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Abstract

We consider a model of basic inner retinal connectivity where bipolar and

amacrine cells interconnect, and both cell types project onto ganglion cells,

modulating their response output to the brain visual areas. We derive an an-

alytical formula for the spatio-temporal response of retinal ganglion cells to

stimuli taking into account the effects of amacrine cells inhibition. This anal-

ysis reveals two important functional parameters of the network: (i) the in-

tensity of the interactions between bipolar and amacrine cells, and, (ii) the

characteristic time scale of these responses. Both parameters have a profound

combined impact on the spatiotemporal features of RGC responses to light.
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The validity of the model is confirmed by faithfully reproducing pharmacoge-

netic experimental results obtained by stimulating excitatory DREADDs (De-

signer Receptors Exclusively Activated by Designer Drugs) expressed on gan-

glion cells and amacrine cells subclasses, thereby modifying the inner retinal

network activity to visual stimuli in a complex, entangled manner. Our math-

ematical model allows us to explore and decipher these complex effects in a

manner that would not be feasible experimentally and provides novel insights

in retinal dynamics.
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1 Introduction

Visual processing involves some of the most complex neural networks in the vertebrate

central nervous system (Marr, 1982; Chalupa and Werner, 2004; Besharse and Bok, 2011;

Daw, 2012). The retina is the entry point to our visual system. Located at the back of the

eye, this thin neural tissue receives the light that the cornea and lens have captured from

different parts of the visual scene, converts it into electrical signals and finally, transmits

these signals to the brain visual areas. In particular, light follows a vertical excitatory

pathway in the retina, from photoreceptors (PRs) to bipolar cells (BCs) and onwards to

retinal ganglion cells (RGCs), modulated laterally by inhibitory interneurons; horizontal

(HCs) and amacrine cells (ACs) (Figure 1, left). RGCs serve as a bridge between the retina

and the brain, conveying highly processed and integrated signals from the upstream retinal

neurons to downstream visual processing cortical areas. Amazingly, the human brain can

recreate images from interpreting parallel streams of information of about one million

RGCs, the sole retinal output neurons. This ability is partially due to the astonishing

functional, anatomical and molecular diversity across the retinal layers. However, how

the different cell classes interact to ultimately encode, via RGCs, a visual scene into spike

trains (action potentials) deciphered by the brain remains largely a mystery.

RGCs are indeed embedded in a complex network and their response is roughly driven

by two "controllers": 1) The output of BCs that includes both the intrinsic response proper-

ties of these cells and the actions of HCs and ACs upon them (lateral connectivity); 2) The

direct input from ACs via chemical synapses or gap junctions, helping spike synchrony

between neighbor RGCs (Masland, 2012b; Demb and Singer, 2015). As a consequence,

the response of RGCs to visual stimuli does not only depend on the physiological charac-
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teristics of the cells (Sanes and Masland, 2015), but also on the network they are embedded

in, and, on the stimulus itself (Cessac, 2022). Previous studies have thus attempted to in-

vestigate how the inner retinal neurons are organised into parallel circuits across different

cell types and converge onto RGCs (Wässle, 2004; Gollisch and Meister, 2010). This has

been studied extensively at the level of bipolar cells, leading to a fairly good understanding

of their function (Euler et al., 2014). Other studies have investigated the functional role

of amacrine cell (ACs) types in retinal processing (Asari and Meister, 2012; Franke and

Baden, 2017; Diamond, 2017; Schröder et al., 2020), suggesting either specific functions

such as direction selectivity (starbust ACs) or more general computations, like motion an-

ticipation (Berry et al., 1999; Souihel and Cessac, 2021). A number of studies have also

focused on how retinal interneurons contribute towards the sensitivity to activity patterns

of RGCs. For example, de Vries et al. (2011) studied the spatio-temporal effects of ACs on

RGCs outputs and proposed mechanisms related to predictive coding of the retina. Manu

et al. (2022), Ichinose et al. (2014), manipulated HCs and ACs, the first by injecting pat-

terns of current and the latter by using pharmacology, to directly measure the effect on

retinal receptive fields surround. Likewise, Protti et al. (2014) studied the spatial organi-

sation of excitatory and inhibitory synaptic inputs onto ON and OFF RGCs in the primate

retina using pharmacology. Nevertheless, the potential role of the BCs-ACs network on

the RGCs response, both from a theoretical and experimental perspective, hasn’t been suf-

ficiently explored yet. The scope of the present study is to make one step further in this

direction.

Numerous models of the retina have been proposed, with different levels of biological

detail and across multiple spatial and temporal scales. Phenomenological models have
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become quite popular due to their simplicity and efficiency to fit to experimental data and

explain observations, such as the linear-nonlinear model (Chichilnisky, 2001; Paninski,

2003; Simoncelli et al., 2004; Schwartz et al., 2006), the generalized linear models (Pillow

et al., 2008) or black-box convolutional neural networks of retinal function (McIntosh

et al., 2017). However, these models are agnostic to the biophysical details that underlie the

input-output transform of the visual system. On the other hand, mechanistic models exhibit

a direct relationship between the underlying biophysics of neurons and the parameters of

the model. Well known examples are the Hudgkin-Huxley (Hodgkin and Huxley, 1952),

the Fitzhugh-Nagumo (FitzHugh, 1969; Nagumo et al., 1962), the Morris-Lecar (Morris

and Lecar, 1981) models but they were mainly designed to describe the spike generation

while most of the neurons in the retina (except RGCs) are not spiking. In addition, this type

of models turns out to be cumbersome to analyze and simulate, especially when dealing

with collective network dynamics.

The model developed in the present work falls into both categories and it is definitely

inspired by some previous work (Berry et al., 1999; Chen et al., 2013b; Souihel and Ces-

sac, 2021). It is a multi-stage, phenomenological model, with simplifications regarding the

complex retinal structure. Nevertheless, it aims to be relatively precise from a biological

perspective, by realistically reproducing RGCs’ responses to light from the experimental

recordings. Our primary goal is to gain insights about the underlying biophysical pro-

cesses giving rise to certain experimentally observed phenomena, rather than proposing

an exact model of the retina.

On a theoretical ground, we consider a network of BCs connected via ACs, both cell

types being connected with chemical synapses to RGCs. Based on a mathematical study,
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we derive an analytical formula of the RGCs receptive field (RF) that takes into account

the lateral ACs connectivity and shows how the response of RGCs to spatio-temporal

stimuli is shaped. Especially, we emphasize the role of: (i), the average intensities of the

interactions BCs - ACs and ACs-BCs, and, (ii), the characteristic time scales of these cells

response. Varying these parameters acts on the shape of the response to light with potential

prominent effects such as a switch from monophasic to biphasic in the temporal RF.

We illustrate our predictions by analysing experimental data obtained from the phar-

macological action of excitatory DREADDs (Designer Receptors Exclusively Activated

by Designer Drugs) in genetically modified mice. DREADDs are activated by "designer

drugs" such as clozapine-n-oxide (CNO), resulting in an increase in free cytoplasmic cal-

cium and profound increase in excitability in the cells that express these DREADDs (Roth,

2016). We found DREADD expression both in subsets of RGCs and in ACs in the inner

nuclear layer (INL) (Hilgen et al., 2022). In these conditions, CNO would act both on

ACs and RGCs providing a way to unravel the entangled effects of: (i) direct excitation

of DREADD-expressing RGCs and increase inhibitory input onto RGCs originating from

DREADD-expressing ACs; (ii) change in cells response time scale (via a change in the

membrane conductance), thereby providing an experimental set up to validate our theoret-

ical predictions.

In the following, we propose a simplified model for the BCs - ACs - RGCs network.

The concerted activity of BCs - ACs -RGCs in response to a visual stimulus is described

by a large dimensional dynamical system whose mathematical study allows an explicit

computation of the RF of BCs, ACs, RGCs and, more generally, to anticipate the effects

resulting from light stimulation conjugated with the network activity due to ACs lateral
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inhibition, in control conditions and in the presence of CNO. Computing the receptive

fields of all cell types (especially RGCs) allows us to to disentangle the concerted effect of

ACs lateral connectivity and CNO on the RF of RGCs and provides an excellent agreement

with experimental data. We argue, on the basis of the model and analytical computations,

that the BCs-ACs network shapes the RF of RGCs via two main reduced dimensionless

parameters, one characterizing the ratio in the time scales of ACs and BCs response, and

the other, characterizing the ratio between the synaptic weight BCs → ACs and ACs →

BCs. This defines a two dimensional map, called the "RFs map". We show how the

experimental data settle in this map and we link the observed changes in the shape of

the RF, when applying CNO, to a displacement in this map. Finally, we extrapolate our

model predictions to situations where the RGCs response could not be explained by the

physiological properties of the cell but would involve the ACs network.

2 Methods

2.1 The retina model

2.1.1 Structure

We assimilate the retina to a superimposition of 3 layers, each one corresponding to a cell

type (BCs, ACs, RGCs), and being a flat, two-dimensional square of edge length L mm

where spatial coordinates are noted x,y (Figure 1).

We consider a simplified form of connectivity, inspired from the real connectivity in

the retina, illustrated in Figure 1. First, there are as many BCs as ACs and RGCs (N cells
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per type so that the total number of cells is 3N). BCs are labelled with an index i = 1 . . .N,

ACs with an index j = 1 . . .N, RGCs with an index k = 1 . . .N. BCs are connected to

ACs. We note W A j
Bi
≤ 0 the weight of the inhibitory synapse from AC j to BC i. We use

the convention that W A j
Bi

= 0 when AC j is not connected to BC i. Likewise, we note

W Bi
A j
≥ 0 the weight of the excitatory synapse from BC i to AC j, W Bi

Gk
≥ 0 the weight

of the excitatory synapse from BC i to RGC k and W A j
Gk
≤ 0 the weight of the inhibitory

synapse from AC j to RGC k. We note W A
B the (square) matrix of connections from ACs

to BCs and so on. Note that the model affords as well connections between the same cell

types (e.g. ACs to ACs or RGCs to RGCs via gap junctions) but it would consequently

complicate the theoretical analysis.

2.1.2 Visual input

Each neuron has a receptive field (RF), a specific region of the visual field where light

stimulus will modify the activity of this neuron. The term RF is not limited only to the

spatial region but it is often extended to include the temporal structure within this region.

The RF usually exhibits a centre-surround organisation shared by many cell types in the

retina (Masland, 2012a). Each BC receives synaptic inputs from its upstream circuitry,

a combination of dendritic excitatory inputs from photoreceptors (rods and cones) and

inhibitory inputs from horizontal cells (Franke and Baden, 2017) occurring at the level of

the Outer Plexiform Layer (OPL) and this interaction emerges on their RF.

