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Adaptive Force and Position Control of Magnetic Endoscopes using
Reinforcement Learning

Antonio Marino1, Bruno Scaglioni1, Keith L. Obstein2, Pietro Valdastri1

Abstract—In this work, an adaptive control framework based
on model-free reinforcement learning is applied to a magnetically
manipulated endoscope to simultaneously control the endoscope
position and adapt to the highly variable, dynamic, unstructured
environment of the human gastrointestinal tract. The ability to
adapt control parameters enables the endoscope to overcome
obstacles and successfully navigate the tract in the absence of
a motion planning algorithm. This also facilitates maintenance
of optimal contact with the tissues, which is beneficial for multi-
ple diagnostic applications—including micro-ultrasound imaging.
The approach is experimentally validated using the Magnetic
Flexible Endoscope in a benchtop colon simulator through (a)
execution of forward and backward motion with contact force
control, (b) effectiveness at navigating a sharp turn, and (c)
successfully navigating an unmodelled obstacle. Overall, this is
the first example of model-free adaptive control being successfully
applied to magnetic manipulation and lays the groundwork
for the further development of advanced motion planning and
autonomous navigation algorithms.

Index Terms—magnetic control, magnetic flexible endoscopy,
reinforcement learning.

I. INTRODUCTION

Colonoscopy is a common medical procedure that requires
navigation of the human colon using a mechanical instrument
that is actuated by pushing the endoscope from the insertion
tube (the distal aspect of the endoscope) to facilitate prop-
agation of the endoscopes proximal end. This unfortunately
leads to tissue deformation due to the forces that are exerted
along the colon that causes at minimum patient discomfort
and at worse perforation or bleeding. Therefore, magnetic
manipulation has been utilised in robotic endoscopy due to its
ability to transmit forces through the skin surface for actuation
of an endoscope within the gastrointestinal tract [1]–[4]. This
allows for minimal interaction between the patient tissues and
the endoscope thereby reducing patient discomfort and risk of
perforation or bleeding. [5], [6]. The magnetic systems that
are utilized are based on either permanent magnets [13] or
electromagnetics [14] while some engage more complex with a
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Fig. 1: Magnetic manipulation of the MFE endoscope inside
the colon

combination of multi-magnets interaction [7], [8] or compliant
elements [9].

While magnetic manipulation of a colonoscope has been
successful, accurate control is challenging due to the nonlinear
nature of magnetic coupling and the challenging, variable,
dynamic environment of the human colon [10]. Nonetheless,
previous control approaches [11], [26], [27] have been able
to successfully navigate the colon using both open-loop and
closed-loop strategies; this latter reduces navigation time and
a clinicians cognitive and technical task burden. More re-
cently, using our novel Magnetic Flexible Endoscope (MFE),
our team has demonstrated how intelligent control enables
endoscope teleoperation and autonomous motion [12]. While
successful, the autonomous navigation mechanism is based on
processing of images obtained from the endoscope camera,
which can be hindered by faeces that are retained despite
the use of a bowel preparation and occlusions (tight fixed
angulations; stenosis). Therefore, an alternative mechanism
through which the colonoscope can actively adapt to the
environment of the colon is needed to facilitate autonomous
obstacle navigation and endoscope propagation. Integration of
micro-ultrasound has been explored as a promising avenue
[16]; however, the control systems needed for coupling and
navigation are unable to perform well given the highly variable
nature of the colon. To overcome this challenge, our team has
developed a novel adaptive algorithm that aims at controlling
the endoscope position on the degrees of freedom associated
with the navigation, while simultaneously controlling the



forces resulting from the interaction with the tissue in the
orthogonal direction with respect to the direction of motion.
The algorithm takes advantage of the adaptability of the
control system, in the absence of a trajectory planning al-
gorithm, to provide system stability under the condition of
bounded disturbances. The parallel position and force control
enables use of contact-based diagnostic sensing such as micro-
ultrasound during motion and enhances the system autonomy
while simplifying the operator task load. Despite examples of
adaptive control of magnetic endoscopes [26] in the literature,
all rely on restrictive modelling assumptions about the en-
doscope and the environment. Given the unstructured colon
environment, which can undergo significant changes with
perturbation [15], these modelling assumptions can rapidly
become problematic. For this reason, we explore the adaptation
of the endoscope control system to the environment (Fig.
1), implemented through a model-free reinforcement learn-
ing algorithm, which does not require a model of the con-
trolled system [19], [20]. Reinforcement learning is capable
of learning complex control policies from experience [21],
[22]. Although popular solutions involve actor-critic models
and deep reinforcement learning [21], [23], we opt for a
linear approximation approach. Although sub-optimal from a
dynamic programming point of view [17], [18], this approach
has similar adaptation abilities and superior execution times
[24] with respect to the aforementioned techniques. Regularity
condition on the exploration policy is introduced to guarantee
algorithm convergence.

