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Deep Neural Networks and Brain Alignment: Brain Encoding and Decoding (Survey)

How does the brain represent different modes of 1 information? Can we design a system that au-2 tomatically understands what the user is think-3 ing? Such questions can be answered by study-4 ing brain recordings like functional magnetic res-5 onance imaging (fMRI). As a first step, the neu-6 roscience community has contributed several large 7 cognitive neuroscience datasets related to passive 8 reading/listening/viewing of concept words, narra-9 tives, pictures and movies. Encoding and decod-10 ing models using these datasets have also been pro-11 posed in the past two decades. These models serve 12 as additional tools for basic research in cognitive 13 science and neuroscience. Encoding models aim 14 at generating fMRI brain representations given a 15 stimulus automatically. They have several practi-16 cal applications in evaluating and diagnosing neu-17 rological conditions and thus also help design ther-18 apies for brain damage. Decoding models solve 19 the inverse problem of reconstructing the stim-20 uli given the fMRI. They are useful for designing 21 brain-machine or brain-computer interfaces. In-22 spired by the effectiveness of deep learning mod-23 els for natural language processing, computer vi-24 sion, and speech, recently several neural encoding 25 and decoding models have been proposed. In this 26 survey, we will first discuss popular representations 27 of language, vision and speech stimuli, and present 28 a summary of neuroscience datasets. Further, we 29 will review popular deep learning based encoding 30 and decoding architectures and note their benefits 31 and limitations. Finally, we will conclude with a 32 brief summary and discussion about future trends. 33 Given the large amount of recently published work 34 in the 'computational cognitive neuroscience' com-35 munity, we believe that this survey nicely organizes 36 the plethora of work and presents it as a coherent 37 story. 38 Cortico Graphy (ECoG), Positron emission tomography 84 (PET), functional MRI (fMRI), Magneto-encephalography 85 (MEG), Electro-encephalography (EEG) and Near-Infrared 86 Spectroscopy (NIRS). These techniques differ in their spatial 87 resolution of neural recording and temporal resolution.

88 fMRIs enable high spatial but low time resolution. Hence, 89 they are good for examining which parts of the brain handle 90 critical functions. fMRI takes 1-4 seconds to complete a scan. 91 This is far lower than the speed at which humans can process 92 language. On the other hand, both MEG and EEG have high 93 time but low spatial resolution. They can preserve rich syn-94 tactic information [Hale et al., 2018] but cannot be used for 95 source analysis. fNIRS are a compromise option. Their time 96 resolution is better than fMRI, and spatial resolution is bet-97 ter than EEG. However, this spatial and temporal resolution 98 balance may not compensate for the loss in both.

Introduction

39

Neuroscience is the field of science that studies the structure 40 and function of the nervous system of different species. It involves answering interesting questions like the following1 .

(1) How learning occurs during adolescence, and how it differs from the way adults learn and form memories. (2) Which specific cells in the brain (and what connections they form with other cells), have a role in how memories are formed? (3) How animals cancel out irrelevant information arriving from the senses and focus only on information that matters. (4) How do humans make decisions? (5) How humans develop speech and learn languages. Neuroscientists study diverse topics that help us understand how the brain and nervous system work.

Motivation:

The central aim of neuroscience is to unravel how the brain represents information and processes it to carry out various tasks (visual, linguistic, auditory, etc.). Deep neural networks (DNN) offer a computational medium to capture the unprecedented complexity and richness of brain activity. Encoding and decoding stated as computational problems succinctly encapsulate this puzzle. As the previous surveys systematically explore the brain encoding and decoding studies with respect to only language [Cao et al., 2021;Karamolegkou et al., 2023], this survey summarizes the latest efforts in how DNNs begin to solve these problems and thereby illuminate the computations that the unreachable brain accomplishes effortlessly.

Brain encoding and decoding: Two main tasks studied in cognitive neuroscience are brain encoding and brain decoding, as shown in Figure 1. Encoding is the process of learning the mapping e from the stimuli S to the neural activation F . The mapping can be learned using features engineering or deep learning. On the other hand, decoding constitutes learning mapping d, which predicts stimuli S back from the brain activation F . However, in most cases, brain decoding aims at predicting a stimulus representation R rather than actually reconstructing S. In both cases, the first step is to learn a semantic representation R of the stimuli S at the train time. Next, for encoding, a regression function e : R → F is trained. For decoding, a function d : F → R is trained. These functions e and d can then be used at test time to process new stimuli and brain activations, respectively.

Techniques for recording brain activations: Popular techniques for recording brain activations include single Micro-

Stimulus

Repr. For audio stimuli, phoneme rate and the presence of phonemes have been leveraged, besides deep learning models like Sound-Net. Finally, for multimodal stimulus representations, researchers have used both early fusion and late fusion deep learning methods. In the early fusion methods, information across modalities is combined in the early steps of processing. While in late fusion, the combination is performed only at the end. We discuss stimulus representation methods in detail in Sec. 2.

Naturalistic Neuroscience Datasets: Several neuroscience datasets have been proposed across modalities (see Figure 2). These datasets differ in terms of the following criteria: (1) Method for recording activations: fMRI, EEG, MEG, etc. (2) Repetition time (TR), i.e. the sampling rate.

(3) Characteristics of fixation points: location, color, shape. (4) Form of stimuli presentation: text, video, audio, images, or other multimodality.

(5) Task that participant performs during recording sessions: question answering, property generation, rating quality, etc. (6) Time given to participants for the task, e.g., 1 minute to list properties. (7) Demography of participants: males/females, sighted/blind, etc. (8) Number of times the response to stimuli was recorded. (9) Natural language associated with the stimuli. We discuss details of proposed datasets in Sec. 3.

