6 [Anderson et al., 2019; Ander- 219

son et al., 2020; Berezutskaya et al., 2020; Just et al., 2010; 220

Anderson et al., 2017b] or binary [Handjaras et al., 2016; 221

Wang et al., 2017]. 222

Visual Stimulus Representations: For visual stimuli, older 223

methods used visual field filter bank [Thirion et al., 2006; 224

Nishimoto et al., 2011] and Gabor wavelet pyramid [Kay 225

et al., 2008; Naselaris et al., 2009]. Recent methods use 226

models like CNNs [Du et al., 2020; Beliy et al., 2019; 227

Anderson et al., 2017a; Yamins et al., 2014; Nishida et 228

al., 2020] and concept recognition models [Anderson et al., 229

2020]. 230

Audio Stimuli Representations: For audio stimuli, phoneme 231

rate and presence of phonemes have been leveraged [Huth et 232

al., 2016]. Recently, authors in [Nishida et al., 2020] used 233

features from an audio deep learning model called SoundNet 234

for audio stimuli representation. 235

Multimodal Stimulus Representations: To jointly model 236

the information from multimodal stimuli, recently, various 237

multimodal representations have been used. These include 238

processing videos using audio+image representations like 239

VGG+SoundNet [Nishida et al., 2020] or using image+text 240

combination models like GloVe+VGG and ELMo+VGG 241

in [Wang et al., 2020]. Recently, the usage of multimodal 242

text+vision models like CLIP, LXMERT, and VisualBERT 243

was proposed in [Oota et al., 2022d]. 244

3 Naturalistic Neuroscience Datasets 245

We discuss the popular text, visual, audio, video and other 246

multimodal neuroscience datasets that have been proposed 247

in the literature. Table 1 shows a detailed overview of brain 248

recording type, language, stimulus, number of subjects (|S|) 249

and the task across datasets of different modalities. Figure 2 250

shows examples from a few datasets. 251

Text Datasets: These datasets are created by presenting 252

words, sentences, passages or chapters as stimuli. Some of 253

the text datasets include Harry Potter Story [Wehbe et al., 254

2014], ZUCO EEG [Hollenstein et al., 2018] and datasets 255

proposed in [Handjaras et al., 2016; Anderson et al., 2017a; 256

Anderson et al., 2019; Wehbe et al., 2014]. In [Handjaras et 257

al., 2016], participants were asked to verbally enumerate in 258

one minute the properties (features) that describe the entities 259

the words refer to. There were four groups of participants: 5 260

sighted individuals were presented with a pictorial form of the 261

nouns, 5 sighted individuals with a verbal-visual (i.e., written 262

Italian words) form, 5 sighted individuals with a verbal au- 263

ditory (i.e., spoken Italian words) form, and 5 congenitally 264

blind with a verbal auditory form. Data proposed by [An- 265

derson et al., 2017a] contains 70 Italian words taken from 266

seven taxonomic categories (abstract, attribute, communica- 267

tion, event/action, person/social role, location, object/tool) in 268

the law and music domain. The word list contains concrete 269

as well as abstract words. ZUCO dataset [Hollenstein et al., 270

2018] contains sentences for which fMRIs were obtained for 271

3 tasks: normal reading of movie reviews, normal reading of 272

Wikipedia sentences and task-specific reading of Wikipedia 273

sentences. For this dataset curation, sentences were presented 274



Table 1: Naturalistic Neuroscience Datasets

Dataset Authors Type Lang. Stimulus |S| Task

Te
xt

Harry Potter [Wehbe et al., 2014] fMRI/
MEG

English Reading Chapter 9 of Harry Potter and the Sorcerer’s Stone 9 Story understanding

[Handjaras et al., 2016] fMRI Italian Verbal, pictorial or auditory presentation of 40 concrete nouns, four times 20 Property Generation
[Anderson et al., 2017a] fMRI Italian Reading 70 concrete and abstract nouns from law/music, five times 7 Imagine a situation with noun

ZuCo [Hollenstein et al., 2018] EEG English Reading 1107 sentences with 21,629 words from movie reviews 12 Rate movie quality
240 Sentences with Con-
tent Words

[Anderson et al., 2019] fMRI English Reading 240 active voice sentences describing everyday situations 14 Passive reading

BCCWJ-EEG [Oseki and Asahara, 2020] EEG Japanese Reading 20 newspaper articles for ∼30-40 minutes 40 Passive reading
Subset Moth Radio Hour [Deniz et al., 2019] fMRI English Reading 11 stories 9 Passive reading and Listening

V
is

ua
l

[Thirion et al., 2006] fMRI - Viewing rotating wedges (8 times), expanding/contracting rings (8
times), rotating 36 Gabor filters (4 times), grid (36 times)

9 Passive viewing

Vim-1 [Kay et al., 2008] fMRI - Viewing sequences of 1870 natural photos 2 Passive viewing
Generic Object Decoder [Horikawa and Kamitani,

2017]
fMRI - Viewing 1,200 images from 150 object categories; 50 images from 50

object categories; imagery 10 times
5 Repetition detection

BOLD5000 [Chang et al., 2019] fMRI - Viewing 5254 images depicting real-world scenes 4 Passive viewing
Algonauts [Cichy et al., 2019] fMRI/

MEG
- Viewing 92 silhouette object images and 118 images of objects on natural

background
15 Passive viewing

NSD [Allen et al., 2022] fMRI - Viewing 73000 natural scenes 8 Passive viewing
THINGS [Hebart et al., 2022] fMRI/

