
HAL Id: hal-04161982
https://hal.science/hal-04161982v1

Submitted on 13 Jul 2023 (v1), last revised 2 Jan 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

How does the inner retinal network shape the ganglion
cells receptive field : a computational study

Kartsaki Evgenia, Hilgen Gerrit, Sernagor Evelyne, Bruno Cessac

To cite this version:
Kartsaki Evgenia, Hilgen Gerrit, Sernagor Evelyne, Bruno Cessac. How does the inner retinal network
shape the ganglion cells receptive field : a computational study. Neural Computation, inPress. �hal-
04161982v1�

https://hal.science/hal-04161982v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


How does the inner retinal network shape the

ganglion cells receptive field : a computational

study

Evgenia Kartsaki1,2, Gerrit Hilgen2,3, Evelyne Sernagor2, and Bruno Cessac1

1Université Côte d’Azur, Inria, Biovision team and Neuromod Institute, Sophia Antipolis,

France

2Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK

3Health and Life Sciences, Applied Sciences, Northumbria University, Newcastle upon Tyne

NE1 8ST, UK

Abstract

We consider a model of basic inner retinal connectivity where bipolar and

amacrine cells interconnect, and both cell types project onto ganglion cells, mod-

ulating their response output to the brain visual areas. We derive an analytical

formula for the spatio-temporal response of retinal ganglion cells to stimuli taking

into account the effects of amacrine cells inhibition. This analysis reveals two im-

portant functional parameters of the network: (i) the intensity of the interactions

between bipolar and amacrine cells, and, (ii) the characteristic time scale of these

responses. Both parameters have a profound combined impact on the spatiotem-

poral features of RGC responses to light. The validity of the model is confirmed by
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faithfully reproducing pharmacogenetic experimental results obtained by stimulat-

ing excitatory DREADDs (Designer Receptors Exclusively Activated by Designer

Drugs) expressed on ganglion cells and amacrine cells subclasses, thereby modi-

fying the inner retinal network activity to visual stimuli in a complex, entangled

manner. Our mathematical model allows us to explore and decipher these complex

effects in a manner that would not be feasible experimentally and provides novel

insights in retinal dynamics.
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1 Introduction

Vision is the most fundamental of our senses and visual processing involves some of the

most complex neural networks in the vertebrate central nervous system (Marr, 1982;

Chalupa and Werner, 2004; Besharse and Bok, 2011; Daw, 2012). The retina is the

entry point to our visual system. Located at the back of the eye, this thin neural tissue

receives the light that the cornea and lens have captured from different parts of the

visual scene, converts it into electrical signals and finally, transmits these signals to

the brain visual areas. In particular, light follows a vertical excitatory pathway in the

retina, from photoreceptors to bipolar cells (BCs) and onwards to retinal ganglion cells

(RGCs), modulated laterally by inhibitory interneurons; horizontal (HCs) and amacrine

cells (ACs) (Figure 1, left). RGCs serve as a bridge between the retina and the brain,

conveying highly processed and integrated signals from the upstream retinal neurons to

downstream visual processing cortical areas. Amazingly, the human brain can recreate

images from interpreting parallel streams of information of about one million RGCs,

the sole retinal output neurons. This ability is partially due to the astonishing functional,

anatomical and molecular diversity across the retinal layers. However, how the different

cell classes interact to ultimately encode, via RGCs, a visual scene into spike trains

(action potentials) deciphered by the brain remains largely a mystery.

RGCs are indeed embedded in a complex network and their response is roughly

driven by two "controllers": 1) The output of BCs that includes both the intrinsic re-

sponse properties of these cells and the actions of ACs upon them (lateral connectivity);

2) The direct input from ACs via chemical synapses or gap junctions, helping spike

synchrony between neighbor RGCs (Masland, 2012; Demb and Singer, 2015). As a

consequence, the response of RGCs to visual stimuli does not only depend on local or
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physiological characteristics (Sanes and Masland, 2015), but also on the network they

are embedded in, and, on the stimulus itself (Cessac, 2022). Previous studies have thus

attempted to investigate how the inner retinal neurons are organised into parallel cir-

cuits across different cell types and converge onto RGCs (Wässle, 2004; Gollisch and

Meister, 2010). This has been studied extensively at the level of bipolar cells, leading to

a fairly good understanding of their function (Euler et al., 2014). Other studies have in-

vestigated the functional role of amacrine cell (ACs) types in retinal processing (Asari

and Meister, 2012; Franke and Baden, 2017; Diamond, 2017; Schröder et al., 2020),

suggesting either specific functions such as direction selectivity (starbust ACs) or more

general computations, like motion anticipation (Berry et al., 1999; Souihel and Cessac,

2021). Nevertheless, the potential role of the BCs-ACs network on the RGCs response,

both from a theoretical and experimental perspective, hasn’t been sufficiently explored

yet. The scope of the present study is to make one step further in this direction.