Brain Encoding: Other than using the standard stimuli representation architectures, brain encoding literature has focused on studying a few important aspects: (1) Which models lead Brain Decoding: Ridge regression is the most popular brain decoder. Recently, a fully connected layer [START_REF] Beliy | From voxels to pixels and back: Self-supervision in natural-image reconstruction from fmri[END_REF] or multi-layered perceptrons (MLPs) [Sun et al., 2019] have also been used. While older methods attempted to decode to a vector representation using stimuli of a single mode, newer methods focus on multimodal stimuli decoding [START_REF] Pereira | Decoding of generic mental representations 1026 from functional mri data using word embeddings[END_REF]Oota et al., 2022c]. Decoding using Transformers [START_REF] Gauthier | Linking artificial and human neural representations of language[END_REF][START_REF] Toneva | Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain)[END_REF][START_REF] Défossez | [END_REF]Tang et al., 2022], and decoding to actual stimuli (word, passage, image, dialogues) have also been explored. We discuss details of these decoding methods in Sec. 6. et al., 2019;Anderson et al., 2020;[START_REF] Berezutskaya | [END_REF][START_REF] Just | [END_REF]Anderson et al., 2017b] or binary [START_REF] Handjaras | [END_REF][START_REF] Wang | [END_REF].

Visual Stimulus Representations: For visual stimuli, older methods used visual field filter bank [START_REF] Thirion | [END_REF]Nishimoto et al., 2011] and Gabor wavelet pyramid [START_REF] Kay | [END_REF]Naselaris et al., 2009]. Recent methods use models like CNNs [START_REF] Du | Conditional generative neural decoding with structured cnn feature prediction[END_REF][START_REF] Beliy | From voxels to pixels and back: Self-supervision in natural-image reconstruction from fmri[END_REF]Anderson et al., 2017a;Yamins et al., 2014;Nishida et al., 2020] and concept recognition models [Anderson et al., 2020].

Audio Stimuli Representations: For audio stimuli, phoneme rate and presence of phonemes have been leveraged [Huth et al., 2016]. Recently, authors in [Nishida et al., 2020] used features from an audio deep learning model called SoundNet for audio stimuli representation.

Multimodal Stimulus Representations: To jointly model the information from multimodal stimuli, recently, various multimodal representations have been used. These include processing videos using audio+image representations like VGG+SoundNet [Nishida et al., 2020] or using image+text combination models like GloVe+VGG and ELMo+VGG in [Wang et al., 2020]. Recently, the usage of multimodal text+vision models like CLIP, LXMERT, and VisualBERT was proposed in [Oota et al., 2022d].

Naturalistic Neuroscience Datasets

We discuss the popular text, visual, audio, video and other multimodal neuroscience datasets that have been proposed in the literature. Table 1 shows a detailed overview of brain recording type, language, stimulus, number of subjects (|S|) and the task across datasets of different modalities. Figure 2 shows examples from a few datasets.

Text Datasets: These datasets are created by presenting words, sentences, passages or chapters as stimuli. Some of the text datasets include Harry Potter Story [Wehbe et al., 2014], ZUCO EEG [Hollenstein et al., 2018] and datasets proposed in [START_REF] Handjaras | [END_REF]Anderson et al., 2017a;Anderson et al., 2019;Wehbe et al., 2014]. In [START_REF] Handjaras | [END_REF], participants were asked to verbally enumerate in one minute the properties (features) that describe the entities the words refer to. There were four groups of participants: 5 sighted individuals were presented with a pictorial form of the nouns, 5 sighted individuals with a verbal-visual (i.e., written Italian words) form, 5 sighted individuals with a verbal auditory (i.e., spoken Italian words) form, and 5 congenitally blind with a verbal auditory form. Data proposed by [Anderson et al., 2017a] contains 70 Italian words taken from seven taxonomic categories (abstract, attribute, communication, event/action, person/social role, location, object/tool) in the law and music domain. The word list contains concrete as well as abstract words. ZUCO dataset [Hollenstein et al., 2018] contains sentences for which fMRIs were obtained for 3 tasks: normal reading of movie reviews, normal reading of Wikipedia sentences and task-specific reading of Wikipedia sentences. For this dataset curation, sentences were presented to the subjects in a naturalistic reading scenario. A complete sentence is presented on the screen. Subjects read each sentence at their own speed, i.e., the reader determines for how long each word is fixated and which word to fixate next. in [START_REF] Horikawa | [END_REF] involved the participant 294 doing the one-back repetition detection task.

295

Audio Datasets: Most of the proposed audio datasets are 296 in English [Huth et al., 2016;Brennan and Hale, 2019;297 Anderson et al., 2020;Nastase et al., 2021], while there is 298 one [START_REF] Handjaras | [END_REF] on Italian. The participants were 299 involved in a variety of tasks while their brain activations 300 were measured: Property generation [START_REF] Handjaras | [END_REF], 301 passive listening [Huth et al., 2016;Nastase et al., 2021], 302 question answering [Brennan and Hale, 2019] where V is the number of voxels in that region. 2V2 Accu- Brain decoding methods are evaluated using popular metrics like pairwise and rank accuracy [START_REF] Pereira | Toward a universal decoder of linguistic meaning from brain activation[END_REF]Oota et al., 2022c]. Other metrics used for brain decoding evaluation include R 2 score, mean squared error, and using Representational Similarity Matrix [START_REF] Cichy | [END_REF][START_REF] Cichy | [END_REF].