MEG
- Viewing 31188 natural images 8 Passive viewing

A
ud

io

[Handjaras et al., 2016] fMRI Italian Verbal, pictorial or auditory presentation of 40 concrete nouns, 4 times 20 Property Generation
The Moth Radio Hour [Huth et al., 2016] fMRI English Listening eleven 10-minute stories 7 Passive Listening

[Brennan and Hale, 2019] EEG English Listening Chapter one of Alice’s Adventures in Wonderland (2,129
words in 84 sentences) as read by Kristen McQuillan

33 Question answering

[Anderson et al., 2020] fMRI English Listening one of 20 scenario names, 5 times 26 Imagine personal experiencs
Narratives [Nastase et al., 2021] fMRI English Listening 27 diverse naturalistic spoken stories. 891 functional scans 345 Passive Listening
Natural Stories [Zhang et al., 2020] fMRI English Listening Moth-Radio-Hour naturalistic spoken stories. 19 Passive Listening
The Little Prince [Li et al., 2021] fMRI English Listening audiobook for about 100 minutes. 112 Passive Listening
MEG-MASC [Gwilliams et al., 2022] MEG English Listening two hours of naturalistic stories. 208 MEG sensors 27 Passive Listening

V
id

eo

BBC’s Doctor Who [Seeliger et al., 2019] fMRI English Viewing spatiotemporal visual and auditory videos (30 episodes). 120.8
whole-brain volumes (∼23 h) of single-presentation data, and 1.2 vol-
umes (11 min) of repeated narrative short episodes. 22 repetitions

1 Passive viewing

Japanese Ads [Nishida et al., 2020] fMRI Japanese Viewing 368 web and 2452 TV Japanese ad movies (15-30s). 7200 train
and 1200 test fMRIs for web; fMRIs from 420 ads.

52 Passive viewing

Pippi Langkous [Berezutskaya et al., 2020] ECoG Swedish/
Dutch

Viewing 30 s excerpts of a feature film (in total, 6.5 min long), edited
together for a coherent story

37 Passive viewing

Algonauts [Cichy et al., 2021] fMRI English Viewing 1000 short video clips (3 sec each) 10 Passive viewing
Natual Short Clips [Huth et al., 2022] fMRI English Watching natural short movie clips 5 Passive viewing
Natual Short Clips [Lahner et al., 2023] fMRI English Watching 1102 natural short video clips 10 Passive viewing

O
th

er
M

ul
tim

od
al

60 Concrete Nouns [Mitchell et al., 2008] fMRI English Viewing 60 different word-picture pairs from 12 categories, 6 times each 9 Passive viewing
[Sudre et al., 2012] MEG English Reading 60 concrete nouns along with line drawings. 20 questions per

noun lead to 1200 examples.
9 Question answering

[Zinszer et al., 2018] fNIRS English 8 concrete nouns (audiovisual word and picture stimuli): bunny, bear,
kitty, dog, mouth, foot, hand, and nose; 12 times repeated.

24 Passive viewing and listening

Pereira [Pereira et al., 2018] fMRI English Viewing 180 Words with Picture, Sentences, word clouds; reading 96
text passages; 72 passages. 3 times repeated.

16 Passive viewing and reading

[Cao et al., 2021] fNIRS Chinese Viewing and listening 50 concrete nouns from 10 semantic categories. 7 Passive viewing and listening
Neuromod [Boyle et al., 2020] fMRI English Watching TV series (Friends, Movie10) 6 Passive viewing and listening