This paper is organized as follows: Section II presents an
overview of the magnetic interaction and the system dynamics;
Section III presents the control approach and defines its
parameters; Section IV describes the reinforcement learning
algorithm to update the control parameters; and Section V and
VI present the experiments.

II. SYSTEM MODELLING

The approach described in this paper could be applied
to a wide range of magnetic systems. Without loss of gen-
erality, the discussion will be carried out on the Magnetic
Flexible Endoscope (MFE) platform, developed by our group
and widely validated [25]–[27]. The system consists of two
components: the endoscope containing an internal permanent
magnet (IPM) and a robotic arm that manipulates the External
Permanent Magnet (EPM). Both are shown in Fig. 1. The MFE
is equipped with a localization system capable of detecting
position and orientation of the endoscope tip in a range of
50 cm from the robot end-effector in every direction, thus
enabling closed-loop control of the endoscope, as shown in
several papers [25]–[27]. The pose information provided by the
localization system enables computation of the intermagnetic
forces, which depends on the relative distance and orientation
of EPM and IPM. To this end, we used the dipole model
reported in (11) (12).

The magnetic endoscope is modelled as a rigid body rep-
resenting the endoscope tip, while the tether is considered a

source of disturbances. The endoscope dynamics is described
by the following equation:

B(x(t))ẍ(t) +C(x(t), ẋ(t))ẋ(t) +G(x(t)) = τm(t) + v(t)
(1)

where the matrices B(x(t)), C(x(t), ẋ(t)), G(x(t)) represent
the inertia, Coriolis and gravitational terms. The endoscope
dynamics is affected by exogenous disturbances, represented
by the unknown input v(t), arising in the presence of contact
forces, friction and interaction with the tether. The effect of
the term v(t) on stability will be discussed in appendix B.
The endoscope tip contains a small permanent magnet (IPM)
actuated by a permanent external magnet (EPM) attached to
a manipulator arm. The magnetic force-torque wrench acting
on the endoscope τm(t) ∈ R6, generated through magnetic
coupling between IPM and EPM, are computed employing
the widely used magnetic dipole model [39], those equations
are shown in appendix A. The dipole model eqs. (11), (12) are
highly non-linear; however, their local variation, approximated
to the first derivative, is more suitable for the synthesis of a
control algorithm because it is linear in the control variables,
i.e. the joint velocities (q̇)

τ̇m(t) = Jx(t)ẋ(t) + Jq(t)q̇(t) (2)

where q ∈ Rm are the robot joint variables, x ∈ R6

is the endoscope pose (position and orientation), while Jx,
Jq are the Jacobian matrices representing the relationship
between the variation of the magnetic torque and respectively
the endoscope velocities (ẋ) and the joints velocities (q̇).
Describing the interaction between two magnets, the matrices
Jx and Jq are rank deficient because the EPM magnetic
field is symmetric along the magnetization axis. Hence the
system controllability is reduced to five degrees of freedom.
However, the MFE is designed in such a way to associate the
uncontrollable DoF. with the roll of the tip. In the following,
we will omit the dependency on time.
Combining (2) and (1) and defining the control input τ̇m = u,
the overall system has the following expression:{

B(x)ẍ+ C(x, ẋ)ẋ+G(x) = τm + v

τ̇m = u
(3)

the control goal is to find u such that (x,τm) approach a
desired value (xd,τd). To this end, the control u is converted
in joint velocities by means of eq.(2) and the desired joint
values are sent to the low-level robot controller. The ability
to simultaneously achieve desired xd and τd is given by the
actuation method. The intensity of the magnetic field generated
by the EPM can be modulated by changing the intermagnetic
distance while the direction and gradient of the field depend on
the relative orientation, as shown in appendix A. Since we are
interested only in the interaction between the tip and the colon
tissues, we can assume that the attraction force between the
magnet and the endoscope tip is equal to the reaction forces
exerted by the colon tissues on the same tip. Therefore, we
will estimate the force applied on the tissue by the endoscope
tip applying the dipole model (11), (12).