346 racy is computed as 1 N C 2 N -1 i=1 N j=i+1 I[{cosD(Y i , Ŷi ) + 347 cosD(Y j , Ŷj )} < {cosD(Y i , Ŷj ) + cosD(Y j , Ŷi )}]
Pairwise Accuracy To measure the pairwise accuracy, the first step is to predict all the test stimulus vector representations using a trained decoder model.

Let S = [S 0 , S 1 ,• • • ,S n ], Ŝ = [ Ŝ0 , Ŝ1 ,• • • , Ŝn ]
denote the "true" (stimuli-derived) and predicted stimulus representations for n test instances resp. Given a pair (i, j) such that 0 ≤ i, j ≤ n, score is 1 if corr(S i , Ŝi ) + corr(S j , Ŝj ) > corr(S i , Ŝj ) + corr(S j , Ŝi ), else 0. Here, corr denotes the Pearson correlation. Final pairwise matching accuracy per participant is the average of scores across all pairs of test instances. For computing rank accuracy, we first compare each decoded vector to all the "true" stimuli-derived semantic vectors and ranked them by their correlation. The classification performance reflects the rank r of the stimuli-derived vector for the correct word/picture/stimuli: 1 -r-1 #instances-1 . The final accuracy value for each participant is the average rank accuracy across all instances.

Brain Encoding

Encoding is the learning of the mapping from the stimulus domain to the neural activation. The quest in brain encoding is for "reverse engineering" the algorithms that the brain uses for sensation, perception, and higher-level cognition. Recent breakthroughs in applied NLP enable reverse engineering the language function of the brain. Similarly, pioneering results have been obtained for reverse engineering the function of ventral visual stream in object recognition founded on the advances and remarkable success of deep CNNs. The overall schema of building a brain encoder is shown in Figure 6. Initial studies on brain encoding focused on smaller data sets and single modality of brain responses. Early models used word representations [Hollenstein et al., 2019]. Rich contextual representations derived from RNNs such as LSTMs resulted in superior encoding models [Jain and Huth, 2018;Oota et al., 2019] of narratives. The recent More recently, researchers have begun to study the alignment of language regions of the brain with the layers of language models and found that the best alignment was achieved in the middle layers of these models [Jain and Huth, 2018;[START_REF] Toneva | Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain)[END_REF]. Schrimpf et al. [2021a] examined the relationship between 43 diverse state-of-the-art language models. They also studied the behavioral signatures of human language processing in the form of self-paced reading times, and a range of linguistic functions assessed via standard engineering tasks from NLP. They found that Transformer-based models perform better than RNNs or word-level embedding models. Larger-capacity models perform better than smaller models. Models initialized with random weights (prior to training) perform surprisingly similarly in neural predictivity as compared to final trained models, suggesting that network architecture contributes as much or more than experience dependent learning to a model's match to the brain. Antonello et al. [2021] proposed a "language representation embedding space" and demonstrated the effectiveness of the features from this embedding in predicting fMRI responses to linguistic stimuli.

Disentangling the Syntax and Semantics: The representations of transformer models like BERT, GPT-2 have been drive the linear mapping between language models (LMs) and the brain. [START_REF] Toneva | [END_REF] presented an approach to disentangle supra-word meaning from lexical meaning in language models and showed that supra-word meaning is predictive of fMRI recordings in two language regions (anterior and posterior temporal lobes). [START_REF] Caucheteux | [END_REF] proposed a taxonomy to factorize the high-dimensional activations of language models into four combinatorial classes: lexical, compositional, syntactic, and semantic representations. They found that (1) Compositional representations recruit a more widespread cortical network than lexical ones, and encompass the bilateral temporal, parietal and prefrontal cortices.

(2) Contrary to previous claims, syntax and semantics are not associated with separated modules, but, instead, appear to share a common and distributed neural substrate.

While previous works studied syntactic processing as cap-

Brain Encoding

Language Linguistic properties in language models and brains [ Kumar et al., 2022;Aw and Toneva, 2022;[START_REF] Merlin | Language models 952 and brain alignment: beyond word-level semantics and prediction[END_REF]Oota et al., 2022e;Tuckute et al., 2023;[START_REF] Kauf | [END_REF] Disentangling the Syntax and Semantics [ Wang et al., 2020;Zhang et al., 2022a;[START_REF] Caucheteux | [END_REF][START_REF] Toneva | [END_REF][START_REF] Reddy | Can fmri reveal the representation of syntactic structure in the brain?[END_REF]Toneva et al., 2021;Oota et al., 2023a ] NLP tasks in language models and brains [START_REF] Gauthier | Linking artificial and human neural representations of language[END_REF]Schwartz et al., 2019;[START_REF] Toneva | [END_REF]Oota et al., 2022b ] Alignment between pretrained language models and brain [ Huth et al., 2016;Anderson et al., 2017a;Jain and Huth, 2018;[START_REF] Toneva | Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain)[END_REF][START_REF] Deniz | [END_REF]Schrimpf et al., 2021a;[START_REF] Caucheteux | Charlotte Caucheteux and Jean-Rémi King. Language processing in brains and deep neural networks: computational convergence and its limits[END_REF][START_REF] Goldstein | [END_REF]Antonello et al., 2021;Oota et al., 2022a ] Multimodal Incorporating Language into Vision [ Oota et al., 2022d;Popham et al., 2021;Tang et al., 2023;Wang et al., 2022 ] Language & Auditory and Vision [ Lu et al., 2022;[START_REF] Dong | Dota Tianai Dong and Mariya Toneva. Interpreting multimodal video transformers using brain recordings[END_REF] Auditory Alignment between pretrained speech models and brain [ Vaidya et al., 2022;[START_REF] Millet | [END_REF]Tuckute et al., 2022;Oota et al., 2023c ] Speech tasks and brains [ Tuckute et al., 2022;Oota et al., 2023d ] Vision Visual properties in vision models and brains [ Khosla and Wehbe, 2022 ] Alignment between vision models and brain [ Kubilius et al., 2019;[START_REF] Conwell | [END_REF] Vision tasks and brains [ Wang et al., 2019;[START_REF] Dwivedi | [END_REF] Wang et al. [2019] built encoding models with individual feature spaces obtained from 21 computer vision tasks. One of the main findings is that features from 3D tasks, compared to those from 2D tasks, predict a distinct part of visual cortex.