to the subjects in a naturalistic reading scenario. A complete275

sentence is presented on the screen. Subjects read each sen-276

tence at their own speed, i.e., the reader determines for how277

long each word is fixated and which word to fixate next.278

Visual Datasets: Older visual datasets were based on binary279

visual patterns [Thirion et al., 2006]. Recent datasets con-280

tain natural images. Examples include Vim-1 [Kay et al.,281

2008], BOLD5000 [Chang et al., 2019], Algonauts [Cichy282

et al., 2019], NSD [Allen et al., 2022], Things-data[Hebart et283

al., 2022], and the dataset proposed in [Horikawa and Kami-284

tani, 2017]. BOLD5000 includes ∼20 hours of MRI scans285

per each of the four participants. 4,916 unique images were286

used as stimuli from 3 image sources. Algonauts contains two287

sets of training data, each consisting of an image set and brain288

activity in RDM format (for fMRI and MEG). Training set 1289

has 92 silhouette object images, and training set 2 has 118290

object images with natural backgrounds. Testing data con-291

sists of 78 images of objects on natural backgrounds. Most292

of the visual datasets involve passive viewing, but the dataset293

in [Horikawa and Kamitani, 2017] involved the participant 294

doing the one-back repetition detection task. 295

Audio Datasets: Most of the proposed audio datasets are 296

in English [Huth et al., 2016; Brennan and Hale, 2019; 297

Anderson et al., 2020; Nastase et al., 2021], while there is 298

one [Handjaras et al., 2016] on Italian. The participants were 299

involved in a variety of tasks while their brain activations 300

were measured: Property generation [Handjaras et al., 2016], 301

passive listening [Huth et al., 2016; Nastase et al., 2021], 302

question answering [Brennan and Hale, 2019] and imagining 303

themselves personally experiencing common scenarios [An- 304

derson et al., 2020]. In the last one, participants underwent 305

fMRI as they reimagined the scenarios (e.g., resting, reading, 306

writing, bathing, etc.) when prompted by standardized cues. 307

Narratives [Nastase et al., 2021] used 17 different stories as 308

stimuli. Across subjects, it is 6.4 days worth of recordings. 309

Video Datasets: Recently, video neuroscience datasets have 310

also been proposed. These include BBC’s Doctor Who [Seel- 311

iger et al., 2019], Japanese Ads [Nishida et al., 2020], Pippi 312

https://drive.google.com/drive/folders/1Q6zVCAJtKuLOhzWpkS3lH8LBvHcEOE8
https://berkeley.app.box.com/v/Deniz-et-al-2019/folder/91885397358
https://crcns.org/data-sets/vc/vim-1
https://openneuro.org/datasets/ds001246
https://bold5000-dataset.github.io/website/download.html
http://algonauts.csail.mit.edu/braindata.html
https://naturalscenesdataset.org/
https://things-initiative.org
https://openneuro.org/datasets/ds003020
https://datasets.datalad.org/?dir=/labs/hasson/narratives
https://openneuro.org/datasets/ds003643
https://gin.g-node.org/gallantlab/shortclips/src/master


Figure 5: Evaluation Metrics for Brain Encoding and Decoding. (LEFT) Pearson Correlation, (MIDDLE) 2V2 Accuracy [Toneva et al.
2020], and (RIGHT) Pairwise Accuracy.