A popular approach to simplify the complex process involved is to model the RF as a

single spatio-temporal linear filter that essentially represents the opposition between the

centre of the receptive field, driven by photoreceptors, and the surround signal transmit-
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Figure 1: Translation of the retinal circuit to a computational network model. Left.

Schematic of the retina. Light activates the photoreceptor cells (PRs), that transduce the

input into a cascade of biochemical and electrical events that can stimulate BCs and on-

wards RGCs. This vertical excitatory pathway is modulated by inhibitory interneurons

comprising two groups; horizontal (HCs) and amacrine cells (ACs). All these neural sig-

nals are integrated by RGCs and finally converted into action potentials going to the brain.

Right. Schematic view of the model. The joint integration of PRs and HCs in a limited

region of space is modelled by a spatio-temporal kernel mathematically defining the OPL

input to a BC, corresponding to eq. (1). The convolution of this kernel with the stimulus

drives the BC evolution, modulated by inhibitory connections with ACs. BCs indeed make

excitatory synaptic connections with ACs and ACs inhibit BCs. Finally, RGCs pool over

many BCs and ACs in their neighbourhood. Note that the cells connections on the right

panel are just shown for illustration and do not necessarily correspond to the connectivity

used in the model. Cells are organised along a square lattice viewed here in a 3D perspec-

tive.
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ted by horizontal cells. The membrane potential of the BC’s soma can then be linearly

approximated by the convolution of the spatio-temporal kernel KBi , featuring the bio-

physical processes at the OPL, with the visual stimulus S (x,y, t). As we do not consider

color sensitivity here, S characterizes a black and white scene, with a control on the level

of contrast ∈ [0,1]. The voltage of BC i is stimulus-driven by the term ("OPL input"):

V
(drive)

i (t) =
[
KBi

x,y,t
∗ S

]
(t)

=
∫ +∞

x=−∞

∫ +∞

y=−∞

∫ t

s=−∞

K (x− xi,y− yi, t− s)S (x,y,s)dxdyds,
(1)

where
x,y,t
∗ means space-time convolution. For simplicity we consider only one family of

BCs so that the kernel K is the same for all BCs. What changes is the center of the RF,

located at xi,yi, which also corresponds to the coordinates of the BC i. We consider in

the paper a separable kernel K (x,y, t) = KS(x,y)KT (t) where KS is the spatial part and

KT the temporal part. We restrict to ON or OFF BCs with a monophasic spatio-temporal

kernel of the form:

KT =
(

A0
t2

2τ3
RF

e−
t

τRF + b0

)
H(t). (2)

where H(t) is the Heaviside function. The parameter A0 controls the amplitude of the OPL

input and can be positive (ON BC) or negative (OFF BC), while b0 controls the level of

residual polarisation observed in experiments, when light stimulation has stopped. This

parameter is further explained below. Experimentally, the BC temporal response can be

biphasic in time, because of receptor desensitization and because HCs feedback on to PRs

terminals. Note however, that the BCs response can also be monophasic (Schreyer, 2018).
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Figure 2: OPL kernel. Left. Spatial part in one spatial dimension. Right. Temporal part.

As we precisely want to point out the effect of lateral inhibition on the BCs response, we

consider a monophasic temporal OPL input and show that, tuning the lateral connectivity

parameters in the model, one can indeed obtain biphasic shapes, as expected, but also more

complex dynamical responses.

The spatial part, KS , is a classical difference of Gaussians. This spatio temporal kernel

is illustrated in Figure 2.

2.1.3 Voltage dynamics

In the model, neurons are characterized by their voltage. Although RGCs are spiking, we

will be indeed interested only in their voltage variations, as a function of the stimulus and

network effects. Spiking could be obtained from voltage e.g. using a Linear Nonlinear

Poisson process (LNP) for spiking neurons (Berry et al., 1999; Chen et al., 2013a; Souihel

and Cessac, 2021). We note VBi the voltage of BC i, VA j the voltage of AC j, VGk the
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voltage of RGC k. The joint dynamics of voltages is given by the dynamical system:



dVBi
dt = − 1

τBi
VBi + ∑

NA
j=1W A j

Bi
N (A) (VA j

)
+ FBi(t), i = 1 . . .N

dVA j
dt = − 1

τA j
VA j + ∑

NB
i=1W Bi

A j
N (B) (VBi )+ ζA , j = 1 . . .N,

dVGk
dt = − 1

τGk
VGk + ∑

NB
i=1W Bi

Gk
NB(VBi)+ ∑

NA
j=1W A j

Gk
NA(VA j)+ ζG, k = 1 . . .N.

(3)

This form is derived, from first principles and using simplifying hypotheses, in the section

1.1 of the supplementary material. The rectification term:

NA(VA j) =

 VA j −θA, if VA j > θA;

0, otherwise
, (4)

ensures that the synapse j→ i is inactive when the pre-synaptic voltage VA j is smaller than

the threshold θA. The same holds for the rectification term NB(VBi) with a threshold θB.

The term:

FBi(t) =
V

(drive)
i

τBi

+ d
dt

V
(drive)

i , (5)

is the stimulus driven input to BCs. It takes this form to ensure that, in the absence of ACs

coupling, VBi(t) = V
(drive)

i (t).

CNO binds to specific designed receptors leading either to an excitatory or inhibitory

response, depending on the receptors (Gi or Gq) (Roth, 2016; Urban and Roth, 2015).

Here, we propose a simplification of the actual biological process for mathematical conve-

nience. We model the CNO effect by a current of the form −gCNOT (V −ECNOT ), where
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V is the voltage of a cell sensitive to CNO, T is the cell type (i.e. only ACs or RGCs

according to the experimental set-up); gCNOT is the conductance of channels sensitive to

CNO that is zero in the absence of CNO while it increases with CNO concentration and

ECNOT is the corresponding reversal potential, positive for excitatory CNO and negative

for inhibitory.

As CNO modifies the membrane conductance it also induces a change of polarization,

which is characterized by the parameter ζA for ACs and ζG for RGCs, with a general form

(see section 1.1):

ζT = ECNOT

C
gCNOT (6)

where T = A,G and where C is the membrane capacitance assumed to be the same for all

cells.

In eq. (3), τBi,τA j ,τGk are the characteristic integration times of the BC i, AC j, RGC

k. As discussed in the next section and in section 1.2 (supplementary), they depend on

CNO in a complex, non linear way.

2.1.4 Parameters reduction

The model depends on many parameters that constrain the dynamical evolution of the

system (3). Although some of our results, like the explicit form for RFs (15), are quite

general, it is easier, for analytic derivations and for simulations to further simplify these

parameters.

First, we consider that the synaptic weights from ACs to BCs, are controlled by a

unique parameter, w− > 0, W A
B =−w−Γ

A
B (inhibitory synapse) where Γ

A
B is an adjacency
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matrix (ΓA j
Bi

= 1 if the j-th AC connects to the i-th BC, and Γ
A j
Bi

= 0 otherwise). Likewise,

W B
A = w+ Γ

B
A with w+ > 0 (excitatory synapse). We use a simple form of connectivity,

where Γ
B
A = Γ

A
B are nearest neighbors adjacency matrices with null boundary conditions.

The retina is regularly tiled by different cell types so this approximation is reasonable,

although in reality one cell connects to more than 4 neighbors. Our "cells" must actually be

considered as "effective" cells with "effective" interactions. In particular, our parameters

w−,w+ correspond to many synaptic contacts. This simplification allows to considerably

reduce the number of parameters shaping the synaptic interactions and affords analytic

computations (see supplementary).

Following e.g. (Berry et al., 1999; Chen et al., 2013a; Souihel and Cessac, 2021), the

synaptic weight matrices:

W Bi
Gk

= wB
G

e
− d2[Bi,Gk ]

2σ2p
√

2π σp
, W A j

Gk
= wB

G
e
−

d2[A j ,Gk ]
2σ2p

√
2π σp

, (7)

are Gaussian "pooling" matrices with wB
G > 0, wA

G < 0, and with d [Bi, Gk ], the 2-d Eu-

clidean distance between BC i and RGC k. The pooling standard deviation, σp was fixed

to adapt to the spatial RF of observed cells (see section 3.1.2).

In this context, we can further understand the effect of CNO on the model. We assume,

for simplicity, that the lattice is so large that we can neglect boundary effects, so that the

characteristic times of BCs, ACs, RGCs and their rest state noted V ∗B and V ∗A , V ∗G, are

uniform in space (the general case is discussed in section 1.2). We set MB
G = ∑

N
i=1W Bi

Gk

(resp. MA
G = ∑

N
j=1W A j

Gk
). Strictly speaking, these numbers depend on k, due to boundary
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conditions, but we neglect here this dependence.

The characteristic times are then given by:



τB = τL

1− 2dw−τL
EA

(V ∗A−θA)

τA = τL

1+τL

(
ζA

ECNOA
+ 2dw+

EB
(V ∗B−θB)

)
τG = τL

1+τL

(
ζG

ECNOG
+

MB
G

EB
(V ∗B −θB )+

MA
G

EA
(V ∗A −θA )

) ,

(8)

where d is the lattice dimension, τL the leak characteristic time, EB and EA are respectively

the reversal potential for the synaptic connection from BCs to ACs, and for ACs to BCs

(see sections 1.1 and 1.2 for detail). The rest states are given by:


V ∗B = 4d2τAτBw−w+θB−2dτBw−τA ζA +2dτBw−θA

1+4d2τAτBw−w+

V ∗A = 4d2τAτBw−w+θA−2dτAw+θB +τA ζA
1+4d2τAτBw−w+

V ∗G = τG

[
MB

G (V ∗B − θB ) + MA
G (V ∗A − θA ) + ζG

]
.

(9)

Equations (8) and (9) hold if V ∗B > θB,V ∗A > θA, i.e. the rest state is not rectified. This

entails conditions on ζA that we computed explicitly. However, these computations where

too lengthy to be included in the paper. The interested reader will find them on the web

page https://team.inria.fr/biovision/mathematicalderivationscno/. In par-

ticular, considering a positive ζA (excitatory CNO), having V ∗B > θB,V ∗A > θA require that

θB < 0 and that it is compatible with θA = 0, a condition that we will assume from now

on.