Auditory Encoding: Speech stimuli have mostly been represented using encodings of text transcriptions [Huth et al., 2016] or using basic features like phoneme rate, the sum of squared FFT coefficients [START_REF] Pandey | [END_REF], etc. Text transcription-based methods ignore the raw audio-sensory information completely. The basic speech feature engineering method misses the benefits of transfer learning from rigorously pretrained speech DL models.

Recently, several researchers have used popular deep learning models such as APC [START_REF][END_REF], Wav2Vec2.0 [START_REF] Baevski | [END_REF], HuBERT [Hsu et al., 2021], and Data2Vec [Baevski et al., 2022] for encoding speech stimuli. [START_REF] Millet | [END_REF] used a self-supervised learning model Wav2Vec2.0 to learn latent representations of the speech waveform similar to those of the human brain. They find that the functional hierarchy of its transformer layers aligns with the cortical hierarchy of speech in the brain, and reveals the whole-brain organisation of speech processing with an unprecedented clarity. This means that the first transformer layers map onto the low-level auditory cortices (A1 and A2), the deeper layers (orange and red) map onto brain regions associated with higher-level processes (e.g. STS and IFG). Vaidya et al. [2022] present the first systematic study to bridge the gap between recent four self-supervised speech representation methods (APC, Wav2Vec, Wav2Vec2.0, and HuBERT) and computational models of the human auditory system. Similar to [START_REF] Millet | [END_REF], they find that selfsupervised speech models are the best models of auditory areas. Lower layers best modeled low-level areas, and uppermiddle layers were most predictive of phonetic and semantic areas, while layer representations follow the accepted hierarchy of speech processing. Tuckute et al. [2022] analyzed 19 different speech models and find that some audio models derived in engineering contexts (model applications ranged from speech recognition and speech enhancement to audio captioning and audio source separation) produce poor predictions of auditory cortical responses, many task-optimized audio speech deep learning models outpredict a standard spectrotemporal model of the auditory cortex and exhibit hierarchical layer-region correspondence with auditory cortex.

Multimodal Brain Encoding: Multimodal stimuli can be best encoded using recently proposed deep learning based multimodal models. Oota et al. [2022d] experimented with multimodal models like Contrastive Language-Image Pretraining (CLIP), Learning Cross-Modality Encoder Representations from Transformers (LXMERT), and VisualBERT and found VisualBERT to the best. Similarly, Wang et al. [2022] find that multimdoal models like CLIP better predict neural responses in visual cortex, since image captions typically contain the most semantically relevant information in an image for humans. [START_REF] Dong | Dota Tianai Dong and Mariya Toneva. Interpreting multimodal video transformers using brain recordings[END_REF] present a systematic approach to probe multi-modal video Transformer model by leveraging neuroscientific evidence of multimodal information processing in the brain. The authors find that in- decoding is usually performed using the most informative 653 voxels [START_REF] Pereira | Toward a universal decoder of linguistic meaning from brain activation[END_REF]. In some cases, a fully connected layer [START_REF] Beliy | From voxels to pixels and back: Self-supervision in natural-image reconstruction from fmri[END_REF] or a multi-layered perceptron [Sun et al., 2019] has been used. In some studies, when decoding is modeled as multi-class classification, Gaussian Naïve Bayes [Singh et al., 2007;[START_REF] Just | [END_REF] and SVMs [START_REF] Thirion | [END_REF] have also been used for decoding. Figure 10 summarizes the literature related to various decoding solutions proposed in vision, auditory, and language domains.

Decoding task settings: The most common setting is to perform decoding to a vector representation using a stimuli of a single mode (visual, text or audio). Initial brain decoding experiments studied the recovery of simple concrete nouns and verbs from fMRI brain activity [Nishimoto et al., 2011] where the subject watches either a picture or a word. Sun et al. [2019] used several sentence representation models to associate brain activities with sentence stimulus, and found InferSent to perform the best. More work has focused on decoding the text passages instead of individual words [Wehbe et al., 2014]. Some studies have focused on multimodal stimuli based decoding where the goal is still to decode the text representation vector. For example, [START_REF] Pereira | Toward a universal decoder of linguistic meaning from brain activation[END_REF] trained the decoder on imaging data of individual concepts, and showed that it can decode semantic vector representations from imaging data of sentences about a wide variety of both concrete and abstract topics from two separate datasets. Further, Oota To understand application of Transformer models for decoding better, [START_REF] Gauthier | Linking artificial and human neural representations of language[END_REF] fine-tuned a pre-trained BERT on a variety of NLU tasks, asking which lead to im-provements in brain-decoding performance. They find that tasks which produce syntax-light representations yield signif-694 icant improvements in brain decoding performance. [Tang et al., 2022], im-700 ages [START_REF] Du | Conditional generative neural decoding with structured cnn feature prediction[END_REF][START_REF] Beliy | From voxels to pixels and back: Self-supervision in natural-image reconstruction from fmri[END_REF]Fang et al., 2020; 701 Lin et al., 2022], speech [START_REF] Défossez | [END_REF] or question- 983 [Oota et al., 2019] Subba Reddy Oota,Vijay Rowtula,Manish Gupta,and Raju S Bapi. 984 Stepencog: A convolutional lstm autoencoder for near-perfect fmri encoding. In 
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 1 Figure 1: Computational Cognitive Neuroscience of Brain Encoding and Decoding: Datasets & Stimulus Representations