Fig. 2: desired force transition for γ1, γ2 = 0.05

III. CONTROL STRATEGY

In this work, xd ∈ R6 is computed as a point to point
motion, therefore ẋd = 0. The acceptable range of fd spans
between fl ∈ R3 and fu ∈ R3, defined as lower and
upper force limits. fl is the minimum force required by the
application (e.g. micro-ultrasound coupling [16]), while fu is a
limit imposed to prevent excessive tissue stretching. Any value
of fd within the range [fl, fu] is acceptable. Hence, when the
interaction force is inside the range, the desired force smoothly
transits to 0 to avoid sharp changes. Each component i of fd
is defined as:

fdi =



fli |fi| − |fui| > 0

fsl −γ1 ≤ |fi| − |fui| ≤ 0

0 |fi| − |fui| < −γ1 and |fi| − |fli| > γ2

fsu 0 ≤ |fi| − |fli| ≤ γ2
fui |fi| − |fli| < 0

fsu = (
1

2
cos(

(|fi| − |fli| − γ2)π
γ2

+ π) +
1

2
)fui

fsl = (
1

2
cos(

(|fi| − |fui|)π
γ1

) +
1

2
)fli

(4)
where fsu, fsl are the results of a smooth transition in the
range 0 and fli or fui, with |fui| > |fli| > 0. The transitions
are regulated by two additional variables γ1, γ2 > 0. The
higher these variables are, the more the transition is smoother
and the more the range of the desired force equal to zero is
reduced (Fig. 2). γ1, γ2 are chosen empirically. By denoting
the desired wrench τd =

[
fd 0

]T
the torque error τ̃ can be

defined as:

τ̃ = τd +Kpx̃−Kpẋ+G(x)− τm (5)

where x̃ is the pose error computed as in [39]. The error takes
into account that the magnetic manipulation of the endoscope
is a five-DoF. Kp ∈ R6×6 is the matrix of control gains for
position error and the velocity. Both actions are required to
guarantee the system stability, as shown later. Moreover, the

Fig. 3: Control Structure

damping velocity term is beneficial since the motion is in
general discontinuous due to the colon folds. We evaluated
that, although not meaningful from the physical perspective,
posing the velocity gains equal to the position gains in Kp

is a convenient simplification that reduces the burden on the
learning algorithm. This choice allows to reduce the number
of parameters while simultaneously maintaining a relation
between the learning adaptation and the derivative controller.
Other solutions, like fixing the velocity gain or increasing the
number of parameters, would marginally improve the control
performances at the expense of slower convergence of the
learning procedure. By defining τ ′

d = τd+Kpx̃−Kpẋ+G(x),
and the torque error τ̃ = τ ′

d − τm, the control input is
expressed as follow:

u = Kτ̃ + τ̃ †τT
d ẋ− ẋ (6)

that ensure a torque error closed loop dynamics equal to:

˙̃τ = −Kτ̃ − τ̃ †τT
d ẋ+ ẋ (7)

given K ∈ R6×6. Eq. 7 can be developed by assuming ẍ ≈ 0:

τ̇ ′d − τ̇m = −Kτ̃ − τ̃ †τT
d ẋ+ ẋ

−Kpẋ− Jxẋ− Jqq̇ = −Kτ̃ − τ̃ †τT
d ẋ+ ẋ

that leads to :

q̇ = J†q(u− (Kp + Jx)ẋ) (8)

where (·)† represents the Moore-Penrose pseudoinverse opera-
tor. To demonstrate the system stability subjected to the control
input (6), the desired force fd must be consistent with the
desired endoscope pose xd. This is a reasonable assumption
in the vast majority of navigation-related scenarios, as the
tubular environment naturally leads the constrained degree of
freedom to be in the orthogonal direction with respect to the
direction of motion (as shown in Fig. 1). This holds true
independently from the relative orientation of the endoscope
and the colon. However, this condition doesn’t generally hold
true, for example along a slope, or if the colon presents a fold.
Therefore, the desired forces f̃d are projected in the null-space
(or orthogonal space [28]) of the desired position, leading to
the following additional equation:

f̃d = (I − ∂xd∂xTd )fd



where ∂xd is the direction of the desired position, for example
as shown in Fig. 1, where the motion is on the horizontal plane
(orange vector) and the desired force along the vertical axis
(green vector).
It must be pointed out that the endoscope insertion and
retraction are not robotically controlled and therefore out
of the scope of this paper. The user can manually insert
and retract the endoscope by exerting forces on the tether.
The controller is robust to the bounded additive disturbance
v < ∞ when λmin(Kp)||ẋ(t)|| > ||v(t)|| and Kp,K > 0.
If this condition holds true, the system dynamics is uniformly
ultimately bounded (UUB) [40] subjected to the control action
u. The details of the demonstration are provided in appendix
B.

IV. PARAMETERS UPDATE WITH REINFORCEMENT
LEARNING

The controller parameters K,Kp > 0 ∈ R6×6 are contin-
uously updated through a model-free reinforcement learning
algorithm. To this end, a state–action–reward–state–action
(SARSA) algorithm in LQR fashion is used [34], [35]. SARSA
provides a conservative exploration policy if compared to
other algorithms such as Q-learning [29] and with the lin-
ear approximation of the value function, which, although
suboptimal for a nonlinear system, enables fast computation
rates. Moreover, SARSA has proven a rapid adaptation to
environmental changes [30], which particularly fit the colon
navigation. The value function minimized by the algorithm is:

K,Kp ←− argmin
K,Kp

V (x̃k, uk, τ̃
′
k, θk) (9)

where τ̃ ′
k = τd − τk, x̃k and uk are the discrete terms

corresponding to the the terms introduced in the previous
section, discretized at each algorithm iteration k. In the linear
approximate SARSA, the optimal discrete value function V is
defined as a linear regression of the quadratic combination of
the terms τ̃ ′

k, x̃ and uk.

V ∗(x̃k, uk, τ̃
′
k,θ) = θ

TΦk

and the reward/cost function at each iteration k

rk+1 = x̃T
kQx̃k + u

T
kRuk + τ̃

′T
k Sτ̃ ′

k

where Q,S ≥ 0 ∈ R6×6 and R > 0 ∈ R6×6 according to
LQR quadratic cost. Φk contains quadratic terms of the pose
and force error vectors and the control input at k-th instant. V
is linear with respect to θ, which is unknown and can be found
through temporal difference error δ, the difference between the
ultimate current V̂k+1 and the previous one V̂k, in the linear
approximate SARSA algorithm (Alg. 1).
θ is updated at each iteration according to the value of

V̂ and rk+1, applying an incremental correction. Based on
the value of V̂ computed upon the measured state xk+1, the
exploration policy π updates the matrices K,Kp. The policy π
is a Gaussian noise N with a mean value equal to the current

Algorithm 1 Approximate SARSA

1: measure initial state x0

2: initialize parameters θ0
3: initialize K,Kp −→ u0

4: initialize n = N
5: for time step k = 0, 1, 2, . . . do
6: measure next state x̃k+1, τ̃

′
k+1 and reward rk+1

7: if k = n then
8: update K,Kp with exploration policy (π) based on

V̂
(
x̃k+1, uk, , τ̃

′
k+1, θk

)
9: n = n+N

10: end if
11: use K,Kp to compute uk+1 according to eqs. 6-8
12: δ̂k = rk+1 + γV̂

(
x̃k+1, uk+1, τ̃

′
k+1, θk

)
−

V̂ (x̃k, uk, τ̃
′
k, θk)

13: θk+1 = θk + αk δ̂k∇θk V̂
14: apply uk+1

15: end for

gain component and standard deviation decreasing with the
function V̂

Ki ←− N (Ki, ke
− 1

|V̂Ki
| ) k > 0 (10)

where Ki are the elements of the matrices K,Kp. The semi-
positive-definite condition of the matrices is ensured by only
considering diagonal matrices K,Kp for which is sufficient
to impose the positiveness of the diagonal elements. Two
parameters can tune the algorithm: 0 << γ < 1, known as a
discount factor and αk, the learning rate.