On a theoretical ground, we consider a network of BCs connected via ACs, both

cell types being connected with chemical synapses to RGCs. Based on a mathematical

study, we derive an analytical formula of the RGCs receptive field (RF) that takes into

account the lateral ACs connectivity and shows how the response of RGCs to spatio-

temporal stimuli is shaped. Especially, we focus on two important parameters: (i), the

average intensities of the interactions BCs - ACs and ACs-BCs, and, (ii), the character-

istic time scales of these cells response. Varying these parameters acts on the shape of

the response to light with potential prominent effects such as a switch from monophasic

to biphasic in the temporal RF.

We illustrate our predictions by analysing experimental data obtained from the phar-

macological action of excitatory DREADDs (Designer Receptors Exclusively Acti-

vated by Designer Drugs) in genetically modified mice. DREADDs are activated by
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"designer drugs" such as clozapine-n-oxide (CNO), resulting in an increase in free cy-

toplasmic calcium and profound increase in excitability in the cells that express these

DREADDs (Roth, 2016). In the mouse lines we used, we found DREADD expression

both in subsets of RGCs and in ACs in the inner nuclear layer (INL) (Hilgen et al.,

2022). In these conditions, CNO would act both on ACs and RGCs providing a way

to unravel the entangled effects of: (i) direct excitation of DREADD-expressing RGCs

and increase inhibitory input onto RGCs originating from DREADD-expressing ACs;

(ii) change in cells response time scale (via a change in the membrane conductance),

thereby providing an experimental set up to validate our theoretical predictions.

In the following, we propose a model for the BCs - ACs - RGCs network. The

concerted activity of BCs - ACs -RGCs in response to a visual stimulus is described

by a large dimensional dynamical system whose mathematical study allows an explicit

computation of the RF of BCs, ACs, RGCs and, more generally, to anticipate the ef-

fects resulting from light stimulation conjugated with the network activity due to ACs

lateral inhibition, in control conditions and in the presence of CNO. Computing the

receptive fields of of all cell types (especially RGCs) allows us to to disentangle the

concerted effect of ACs lateral connectivity and CNO on the RF of RGCs and provides

an excellent agreement with experimental data. We argue, on the basis of the model

and analytical computations, that the BCs-ACs network shapes the RF of RGCs via

two main parameters, one characterizing the ratio in the time scales of ACs and BCs

response, and the other, characterizing the ratio between the synaptic weight BCs →

ACs and ACs → BCs. This defines a two dimensional map, called the "RFs map". We

show how the experimental data settle in this map and we link the observed changes in

the shape of the RF, when applying CNO, to a displacement in this map. Finally, we

extrapolate our model predictions to situations where the RGCs response could not be
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explained by purely local mechanisms but would involve the ACs network.

2 Methods

2.1 The retina model

2.1.1 Structure

We assimilate the retina to a superimposition of 3 layers, each one corresponding to a

cell type (BCs, ACs, RGCs), and being a flat, two-dimensional square of edge length L

mm where spatial coordinates are noted x,y (Figure 1).

We consider a simplified form of connectivity, inspired from the real connectivity

in the retina, illustrated in Figure 1. First, there are as many BCs as ACs and RGCs (N

cells per type so that the total number of cells is 3N). BCs are labelled with an index

i = 1 . . .N, ACs with an index j = 1 . . .N, RGCs with an index k = 1 . . .N. BCs are

connected to ACs. We note W A j
Bi

≤ 0 the weight of the inhibitory synapse from AC j

to BC i. We use the convention that W A j
Bi

= 0 when AC j is not connected to BC i.

Likewise, we note W Bi
A j

≥ 0 the weight of the excitatory synapse from BC i to AC j,

W Bi
Gk

≥ 0 the weight of the excitatory synapse from BC i to RGC k and W A j
Gk

≤ 0 the

weight of the inhibitory synapse from AC j to RGC k. We note W A
B the (square) matrix

of connections from ACs to BCs and so on.