Figure 2 :

 2 Figure 2: Representative Samples of Naturalistic Brain Dataset: (LEFT) Brain activity recorded when subjects are reading and listening to the same narrative (Deniz et al. 2019), and (RIGHT) example naturalistic image stimuli from various public repositories: BOLD5000 (Chang et al. 2019), SSfMRI (Beliy et al., 2019), and VIM-1 (Kay et al., 2008).

Figure 3 :

 3 Figure 3: Alignment between deep learning systems and human brains [Toneva et al. 2019].

Visual Datasets:

  Older visual datasets were based on binary visual patterns[START_REF] Thirion | [END_REF]. Recent datasets contain natural images. Examples include Vim-1[START_REF] Kay | [END_REF], BOLD5000[Chang et al., 2019], Algonauts[START_REF] Cichy | [END_REF], NSD[START_REF][END_REF], Things-data[Hebart et al., 2022], and the dataset proposed in[START_REF] Horikawa | [END_REF]. BOLD5000 includes ∼20 hours of MRI scans per each of the four participants. 4,916 unique images were used as stimuli from 3 image sources. Algonauts contains two sets of training data, each consisting of an image set and brain activity in RDM format (for fMRI and MEG). Training set 1 has 92 silhouette object images, and training set 2 has 118 object images with natural backgrounds. Testing data consists of 78 images of objects on natural backgrounds. Most of the visual datasets involve passive viewing, but the dataset

Figure 5 :

 5 Figure 5: Evaluation Metrics for Brain Encoding and Decoding. (LEFT) Pearson Correlation, (MIDDLE) 2V2 Accuracy [Toneva et al. 2020], and (RIGHT) Pairwise Accuracy.

  where 348 cosD is the cosine distance function. I[c] is an indicator function such that I[c] = 1 if c is true, else it is 0. The higher 350 the 2V2 accuracy, the better. Pearson Correlation is com-351 puted as PC= 1 N n i=1 corr[Y i , Ŷi ] where corr is the correla-tion function.

Figure 6 :

 6 Figure 6: Schema for Brain Encoding

Figure 7 :

 7 Figure 7: Brain Encoding Survey Tree

Figure 8 :

 8 Figure8: Comparison of brain recordings with language models trained on web corpora (LEFT) and language models trained on book stories (RIGHT)[Aw and Toneva, 2022].

Figure 9 :

 9 Figure 9: Schema for Brain Decoding. LEFT: Image decoder [Smith et al. 2011], RIGHT: Language Decoder [Wang et al. 2019]
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  answer speech dialogues[Moses et al., 2019] rather than just 703 predicting a semantic vector representation. Lastly, some 704 studies have focused on reconstructing personal imagined ex-705 periences[START_REF] Berezutskaya | [END_REF] or application-based 706 decoding like using brain activity scanned during a picture-707 based mechanical engineering task to predict individuals' 708 physics/engineering exam results [Cetron et al., 2019] and 709 reflecting whether current thoughts are detailed, correspond 710 to the past or future, are verbal or in images [Smallwood and 711 Schooler, 2015]. Table 3 aggregates the brain decoding liter-712 ature along different stimulus domains such as textual, visual, 713 and audio. 714 7 Conclusion, Limitations, and Future Trends 715 Conclusion In this paper, we surveyed important datasets, 716 stimulus representations, brain encoding and brain decoding 717 methods across different modalities. A glimpse of how deep 718 learning solutions throw light on putative brain computations 719 is given. 720 Limitations Naturalistic datasets of passive reading/listening offer ecologically realistic settings for investigating brain 722 function. However, the lack of a task (as in a controlled 723 psycholinguistic experiment) that probes the participant's un-724 derstanding of the narrative limits the inferences that can be Min Chang, Vicente L Malave, and Robert A Mason. Predicting human brain activ-960 ity associated with the meanings of nouns. Science, 320(5880):1191-1195, 2008. 961 [Moses et al., 2019] David A Moses, Matthew K Leonard, Joseph G Makin, and Ed-962 ward F Chang. Real-time decoding of question-and-answer speech dialogue using 963 human cortical activity. Nature communications, 10(1):1-14, 2019. 964 [Naselaris et al., 2009] Thomas Naselaris, Ryan J Prenger, Kendrick N Kay, Michael 965 Oliver, and Jack L Gallant. Bayesian reconstruction of natural images from human 966 brain activity. Neuron, 63(6):902-915, 2009. 967 [Nastase et al., 2021] Samuel A Nastase, Yun-Fei Liu, Hanna Hillman, Asieh Zad-968 bood, Liat Hasenfratz, Neggin Keshavarzian, Janice Chen, Christopher J Honey, 969 Yaara Yeshurun, Mor Regev, et al. Narratives: fmri data for evaluating models of 970 naturalistic language comprehension. bioRxiv, pages 2020-12, 2021. 971 [Nishida and Nishimoto, 2018] Satoshi Nishida and Shinji Nishimoto. Decoding nat-972 uralistic experiences from human brain activity via distributed representations of 973 words. Neuroimage, 180:232-242, 2018. 974 [Nishida et al., 2020] Satoshi Nishida, Yusuke Nakano, Antoine Blanc, Naoya Maeda, 975 Masataka Kado, and Shinji Nishimoto. Brain-mediated transfer learning of convo-976 lutional neural networks. In AAAI, pages 5281-5288, 2020. 977 [Nishimoto et al., 2011] Shinji Nishimoto, An T Vu, Thomas Naselaris, Yuval Ben-978 jamini, Bin Yu, and Jack L Gallant. Reconstructing visual experiences from brain 979 activity evoked by natural movies. Current biology, 21(19):1641-1646, 2011. 980 [Oota et al., 2018] Subba Reddy Oota, Naresh Manwani, and Raju S Bapi. fMRI Se-981 mantic Category Decoding Using Linguistic Encoding of Word Embeddings. In 982 ICONIP, pages 3-15. Springer, 2018.
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Table 1 :