Langkous [Anderson et al., 2020] and Algonauts [Cichy et313

al., 2021]. Japanese Ads data contains data for two sets of314

movies were provided by NTT DATA Corp: web and TV ads.315

There are also four types of cognitive labels associated with316

the movie datasets: scene descriptions, impression ratings,317

ad effectiveness indices, and ad preference votes. Algonauts318

2021 contains fMRIs from 10 human subjects that watched319

over 1,000 short (3 sec) video clips.320

Other Multimodal Datasets: Finally, beyond the video321

datasets, datasets have also been proposed with other kinds322

of multimodality. These datasets are audiovisual ([Zinszer323

et al., 2018; Cao et al., 2021]), words associated with line324

drawings [Mitchell et al., 2008; Sudre et al., 2012], pictures325

along with sentences and word clouds [Pereira et al., 2018].326

These datasets have been collected using a variety of meth-327

ods like fMRIs [Mitchell et al., 2008; Pereira et al., 2018],328

MEG [Sudre et al., 2012] and fNIRS [Zinszer et al., 2018;329

Cao et al., 2021]. Specifically, in [Sudre et al., 2012], sub-330

jects were asked to perform a QA task, while their brain ac-331

tivity was recorded using MEG. Subjects were first presented332

with a question (e.g., “Is it manmade?”), followed by 60 con-333

crete nouns, along with their line drawings, in a random or-334

der. For all other datasets, subjects performed passive view-335

ing and/or listening.336

4 Evaluation Metrics337

Two metrics are popularly used to evaluate brain encoding338

models: 2V2 accuracy [Toneva et al., 2020; Oota et al.,339

2022b] and Pearson Correlation [Jain and Huth, 2018], as340

shown in Figure 5.341

They are defined as follows. Given a subject and a brain342

region, let N be the number of samples. Let {Yi}Ni=1 and343

{Ŷi}Ni=1 denote the actual and predicted voxel value vectors344

for the ith sample. Thus, Y ∈ RN×V and Ŷ ∈ RN×V345

where V is the number of voxels in that region. 2V2 Accu-346

racy is computed as 1
NC2

∑N−1
i=1

∑N
j=i+1 I[{cosD(Yi, Ŷi) +347

cosD(Yj , Ŷj)} < {cosD(Yi, Ŷj) + cosD(Yj , Ŷi)}] where348

cosD is the cosine distance function. I[c] is an indicator func-349

tion such that I[c] = 1 if c is true, else it is 0. The higher350

the 2V2 accuracy, the better. Pearson Correlation is com-351

puted as PC= 1
N

∑n
i=1 corr[Yi, Ŷi] where corr is the correla-352

tion function. 353

Brain decoding methods are evaluated using popular met- 354

rics like pairwise and rank accuracy [Pereira et al., 2018; 355

Oota et al., 2022c]. Other metrics used for brain decod- 356

ing evaluation include R2 score, mean squared error, and us- 357

ing Representational Similarity Matrix [Cichy et al., 2019; 358

Cichy et al., 2021]. 359

Pairwise Accuracy To measure the pairwise accuracy, the 360

first step is to predict all the test stimulus vector representa- 361

tions using a trained decoder model. Let S = [S0, S1,· · · ,Sn], 362

Ŝ = [Ŝ0, Ŝ1,· · · ,Ŝn] denote the “true” (stimuli-derived) and 363

predicted stimulus representations for n test instances resp. 364

Given a pair (i, j) such that 0 ≤ i, j ≤ n, score is 1 365

if corr(Si,Ŝi) + corr(Sj ,Ŝj) > corr(Si,Ŝj) + corr(Sj ,Ŝi), 366

else 0. Here, corr denotes the Pearson correlation. Fi- 367

nal pairwise matching accuracy per participant is the aver- 368

age of scores across all pairs of test instances. For com- 369

puting rank accuracy, we first compare each decoded vector 370

to all the “true” stimuli-derived semantic vectors and ranked 371

them by their correlation. The classification performance re- 372

flects the rank r of the stimuli-derived vector for the correct 373

word/picture/stimuli: 1 − r−1
#instances−1 . The final accuracy 374

value for each participant is the average rank accuracy across 375

all instances. 376

5 Brain Encoding 377

Encoding is the learning of the mapping from the stimulus 378

domain to the neural activation. The quest in brain encoding 379

is for “reverse engineering” the algorithms that the brain uses 380

for sensation, perception, and higher-level cognition. Recent 381

breakthroughs in applied NLP enable reverse engineering the 382

language function of the brain. Similarly, pioneering results 383

have been obtained for reverse engineering the function of 384

ventral visual stream in object recognition founded on the ad- 385

vances and remarkable success of deep CNNs. The overall 386

schema of building a brain encoder is shown in Figure 6. 387

Initial studies on brain encoding focused on smaller data 388

sets and single modality of brain responses. Early mod- 389

els used word representations [Hollenstein et al., 2019]. 390

Rich contextual representations derived from RNNs such 391

as LSTMs resulted in superior encoding models [Jain and 392

Huth, 2018; Oota et al., 2019] of narratives. The recent 393



Figure 6: Schema for Brain Encoding

efforts are aimed at utilizing the internal representations394

extracted from transformer-based language models such as395

ELMo, BERT, GPT-2, etc for learning encoding models of396

brain activation [Jat et al., 2020; Caucheteux et al., 2021;397

Antonello et al., 2021]. High-grain details such as lexical,398

compositional, syntactic, and semantic representations of nar-399

ratives are factorized from transformer-based models and uti-400

lized for training encoding models. The resulting models are401

better able to disentangle the corresponding brain responses402

in fMRI [Caucheteux et al., 2021]. Finally, is has been found403

that the models that integrate task and stimulus representa-404

tions have significantly higher prediction performance than405

models that do not account for the task semantics [Toneva et406

al., 2020; Schrimpf et al., 2021a].407

Similarly, in vision, early models focused on indepen-408

dent models of visual processing (object classification) us-409

ing CNNs [Yamins et al., 2014]. Recent efforts in visual en-410

coding models focus on using richer visual representations411

derived from a variety of computer vision tasks [Wang et412

al., 2019]. Instead of feed-forward deep CNN models, us-413

ing shallow recurrence enabled better capture of temporal dy-414

namics in the visual encoding models [Kubilius et al., 2019;415

Schrimpf et al., 2020].416

Table 2 summarizes various encoding models proposed in417

the literature related to textual, audio, visual, and multimodal418

stimuli. Figure 7 classifies the encoding literature along var-419

ious stimulus domains such as vision, auditory, multimodal,420

and language and the corresponding tasks in each domain.421

Linguistic Encoding: A number of previous works have in-422

vestigated the alignment between pretrained language mod-423

els and brain recordings of people comprehending language.424

Huth et al. [2016] have been able to identify brain ROIs (Re-425

gions of Interest) that respond to words that have a similar426

meaning and have thus built a “semantic atlas” of how the427

human brain organizes language. Many studies have shown428

accurate results in mapping the brain activity using neural429

distributed word embeddings for linguistic stimuli [Ander-430

son et al., 2017a; Pereira et al., 2018; Oota et al., 2018;431

Nishida and Nishimoto, 2018; Sun et al., 2019]. Unlike ear-432

lier models where each word is represented as an indepen- 433

dent vector in an embedding space, [Jain and Huth, 2018] 434

built encoding models using rich contextual representations 435

derived from an LSTM language model in a story listen- 436

ing task. With these contextual representations, they demon- 437

strated dissociation in brain activation – auditory cortex (AC) 438

and Broca’s area in shorter context whereas left Temporo- 439

Parietal junction (TPJ) in longer context. [Hollenstein et al., 440

2019] presents the first multimodal framework for evaluat- 441

ing six types of word embedding (Word2Vec, WordNet2Vec, 442

GloVe, FastText, ELMo, and BERT) on 15 datasets, includ- 443

ing eye-tracking, EEG and fMRI signals recorded during lan- 444

guage processing. With the recent advances in contextual rep- 445

resentations in NLP, few studies incorporated them in relating 446

sentence embeddings with brain activity patterns [Sun et al., 447

2020; Gauthier and Levy, 2019; Jat et al., 2020]. 448

More recently, researchers have begun to study the align- 449

ment of language regions of the brain with the layers of lan- 450

guage models and found that the best alignment was achieved 451

in the middle layers of these models [Jain and Huth, 2018; 452

Toneva and Wehbe, 2019]. Schrimpf et al. [2021a] examined 453

the relationship between 43 diverse state-of-the-art language 454

models. They also studied the behavioral signatures of human 455

language processing in the form of self-paced reading times, 456

and a range of linguistic functions assessed via standard engi- 457

neering tasks from NLP. They found that Transformer-based 458

models perform better than RNNs or word-level embedding 459

models. Larger-capacity models perform better than smaller 460

models. Models initialized with random weights (prior to 461

training) perform surprisingly similarly in neural predictiv- 462

ity as compared to final trained models, suggesting that net- 463

work architecture contributes as much or more than expe- 464

rience dependent learning to a model’s match to the brain. 465

Antonello et al. [2021] proposed a “language representation 466

embedding space” and demonstrated the effectiveness of the 467

features from this embedding in predicting fMRI responses 468

to linguistic stimuli. 469

Disentangling the Syntax and Semantics: The represen- 470

tations of transformer models like BERT, GPT-2 have been 471



Table 2: Summary of Representative Brain Encoding Studies

Stimuli Authors Dataset
Type

Lang. Stimulus Representations |S| Dataset Model
Te

xt

[Jain and Huth, 2018] fMRI English LSTM 6 Subset Moth Radio Hour Ridge
[Toneva and Wehbe, 2019] fMRI/ MEG English ELMo, BERT, Transformer-XL 9 Story understanding Ridge
[Toneva et al., 2020] MEG English BERT 9 Question-Answering Ridge
[Schrimpf et al., 2021b] fMRI/ECoG English 43 language models (e.g. GloVe, ELMo, BERT,