On this web page, we also address the question of the variation of τB,τA,V ∗B ,V ∗A as ζA

https://team.inria.fr/biovision/mathematicalderivationscno/
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varies. We found that ∂V ∗B
∂ζA

=− 2dτAτBw−

1+4d2τAτBw−w+ ≤ 0, meaning that BCs get more hyperpolar-

ized when the excitatory effect of CNO on ACs increases, while ∂V ∗A
∂ζA

= τA
1+4d2τAτBw−w+ ≥ 0

(ACs get more depolarized when ζA increases). This result is the one qualitatively ex-

pected, but note that our modelling is also quantitative. In strong contrast, the computation

of ∂τB
∂ζA

and ∂τA
∂ζA

reveals that the sign of these derivative depends on specific domains in the

space of parameters w−,w+,θB, with nonlinear frontiers. That is, even for this reduced

model, the behaviour of the characteristic times as CNO increase depends on network pa-

rameters in a non trivial way. There are actually domains where these characteristic times

increase with ζA.

Thus, while a rapid argumentation would predict that, the characteristic times of ACs

should increase because the membrane conductance increases as ζA increases, the oppo-

site can happen as well. This is because, as revealed by eq. (8), the characteristic time τA

depends on the rest states (eq. (9) ) which depend themselves on ζA via the characteristic

times τA,τB. This results in a two dimensional implicit non linear system studied on the

web page https://team.inria.fr/biovision/mathematicalderivationscno/.

As explained in the introduction, our main goal is to confront this modelling to ex-

periments and extract general statements from it. One major difficulty, however, is that

we cannot fine tune the parameter ζA (the CNO conductance) in experiments because it

is not possible to establish a CNO dose response curve of the changes in retinal activity.

Therefore, even under modelling simplifications it is not possible to fit the model from

experiments with the non linear equations (8) and (9). When fitting experimental results

we computed the characteristic integration times of cells in control (CTL) and CNO con-

https://team.inria.fr/biovision/mathematicalderivationscno/
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ditions independently (see section 3.1.2). Likewise, we cannot access the rest state of BCs

and ACs. We fixed the thresholds θA,θB to zero. (Mathematically, θB should be strictly

negative, but we can consider a very small absolute value.) Thus, the rest states (9) are zero

in the absence of CNO. Nevertheless, in experiments, one can observe a small residual po-

larisation, which changes in the presence of CNO. That is why we added the polarization

parameter, b0, appearing in eq. (2), a huge, but necessary simplification of the entangled

equations (9).

Most of the analysis below will be done considering that no rectification takes place,

even under light simulation, so that we essentially consider a linear model. This is sup-

ported by the paper of Baccus et al. (2008) showing that the voltage of bipolar cells is

essentially a linear function of the stimulus for white noise. For a more general analy-

sis dealing with rectification please check the supplementary, as well as the discussion

section.

2.1.5 Experimental set-up

In our experiments, excitatory DREADDs (hM3Dq) were activated using CNO on RGCs

and ACs co-expressing a certain gene (Scnn1a or Grik4), triggering a calcium release from

organelles and thus, leading to increase of intracellular concentration of free calcium. This

resulted in membrane depolarisation and higher neuronal excitability. Our experiments

suggested that subclasses of ACs and RGCs could be simultaneously sensitive to CNO but

we did not observe any evidence of an effect on BCs.

Detailed experimental details can be found in our recent publication (Hilgen et al.,

2022). All experimental procedures were approved by the ethics committee at Newcastle
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University and carried out in accordance with the guidelines of the UK Home Office, under

the control of the Animals (Scientific Procedures) Act 1986. Recordings were performed

on the BioCamX platform with high-density-multielectrode array (HD-MEA) Arena chips

(3Brain GmbH, Lanquart, Switzerland), integrating 4096 square microelectrodes in a 2.67

× 2.67 mm2 area and aligned in a square grid with 42 µm spacing. Light stimuli were

projected onto the retina using a LED projector. Briefly, the projector irradiance was

attenuated using neutral density filters to mesopic light levels.

3 Results

In this section we present the theoretical and numerical results based on our retina model.

We provide only the main conclusions of the mathematical derivations, which are pre-

sented in detail in the supplementary section.

3.1 Model fitting of ganglion cell receptive fields characterized from

experimental data

RGC responses emanate from a dynamic balance of synaptic excitation and inhibition,

originating from the interactions of BCs and ACs. We believe that such network connec-

tivity gives rise to various response patterns and we show that our model can capture these

joint effects, by providing an analytic form of the RF of the cells. As we demonstrate,

this computation provides us an algorithmic way to fit the model parameters to the light

responses recorded from mouse RGCs. One can then infer the possible behaviour of ACs

and BCs leading to this RGC response, even if we do not measure them experimentally.
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3.1.1 Mathematical form of the RF of retinal cells

The results presented below hold for all cell types. Thus, we label cells with a generic

index α = 1 . . .3N. BCs have an index α = 1 . . .N, ACs have an index α = N + 1 . . .2N,

RGCs have an index α = 2N + 1 . . .3N and we write Xα the voltage of cell α .

The time evolution of the dynamical system in eq. (3) is controlled by a matrix, L ,

called "transport operator" and explicitly written in the supplementary section 1.3. L de-

pends on the connectivity matrices W A
B ,W B

A ,W A
G ,W B

G and on all the parameters controlling

the dynamics. The form of L also depends on the set of rectified cells. In the following,

we assume that cells are not rectified i.e. hyperpolarised BCs do not reach the rectification

threshold (the rectified case is discussed in the conclusion section and in the supplementary

material). Consequently, the dynamical system (3) is linear.

In this case, the eigenvalues λβ , β = 1 . . .3N and the eigenvectors Pβ of L charac-

terize the evolution of cells’ voltages. We note P the matrix transforming L in diagonal

form (the columns of P are the eigenvectors Pβ ) and P−1 its inverse.

In this context, we show in the supplementary section 1.3.3 that the voltage of a cell

with index α is the sum of 4 terms:

Xα(t) = V
(drive)

α (t) +E
(drive)
α (t) + E

(CNOA)
α + E

(CNOG)
α , α = 1 . . .3N. (10)

Stimulus drive. The first term, V
(drive)

α (t) corresponds to (1), and is non zero for BCs

only. It corresponds to the BCs response in the absence of the ACs network.
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CNO effects. The terms:

E
(CNOA)
α = ζA

3N

∑
β=1

2N

∑
γ=N+1

Pαβ P−1
βγ

λβ

, α = N + 1 . . .2N; (11)

and

E
(CNOG)
α = ζG τGα

, α = 2N + 1 . . .3N. (12)

correspond, respectively, to the impact of CNO on the voltages of ACs and RGCs. There

are important nonlinear effects hidden in the terms
Pαβ P−1

βγ

λβ

(eq. (11)) which depend

themselves on the characteristic times (8). Thus, the polarization level of ACs and RGCs

is not only fixed by the direct effect of CNO on the cell, but is also tuned by entangled

network effects.

Stimulus-network interaction term. In eq. (10), the term :

E
(drive)
α (t) =

3N

∑
β=1

N

∑
γ=1

Pαβ P−1
βγ

ϖβγ

∫ t

−∞

eλβ (t−s) V
(drive)

γ (s)ds, α = 1 . . .3N, (13)

where ϖβγ = 1
τBγ

+ λβ , corresponds to the indirect effect, via the network connectivity, of

the stimulus drive on (i) BCs, for α = 1 . . .N; (ii) ACs for α = N + 1 . . .2N; (iii) RGCs

α = 2N + 1 . . .3N. Thus, this equation describes the response of all cells to the stimulus.

Especially, it tells us how the direct input (1) to BCs is modulated by the concerted activity

of BCs and ACs.

Mathematically, the term (13) can be interpreted as follows. The drive (index γ =

1 . . .N) triggers the eigenmodes β = 1 . . .3N of L , with a weight proportional to P−1
βγ

.

The mode β , in turn, acts on the voltage of cell α = 1 . . .3N with a weight proportional
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to Pαβ . The time dependence and the effect of the drive are controlled by the integral∫ t
−∞

eλβ (t−s) V
(drive)

γ (s)ds. The eigenvalues λβ introduce characteristic time scales in the

response: exponential decay rate for the real part, frequency of oscillations for the imagi-

nary part, if any. The right eigenvectors (columns of P) and the left eigenvectors (rows of

P−1) introduce characteristic space scales in the response. The easiest case to figure this

out is the nearest neighbours connectivity considered in section 5.3.5. Here, eigenvectors

are labelled by an index n which actually corresponds to a wave vector, (eq. (49)), the in-

verse of a space scale. In this context, the eigenmode with n = 1 has the largest space scale

(the size of the lattice) whereas the eigenmode with n = N corresponds to the minimum

space scale (the distance between two nodes). Thus, eq. (13) illustrates that the response

to a spatio-temporal stimulus is a combination of multiple time scales and space scales,

leading to interesting phenomena such as resonances as commented below, or waves of

anticipation as studied in Souihel and Cessac (2021).

The Receptive Field of all cell types. Introducing the function eβ (t) ≡ eλβ t H(t) so

that
∫ t
−∞

eλβ (t−s) V
(drive)

γ (s)ds≡
[

eβ

t∗KBT

t∗
(

KBSγ

x,y
∗ S

)]
(t), and using the separated

kernel form (2), the response (13) reads:

E
(drive)
α (t) =

[
K

α

x,y,t
∗ S

]
(t), (14)

with:

K
α
(x,y, t) =

3N

∑
β=1

(
Pαβ Uβ (t) ×

N

∑
γ=1

P−1
βγ

ϖβγ KBSγ
(x,y)

)
, (15)
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where we have set Uβ (t) ≡
[

eβ

t∗KBT

]
(t). The response of cell α is thus expressed as

a convolution of the stimulus with a spatio-temporal kernel K
α
(x,y, t), an expected re-

sult from the linear response. Nevertheless, it’s important to point out that the expression

(15) holds for all cell types, not only RGCs and that it contains the network effects in-

duced by the BCs-ACs network. Thus, for α = 1 . . .N, equation (15) characterizes the

indirect (network induced) response of BCs to the stimulus drive, in addition to the direct

response (1). For α = N + 1 . . .2N, equation (15) represents the RF of ACs. Finally, for

α = 2N + 1 . . .3N we obtain the RF of RGCs. We focus on this last case from now on,

essentially because this predicted RF can be confronted to experiments, whereas we have

no experimental access to BCs or ACs RF.

The Receptive Field of RGCs. Henceforth, we will refer to K
α
(t) as KGα

(t), to make

explicit that we are dealing with RGCs. The RF of RGCs can be often written as a product

of a space dependent term and a time dependent term (separability). In our case, this

would correspond to write KGα
(x,y, t) in the form of a product KGα

(x,y, t) = KGTα
(t)×

KGSα
(x,y) where:

KGTα
(t) =

3N

∑
β=1

Pαβ Uβ (t), (16)

is a temporal kernel and:

KGSα (x,y) =
N

∑
γ=1

P−1
βγ

ϖβγ KBSγ
(x,y), (17)

is a spatial kernel.