 1 Naturalistic Neuroscience Datasets

		Dataset	Authors	Type Lang. Stimulus	|S| Task
		Harry Potter	[Wehbe et al., 2014]	fMRI/	English Reading Chapter 9 of Harry Potter and the Sorcerer's Stone	9 Story understanding
				MEG		
			[Handjaras et al., 2016]	fMRI Italian Verbal, pictorial or auditory presentation of 40 concrete nouns, four times 20 Property Generation
	Text	ZuCo 240 Sentences with Con-	[Anderson et al., 2017a] [Hollenstein et al., 2018] [Anderson et al., 2019]	fMRI Italian Reading 70 concrete and abstract nouns from law/music, five times EEG English Reading 1107 sentences with 21,629 words from movie reviews fMRI English Reading 240 active voice sentences describing everyday situations	7 Imagine a situation with noun 12 Rate movie quality 14 Passive reading
		tent Words				
		BCCWJ-EEG	[Oseki and Asahara, 2020] EEG Japanese Reading 20 newspaper articles for ∼30-40 minutes	40 Passive reading
		Subset Moth Radio Hour [Deniz et al., 2019]	fMRI English Reading 11 stories	9 Passive reading and Listening
			[Thirion et al., 2006]	fMRI -	Viewing rotating wedges (8 times), expanding/contracting rings (8	9 Passive viewing
						times), rotating 36 Gabor filters (4 times), grid (36 times)
		Vim-1	[Kay et al., 2008]	fMRI -	Viewing sequences of 1870 natural photos	2 Passive viewing
		Generic Object Decoder [Horikawa and Kamitani,	fMRI -	Viewing 1,200 images from 150 object categories; 50 images from 50	5 Repetition detection
	Visual	BOLD5000 Algonauts	2017] [Chang et al., 2019] [Cichy et al., 2019]	fMRI -fMRI/ -	object categories; imagery 10 times Viewing 5254 images depicting real-world scenes Viewing 92 silhouette object images and 118 images of objects on natural	4 Passive viewing 15 Passive viewing
				MEG		background
		NSD	[Allen et al., 2022]	fMRI -	Viewing 73000 natural scenes	8 Passive viewing
		THINGS	[Hebart et al., 2022]	fMRI/	-	Viewing 31188 natural images	8 Passive viewing
				MEG		
			[Handjaras et al., 2016]	fMRI Italian Verbal, pictorial or auditory presentation of 40 concrete nouns, 4 times	20 Property Generation
		The Moth Radio Hour	[Huth et al., 2016]	fMRI English Listening eleven 10-minute stories	7 Passive Listening
	Audio		[Brennan and Hale, 2019] [Anderson et al., 2020]	EEG English Listening Chapter one of Alice's Adventures in Wonderland (2,129 words in 84 sentences) as read by Kristen McQuillan fMRI English Listening one of 20 scenario names, 5 times	33 Question answering 26 Imagine personal experiencs
		Narratives	[Nastase et al., 2021]	fMRI English Listening 27 diverse naturalistic spoken stories. 891 functional scans	345 Passive Listening
		Natural Stories	[Zhang et al., 2020]	fMRI English Listening Moth-Radio-Hour naturalistic spoken stories.	19 Passive Listening
		The Little Prince	[Li et al., 2021]	fMRI English Listening audiobook for about 100 minutes.	112 Passive Listening
		MEG-MASC				

[Gwilliams et al., 2022

] MEG English Listening two hours of naturalistic stories. 208 MEG sensors 27 Passive Listening Video BBC's Doctor Who [Seeliger et al., 2019] fMRI English Viewing spatiotemporal visual and auditory videos (30 episodes). 120.8 whole-brain volumes (∼23 h) of single-presentation data, and 1.2 volumes (11 min) of repeated narrative short episodes. 22 repetitions 1 Passive viewing Japanese Ads [Nishida et al., 2020] fMRI Japanese Viewing 368 web and 2452 TV Japanese ad movies (15-30s). 7200 train and 1200 test fMRIs for web; fMRIs from 420 ads. 52 Passive viewing Pippi Langkous [Berezutskaya et al., 2020] ECoG Swedish/ Dutch Viewing 30 s excerpts of a feature film (in total, 6.5 min long), edited together for a coherent story 37 Passive viewing Algonauts [Cichy et al., 2021] fMRI English Viewing 1000 short video clips (3 sec each) 10 Passive viewing Natual Short Clips [Huth et al., 2022] fMRI English Watching natural short movie clips 5 Passive viewing Natual Short Clips [Lahner et al., 2023] fMRI English Watching 1102 natural short video clips 10 Passive viewing Other Multimodal 60 Concrete Nouns [Mitchell et al., 2008] fMRI English Viewing 60 different word-picture pairs from 12 categories, 6 times each 9 Passive viewing [Sudre et al., 2012] MEG English Reading 60 concrete nouns along with line drawings. 20 questions per noun lead to 1200 examples. 9 Question answering [Zinszer et al., 2018] fNIRS English 8 concrete nouns (audiovisual word and picture stimuli): bunny, bear, kitty, dog, mouth, foot, hand, and nose; 12 times repeated. 24 Passive viewing and listening Pereira [Pereira et al., 2018] fMRI English Viewing 180 Words with Picture, Sentences, word clouds; reading 96 text passages; 72 passages. 3 times repeated. 16 Passive viewing and reading [Cao et al., 2021] fNIRS Chinese Viewing and listening 50 concrete nouns from 10 semantic categories. 7 Passive viewing and listening Neuromod [Boyle et al., 2020] fMRI English Watching TV series (Friends, Movie10) 6 Passive viewing and listening