The SARSA algorithm asymptotically converges to V ∗ if
a standard stochastic approximation condition is satisfied:∑∞

k=0 α
2
k is finite and

∑∞
k=0 αk is infinite. The learning factor

αk is chosen equal to 1/k [36], this choice is valid because
the gains K and Kp reach the stationary point where V gets to
its minimum, i.e. in the proximity of the target. The algorithm
converges if the policy π is Lipschitz continuous [31], [32] for
a bounded Lipschitz constant. In appendix C we demonstrate
that the policy chosen is Lipschitz continuous with a Lipschitz
constant C > 6k; therefore, k must be large enough to ensure
a good grade of exploration but simultaneously small enough
to guarantee the convergence of the algorithm [33]. This
condition also ensures that the value function V ∗ is a good
approximation of the optimal one. Additionally, given the slow
variation of the endoscope-colon interaction dynamics, the
exploration policy π computes K and Kp every n iterations.
The figure 3 shows the overall control scheme.

V. EXPERIMENTAL SETUP

In the MFE, the EPM is actuated by means of the KUKA
LBR Med R820 robot (KUKA Roboter GMBH), the IPM
is an axially magnetized N52 grade permanent magnet with
12 mm diameter, 24 mm length. The EPM is also an axially
magnetized N52 grade magnet with 101.6 mm diameter and
length. The experiments are carried out on a silicone colon



simulator (Kyoto Kagaku M40) widely used for benchtop
experiments and clinical training. In the first experimental
layout (Fig. 4), the colon phantom is arranged in an L shape
(two straight lines divided by a tight angle of approximately
90°). Alternating straight tracts and tight turns is a ubiquitous
scenario in clinical colonoscopies. The second layout (5)
consists of a straight tract containing an obstacle, aimed at
simulating a lumen obstruction. This represents a common
situation in colonoscopy, as other organs or colon folds may
create barriers that obstruct the endoscope motion. In both
scenarios, we used lubricant to simulate the colon’s mucosa
low friction properties.
One of the most promising applications of force control in
robotic endoscopy is micro-ultrasound scanning [16]. The
force control must ensure safe interaction with the colon
wall, minimizing the risk of tissues damage, simultaneously
maintaining a quality contact to ensure ultrasound coupling.
For these reasons, the force lower and upper limits are chosen
equal to 0.3N and 0.5N. This particular range is chosen
considering suggestions from the literature [16], [27]: below
0.3N the force is not sufficient to maintain contact, and 0.5N
is considered a a safety limit under which the risk of tissue
damage significantly increases. As mentioned in section II,
we estimated the numerical value of the force by means of
equations (11) (12), using the two magnet poses. The tip is the
only magnetically controllable part of the device, whereas the
tether is passive and highly flexible and therefore incapable of
transmitting significant forces. Moreover, we assumed that the
overall interaction can be sufficiently represented in a single
contact point, given the tip size. In order to demonstrate the
effectiveness of the force control algorithm in providing a
stable and reliable contact during the experiments, a contact
sensing device should be used. However, the form factor
of commercially available contact sensors is not compatible
with the dimensions and the presence of lubricants, which
would disturb the sensors’ readings. For this reason, a painted
thin layer of conductive ink has been used to provide binary
information (contact/no contact). Fig. 4 shows the area covered
by the conductive ink. The control loop and the learning
algorithm run at 100 Hz, a standard frequency for control
applications of this kind.

VI. EXPERIMENTAL VALIDATION

Three experiments are performed (two with the first setup
and one with the second setup), with the aim of evaluating:
• The performances of the position control.
• The ability to maintain the force in a defined range while

controlling the endoscope pose.
• The ability to adapt the control and autonomously over-

come obstacles and turns.
As mentioned in the previous sections, path planning is out
of the scope of this work. Hence, the endoscope desired
position xd is constructed manually by combining a target
location on the endoscope longitudinal direction and a desired
heading. In the following, these two components of xd will
be evaluated. The first experiment is focused on controlling