2.1.2 Visual input

Each neuron has a receptive field (RF), a specific region of the visual field where light

stimulus will modify the activity of this neuron. The term RF is not limited only to

the spatial region but it is often extended to include the temporal structure within this
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Figure 1: Translation of the retinal circuit to a computational network model. Left.

Schematic of the retina. Light activates the photoreceptor cells (PRs), that transduce the

input into a cascade of biochemical and electrical events that can stimulate BCs and on-

wards RGCs. This vertical excitatory pathway is modulated by inhibitory interneurons

comprising two groups; horizontal (HCs) and amacrine cells (ACs). All these neural

signals are integrated by RGCs and finally converted into action potentials going to the

brain. Right. Schematic view of the model. The joint integration of PRs and HCs in a

limited region of space is modelled by a spatio-temporal kernel mathematically defin-

ing the OPL input to a BC, corresponding to eq. (1). The convolution of this kernel

with the stimulus drives the BC evolution, modulated by inhibitory connections with

ACs. BCs indeed make excitatory synaptic connections with ACs and ACs inhibit BCs.

Finally, RGCs pool over many BCs and ACs in their neighbourhood.
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region. The RF usually exhibits a centre-surround organisation and it is assumed that

BCs are the first neurons along the visual pathway to follow this principle (Werblin

and Dowling, 1969). Each BC receives synaptic inputs from its upstream circuitry, a

combination of dendritic excitatory inputs from photoreceptors (rods and cones) and

inhibitory inputs from horizontal cells (Franke and Baden, 2017) occurring at the level

of the Outer Plexiform Layer (OPL) and this interaction emerges on their RF.

A popular approach to simplify the complex process involved is to model the RF as

a single spatio-temporal linear filter that essentially represents the opposition between

the centre of the receptive field, driven by photoreceptors, and the surround signal trans-

mitted by horizontal cells. The membrane potential of the BC’s soma can then be lin-

early approximated by the convolution of the spatio-temporal kernel KBi , featuring the

biophysical processes at the OPL, with the visual stimulus S (x,y, t). As we do not

consider color sensitivity here, S characterizes a black and white scene, with a control

on the level of contrast ∈ [0,1]. The voltage of BC i is stimulus-driven by the term

("OPL input"):

V
(drive)

i (t) =
[
KBi

x,y,t
∗ S

]
(t)

=
∫ +∞

x=−∞

∫ +∞

y=−∞

∫ t

s=−∞

K (x− xi,y− yi, t − s)S (x,y,s)dxdyds,
(1)

where
x,y,t
∗ means space-time convolution. We consider only one family of BCs so that

the kernel K is the same for all BCs. What changes is the center of the RF, located at

xi,yi, which also corresponds to the coordinates of the BC i . We consider in the paper

separable kernel K (x,y, t) = KS(x,y)KT (t) where KS is the spatial part and KT the

temporal part. We restrict to ON or OFF BCs with a monophasic spatio temporal kernel
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Figure 2: OPL kernel. Left. Spatial part in one spatial dimension. Right. Temporal

part.

of the form:

KT =

(
A0

t2

2τ3
RF

e−
t

τRF + b0

)
H(t). (2)

where A0 controls the amplitude of the OPL input and can be positive (ON BC) or

negative (OFF BC), while b0 controls the level of residual polarisation observed in

experiments, when light stimulation has stopped. The spatial part, KS , is a classical

difference of Gaussians. This spatio temporal kernel is illustrated in Figure 2. Although

the OPL input to BCs is monophasic, the ACs lateral inhibition can make the RF of a

BC biphasic, depending on parameters.