GPT-2, XLNET)
20 Neural architecture of language Ridge

[Gauthier and Levy, 2019] fMRI English BERT, fine-tuned NLP tasks (Sentiment, Natural
language inference), Scrambling language model

7 Imagine a situation with the noun Ridge

[Deniz et al., 2019] fMRI English GloVe 9 Subset Moth Radio Hour Ridge
[Jain et al., 2020] fMRI English LSTM 6 Subset Moth Radio Hour Ridge
[Caucheteux et al., 2021] fMRI English GPT-2, Basic syntax features 345 Narratives Ridge
[Antonello et al., 2021] fMRI English GloVe, BERT, GPT-2, Machine Translation, POS

tasks
6 Moth Radio Hour Ridge

[Reddy and Wehbe, 2021] fMRI English Constituency, Basic syntax features and BERT 8 Harry Potter Ridge
[Goldstein et al., 2022] fMRI English GloVe, GPT-2 next word, pre-onset, post-onset

word surprise
8 ECoG

[Oota et al., 2022b] fMRI English BERT and GLUE tasks 82 Pereira & Narratives Ridge
[Oota et al., 2022a] fMRI English ESN, LSTM, ELMo, Longformer 82 Narratives Ridge
[Merlin and Toneva, 2022] fMRI English BERT, Next word prediction, multi-word semantics,

scrambling model
8 Harry Potter Ridge

[Toneva et al., 2022] fMRI / MEG English ELMo, BERT, Context Residuals 8 Harry Potter Ridge
[Aw and Toneva, 2022] fMRI English BART, Longformer, Long-T5, BigBird, and corre-

sponding Booksum models as well
8 Passive reading Ridge

[Zhang et al., 2022b] fMRI English,
Chi-
nese

Node Count 19, 12 Zhang Ridge

[Oota et al., 2023a] fMRI English Constituency, Dependency trees, Basic syntax fea-
tures and BERT

82 Narratives Ridge

[Oota et al., 2023b] MEG English Basic syntax features, GloVe and BERT 8 MEG-MASC Ridge
[Tuckute et al., 2023] fMRI English BERT-Large, GPT-2 XL 12 Reading Sentences Ridge
[Kauf et al., 2023] fMRI English BERT-Large, GPT-2 XL 12 Pereira Ridge
[Singh et al., 2023] fMRI English BERT-Large, GPT-2 XL, Text Perturbations 5 Pereira Ridge

V
is

ua
l

[Wang et al., 2019] fMRI 21 downstream vision tasks 4 BOLD 5000 Ridge
[Kubilius et al., 2019] fMRI CNN models AlexNet, ResNet, DenseNet 7 Algonauts Ridge
[Dwivedi et al., 2021] fMRI 21 downstream vision tasks 4 BOLD 5000 Ridge
[Khosla and Wehbe, 2022] fMRI CNN models AlexNet 4 BOLD 5000 Ridge
[Conwell et al., 2023] fMRI CNN models AlexNet 4 BOLD 5000 Ridge

A
ud

io

[Millet et al., 2022] fMRI English Wav2Vec2.0 345 Narratives Ridge
[Vaidya et al., 2022] fMRI English APC, AST, Wav2Vec2.0, and HuBERT 7 Moth Radio Hour Ridge
[Tuckute et al., 2022] fMRI English 19 Speech Models (e.g. DeepSpeech, Wav2Vec2.0,

VQ-VAE)
19 Passive listening Ridge

[Oota et al., 2023c] fMRI English 5 basic and 25 deep learning based speech models
(Tera, CPC, APC, Wav2Vec2.0, HuBERT, DistilHu-
BERT, Data2Vec

6 Moth Radio Hour Ridge

[Oota et al., 2023d] fMRI English Wav2Vec2.0 and SUPERB tasks 82 Narratives Ridge

M
ul

ti
M

od
al

[Dong and Toneva, 2023] fMRI English Merlo Reseve 5 Neuromod Ridge
[Popham et al., 2021] fMRI English 985D Semantic Vector 5 Moth Radio Hour & Short Movie

Clips
Ridge

[Oota et al., 2022d] fMRI English CLIP, VisualBERT, LXMERT, CNNs and BERT 5, 82 Periera & Narratives Ridge
[Lu et al., 2022] fMRI English BriVL 5 Pereira & Short Movie Clips Ridge
[Tang et al., 2023] fMRI English BridgeTower 5 Moth Radio Hour & Short Movie