This separation is not strictly possible in eq. (15), because there is a dependency on β
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on the term ∑
N
γ=1 P−1

βγ
ϖβγ KBSγ

(x,y). Thus, from this computation the RF of RGCs is not

expected to be separable in general. However, it is important to remark that the stimulus

used in experiments for determining RFs, the white noise, is uniform in probability in

the space domain and in the time domain. This induces an effective separation of the

response which might not hold for more complex stimuli (e.g. moving objects). As the

experimental RFs considered here have been obtained from white noise we will assume

separability from now on.

The spatial part of the RGCs RF. Equation (17) appears as an overlap of spatial RFs

of BCs. In such naive overlaps approximations, spatial RFs of BCs are just summed up

with a uniform weight. However, here the RF of each BC is constrained by ACs lateral

connectivity, via the term P−1
βγ

ϖβγ . In particular, equation (17) is not necessarily circular

even if BCs RFs are, and the center of the RGC cell RF is not necessarily at the barycentre

of connected BCs RFs. This holds, for example, if AC connectivity is not invariant by

rotation.

The temporal part of the RGCs RF, (16). As we consider monophasic temporal ker-

nels KBT of BCs with the form (2) we have:

Uβ (t) = A0


[

2τ2
RF eλ

β
t−
(

t2 (λβ τRF +1)2+2tτRF(λβ τRF +1)+2τ2
RF

)
e
− t

τRF

]
2(λβ τRF +1)3

τ2
RF

 H(t) (18)

Uβ , and, thereby, KGTα
(t) is the temporal part of the RGC receptive field, that changes

their shape due to variations in the eigenvalues of L , who are themselves controlled by
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model parameters. A striking effect arises when some eigenvalues become complex, lead-

ing to temporal oscillations of Uβ . This remark is at the core of the analysis exposed in

section 3.2.2.

3.1.2 Fitting the RFs of ganglion cells

Experimentally, RGCs RFs were reconstructed from Spike Triggered Average (STA) in

response to Shifted White Noise (SWN). The SWN, introduced by Hilgen et al. (2017);

Pamplona et al. (2022) is a spatially uniform noise where the images of random black and

white squares in the classical "White Noise" stimulus have, in addition, random spatial

shifts, improving the resolution of the STA. This allowed us to fit the spatial and temporal

part of the RF. Note, however, that it is difficult to obtain the surround in the spatial part.

From the center part of the spatial RF, we fixed the parameter σp in the Gaussian pooling,

eq. (7). More extended results can be found in E. Kartsaki thesis (Kartsaki, 2022), where

we display experimental spatial RFs, see e.g. section 3.4.1 of the thesis.

We mainly focused on the temporal part of the RF. The time RF estimation resulted

in temporal traces with duration 600 ms sampled with a rate 33/4 = 8.25 ms. In order

to assess the validity of the model, we have fitted these time traces in CTL and CNO

conditions. We have a data base of 117 cells sensitive to CNO, i.e. exhibiting increase or

decrease in firing rate beyond a certain threshold.

These reconstructed temporal RFs provide the linear response of a RGC to a spatially

uniform flashed stimulus, mathematically corresponding to a Dirac distribution. As we

wanted to compare our model’s output, the RGC voltage, VG, to this experimental RF,

computed from firing rates, we neglected the effect of non linearities and assumed that the
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experimental response is proportional to the RGC voltage. We considered a one dimen-

sional model (chain) with N = 60 cells of each type where the cells at the boundaries have

a fixed, zero, voltage (zero boundary conditions), corresponding to the reference rest state.

To reduce the boundaries effect, we made the fit for the RGC in the center of the network.

We performed simulations of the model (3) using a spatially uniform Dirac pulse as

the stimulus and compute the cell responses, using two modalities: simulation of the dif-

ferential equations (3) (green traces labelled "Sim" in Figure 3) and analytic computation

(15) (black traces labelled "Th" in Figure 3). We observe that these two traces are always

identical confirming the goodness of the simulation scheme.

We recall that the parameters shaping this response are: A0, the intensity of the OPL

input; b0, controlling a residual depolarization/hyper polarization observed in experimen-

tal responses; w+, controlling the synaptic intensity from BCs to ACs; w−, controlling

the synaptic intensity from ACs to BCs; wB
G, controlling the synaptic intensity from BCs

to RGCs; wA
G, controlling the synaptic intensity from ACs to RGCs; τB, the characteristic

membrane time scale of BCs; τA, the characteristic membrane time scale of ACs; τRF ,

the characteristic membrane time scale of the OPL drive; τG, the characteristic membrane

time scale of RGCs.

We note ~η the set of all the parameters shaping response. ~η is therefore a point in a

10-dimensional space.

The fit was then done by a gradient descent to minimize the L2-distance D2(~η) between

the experimental trace of the time STA, STA(s) and the theoretical temporal RF (16) which
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depends on ~η . The minimization is done by iterating the differential equation:

d~η

du
=−~∇~ηD2.

The gradient of ~∇~ηD2 involves ~∇~ηKGTα
(s) which can be explicitly computed when we

have the analytic form of RF , or numerically. Note that having the analytic form gives

better results especially because it allows second order corrections (Hessian). Our min-

imisation is done only on the temporal trace. Nevertheless, the simulation allows us to

draw the corresponding spatial RF.

Although the experimental temporal RFs were quite diverse among cells, we were able

to fit all of them with a very good accuracy (final error smaller than 1%). We rejected fits

where some parameters became unrealistic (e.g. τA larger than 1 s or |w− |> 1 kHz). We

rejected about 4% of the fits. An example of fit is shown in Figure 3.

In this synthetic representation the simulated responses of the OPL, BCs and ACs

connected to the RGC located at the centre of the network appears in the top left figure.

We also show the simulated response of the RGC vs the experimental temporal STA of

this cell (bottom left). On the top right we see the numerical spatio-temporal RF using

a color map. Finally, at the bottom right, we show the power spectrum (modulus of the

Fourier transform) of the temporal response. As developed below, this spectrum provides

important information on the cell response.

RGCs RFs in the presence of CNO could be fit equally well with our model. All fitted

cells, in CTL and CNO conditions, can be found on the web page https://gitlab.

inria.fr/biovision/dreadds. The C-code used for simulations can also be found

there.

https://gitlab.inria.fr/biovision/dreadds
https://gitlab.inria.fr/biovision/dreadds
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Figure 3: Summary panel. The top left panel (a) illustrates the simulated responses of

the OPL (term V
(drive)

α (t) in (1), black trace), BCs (red trace), ACs (blue trace) connected

to the RGC located at the centre of the network. The bottom left panel (b) shows the

simulated response of the RGC (green, "Sim", and black, "Th", trace) vs the experimental

temporal STA of this cell (orange dots). The green trace ("Sim") is the result of a numerical

simulation of the dynamical system (3) under a spatially uniform flashed stimulus, whereas

the black trace ("Th") is the result given by the analytic expression (15). The top right

panel (c) shows the spatio-temporal RF of the RGC, time in abscissa, space in ordinate.

The bottom right panel (d) displays the power spectrum of the time response, experimental

(orange dots) and theoretical (black lines).
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3.2 Network connectivity shapes the receptive fields of ganglion cells

Throughout our analysis of the experimental data, we observed great variability in the ef-

fect of DREADD activation with CNO on the RGCs responses. In this section, we develop

the consequences of our mathematical analysis in an attempt to explain this observed di-

versity of CNO effects on RF features. We propose here an explanation purely based on

network effects. There are certainly other possible interpretations based on single cell

characteristics such as non linear effects due to changes in conductance etc, discussed

in the discussion section. The main advantages of our analysis is that it determines net-

work effects on the RGCs RF, controlled by two main parameters, and that it predicts the

response to more complex stimuli than full field flashes.

3.2.1 Two main parameters constrain the RF shape of ganglion cells

The entangled, feedback effects of ACs-BCs can be characterized by two dimensionless

parameters. The first one, r = τA
τB

, characterizes the ratio between the ACs and BCs mem-

brane integration times. The second, s = w−
w+ , characterizes the ratio between the ACs→

BCs interaction (w−) and the BCs→ ACs interaction (w+). Of course, the other parame-

ters play an important role when fitting a specific RF. But, what we argue here is that the

shape of RF and its space-time scaling essentially depend on the value of r,s.

The theoretical explanation is that the RF of a RGC is given by the formula (14), which

is a cascade of convolutions involving the BC response to the stimulus (OPL input) and

the network effects expressed in terms of eigenvalues λβ and eigenvectors components

Pαβ appearing in equation (15). As explained in the supplementary section 1.3.4, these

eigenvalues and eigenvectors are essentially tuned by the two parameters r,s. There is also
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a dependence on other parameters discussed in section 3.2.3. Depending on the location in

the space r,s, some eigenvalues are real, some others are complex. All eigenvalues have a

negative real part, ensuring the stability of the linear system. Imaginary parts in eigenval-

ues introduce oscillations in the response, whereas the real part fixes a characteristic decay

time. The RF formula (15), involving a sum of exponentials eλβ t mixes these effects.

As we considered monophasic OPL response here, the time RF of RGCs is monophasic

when all eigenvalues are real. In contrast, oscillations in this RF can appear when some

eigenvalues are complex. However, the shape of this RF depends in more detail on the

period of oscillations, brought by the imaginary part of complex eigenvalues, and on the

characteristic decay times, brought by the real parts.

When moving in the (r,s) plane, the eigenvalue n switches from real to complex con-

jugate pair when crossing a critical line, depending on n, whose equation (48) is given in

the supplementary section 1.3.4. There are 2N eigenvalues associated with the BCs-ACs

network each one determining a critical line in the plane (r,s). The set of all these lines is

what we call the "skeleton". An example of this skeleton is shown in Figure 4, where we

only show some of the critical lines. These lines delimit color regions corresponding to

the number of complex eigenvalues (see colorbar legend on the right of the figure).

3.2.2 The RFs map

The existence of this skeleton determines regions in the (r,s) plane with specific shapes

for the temporal RF, given by eq. (16), a linear combination of functions Uβ (t) given by
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(18). The Fourier transform Ûβ (ω) of Uβ (t) is:

Ûβ (ω) = 1

(1 + iωτRF )3
1

iω−λβ

. (19)

Thus, the Fourier transform of (16) is:

KGTα
(ω) =

3N

∑
β=1

Pαβ Ûβ (ω), (20)

a linear combination of rational fractions. Extending to complex ωs, Ûβ (ω) has two poles:

ω = i
τRF

and ω = −iλβ , corresponding to complex resonances. The contributions of all

these poles (for β = 1 . . .3N) are combined in eq. (20) with weights Pαβ .