Fig. 4: Experimental setup

the endoscope forward and backward motion along a straight
tract, to evaluate the accuracy of the position/force control. The
experiment starts in the absence of contact between, followed
by a coupling phase, before starting the reinforcement control
routine. In this phase, the endoscope is required to move
forward (i.e. in the direction of the camera view) of 5 cm, then
return to the initial position and finally perform a rotation of
1.45 rad. The force and the pose tracking of the endoscope
tip heading are shown in Figs.6a and 6b. Although the motion
is not smooth due to the colon folds, the MFE follows the
position and orientation setpoints.
A steady-state error of approximately 5 mm and 0.05 rads
can be observed at the end of the transient phase. That is
acceptable because, in the proximity of the setpoint, the adap-
tation given by the reinforcement learning is weak; therefore,
the controller gains reach their stationary point resulting in
a classic PD action that cannot erase the steady-state error.
Moreover, the setpoint can coincide with a fold, so it would
be unreachable. The module of magnetic force remains inside
the required range throughout the motion, with an average
value of 0.4 N, as shown in Fig. 6b. The aim of fig.6b is
to show the ability to control the contact force in presence
of significant position changes, that can be seen at t=15 and
t=51. For this reason, while Fig. 6a shows the position and
orientation values for t>60, 6b stops at t=65, after which the
force control is not challenged by the changes of the position
setpoint. Furthermore, the contact sensed by the conductive
paint, shown in green, demonstrates a contact rich behaviour
with a 99% of contact after the reinforcement procedure starts.
The second experiment is aimed at demonstrating the ability

to overcome a tight turn. The endoscope is teleoperated in the
proximity of the turn shown in Fig. 4 and the autonomous
procedure is started. If the MFE manages to navigate through
the turn, the experiment is considered successful. Figs. 7a and
7b show the endoscope position, heading and interaction force
during the autonomous manoeuvre as well as the desired target
pose manually provided during the experiments. The MFE
reaches the target poses with an acceptable error. Moreover,



Fig. 5: Experimental setup with obstacle seen from the outside
and from the endoscope camera

due to the inaccuracy of the manual target definition, the
endoscope is required to reach an unreachable target between
t ≈ 230s and t ≈ 255s, highlighted in red in Fig. 7a.
During this phase, the endoscope is stuck and does not reach
the target. The manipulator, in response, moves the EPM to
attract the IPM along the unfeasible direction but, since the
colon hinders the endoscope motion, the EPM gets too far
from the IPM, and the interaction force drops below the lower
limit, as shown in Fig. 7b. As long as the desired endoscope
pose becomes reachable (t > 255), the controller restores
the position control. Although manually defining the desired
endoscope pose may lead to unfeasible targets, the controller
can adapt and accomplish both force and position requirements
as long as the desired pose is feasible. The last experiment
proposed in this work is the autonomous navigation across
the obstruction created by an obstacle. This experiment aims to
show the ability of the controller to overcome the obstruction
without any prior knowledge. An external object has been
placed on the external surface of the phantom, as shown in
Fig. 5. The trajectory executed by the MFE and the contact
forces are is shown in Figs. 8a and 8b. The control system must
increase the distance between EPM and IPM to successfully
perform the motion, thus decreasing the interaction force that
falls below the lower limit. Once the endoscope passed the
obstacle, the force return inside the desired range. The gains
Kp and K change rapidly throughout the motion according
to the value of V as shown in Fig. 9. The gains reach a
stable value when the function V decreases to its lowest value
in proximity of the target, i.e. when the error is low. For
the sake of comparison, we repeat the same experiment with
10 static values of the control parameters ranging between
0.01 and 150. The gains have been selected to regulate the
contribution of the position and the force error on the control
action, balancing between these two quantities. Results are
shown in Fig. 10. For every static value of the parameters,
the system was not able to complete any of the trajectories. A
comparison between adaptive and fixed parameters is shown
in the video provided in the supplementary material.

(a)

(b)

Fig. 6: Experiment in a straight colon portion. (a) Pose: desired
and real position along the endoscope heading are shown in the
first graph; desired and real angle of the endoscope heading are
shown in the second graph. (b) force and contact graph with
force limits in red : the colon-endoscope contact is highlighted
in green while the black line shows when the reinforcement
control starts.