Clips
Ridge

shown to linearly map onto brain activity during language472

comprehension. Several studies have attempted to disentan-473

gle the contributions of different types of information from474

word representations to the alignment between brain record-475

ings and language models. Wang et al. [2020] proposed476

a two-channel variational autoencoder model to dissociate477

sentences into semantic and syntactic representations and478

separately associate them with brain imaging data to find479

feature-correlated brain regions. To separate each syntac-480

tic feature, Zhang et al. [2022a] proposed a feature elim-481

ination method, called Mean Vector Null space Projection.482

Compared with word representations, word syntactic features483

(parts-of-speech, named entities, semantic roles, dependen-484

cies) seem to be distributed across brain networks instead of485

a local brain region. In the previous two studies, we do not486

know whether all or any of these representations effectively487

drive the linear mapping between language models (LMs) and 488

the brain. Toneva et al. [2022] presented an approach to dis- 489

entangle supra-word meaning from lexical meaning in lan- 490

guage models and showed that supra-word meaning is pre- 491

dictive of fMRI recordings in two language regions (anterior 492

and posterior temporal lobes). Caucheteux et al. [2021] pro- 493

posed a taxonomy to factorize the high-dimensional activa- 494

tions of language models into four combinatorial classes: lex- 495

ical, compositional, syntactic, and semantic representations. 496

They found that (1) Compositional representations recruit a 497

more widespread cortical network than lexical ones, and en- 498

compass the bilateral temporal, parietal and prefrontal cor- 499

tices. (2) Contrary to previous claims, syntax and semantics 500

are not associated with separated modules, but, instead, ap- 501

pear to share a common and distributed neural substrate. 502

While previous works studied syntactic processing as cap- 503
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Figure 7: Brain Encoding Survey Tree