As we move in the (r,s) plane, we notice the following. When (r,s) are small, eigen-

values are real and the terms Pαβ are close to diagonal. In this case, the dominant pole

contribution in (20) is the pole ω = i 1
τRF

corresponding to the OPL contribution. Equation

(20) has a single peak centered at ω = 0, corresponding to a monophasic response. For

larger values of r,s some eigenvalues become complex, giving potential additional peaks

in the power spectrum. Actually, we observed two cases mutually compatible. First, the

central peak at ω = 0 switches to a non zero value. This corresponds to the appearance

of an exponentially damped oscillation in the RF, giving a biphasic response. However,

secondary peaks may appear leading to residual oscillations, in addition to the main trend

(monophasic or biphasic). This gives what we call a polyphasic response. Such residual

oscillations were observed in our experiments and were relatively numerous (about 40%).

There are, of course, other hypotheses explaining these residual oscillations, but here, we

will support the hypothesis that they are generated by a network effect. An example is
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given in Figure 3 where we observe, at the bottom left, residual oscillations after the main

biphasic response, and, at the bottom right, the power spectrum with a main peak not cen-

tered at zero and a secondary peak corresponding to the residual oscillations. Note that

this secondary peak is observed on experimental data but we failed to reproduce it in the

fits. This is further explained in the discussion section.

This analysis leads us to broadly decompose the (r,s) plane into 3 regions correspond-

ing to cells response phases: monophasic, biphasic, polyphasic. One switches from one

phase to the other when some peaks in the power spectrum appear or disappear, driven by

the spectrum of L .

The corresponding "phase diagram", obtained numerically, constitutes what we call

the "RFs map" shown in Figure 4 (top right). There are four points, labelled A,B,C,D,

on this map, each representing a different cell’s response phase. For each point, we have

plotted the RGC temporal RF, as computed with the model (bottom panels). A more

general representation of what is going on when moving along a specific pathway in this

map can be found at the web page https://team.inria.fr/biovision/cno_paper_

supplementary/, where one can see movies showing how the network effects shape the

RGCs RFs when (r,s) vary. It is important to note that this map is a projection from a

10 dimensional space in 2 dimensions. It has been obtained, from the skeleton, by fixing

the other parameters values, based on the average values obtained from fits over the cell

populations (see e.g. Fig. 5).

Figure 4 illustrates how the BCs-ACs network shapes the RF of a RGC by a subtle

balance between BCs-ACs, BCs-ACs interactions (parameter s) and the time scale of their

https://team.inria.fr/biovision/cno_paper_supplementary/
https://team.inria.fr/biovision/cno_paper_supplementary/
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Figure 4: Top Left. The skeleton. Map in the (r,s) plane showing the "skeleton" of

eigenvalues structure (white lines). When crossing line n the eigenvalue n switches from

real to complex. The color corresponds to the number of complex eigenvalues (see the

color bar on the right side). Top right. The RFs Map. This figures summarizes how the

entangled effects of the BCs-ACs network act on the RF of RGCs. In this map in the (r,s)

plane we distinguish three main regions (see text for their determination): monophasic,

biphasic, polyphasic. The points labelled "A", "B, "C", "D" correspond to the temporal

RF plotted in the bottom panels respectively called "Panel A", "Panel B", "Panel C", "Panel

D". We use the same representation as in Figure 3.
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response (parameter r). For simplicity, we consider here ON BCs, but the explanation

holds also for OFF BCs.

The OPL drive (black line) induces a depolarisation of BCs (red line) within a time

scale of order τB. This excites the connected ACs (blue line), with an intensity w+. The

excitation of ACs hyperpolarises BCs with an intensity w− within a time scale of order τA.

RGCs receive a combination of excitatory and inhibitory inputs from their afferent circuit

with respective weights wB
G and wA

G.

In the monophasic region, ACs respond in the same time scale as BCs. One observes,

for RGCs a monophasic response (Panel "A", middle left) whose intensity depends on

the ratio between excitation, provided by BCs, with a weight wB
G and inhibition, with a

weight wA
G. When moving to the biphasic region, ACs respond slower than BCS, leading

to the biphasic response illustrated with panel "B". When moving upward in the RFs

map (increasing s) this biphasic response becomes polyphasic with oscillations. This is

illustrated in panel "C". BCs start to raise due to the OPL drive, leading to a rising of ACs,

slower than BCs, leading to a hyper-polarisation of BCs. This leads to a decrease of ACs

voltage, thereby, to a rising of BCs which still respond to the OPL drive. This cycle can

be repeated several times, depending again on the parameters r,s. Note that the amplitude

is always decreasing exponentially fast. The period of the observed oscillations and the

damping characteristic time depend on the location in the Map. Finally, panel "D" is the

point at the intersection of the 3 phases regions. We show it for completeness. Note that

increasing s leads to a decrease of the RGCs response. When s is too high, the response

becomes too weak to be observed experimentally.
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3.2.3 Experimental cells spread in the RFs map

To confront our theoretical insight with experiments, we have placed the recorded cells in

the RFs map as shown in Figure 5. That is, for each experimentally recorded RGC, we fit

the model parameters ~η as explained in section 3.1.2 thereby providing an estimation of

r,s, independently in CTL and in CNO conditions. This defines a virtual network, made of

identical cells in each layer, where all RGCs are responding like the experimental RGC.

As mentioned above, the map is only a projection of ~η , which exists in a 10 dimensional

space, in the two dimensional plane r,s. Some parameters are linked together though.

The mathematical analysis in the supplementary section 1.3.4 shows us that the skeletons

obtained for a fixed value of τB,w+, can be extrapolated to other values τ ′B,w′+ by the

simple rescaling r′ = r,s′ =
(

w′+ τ ′B
w+ τB

)2
s. Using this rescaling, the map of Figure 5 has

been drawn for a specific value of w+ = 8.5 Hz and τB = 30 ms. This corresponds to

mean values of these parameters, averaged over the set of experimental cells (in CTL

conditions). In this two dimensional representation, extra information coming from the

other parameters τG,wB
G,wA

G,A0,b0 is lost.

Figure 5, left, shows us the repartition of cells in the map, in CTL conditions. A few of

them are monophasic, but many of them are biphasic, with a significant proportion close

to the polyphasic region and showing residual oscillations. The figure 5, right, shows the

same cells in CNO conditions. The main observation is that CNO (right panel), does not

dramatically change the repartition of cells in the RFs map. This is made more explicit in

the bottom panels of figure 5. We show the mean and standard deviation of the main model

parameters: τA,τB,w−,w+,b0 in CTL and CNO conditions, separating the two subclasses

of investigated genes: Grik4 and Scnn1a, and separating ON or OFF cells. These param-
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eters are essentially constant showing that there is no statistical trend induced by CNO.

This is in agreement with our previous paper (Hilgen et al., 2022) where we showed that

Scnn1a or Grik4 groups actually include multiple anatomical cell types, which suggest

that our model or fitting does not introduce any obvious bias.

The situation is radically different when investigating the effect on individual cells.

Indeed, the application of CNO makes some cells to move their representative point from

one region in the RF map to the other, thereby drastically changing the cell’s response.

Two examples are shown in Figure 6 and 7. In Figure 6, the application of CNO induces

a motion of the representative point in the RFs map. However, as the cell is close to the

area separating the monophasic from the biphasic phase, this motion impacts dramatically

the shape of the time response. Note that this motion looks tiny because it is plotted in log

scale, but in reality reflects a relatively large change in the RGC properties. This corre-

sponds therefore to a relatively big change in the properties of the ganglion cell. Actually,

the RFs map can be refined by plotting the value of the main period T1 (corresponding to

the main peak in the power spectrum) as shown in the top right figure. The dashed black

lines correspond to the separation between the monophasic, biphasic, and polyphasic re-

gions. Note that the switch from bi- to poly-phasic corresponds to additional peaks in

the spectrum that are not visible when considering the period of the first peak, T1. (This

transition is seen in Fig. 7 where the period of the second peak is shown). In CTL con-

ditions, the cell is located in the green region with a high T1 of order 600 ms, in the limit

of experimental resolution. With CNO, the cell switches to the grey region where T1 is of

order 300 ms. At the bottom of the figures, the synthesis panel (same representation as in

Figure 3) for CTL (left) and CNO conditions (right) is presented.
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Figure 5: Top. Repartition of fitted experimental cells in the RFs map. Each point cor-

responds to an experimental cell. Top left. CTL conditions. Top right. CNO conditions

Middle. Mean and standard deviation of τA (left), τB (center), r (right), fitted from ex-

periments, for genes Grik4 and Scnn1a, in CTL and CNO conditions. We have separated

the estimation for OFF cells (blue), ON Cells (green) and all cells (red). Bottom. Mean

and standard deviation of w− (left), w+ (center), s (right), fitted from experiments. The

representation is the same as the previous row.
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Figure 6: CNO may change the cell response. The upper left panels shows the rep-

resentative point of a cell, labelled 832, in the RF map, in CTL (purple point) and CNO

(red point) conditions. This shows the displacement of the representative point of the

cell when CNO is applied. The upper right panel shows the same motion, in the same

space (r,s), but considering here the main peak in the power spectrum, corresponding to a

characteristic period T1. The dashed black lines correspond to the separation between the

monophasic, biphasic, and polyphasic regions. One switches from a region with a high T1

of order 600 ms (green area) in CTL, to a region where T1 is of order 300 ms (grey area)

in CNO conditions. As shown in the bottom panel this displacement corresponds to a

switch from monophasic to biphasic region.
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In Figure 7 we show a motion inducing a switch from polyphasic to biphasic. Here,

CNO drives the cell from the boundary of the polyphasic region to the biphasic region.

The representation is the same as for Figure 6 except that the top right figure displays the

period of the second period T2 (secondary peak in the power spectrum).