VII. CONCLUSIONS

An adaptive parallel position and force control for magnetic
endoscopes based on reinforcement learning is proposed in
this study. This work aims to provide a dynamic controller
that adapts to the unstructured environment of the colon and
extends the magnetic controller capabilities, simultaneously
controlling the endoscope position and the interaction forces
between the endoscope and colon wall. This result will enable
the adoption of contact-based diagnostic techniques such as
micro-ultrasound during navigation while concurrently pro-
viding a control algorithm capable of adapting to varying
conditions and overcoming unmodelled obstacles. The algo-
rithm takes advantage of the model-free nature of reinforce-
ment learning to adjust the control parameters. Conditions for
system stability are discussed and demonstrated while the ex-
perimental results provide evidence of algorithm performance.



(a)

(b)

Fig. 7: Experiment in L shape colon portion. (a) Pose: the
first graph shows the desired and the real position along the
endoscope heading, with a red band we represented a target
position impossible to reach because out of the colon; the
second graph shows desired and real angles of the endoscope
heading. (b) force graph with the force limits in red.

The natural evolution of the control approach presented in
this work is an advanced motion planning algorithm capable
of defining trajectories and boundary conditions for the en-
doscopes motion, considering robot joints limits, workspace
bounds, camera obstruction and manipulability, with minimal
user inputs. Overall, this work increases the autonomy of
magnetically driven endoscopes and enables control systems
to autonomously solve local navigation problems through
modification of control behavior.

APPENDIX A

The magnetic interaction between the EPM and the IPM
is modelled through the magnetic dipole-dipole. Considering
the distance between the EPM position pE and the IPM
position pI as p = pE − pI , and naming the magnetic
dipole moment of the EPM mE = ||mE ||m̂E and of the

(a)

(b)

Fig. 8: trajectory in the presence of obstacle.(a) pose obstacle
graph: the capsule trajectory starts from a point and reach the
target behind the obstacle. (b) force graph in the presence of
the obstacle with force limits in red.

Fig. 9: diagonals of control gains for obstacle overcoming

IPM mI = ||mI ||m̂I , the force and torques between the two
magnets are described by the following equations [38]:

f (p,mE ,mI) =
3µ0 ‖mE‖ ‖mI‖

4π‖p‖4(
m̂Em̂

>
I + m̂Im̂

>
E+(

m̂>I Zm̂I

)
I
)
p̂

(11)



Fig. 10: MFE trajectories with different control parameters.
The MFE never reach the target position.

τ (p,mE ,mI) =
µ0 ‖mE‖ ‖mI‖

4π‖p‖3
m̂I×

D(p̂)m̂E

(12)

with Z = I − 5p̂p̂T , D = 3p̂p̂T − I , p̂ = p
||p|| and where

I ∈ R3×3 is the identity matrix. Similarly to [39] the forces
exchanged between the magnets can be described in vector

form as: τm =

[
f
τ

]
and the time derivative of τm is:

τ̇m =

[
∂f
∂p

∂f
∂m̂E

∂f
∂m̂I

∂τ
∂p

∂τ
∂m̂E

∂τ
∂m̂I

] ṗ
˙̂mE

˙̂mI


=

[
∂f
∂p

∂f
∂m̂E

∂f
∂m̂I

∂τ
∂p

∂τ
∂m̂E

∂τ
∂m̂I

] ˙pE
˙̂mE

0

−
 ṗI

0
˙̂mI


the EPM and IPM are rigidly connected to the robot end-
effector and to the endoscope centre of mass. Hence, consid-
ering the end-effector pose χ and the endoscope pose x, the
magnets’ poses are described by the following relations:[

ṗI
˙̂mI

]
=

[
I 03,3

03,3 [m̂E∧]T
]
ẋ =MI ẋ[

ṗE
˙̂mE

]
=

[
I 03,3

03,3 [m̂E∧]T
]
χ̇ =MEχ̇

where [·∧] ∈ so(3) is the skew operator and 0i,k ∈ Ri×k is
the zero matrix. The expression above is then used to compute
the manipulator joint velocity (q̇) considering χ̇ = J q̇, being
J the manipulator jacobian.