2.1.3 Voltage dynamics

In the model neurons are characterized by their voltage. Although RGCs are spiking,

we will be indeed interested only in their voltage variations, as a function of the stim-

ulus and network effects. Spiking could be obtained from voltage e.g. using a Linear

Nonlinear Poisson process (LNP) for spiking neurons (Berry et al., 1999; Chen et al.,
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2013; Souihel and Cessac, 2021). We note VBi the voltage of BC i, VA j the voltage

of AC j, VGk the voltage of RGC k. The joint dynamics of voltages is given by the

dynamical system (Souihel and Cessac, 2021):



dVBi
dt = − 1

τBi
VBi +∑

NA
j=1W A j

Bi
N (A) (VA j

)
+FBi(t), i = 1 . . .N

dVA j
dt = − 1

τA j
VA j +∑

NB
i=1W Bi

A j
N (B) (VBi )+ζA , j = 1 . . .N,

dVGk
dt = − 1

τGk
VGk +∑

NB
i=1W Bi

Gk
NB(VBi)+∑

NA
j=1W A j

Gk
NA(VA j)+ζG, k = 1 . . .N.

(3)

τBi,τA j ,τGk are respectively the characteristic integration times of the BC i, AC j and

RGC k.

The rectification term:

NA(VA j) =

 VA j −θA, if VA j > θA;

0, otherwise
, (4)

ensures that the synapse j → i is inactive when the pre-synaptic voltage VA j is smaller

than the threshold θA. The same holds for the rectification term NB(VBi) with a thresh-

old θB.

The term:

FBi(t) =
V

(drive)
i

τBi

+
d
dt

V
(drive)

i , (5)

is the stimulus driven input to BCs. It takes this form to ensure that, in the absence of

ACs coupling, VBi(t) = V
(drive)

i (t).

CNO bind very specific to designed receptors leading either to an excitatory or in-

hibitory response, depending on the receptors (Gi or Gq) (Roth, 2016; Urban and Roth,

10



2015). The CNO effect can be modelled by a current of the form −gCNOT (V −ECNOT ),

where V is the voltage of a cell sensitive to CNO, T is the cell type (i.e. only ACs or

RGCs according to the experimental set-up); gCNOT is the conductance of channels

sensitive to CNO that is zero in the absence of CNO while it increases with CNO con-

centration and ECNOT is the corresponding reversal potential. As CNO changes the

membrane conductance it also induces a change of polarization, which is characterized

by the parameter ζA for ACs and ζG for RGCs, with a general form:

ζT =
ECNOT

C
gCNOT (6)

where T = A,G, as well as a change in the characteristic time scale of the membrane,

that are the parameters τA j ,τGk . We also assume an indirect effect: CNO modifies

the synaptic weight from a CNO sensitive cell to the cells it is connected to, that is

the synaptic weights W A
B ,W A

G . We note, however, that this simplification of the actual

biological process is for mathematical convenience.

2.1.4 Parameters dependence

The model depends on many parameters that constrain the dynamical evolution of the

system (3). Although some of our results, like the explicit form for RFs (12), are quite

general, it is easier, for analytic derivations and for simulations to further simplify these

parameters. These simplifications, detailed below, essentially converge to considering

that our network is composed of identical cells for each type.

First, we consider that the synaptic weights intensity from a cell type to another,

e.g. the synapse from ACs to BCs, are controlled by a unique parameter, that is W A
B =

−w−Γ
A
B where w− > 0 (inhibitory synapse) and where Γ

A
B is a connectivity matrix

11



(ΓA j
Bi

= 1 if the j-th AC connects to the i-th BC, and Γ
A j
Bi

= 0 otherwise). Likewise,

W B
A = w+Γ

B
A with w+ > 0, W B

G = wB
G Γ

B
G with wB

G > 0, and W A
G = wA

G Γ
A
G with wA

G < 0.

Second, we consider in the mathematical derivation, that the characteristic integration

times of cells only depend on the cell type, that is τBi ≡ τB, τA j ≡ τA, τGk ≡ τG.

In addition, we consider a simple form of connectivity, where Γ
B
A = Γ

A
B are nearest

neighbors connectivity matrices. The retina is regularly tiled by different cell types

so this approximation is reasonable, although here one cell connects to more than 4

neighbors. Our "cells" must actually be considered as effective cells with effective in-

teractions. In particular, our parameters w−,w+ correspond to many synaptic contacts.

Γ
B
G and Γ

A
G are pooling matrices: cell i connects to cell j with a Gaussian probability

depending on the distance between the two cells (Berry et al., 1999; Chen et al., 2013).

We fix the thresholds θA,θB to zero so that the voltages in the rest state of eq. (3)

are vanishing. Most of the analysis below will be done considering that no rectification

takes place so that we essentially consider a linear model. For a more general analysis

please check the supplementary, as well as the discussion section.