Remark. The range of parameters r, s is very broad, and seems to be stretched in

terms of biological plausibility. In Fig. 5, s can raise up to s = 200 which means that ACs

inhibitory feedback is 200 times stronger than BCs excitation onto ACs which looks quite

implausible. In the same vein, we observe values of r = 30 corresponding to ACs having

a 30-fold longer time constant than BCs, which might be questionable. These values must

actually not be taken literally as they correspond to several artifacts. First, as explained

above, s has been rescaled to match a RF map drawn from a set of reference parameters

with e.g. w+ = 8.5 Hz, and τB = 30 ms. In addition, as mentioned earlier, these synaptic

weights are actually effective interactions that mimic the effect of cells populations. These

extreme values of (r,s) are therefore somewhat reflecting the fact that we are dealing with

interactions among multiple cell types in the inner retina.
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Figure 7: CNO may change the cell response. Left top. Application of CNO moves

the representative point of the cell (here label 521) in from polyphasic to biphasic region

resulting in a change in the cell response (Bottom panel). The figure Right top shows

how the period of polyphasic oscillations depends on the place in the RFs map.
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4 Discussion

In this paper, we investigated the role of AC-mediated lateral connectivity in the response

of RGCs to visual stimuli. Our conjecture was that these responses are strongly con-

strained by such lateral connectivity. Based on the mathematical analysis of a network

featuring the interaction of BCs-ACs-RGCs we were able to produce an analytic form for

the spatio-temporal response (receptive fields) of all cell types in the model. This finding

has significant implications for the usefulness, identifiability (i.e. its parameters could be

obtained from experimental data) and interpretability of the model. First, it provides an

algorithmic way to fit the model parameters to the light responses recorded from mouse

RGCs, using the analytical formula of the RF. This means that we are able not only to find

the parameters that best fit the variables concerning the RGCs responses, but also to infer

the possible behaviour of ACs and BCs leading to the RGCs responses, even if we don’t

measure them experimentally. Second, it provides an intuitive understanding of the role

of various model variables and highlights the impact of two phenomenological parameters

(with a physical meaning) on the spatio-temporal response (i), the intensity of the interac-

tions BCs-ACs, and, (ii), the characteristic time scale of these cells responses. This can

be summarized in the two dimensional RF maps, where one observes phases correspond-

ing to different modalities in the response. We were able to validate experimentally these

modelling results, based on the ability to pharmacologically modify the level of ACs and

RGCs neural activity using pharmacogenetics (DREADD-CNO). We would like now to

comment some caveats and potential extensions of this work.
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Polyphasic phase. Although we observe about 40% of polyphasic cells in the experi-

mental plots (characterized by secondary peaks in the power spectrum) the model has dif-

ficulty to properly fit them. This is visible in figure 5 where no cell is within the polyphasic

region whereas the secondary peaks are clearly visible in the experimental power spectra

(see Figure 7). This can be explained by several factors. First, the fitting method, trying

to estimate a model with 10 parameters from a trace with a few hundreds of points, has

clearly limits. In particular, the secondary peaks, having a few points in the power spec-

trum, are hard to capture and require a patient fine tuning. The main limitations may also

come from the model itself, as developed in the following.

Inhomogeneities. Our model is quite homogeneous. It assumes that there is only one

subclass for each cell type, represented by a unique set of parameters, the connectivity is

fairly regular ... This homogeneity was the key to answer a specific question: understand-

ing better the potential role of the BCs-ACs network on the RGCs response, both from a

theoretical and experimental perspective. This study was actually done in the spirit of the-

oretical physics: find a set of canonical equations, grounded on reality (here biophysics),

and mathematically analyse their behaviour with a minimal set of reduced (dimensionless)

parameters. Then, confront the model predictions to experiments and propose a simple

representation of the observed effects. This type of approach is useful, because it allows

one to understand the action of cells within a large retinal network at a level of detail

and comprehensiveness generally not possible by numerical simulation alone. Yet, one

may wonder what would happen if more parameters were taken into consideration, to get

closer to real retinal networks. For example, what would be the consequences of introduc-

ing more sustained and transient bipolar and amacrine cells ? Or considering more general
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forms of connectivity, e.g. connections between amacrine cells ?

As mentioned at the end of section 2.1.1, equation (3) extends to more cell types and

general connectivity. The same holds for equations (13) and (15). For example, consider-

ing MB types of BCs, each with a specific RF Km(x,y, t) = KBSm
(x,y)KBTm

(t), equation

(15) would extend to:

K
α
(x,y, t) =

3N

∑
β=1

(
Pαβ

MB

∑
m=1

Uβm(t) × ∑
γ∈m

P−1
βγ

ϖβγ KBSγ
(x,y)

)
, (21)

where Uβm(t)≡
[

eβ

t∗KBTm

]
(t) and where γ ∈ m stands for "the BC γ belongs to popu-

lation m". Beyond that, we are, at the moment not able to tell what would be the impact

of such heterogeneity on the model. The reason is fairly simple. Adding heterogeneity

will increase the number of parameters, and, in general, will prevent us to go as far as we

did in this paper, constructed in the spirit of having a mathematical control of the results.

On technical grounds, the structure of eigenvalues and eigenvectors is expected to dramat-

ically change in a way that we cannot, in general, determine analytically, in contrast to the

present work, and it would require numerical explorations in a huge parameters space.

Adding heterogeneity clearly necessitates to precisely define which question we want

to answer, and, from this point of view, specific forms of heterogeneity could be studied

in an extension of this work. A simple idea would be to introduce some randomness in

the parameters characterizing BCs and ACs. For example, considering random leak times

in order to have a distribution of characteristic times τA,τB to study e.g. how we depart

from the result obtained here when increasing the variance of these times. Or, considering

random versions of the incidence matrices Γ
A
B ,Γ

B
A . An example of this has been considered
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in the paper Souihel and Cessac (2021) to analyse anticipation effects. In any case, such

questions would require long investigations beyond the scope of this paper.

Rectification. The model includes weak non linearities (rectification) that were neglected

in the mathematical computations. The effects of such rectification can be mathematically

investigated (Cessac, 2022). Mainly, rectification projects dynamics on the subspace of

non rectified cells. This means that the dimensionality of the dynamical system changes in

time, depending on the stimulus and network parameters, with strong consequences on the

spectrum of L , and thereby, on the power spectrum briefly discussed in the supplementary

section 1.3.4.

Local non linearities vs network effects. Additional non linearities take place in retinal

dynamics. Ion channels have a non linear behaviour inducing phenomena such as bifur-

cation and bursting, essential, for example, in the development of the retina were bursting

Starburst Amacrine Cells generate retinal waves (Hennig et al., 2009; Karvouniari et al.,

2019; Cessac and Matzakou-Karvouniari, 2022). In addition, gain control plays also a

central role in the response to spatio-temporal stimuli inducing, for example, retinal antic-

ipation (Berry et al., 1999; Chen et al., 2013a; Souihel and Cessac, 2021).

Although our study was limited to responses to full-field flashes we would like to ex-

tend the consequence of our analysis to more complex stimuli. First, the presence of peaks

in the power spectrum implies the existence of resonances, that is preferred frequencies for

the RGCs. Exciting a cell with a resonance frequency will produce a maximal response.

When applying a stimulus like the Chirp stimulus (Hilgen et al., 2022; Baden et al., 2016)

there is a phase where periodic flashes, with constant contrast but increasing frequency, are
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applied. One observes frequently a bump in the experimental RGCs response that might

correspond to such a resonance.

In addition to preferred time frequencies, our analysis also shows that the response

of RGCs, induced by the network, may also involve specific space scales. Mathemati-

cally, these scales appear in the eigenvectors of the transport operator (see eq. (49) in

the Supplementary section 1.3.5). The practical implication would be that, presenting a

localised, time periodic, stimulus at a resonant frequency and with small radius, and in-

creasing slowly this radius, one may observe scales where the response is maximal. One

of these scales may correspond to the size of the RF but we conjecture that there should

be other, larger, scales where this phenomenon appears. This would actually be a way to

disentangle intrinsic responses of cells, from network induced responses, by blocking the

ACs synapses (e.g. strychnine for glycinergic cells). More generally, the existence of time

resonances and preferred space scales would also induce resonant response to moving ob-

jects with the appropriate speed. Such effects could also be related to mechanisms giving

rise to anticipatory waves (Menz et al., 2020).

To conclude, this research provides mathematical insights to explore the potential role

of the amacrine cells network in vision processing. First, it brings in the field of retinal

modelling methods and concepts from dynamical systems theory, especially, the idea that

concerted population activities can be understood with a few reduced parameters, still

reproducing experimental observations. Second, it makes a step forward to formalizing

the concept that the response of RGCs to stimuli is not only the result of intrinsic cells

characteristic (e.g. their morphology), but it also depends of their interaction with other
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cells, and on the stimulus itself.

This paper was a first step to confront this approach to experiments, as a proof of

concept opening up several research tracks. First, it could be used to infer the poten-

tial structure of spike correlations generated by a RGCs population when responding to a

moving object. While it is easy to show, in this model, that lateral inhibition decorrelates

the response to full field stimuli, the situation is dramatically different when an object is

moving in its visual field. The resulting wave of activity generates non trivial, transient,

spatio-temporal correlations which may contain fundamental information deciphered by

the cortex. The corresponding non stationary spike train distributions can be mathemat-

ically (Cessac, 2011; Cessac et al., 2009, 2021) and numerically (Cessac et al., 2017)

studied. Pushing forward this formalism could therefore be a key toward understanding

better how the retina encodes the visual information in a visual world made of motion.

Second, with the necessity of improving their biological plausibility (see discussion

above), this class of model could be used to fit online experimental retinal responses

to a simulator, by adapting the stimulus to the model prediction, in a closed loop pro-

cess (Benda et al., 2007). This is in the spirit of current trends of research attempting to

construct data driven models of the retina (Schröder et al., 2020), although our approach

targets to reduce as much as possible the number of parameters and maximize the mathe-

matical control so as to avoid the "black box" effect.

Finally, our work could be used in future studies to explore the role of other RGC

subclasses or other retinal neurons and their interactions. In addition, it could be used

to disassemble the components of other retinal circuits, by manipulating the activity of

specific neurons. It could also potentially benefit research in other parts of the nervous
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system, as fundamental properties of the inner retina are shared with other parts of the

brain.
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Supplementary

1 Derivation of the model equations and properties

1.1 Generic equations for voltages

We start from the fundamental equation of neuronal dynamics (charge conservation) and

make several simplifying assumptions.

First, we assume that neurons are reduced to points. They all have the same leak

conductance, gL, the same leak reversal potential, EL and the same membrane capacity, C.

They are passive (no active ion channels). This last assumption is based on the fact that

most of the retinal neurons considered here (BCs and ACs) are not spiking. From these

assumptions we get rid of equations for activation-inactivation variables present in most

spiking models (Ermentrout and Terman, 2010). For RGCs, spiking is ruled by a LN type

model (see main text).

As exposed in the main text we model the CNO effect by a current of the form
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−gCNOT

(
Vq−ECNOT

)
where T is the cell type (e.g. ACs or RGCs) so that the CNO

conductance is constant and depends only on the cell type. ECNOT is the corresponding

reversal potential. We insist, however, that this is only a modelling short-cut allowing to

mathematically treat inhibitory and excitatory effects on an equal footing, with only one

parameter, the CNO conductance gCNOT .