τ̇m =
[

∂τm
∂p

∂τm
∂m̂E

]
MI ẋ−

[
∂τm
∂p

∂τm
∂m̂I

]
MEJq̇

= Jxẋ− Ĵqq̇

and naming Jq = −Ĵq we eventually get to (2):

τ̇m = Jxẋ+ Jqq̇

APPENDIX B

Considering the control law

u = K(τd +Kpx̃−Kpẋ+G(x)− τm) + τ̃ †τT
d ẋ− ẋ

in the following, the closed loop system stability is demon-
strated

Proof. Consider a positive definite Lyapunov function defined
as

J(x̃, ẋ, τ̃ ) =
1

2
ẋTB(x)ẋ+

1

2
x̃TKpx̃+

1

2
τ̃T τ̃ (13)

Its derivative is

J̇(x̃, ẋ, τ̃ ) =ẋTB(x)ẍ+
1

2
ẋT Ḃ(x)ẋ− x̃TKpẋ+ τ̃T ˙̃τ

J̇(x̃, ẋ, τ̃ ) =ẋT (τm + v − C(x, ẋ)ẋ−G(x))

+
1

2
ẋT Ḃ(x)ẋ− x̃TKpẋ+ τ̃T ˙̃τ

=ẋT (τd − τ̃ + v) + τ̃T ˙̃τ − ẋTKpẋ

where the term 1
2 ẋ

T (Ḃ(x) − 2C(x, ẋ))ẋ is equal to zero
according to the work-energy theorem. We know that ˙̃τ = u
which erase the term ẋT (τd− τ̃ ) of the previous equation and
eventually we get:

J̇(x̃, ẋ, τ̃ ) = ẋT (τd − τ̃ + v) + τ̃T (−Kτ̃ − τ̃ †τTd ẋ+ ẋ)

− ẋTKpẋ

= ẋTv − τ̃TKτ̃ − ẋTKpẋ

focusing on the most critical term with the disturbance v.
By assuming that the disturbance is bounded ||v|| < ∞, we
evaluate the contribution of the disturbance as follow, given
λmax the highest eigenvalue of a matrix:

J̇(x̃, ẋ, τ̃ ) ≤− λmin(Kp)||ẋ||2 − λmin(K)||τ̃ ||2

+ ||ẋ||||v||
(14)

being τ̃ dynamics faster than the endoscope dynamics, the
equilibrium point ||τ̃ || = 0 is reached faster than ||ẋ|| = 0.
Hence the Lyapunov function contracts under the limited
condition λmin(Kp)||ẋ|| ≥ ||v||. The condition guarantees
uniformly unlimited bounded (UUB) [40] stability of the
system. Moreover in this condition the system converges to the
attractive set B = {(x̃, ẋ, τ̃ )|J̇(x̃, ẋ, τ̃ ) = 0} for x̃, ẋ, τ̃ = 0



APPENDIX C

The definition of Lipschitz continuity function is

||f(x1)− f(x2)|| ≤ C||x1 − x2||2 (15)

if there exists a Lipschitz constant C > 0. In the following
we demonstrate the Lipschitz continuity in θ of the exploration
policy π described in (10).

Proof. To demonstrate the assertion, we express the policy
on the largest set of exploration, taking into account that the
almost totality of gaussian noise can be described in terms of
its standard deviation:

K = N(K, ke
− 1

|Vθ | ) ≈ K ± 3ke
− 1

|Vθ| (16)

applying (16) into (15) we get

||K ± 3ke
− 1

|Vθ1 | −K ∓ 3ke
− 1

|Vθ2 | || ≤ C||θ1 − θ2||2

|| ± 3ke
− 1

|Vθ1 | ∓ 3ke
− 1

|Vθ2 | || ≤

||3ke
− 1

|Vθ1 | + 3ke
− 1

|Vθ2 | || ≤ C||θ1 − θ2||2
where we take opposite sign of the functions in the left-hand
side of the last inequality in order to express the maximum
policy variation.

||3ke
− 1

|Vθ1 | + 3ke
− 1

|Vθ2 | || ≤ C||θ1 − θ2||2

3k||e
− 1

|Vθ1 | ||+ 3k||e
− 1

|Vθ2 | || ≤

3k(||e
− 1

|Vθ1 | ||+ ||e
− 1

|Vθ2 | ||) ≤ C||θ1 − θ2||2

k ≤ C

3

||θ1 − θ2||2
e
− 1

|Vθ1 | + e
− 1

|Vθ2 |

we can notice that the denominator in the left-hand side of
the last inequality is always less than 2 and conclude that C
is finite and must be over 6k.
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