tured through complexity measures (syntactic surprisal, node504

count, word length, and word frequency), very few have stud-505

ied the syntactic representations themselves. Studying syn-506

tactic representations using fMRI is difficult because: (1) 507

representing syntactic structure in an embedding space is a 508

non-trivial computational problem, and (2) the fMRI signal 509



is noisy. To overcome these limitations, Reddy et al. [2021]510

proposed syntactic structure embeddings that encode the syn-511

tactic information inherent in natural text that subjects read512

in the scanner. The results reveal that syntactic structure-513

based features explain additional variance in the brain activity514

of various parts of the language system, even after control-515

ling for complexity metrics that capture the processing load.516

Toneva et al. [2021] further examined whether the represen-517

tations obtained from a language model align with different518

language processing regions in a similar or different way.519

Linguistic properties in LMs and brains: Understanding520

the reasons behind the observed similarities between lan-521

guage comprehension in LMs and brains can lead to more522

insights into both systems. Several works [Schwartz et al.,523

2019; Kumar et al., 2022; Aw and Toneva, 2022; Merlin and524

Toneva, 2022; Oota et al., 2022b] have found that using a525

fine-tuned BERT leads to improved brain predictions. How-526

ever, it is not clear what type of information in the fine-tuned527

BERT model led to the improvement. It is unclear whether528

and how the two systems align in their information processing529

pipeline. Aw and Toneva [2022] used four pre-trained large530

language models (BART, Longformer Encoder Decoder, Big-531

Bird, and LongT5) and also trained them to improve their532

narrative understanding, using the method detailed in Fig-533

ure 8. However, it is not understood whether prediction of534

the next word is necessary for the observed brain alignment535

or simply sufficient, and whether there are other shared mech-536

anisms or information that is similarly important. Merlin and537

Toneva [2022] proposed two perturbations to pretrained lan-538

guage models that, when used together, can control for the ef-539

fects of next word prediction and word-level semantics on the540

alignment with brain recordings. Specifically, they find that541

improvements in alignment with brain recordings in two lan-542

guage processing regions–Inferior Frontal Gyrus (IFG) and543

Angular Gyrus (AG)–are due to next word prediction and544

word-level semantics. However, what linguistic information545

actually underlies the observed alignment between brains and546

language models is not clear. Recently, Oota et al. [2022e]547

tested the effect of a range of linguistic properties (surface,548

syntactic and semantic) and found that the elimination of each549

linguistic property results in a significant decrease in brain550

alignment across all layers of BERT.551

Visual Encoding: CNNs are currently the best class of mod-552

els of the neural mechanisms of visual processing [Du et al.,553

2020; Beliy et al., 2019; Oota et al., 2019; Nishida et al.,554

2020]. How can we push these deeper CNN models to cap-555

ture brain processing even more stringently? Continued ar-556

chitectural optimization on ImageNet alone no longer seems557

like a viable option. Kubilius et al. [2019] proposed a shal-558

low recurrent anatomical network CORnet that follows neu-559

roanatomy more closely than standard CNNs, and achieved560

the state-of-the-art results on the Brain-score benchmark. It561

has four computational areas, conceptualized as analogous to562

the ventral visual areas V1, V2, V4, and IT, and a linear cate-563

gory decoder that maps from the population of neurons in the564

model’s last visual area to its behavioral choices.565

Despite the effectiveness of CNNs, it is difficult to draw566

specific inferences about neural information processing us-567

ing CNN- derived representations from a generic object-568

classification CNN. Hence, Wang et al. [2019] built encoding 569

models with individual feature spaces obtained from 21 com- 570

puter vision tasks. One of the main findings is that features 571

from 3D tasks, compared to those from 2D tasks, predict a 572

distinct part of visual cortex. 573

Auditory Encoding: Speech stimuli have mostly been rep- 574

resented using encodings of text transcriptions [Huth et al., 575

2016] or using basic features like phoneme rate, the sum of 576

squared FFT coefficients [Pandey et al., 2022], etc. Text 577

transcription-based methods ignore the raw audio-sensory in- 578

formation completely. The basic speech feature engineering 579

method misses the benefits of transfer learning from rigor- 580

ously pretrained speech DL models. 581

Recently, several researchers have used popular deep 582

learning models such as APC [Chung et al., 2020], 583

Wav2Vec2.0 [Baevski et al., 2020], HuBERT [Hsu et al., 584

2021], and Data2Vec [Baevski et al., 2022] for encoding 585

speech stimuli. Millet et al. [2022] used a self-supervised 586

learning model Wav2Vec2.0 to learn latent representations 587

of the speech waveform similar to those of the human brain. 588

They find that the functional hierarchy of its transformer lay- 589

ers aligns with the cortical hierarchy of speech in the brain, 590

and reveals the whole-brain organisation of speech processing 591

with an unprecedented clarity. This means that the first trans- 592

former layers map onto the low-level auditory cortices (A1 593

and A2), the deeper layers (orange and red) map onto brain 594

regions associated with higher-level processes (e.g. STS and 595

IFG). Vaidya et al. [2022] present the first systematic study 596

to bridge the gap between recent four self-supervised speech 597

representation methods (APC, Wav2Vec, Wav2Vec2.0, and 598

HuBERT) and computational models of the human auditory 599

system. Similar to [Millet et al., 2022], they find that self- 600

supervised speech models are the best models of auditory ar- 601

eas. Lower layers best modeled low-level areas, and upper- 602

middle layers were most predictive of phonetic and semantic 603

areas, while layer representations follow the accepted hier- 604

archy of speech processing. Tuckute et al. [2022] analyzed 605

19 different speech models and find that some audio models 606

derived in engineering contexts (model applications ranged 607

from speech recognition and speech enhancement to audio 608

captioning and audio source separation) produce poor predic- 609

tions of auditory cortical responses, many task-optimized au- 610

dio speech deep learning models outpredict a standard spec- 611

trotemporal model of the auditory cortex and exhibit hierar- 612

chical layer-region correspondence with auditory cortex. 613

Multimodal Brain Encoding: Multimodal stimuli can be 614

best encoded using recently proposed deep learning based 615

multimodal models. Oota et al. [2022d] experimented with 616

multimodal models like Contrastive Language-Image Pre- 617

training (CLIP), Learning Cross-Modality Encoder Repre- 618

sentations from Transformers (LXMERT), and VisualBERT 619

and found VisualBERT to the best. Similarly, Wang et 620

al. [2022] find that multimdoal models like CLIP better pre- 621

dict neural responses in visual cortex, since image captions 622

typically contain the most semantically relevant information 623

in an image for humans. [Dong and Toneva, 2023] present a 624

systematic approach to probe multi-modal video Transformer 625

model by leveraging neuroscientific evidence of multimodal 626

information processing in the brain. The authors find that in- 627



Figure 8: Comparison of brain recordings with language models trained on web corpora (LEFT) and language models trained on book stories
(RIGHT) [Aw and Toneva, 2022].

termediate layers of a multimodal video transformer are bet-628

ter at predicting multimodal brain activity than other layers,629

indicating that the intermediate layers encode the most brain-630

related properties of the video stimuli. Recently, [Tang et al.,631

2023] investigated a multimodal Transformer as the encoder632

architecture to extract the aligned concept representations for633

narrative stories and movies to model fMRI responses to nat-634

uralistic stories and movies, respectively. Since language and635

vision rely on similar concept representations, the authors636

perform a cross-modal experiment in which how well the lan-637

guage encoding models can predict movie-fMRI responses638

from narrative story features (story → movie) and how well639

the vision encoding models can predict narrative story-fMRI640

responses from movie features (movie → story). Overall, the641

authors find that cross-modality performance was higher for642

features extracted from multimodal transformers than for lin-643

early aligned features extracted from unimodal transformers.644

6 Brain Decoding645

Decoding is the learning of the mapping from neural activa-646

tions back to the stimulus domain. Figure 9 depicts the typical647

workflow for building an image/language decoder.648

Decoder Architectures: In most cases, the stimulus repre-649

sentation is decoded using typical ridge regression models650

trained on each voxel and its 26 neighbors in 3D to pre-651

dict each dimension of the stimulus representation. Also,652

decoding is usually performed using the most informative653

voxels [Pereira et al., 2018]. In some cases, a fully con- 654

nected layer [Beliy et al., 2019] or a multi-layered percep- 655

tron [Sun et al., 2019] has been used. In some studies, 656

when decoding is modeled as multi-class classification, Gaus- 657

sian Naı̈ve Bayes [Singh et al., 2007; Just et al., 2010] and 658

SVMs [Thirion et al., 2006] have also been used for decod- 659

ing. Figure 10 summarizes the literature related to various 660

decoding solutions proposed in vision, auditory, and language 661

domains. 662

Decoding task settings: The most common setting is to per- 663

form decoding to a vector representation using a stimuli of 664

a single mode (visual, text or audio). Initial brain decoding 665

experiments studied the recovery of simple concrete nouns 666

and verbs from fMRI brain activity [Nishimoto et al., 2011] 667

where the subject watches either a picture or a word. Sun 668

et al. [2019] used several sentence representation models to 669

associate brain activities with sentence stimulus, and found 670

InferSent to perform the best. More work has focused on de- 671

coding the text passages instead of individual words [Wehbe 672

et al., 2014]. 673

Some studies have focused on multimodal stimuli based 674

decoding where the goal is still to decode the text represen- 675

tation vector. For example, Pereira et al. [2018] trained the 676

decoder on imaging data of individual concepts, and showed 677

that it can decode semantic vector representations from imag- 678

ing data of sentences about a wide variety of both concrete 679

and abstract topics from two separate datasets. Further, Oota 680



Figure 9: Schema for Brain Decoding. LEFT: Image decoder [Smith et al. 2011], RIGHT: Language Decoder [Wang et al. 2019]