The membrane potential Vq of neuron q then obeys the equation:

C
dVq

dt
=−gL

(
Vq−EL

)
−gCNOT

(
Vq−ECNOT

)
− ∑

Y,syn
∑
p∈Y

g(Y,p)
q

(
Vq−EY

)
+ iq(t), (22)

where ∑Y,syn is the sum over all possible types of synaptic currents shaping the membrane

potential of neuron q (for example the current resulting from glutamate transmitter with

NMDA receptors). The sum ∑p∈Y stands for the contribution of presynaptic neurons p

connecting to post-synaptic neuron q via a synapse of type Y . The term iq is an external

current (here, the photoreceptors current that input BCs). The synaptic conductance g(Y,p)
q

depends, in general, on the pre-synaptic voltage Vp and additional activation or inactivation

variables. Here, we assume that it depends only on the pre-synaptic voltage and take the

form g(Y,p)
q = λ

(Y,p)
q N (Y )(Vp) where λ

(Y,p)
q is a constant, positive factor, and N (Y ) is the

piecewise linear function introduced in (4).

We shift the voltages by EL (i.e. replacing Vq by Vq−EL, EX by EX −EL and so on).

We introduce the characteristic time scale of the membrane response for neuron q:

τq = C

gL + gCNOT + ∑Y,syn ∑p∈Y λ
(Y,p)
q N (Y )(Vp)

τq depends on the pre-synaptic neurons states (via the conductances g(Y,p)
q ). We can write
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the time dependence of voltages as Vp(t) = V ∗p + δVp(t) where V ∗p is the rest state, i.e. the

voltage reached by neurons, in the absence of stimulation, given by:

V ∗q =
gCNOT ECNOT + ∑Y ∑p∈Y λ

(Y,p)
q N (Y )(V ∗p )EY

gL + gCNOT + ∑Y,syn ∑p∈Y λ
(Y,p)
q N (Y )(V ∗p )

. (23)

This is a complex, non linear, system of equations where the rest voltages of all neurons

are dependent.

The term δVp(t) corresponds to the time variations of the voltage. What makes the dy-

namics complex are precisely these time variations inducing important non linear effects.

Here, however, we are investigating effects on the retinal response when applying CNO,

considering that CNO acts on a time scale quite larger than the characteristic time τq. That

is, we neglect the fluctuations δVp(t) and assume that the characteristic time τq is only

controlled by the rest part of the voltages V ∗p , depending on the CNO conductance. Thus,

we can replace N (Y )(Vp) by N (Y )(V ∗p ) in the expression of τq:

τq = τL

1 + τL

(
ζT,q

ECNOT
+ ∑Y,syn

1
EY

∑p∈Y W (Y,p)
q N Y (V ∗p )

) , (24)

where τL = C
gL

is the leak characteristic time.

Finally, we introduce the synaptic weights:

W (Y,p)
q =

λ
(Y,p)
q EY

C
, (25)

the CNO polarization:

ζT,q = gCNOT ECNOT

C
, (26)
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and the forcing term Fq(t) = iq(t)
C , and we write:

dVq

dt
=− 1

τq
Vq + ∑

Y
∑
p∈Y

W (Y,p)
q N (Y )(Vp) + ζT,q + Fq(t), q = 1 . . .N, (27)

where we dropped ”syn” in ∑Y,syn for legibility. This is the general form of cells voltage

equations used in the paper, leading to eq. (3).

1.2 Rest states, characteristic times and CNO dependence

We study now the dependence of the rest states and characteristic times in CNO, for the

model (3). The details of the computations can be found on the web page https://team.

inria.fr/biovision/mathematicalderivationscno/. From (24) the characteristic

times take the form:



τBi = τL

1+ τL
EA

∑
N
j=1 W

A j
Bi

N A(V ∗A j
)
,

τA j = τL

1+τL

(
ζA

ECNOA
+ 1

EB
∑

N
i=1 W Bi

A j
N B(V ∗Bi

)
) ,

τGk = τL

1+τL

(
ζG

ECNOG
+ 1

EB
∑

N
i=1 W Bi

Gk
N B(V ∗Bi

)+ 1
EA

∑
N
j=1 W

A j
Gk

N A(V ∗A j
)
) .

(28)

Here, we see an evident and expected dependence on CNO. Increasing ζA decreases the

characteristic times of the membrane. This is, however, not complete, as the rest states

depend themselves on CNO. Indeed, assume, for simplicity, that the system is uniform in

space, so that the characteristic times do not depend on the cell index (only on the cell

https://team.inria.fr/biovision/mathematicalderivationscno/
https://team.inria.fr/biovision/mathematicalderivationscno/
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type). Then, the rest states are given by (in vector form):


~V ∗B = τB

(
IN − τAτBW A

B W B
A

)−1
.
(

τAW A
B ζA − τAθBW A

B W B
A − θAW A

B

)
~1N ,

~V ∗A = τA

(
IN − τAτBW B

A W A
B

)−1
.
(

ζA − τBθAW B
A W A

B − θBW B
A

)
~1N ,

~V ∗G = τGW A
G

~V ∗A + τGW B
G

~V ∗B + τG

(
ζG − θAW A

G − θBW B
G

)
.~1N ,

.

(29)

where IN is the N×N identity matrix and~1N is the unit vector in N dimension. Here, we

have assumed that the rest states are above threshold and that I − τAτBW A
B W B

A and I −

τAτBW B
A W A

B are invertible. See the web page https://team.inria.fr/biovision/

mathematicalderivationscno/ for the general case.

The system of equations (28) and (29) are thus non linearly entangled. Especially,

there is a nice feedback effect appearing in feedback "loop" terms like W A
B W B

A . Actually,

e.g. the term
(

IN − τAτBW A
B W B

A

)−1
involves loops

(
W A

B W B
A

)n
of order n > 0, with an

amplitude decaying with n. Consider now the role of the parameter ζA. It impacts directly

ACs and indirectly, through the network, the BCs and RGCs activity. One observes, first,

a direct effect on the ACs rest state. Looking at the numerator of (29), increasing ζA would

have the effect of depolarizing the cell (if ECNOA > 0) or hyperpolarizing it (if ECNOA < 0),

if τA and τB were independent of CNO. However, CNO acts as well on these times. The

net effect of ζA is thus non linear and cannot be anticipated by simple arguments.

In the case of section 2.1.4 with a reduced set of parameters the equations for charac-

teristic times reduce to (8) while the rest states are given by (9).

https://team.inria.fr/biovision/mathematicalderivationscno/
https://team.inria.fr/biovision/mathematicalderivationscno/
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1.3 Mathematical analysis of network dynamics

In the following, the notation diag(xn )N
n=1 denotes a diagonal N×N matrix with diagonal

entries xn.

1.3.1 Joint dynamics

The joint dynamics of all cells type is given by the dynamical system (3). We use Greek

indices α,β ,γ = 1 . . .3N and define the state vector ~X with entries:

Xα =


VBi, α = i, i = 1 . . .N;

VA j , α = N + j, j = 1 . . .N;

VGk , α = 2N + k, k = 1 . . .N.

We introduce ~F with entries:

Fα =


FBi, α = i, i = 1 . . .N;

ζA, α = N + j, j = 1 . . .N;

ζG, α = 2N + k, k = 1 . . .N;

and the rectification vector ~R( ~X ) with entries:

Rα( ~X ) =


N (B) (VBi ) , α = i, i = 1 . . .N;

N (A) (VA j

)
, α = N + j, j = 1 . . .N;

0, α = 2N + k, k = 1 . . .N;
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We introduce the 3N×3N matrices:

T =


diag [τBi ]i=1...N 0NN 0NN

0NN diag
[

τA j

]
j=1...N 0NN

0NN 0NN diag
[

τGk

]
k=1...N

 , (30)

characterizing the characteristic integration times of cells,

W =


0NN W A

B 0NN

W B
A 0NN 0NN

W B
G W A

G 0NN

 , (31)

summarizing chemical synapses interactions. Then, the dynamical system (3) reads, in

vector form:
d ~X

dt
= −T −1. ~X +W . ~R( ~X )+ ~F (t). (32)

We remark that eq. (32) has a specific product structure: the dynamics of RGCs is

driven by BCs and ACs with no feedback. This means that one can study first the coupled

dynamics of BCs and ACs and then the effect on RGCs.

1.3.2 Linear evolution

We consider the evolution of eq. (32) from an initial time t0. Typically, t0 is a reference

time where the network is at rest, before the stimulus is applied. The dynamical system

has almost the form of a non-autonomous linear system driven by the term ~F (t). There

is however a weak non linearity, due to the piecewise linear rectification appearing in the
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term ~R( ~X ). Therefore, when the voltages of all cells are large enough the system is

linear. Mathematically, there is a domain of R3N :

D =
{

VBi ≥ θB,VA j ≥ θA, i, j = 1 . . .N
}

, (33)

where R
(

~X
)

is linear so that eq. (32) is linear too (check (Cessac, 2022) for more

details).

From now on we consider this linear case. We write L = −T −1 + W so that:

L =


−diag

[
1

τBi

]
i=1...N

W A
B 0NN

W B
A −diag

[
1

τA j

]
j=1...N

0NN

W B
G W A

G −diag
[

1
τGk

]
k=1...N

 , (34)

We introduce the N dimensional vector ~1N =~(1)N
i=1, and the 3N dimensional vector

~C =


−θAW A

B .~1N

−θBW B
A .~1N

−
(

θBW B
G .~1N + θAW A

G

)
.~1N

 and (32) reads d ~X
dt = L . ~X + ~F (t) + ~C .

We assume that L is invertible. This assumption, and more generally, the spectrum of

L is further discussed in section 1.3.4. The general solution of eq. (32) is:

~X (t) = eL (t−t0). ~X (t0) +
∫ t

t0
eL (t−s) ~F (s)ds −L −1.

[
I3N,3N − eL (t−t0)

]
. ~C . (35)

where I3N,3N is the 3N dimensional identity matrix.

Although this equation is general, it actually stands when one can define a notion of
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asymptotic regime. That is, when L has stable eigenvalues (eigenvalues with a strictly

negative real part). The spectrum of L is studied below and conditions ensuring the

stability of eigenvalues are given. Here, we are going to assume that eigenvalues are all

stable and that t − t0 is large so that we can remove the transient term eL (t−t0). ~X (t0)

depending on the initial condition ~X (t0). In addition, the last term converges to:

~X ∗ =−L −1. ~C , (36)

the rest state of the linear system, which vanishes whenever the thresholds θA,θB are set

to 0.

1.3.3 Derivation of eq. (10)

We note the eigenvalues of L , λβ ,β = 1 . . .3N and its eigenvectors, Pβ (the columns of

the matrix P transforming L in diagonal form). We consider first the case ~C =~0. We

have then, from (35):

Xα(t) =
3N

∑
β=1

3N

∑
γ=1

Pαβ P−1
βγ

∫ t

−∞

eλβ (t−s) Fγ(s)ds,

where Fγ = FBi , γ = i = 1 . . .N (BCs).