  and imagining 303 themselves personally experiencing common scenarios[An-304 derson et al., 2020]. In the last one, participants underwent 305 fMRI as they reimagined the scenarios (e.g., resting, reading, 306 writing, bathing, etc.) when prompted by standardized cues. 307Narratives [Nastase et al., 2021] used 17 different stories as 308 stimuli. Across subjects, it is 6.4 days worth of recordings.

309

Video Datasets: Recently, video neuroscience datasets have 310 also been proposed. These include BBC's Doctor Who [Seel-311 iger et al., 2019], Japanese Ads [Nishida et al., 2020], Pippi 312

Table 2 :

 2 Summary of Representative Brain Encoding Studies

		Stimuli Authors	Dataset	Lang. Stimulus Representations	|S| Dataset	Model
				Type			
			[Jain and Huth, 2018]	fMRI	English LSTM	6	Subset Moth Radio Hour	Ridge
			[Toneva and Wehbe, 2019] fMRI/ MEG English ELMo, BERT, Transformer-XL	9	Story understanding	Ridge
			[Toneva et al., 2020]	MEG	English BERT	9	Question-Answering	Ridge
			[Schrimpf et al., 2021b]	fMRI/ECoG English 43 language models (e.g. GloVe, ELMo, BERT,	20 Neural architecture of language	Ridge
						GPT-2, XLNET)	
			[Gauthier and Levy, 2019] fMRI	English BERT, fine-tuned NLP tasks (Sentiment, Natural	7	Imagine a situation with the noun	Ridge
						language inference), Scrambling language model	
			[Deniz et al., 2019]	fMRI	English GloVe	9	Subset Moth Radio Hour	Ridge
			[Jain et al., 2020]	fMRI	English LSTM	6	Subset Moth Radio Hour	Ridge
			[Caucheteux et al., 2021]	fMRI	English GPT-2, Basic syntax features	345 Narratives	Ridge
			[Antonello et al., 2021]	fMRI	English GloVe, BERT, GPT-2, Machine Translation, POS	6	Moth Radio Hour	Ridge
						tasks	
		Text	[Reddy and Wehbe, 2021] [Goldstein et al., 2022]	fMRI fMRI	English Constituency, Basic syntax features and BERT English GloVe, GPT-2 next word, pre-onset, post-onset	8 8	Harry Potter ECoG	Ridge
						word surprise	
			[Oota et al., 2022b]	fMRI	English BERT and GLUE tasks	82 Pereira & Narratives	Ridge
			[Oota et al., 2022a]	fMRI	English ESN, LSTM, ELMo, Longformer	82 Narratives	Ridge
			[Merlin and Toneva, 2022] fMRI	English BERT, Next word prediction, multi-word semantics,	8	Harry Potter	Ridge
						scrambling model	
			[Toneva et al., 2022]	fMRI / MEG English ELMo, BERT, Context Residuals	8	Harry Potter	Ridge
			[Aw and Toneva, 2022]	fMRI	English BART, Longformer, Long-T5, BigBird, and corre-	8	Passive reading	Ridge
						sponding Booksum models as well	
			[Zhang et al., 2022b]	fMRI	English,	Node Count	19, 12 Zhang	Ridge
					Chi-		
					nese		
			[Oota et al., 2023a]	fMRI	English Constituency, Dependency trees, Basic syntax fea-	82 Narratives	Ridge
						tures and BERT	
			[Oota et al., 2023b]	MEG	English Basic syntax features, GloVe and BERT	8	MEG-MASC	Ridge
			[Tuckute et al., 2023]	fMRI	English BERT-Large, GPT-2 XL	12 Reading Sentences	Ridge
			[Kauf et al., 2023]	fMRI	English BERT-Large, GPT-2 XL	12 Pereira	Ridge
			[Singh et al., 2023]	fMRI	English BERT-Large, GPT-2 XL, Text Perturbations	5	Pereira	Ridge
			[Wang et al., 2019]	fMRI		21 downstream vision tasks	4	BOLD 5000	Ridge
		Visual	[Kubilius et al., 2019] [Dwivedi et al., 2021] [Khosla and Wehbe, 2022] fMRI fMRI fMRI		CNN models AlexNet, ResNet, DenseNet 21 downstream vision tasks CNN models AlexNet	7 4 4	Algonauts BOLD 5000 BOLD 5000	Ridge Ridge Ridge
			[Conwell et al., 2023]	fMRI		CNN models AlexNet	4	BOLD 5000	Ridge
			[Millet et al., 2022]	fMRI	English Wav2Vec2.0	345 Narratives	Ridge
			[Vaidya et al., 2022]	fMRI	English APC, AST, Wav2Vec2.0, and HuBERT	7	Moth Radio Hour	Ridge
		Audio	[Tuckute et al., 2022] [Oota et al., 2023c]	fMRI fMRI	English 19 Speech Models (e.g. DeepSpeech, Wav2Vec2.0, VQ-VAE) English 5 basic and 25 deep learning based speech models	19 Passive listening 6 Moth Radio Hour	Ridge Ridge
						(Tera, CPC, APC, Wav2Vec2.0, HuBERT, DistilHu-	
						BERT, Data2Vec	
			[Oota et al., 2023d]	fMRI	English Wav2Vec2.0 and SUPERB tasks	82 Narratives	Ridge
			[Dong and Toneva, 2023]	fMRI	English Merlo Reseve	5	Neuromod	Ridge
		Multi Modal	[Popham et al., 2021] [Oota et al., 2022d] [Lu et al., 2022] [Tang et al., 2023]	fMRI fMRI fMRI fMRI	English 985D Semantic Vector English CLIP, VisualBERT, LXMERT, CNNs and BERT English BriVL English BridgeTower	5 5, 82 Periera & Narratives Moth Radio Hour & Short Movie Clips 5 Pereira & Short Movie Clips 5 Moth Radio Hour & Short Movie	Ridge Ridge Ridge Ridge
								Clips
	472	shown to linearly map onto brain activity during language	
	473	comprehension. Several studies have attempted to disentan-	
	474	gle the contributions of different types of information from	
	475	word representations to the alignment between brain record-	
	476	ings and language models. Wang et al. [2020] proposed	
	477	a two-channel variational autoencoder model to dissociate	
	478	sentences into semantic and syntactic representations and	
	479	separately associate them with brain imaging data to find	
	480	feature-correlated brain regions. To separate each syntac-	
	481	tic feature, Zhang et al. [2022a] proposed a feature elim-	
	482	ination method, called Mean Vector Null space Projection.	
	483	Compared with word representations, word syntactic features	
		(parts-of-speech, named entities, semantic roles, dependen-	