Table 3: Summary of Representative Brain Decoding Studies

Stimuli Authors Dataset
Type

Lang. Stimulus Representations |S| Dataset Model

Te
xt

[Pereira et al., 2018] fMRI English Word2Vec, GloVe, BERT 17 Pereira Ridge
[Wang et al., 2020] fMRI English BERT, RoBERTa 6 Pereira Ridge
[Oota et al., 2022c] fMRI English GloVe, BERT, RoBERTa 17 Pereira Ridge
[Tang et al., 2022] fMRI English GPT, fine-tuned GPT on Reddit comments and au-

tobiographical stories
7 Moth Radio Hour Ridge

V
is

ua
l

[Beliy et al., 2019] fMRI End-to-End Encoder-Decoder, Decoder-Encoder,
AlexNet

5 Generic Object Decoding, ViM-1

[Takagi and Nishimoto, 2022] fMRI Latent Diffusion Model, CLIP 4 NSD Ridge
[Ozcelik and VanRullen, 2023] fMRI VDVAE, Latent Diffusion Model 7 NSD
[Chen et al., 2023b] fMRI Latent Diffusion Model, CLIP 3 HCP fMRI-Video-Dataset Ridge

A
ud

io [Défossez et al., 2022] MEG,EEG English MEL Spectrogram, Wav2Vec2.0 169 MEG-MASC Ridge,
CLIP

[Gwilliams et al., 2022] MEG English Phonemes 7 MEG-MASC

Brain Decoding

Language

Decoding
word/sentence vector

[Pereira et al., 2018; Sun
et al., 2019; Gauthier and
Levy, 2019; Abdou et al.,
2021; Oota et al., 2022c]

Reconstructing
continuous language

[Affolter et al., 2020;
Tang et al., 2022]

Auditory Speech re-
construction

[Anumanchipalli et al., 2019;
Défossez et al., 2022]

Vision

Image reconstruction [Naselaris et al., 2009; Beliy et
al., 2019; Takagi and Nishimoto,

2022; Ozcelik and VanRullen,
2023; Chen et al., 2023a]

Video reconstruction [Nishimoto et al., 2011;
Chen et al., 2023b]

Figure 10: Brain Decoding Survey Tree

et al. [2022c] propose two novel brain decoding setups: (1)681

multi-view decoding (MVD) and (2) cross-view decoding682

(CVD). In MVD, the goal is to build an MV decoder that683

can take brain recordings for any view as input and predict684

the concept. In CVD, the goal is to train a model which takes685

brain recordings for one view as input and decodes a seman-686

tic vector representation of another view. Specifically, they 687

study practically useful CVD tasks like image captioning, im- 688

age tagging, keyword extraction, and sentence formation. 689

To understand application of Transformer models for de- 690

coding better, Gauthier et al. [2019] fine-tuned a pre-trained 691

BERT on a variety of NLU tasks, asking which lead to im- 692



provements in brain-decoding performance. They find that693

tasks which produce syntax-light representations yield signif-694

icant improvements in brain decoding performance. Toneva695

et al. [2019] study how representations of various Trans-696

former models differ across layer depth, context length, and697

attention type.698

Some studies have attempted to reconstruct words [Affolter699

et al., 2020], continuous language [Tang et al., 2022], im-700

ages [Du et al., 2020; Beliy et al., 2019; Fang et al., 2020;701

Lin et al., 2022], speech [Défossez et al., 2022] or question-702

answer speech dialogues [Moses et al., 2019] rather than just703

predicting a semantic vector representation. Lastly, some704

studies have focused on reconstructing personal imagined ex-705

periences [Berezutskaya et al., 2020] or application-based706

decoding like using brain activity scanned during a picture-707

based mechanical engineering task to predict individuals’708

physics/engineering exam results [Cetron et al., 2019] and709

reflecting whether current thoughts are detailed, correspond710

to the past or future, are verbal or in images [Smallwood and711

Schooler, 2015]. Table 3 aggregates the brain decoding liter-712

ature along different stimulus domains such as textual, visual,713

and audio.714

7 Conclusion, Limitations, and Future Trends715

Conclusion In this paper, we surveyed important datasets,716

stimulus representations, brain encoding and brain decoding717

methods across different modalities. A glimpse of how deep718

learning solutions throw light on putative brain computations719

is given.720

Limitations Naturalistic datasets of passive reading/listening721

offer ecologically realistic settings for investigating brain722

function. However, the lack of a task (as in a controlled723

psycholinguistic experiment) that probes the participant’s un-724

derstanding of the narrative limits the inferences that can be725

made on what the participant’s brain is actually engaged in726

while passively following the stimuli. This becomes even727

more important when multi-lingual, multiscriptal participants728

process stimuli in L2 language or script – it is unclear if the729

brain activity reflects the processing of L2 or active suppres-730

sion L1 while focusing on L2 [Malik-Moraleda et al., 2022].731

Future Trends Some of the future areas of work in this field732

are as follows: (1) While there is work on the text, under-733

standing the similarity in information processing between vi-734

sual/speech/multimodal models versus natural brain systems735

remains an open area. (2) Decoding to actual multimodal736

stimuli seems feasible thanks to recent advances in generation737

using deep learning models. (3) Deeper understanding of the738

degree to which damage to different parts of the human brain739

could lead to the degradation of cognitive skills. (4) How can740

we train artificial neural networks in novel self-supervised741

ways such that they compose word meanings or comprehend742

images and speech like a human brain? (5) How can we lever-743

age improved neuroscience understanding to suggest changes744

in proposed artificial neural network architectures to make745

them more robust and accurate? We hope that this survey746

motivates research along the above directions.747
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