We recall that, from (5), FBγ
(t) = V

(drive)
γ

τBγ

+ dV
(drive)

γ

dt , so that:

∫ t

−∞

eλβ (t−s) Fγ(s)ds = V
(drive)

γ (t) + ϖβγ

∫ t

−∞

eλβ (t−s) V
(drive)

γ (s)ds, γ = 1 . . .N,

for B cells, with ϖβγ = 1
τBγ

+ λβ and using V
(drive)

γ (−∞) = 0.
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For γ = N + 1 . . .2N, Fγ = ζA (ACs) we have:

∫ t

−∞

eλβ (t−s)
ζA ds =− ζA

λβ

.

Finally, for γ = 2N + 1 . . .3N, Fγ = ζG (RGCs):

∫ t

−∞

eλβ (t−s)
ζG ds =−ζG

λβ

.

We remark that:

3N

∑
β=1

3N

∑
γ=1

Pαβ P−1
βγ

V
(drive)

γ (t) =
3N

∑
γ=1

V
(drive)

γ (t)

(
3N

∑
β=1

Pαβ P−1
βγ

)

=
3N

∑
γ=1

V
(drive)

γ (t)δαγ

= V
(drive)

α (t).

It follows that:

Xα(t) = V
(drive)

α (t) +E
(drive)
α (t) + E

(CNOA)
α + E

(CNOG)
α , α = 1 . . .3N.

with:

E
(drive)
α (t) =

3N

∑
β=1

N

∑
γ=1

Pαβ P−1
βγ

ϖβγ

∫ t

−∞

eλβ (t−s) V
(drive)

γ (s)ds, α = 1 . . .3N,

E
(CNOA)
α = −ζA

3N

∑
β=1

2N

∑
γ=N+1

Pαβ P−1
βγ

λβ

,α = N + 1 . . .2N;
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E
(CNOG)
α = ζG τG, α = 2N + 1 . . .3N,

where the last result comes from λβ = − 1
τG

, for β = 2N +1 . . .3N (see next section). The

expression of Xα(t) corresponds to (10).

When C 6=~0, there is an additional term corresponding to the rest state (36).

1.3.4 Eigenvalues and eigenvectors of L

Linear case. We start from the eq. (34) of the linear operator ruling the dynamics in the

set D defined by (33). We consider, as in the main text, the case where all characteristic

times τBi are equal to τB, all characteristic times τA j are equal to τA and all characteristic

times τGk are equal to τG. Using the same notations as the main text we have:

L =


−INN

τB
−w−Γ

A
B 0NN

w+ Γ
B
A −IN

τA
0NN

wB
G Γ

B
G wA

G Γ
A
G −INN

τG

,


where 0NN is the N×N 0 matrix and INN the N×N 0 identity matrix.

Eigenvalues and eigenvectors. We consider the case where Γ
A
B = Γ

B
A . We note κn,n =

1 . . .N, the eigenvalues of Γ
A
B ordered as |κ1 | ≤ |κ2 | ≤ · · · ≤ |κn | and note the normalized

eigenvectors ~ψn, n = 1 . . .N.

We seek the eigenvalues, λβ , and eigenvectors, ~Pβ , β = 1 . . .3N, of L . It is evident,

from the form of L , that there are N eigenvalues λβ = − 1
τG

, ~Pβ =~eβ where ~eβ is the

canonical basis vector in direction β . We attribute them the indices β = 2N + 1 . . .3N as

this indexing corresponds to the form of L when w−= w+ = 0. We seek the 2N remaining
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eigenvalues-eigenvectors assuming that ~Pβ s has the form:

~Pβ =


~ψn

ρn~ψn

~φn

 , n = 1 . . .N, (37)

where ρn is an unknown parameter and ~φn a N dimensional vector, to be determined, from

the characteristic equation:

L . ~Pβ = λβ
~Pβ .

This leads to the system of equations:


λβ = − 1

τB
−w−ρn κn;

w+κn− ρn
τA

= ρn λβ ;

λβ
~φn =

(
wB

G Γ
B
G + wA

G ρn Γ
A
G

)
~ψn− 1

τG
~φn,

, (38)

We first assume that w−,w+ > 0 and later discuss the limit when these quantities tend to

zero. Combining the two first equations leads to a second-order polynomial in the variable

ρn,

w−κn ρ
2
n −

1
τ

ρn + w+
κn = 0, (39)

giving 2 solutions for each n:

ρ
±
n =


1

2τ w− κn

(
1 ±

√
1−4 µ κ2

n

)
, κn 6= 0, 1

τ
6= 0;

w+ τ κn, κn = 0, 1
τ
6= 0;

±
√
−w+

w− , 1
τ

= 0.

(40)
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where:
1
τ

= 1
τA
− 1

τB
. (41)

and:

µ = w−w+
τ

2 ≥ 0. (42)

The 2N first eigenvalues of L are therefore given by:

λ
±
n =


− 1

2τAB
∓ 1

2τ

√
1−4 µ κ2

n , 1
τ
6= 0;

− 1
τA
∓
√
−w−w+ κ2

n , 1
τ

= 0.

(43)

where:
1

τAB
= 1

τA
+ 1

τB
. (44)

We finally obtain 2N vectors ~φn:

~φ±n = 1
λ
±
n + 1

τG

(
wB

G Γ
B
G + wA

G ρ
±
n Γ

A
G

)
~ψn. (45)

Let us now discuss the limit when w− or w+ or both tend to 0. If w− = 0, ρn = w+κnτ

from (39). If w+ = 0 there are two solutions of (39), ρn = 0 or ρn = 1
τw−κn

. Finally, when

w− = w+ = 0, ρn = 0 and the ansatz (37) does not apply. Actually, in this case, L is

diagonal, the N first eigenvalues are− 1
τB

, the N next eigenvalues are− 1
τA

. We have, in this

case: λ +
n =− 1

τB
and λ−n =− 1

τA
. Therefore, we order eigenvalues and eigenvectors of M

such that the N first eigenvalues are λ +
n ,n = 1 . . .N, and the N next are λ−n ,n = N +1 . . .2N.

We finally end up with the following form for the eigenvalues and eigenvectors of L :
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λβ = λ +
n , ~Pβ =


~ψn

ρ+
n ~ψn

1
λ

+
n + 1

τG

(
wB

G Γ
B
G + wA

G ρ+
n Γ

A
G

)
~ψn

 , β = n = 1 . . .N,

λβ = λ−n , ~Pβ =


~ψn

ρ−n ~ψn

1
λ
−
n + 1

τG

(
wB

G Γ
B
G + wA

G ρ−n Γ
A
G

)
~ψn

 , β = N + 1 . . .2N, n = 1 . . .N,

λβ =− 1
τG

, ~Pβ =~eβ , β = 2N + 1 . . .3N.

(46)

Skeleton. The eigenvalues λ±n in 43 can be real or complex conjugated. By increasing

µ , they become complex when:

µ >
1

4κn
≡ µn,c. (47)

In this case the real part is − 1
2τAB

, the imaginary part is ± 1
2τ

√
1−4 µ κ2

n . If µ ≤ µn,c,

eigenvalues λβ are real with a negative real part. This implies that the linear dynamical

system (32) is stable.

The N equations (47) define what we call the "skeleton of the RFs map". In the main

text, we introduced the quantities r = τA
τB

,s = w−
w+ . In these variables, the critical condition

(47) reads:

snc = 1
w+2

τ2
B

1
4κ2

n

(1− r )2

r2 . (48)

This defines two critical lines symmetric with respect to r = 1. These lines are invariant
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by the variable change r′ = r,s′ =
(

w′+ τ ′B
w+ τB

)2
s. This allows to map the skeleton obtained

from a set of values τ ′B,w′+ to the skeleton obtained with references value τB,w+.

Rectification. In this paper we have essentially considered a situation where cells are

not rectified, whereas the full model (eq. (3)) considers rectification, in agreement with

realistic biological systems. The mathematical effect of rectification of a cell A j, is to set

to zero the corresponding row in the matrix W A
B . This has several consequences. First,

we cannot apply anymore the useful Ansatz used in the section, that is Γ
A
B = Γ

B
A . In ad-

dition, the vanishing of only one row in L completely modifies its spectrum. However,

thresholding in rectification corresponds to partition the phase space of the model, a com-

pact subset of R3N , into convex subdomains delimited by hyperplanes. In each of these

domains the matrix W . ~R( ~X ) appearing in eq. (32) is linear with a number of zero eigen-

values corresponding to the number of rectified cells. This matrix acts as a projector on the

complementary subspace of its kernel. In each of these subdomains eq. (10) applies. One

can actually compute, for a given stimulus, the time of entrance and exit in a new subdo-

main with the effect of modifying the eigenvalues and eigenvectors appearing in eq. (10).

The resulting equation is quite complex though and will require further investigations. See

(Cessac, 2020) for more details.

1.3.5 Nearest neighbours connectivity

We consider the case where the connectivity matrices Γ
B
A = Γ

A
B have nearest neighbours

symmetric connections. We also assume that the dynamics hold on a square lattice with

null boundary conditions. We define α = ix ∈ {1 . . .L = N } in one dimension and α =
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ix + (iy− 1)L ∈
{

1 . . .L2 = N
}

in two dimensions. We also set n = nx ∈ {1 . . .L = N }

in one dimension and n = nx + (ny−1)L ∈
{

1 . . .L2 = N
}

in two dimensions. Then, the

eigenvectors and eigenvalues of these matrices have the form:

ψα,n =
( 2

L+1

) d
2

∏l sin
( nlπ

L+1 il
)

,

κn = 2 ∑l
[

cos
( nlπ

L+1

)]
;

(49)

with l = x for d = 1 and l = x,y for d = 2. Especially, in one dimension:

ψα,n =
√

2
L + 1

sin
(

απ

L + 1
n
)

,

The quantum numbers (nx,ny ) define a wave vector~kn =
( nxπ

L+1 ,
nyπ

L+1

)
corresponding

to wave lengths
(

L+1
nx

, L+1
ny

)
. Hence, the first eigenmode (nx = 1,ny = 1) corresponds to

the largest space scale (scale of the whole retina) with the smallest eigenvalue (in absolute

value) s(1,1) = 2
(

cos
(

π

L+1

)
+ cos

(
π

L+1

)
−2
)
. Each of these eigenmodes is related to a

characteristic time τn = 1
λn

.

Eigenvalues κn can be positive or negative. However, from eq. (43) this has no impact

on the eigenvalues as what matters is κ2
n . This induces however a symmetry κn →−κn

that can be seen in the skeleton Figure 4, not forgetting that this figure is in log scale.
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