484

cies) seem to be distributed across brain networks instead of 485 a local brain region. In the previous two studies, we do not 486 know whether all or any of these representations effectively 487

Table 3 :

 3 Summary of Representative Brain Decoding Studies

		Stimuli Authors	Dataset	Lang.	Stimulus Representations	|S| Dataset	Model
				Type			
			[Pereira et al., 2018]	fMRI	English	Word2Vec, GloVe, BERT	17 Pereira	Ridge
		Text	[Wang et al., 2020] [Oota et al., 2022c] [Tang et al., 2022]	fMRI fMRI fMRI	English English English	BERT, RoBERTa GloVe, BERT, RoBERTa GPT, fine-tuned GPT on Reddit comments and au-	6 Pereira 17 Pereira 7 Moth Radio Hour	Ridge Ridge Ridge
						tobiographical stories	
			[Beliy et al., 2019]	fMRI		End-to-End Encoder-Decoder, Decoder-Encoder,	5 Generic Object Decoding, ViM-1
		Visual	[Takagi and Nishimoto, 2022] [Ozcelik and VanRullen, 2023] fMRI fMRI		AlexNet Latent Diffusion Model, CLIP VDVAE, Latent Diffusion Model	4 NSD 7 NSD	Ridge
			[Chen et al., 2023b]	fMRI		Latent Diffusion Model, CLIP	3 HCP fMRI-Video-Dataset	Ridge
		Audio	[Défossez et al., 2022] [Gwilliams et al., 2022]	MEG,EEG English MEG English	MEL Spectrogram, Wav2Vec2.0 Phonemes	169 MEG-MASC 7 MEG-MASC	Ridge, CLIP
						Video reconstruction	[ Nishimoto et al., 2011;
				Vision			Chen et al., 2023b ]
						Image reconstruction	[ Naselaris et al., 2009; Beliy et
								al., 2019; Takagi and Nishimoto,
								2022; Ozcelik and VanRullen,
								2023; Chen et al., 2023a ]
		Brain Decoding				
				Auditory	Speech re-	[ Anumanchipalli et al., 2019;
						construction	D éfossez et al., 2022 ]
						Reconstructing	[ Affolter et al., 2020;
				Language	continuous language	Tang et al., 2022 ]
						Decoding	[ Pereira et al., 2018; Sun
						word/sentence vector	et al., 2019; Gauthier and
								Levy, 2019; Abdou et al.,
								2021; Oota et al., 2022c ]
					Figure 10: Brain Decoding Survey Tree
	681	et al. [2022c] propose two novel brain decoding setups: (1)	tic vector representation of another view. Specifically, they
		multi-view decoding (MVD) and (2) cross-view decoding	study practically useful CVD tasks like image captioning, im-
							age tagging, keyword extraction, and sentence formation.
	686						

682

(CVD). In MVD, the goal is to build an MV decoder that 683 can take brain recordings for any view as input and predict 684 the concept. In CVD, the goal is to train a model which takes 685 brain recordings for one view as input and decodes a seman-

  Toneva 

	695	
	696	et al. [2019] study how representations of various Trans-
	697	former models differ across layer depth, context length, and
	698	attention type.
	699	Some studies have attempted to reconstruct words [Affolter
		et al., 2020], continuous language

https://zuckermaninstitute.columbia.edu/file/5184/download? token=qzId8vyR

made on what the participant's brain is actually engaged in 726 while passively following the stimuli. This becomes even 727 more important when multi-lingual, multiscriptal participants 728 process stimuli in L2 language or script -it is unclear if the 729 brain activity reflects the processing of L2 or active suppres-