2.1.5 Experimental set-up

In our experiments, excitatory DREADDs (hM3Dq) were activated using CNO on

RGCs and ACs co-expressing a certain gene (Scnn1a or Grik4), triggering a calcium re-

lease from organelles and thus, leading to increase of intracellular concentration of free

calcium. This resulted in membrane depolarisation and higher neuronal excitability.

Our experiments suggested that subclasses of ACs and RGCs could be simultaneously

sensitive to CNO but we did not observe any evidence of an effect on BCs.

Detailed experimental details can be found in our recent publication (Hilgen et al.,

2022). All experimental procedures were approved by the ethics committee at New-

12



castle University and carried out in accordance with the guidelines of the UK Home

Office, under the control of the Animals (Scientific Procedures) Act 1986. Record-

ings were performed on the BioCamX platform with high-density-multielectrode ar-

ray (HD-MEA) Arena chips (3Brain GmbH, Lanquart, Switzerland), integrating 4096

square microelectrodes in a 2.67 × 2.67 mm2 area and aligned in a square grid with

42 µm spacing. Light stimuli were projected onto the retina using a LED projector.

Briefly, the projector irradiance was attenuated using neutral density filters to mesopic

light levels.

3 Results

In this section we present the theoretical and numerical results based on our retina

model. We provide only the main conclusions of the mathematical derivations, which

are presented in detail in the supplementary section.

3.1 Model fitting of ganglion cells receptive fields characterized from

experimental data

RGC responses emanate from a dynamic balance of synaptic excitation and inhibition,

originating from the interactions of BCs and ACs. We believe that such network con-

nectivity gives rise to various response patterns and we show that our model can capture

these joint effects, by providing an analytic form of the RF of the cells. As we demon-

strate, this computation provides us an algorithmic way to fit the model parameters to

the light responses recorded from mouse RGCs. One can then infer the possible be-

haviour of ACs and BCs leading to this RGC response, even if we do not measure them

experimentally.
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3.1.1 Mathematical form of the RF of retinal cells

The results presented below hold for all cell types. Thus, we label cells with a generic

index α = 1 . . .3N. BCs have an index α = 1 . . .N, ACs have an index α =N+1 . . .2N,

RGCs have an index α = 2N +1 . . .3N and we write Xα the voltage of cell α .

The time evolution of the dynamical system in eq. (3) is controlled by a matrix,

L , called "transport operator" and explicitly written in the supplementary section 4.1.

L depends on the connectivity matrices W A
B ,W B

A ,W A
G ,W B

G and on all the parameters

controlling the dynamics. The form of L also depends on the set of rectified cells.

In the following, we assume that cells are not rectified i.e. hyperpolarised BCs do not

reach the rectification threshold (the rectified case is discussed in the conclusion section

and in the supplementary material). Consequently, the dynamical system (3) is linear.

In this case, the eigenvalues λβ , β = 1 . . .3N and the eigenvectors Pβ of L char-

acterize the evolution of cells’ voltages. We note P the matrix transforming L in

diagonal form (the columns of P are the eigenvectors Pβ ) and P−1 its inverse.

In this context, we show in the supplementary section 4.1.3 that the voltage of a cell

with index α is the sum of 4 terms:

Xα(t) = V
(drive)

α (t) +E
(drive)
α (t) + E

(CNOA)
α + E

(CNOG)
α , α = 1 . . .3N. (7)

Stimulus drive. The first term, V (drive)
α (t) corresponds to (1), and is non zero for BCs

only. It corresponds to the BCs response in the absence of the ACs network.

CNO effects. The terms:

E
(CNOA)
α = ζA

3N

∑
β=1

2N

∑
γ=N+1

Pαβ P−1
βγ

λβ

, α = N +1 . . .2N; (8)
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and

E
(CNOG)
α = ζG τGα

, α = 2N +1 . . .3N. (9)

correspond, respectively, to the impact of CNO on the voltages of ACs and RGCs.

There are important nonlinear effects hidden in the terms
Pαβ P−1

βγ

λβ

(eq. (8)). Thus, the

polarization level of ACs and RGCs is not only fixed by the direct effect of CNO on the

cell, but is also tuned by entangled network effects.

Stimulus-network interaction term. In eq. (7), the term :

E
(drive)
α (t) =

3N

∑
β=1

N

∑
γ=1

Pαβ P−1
βγ

ϖβγ

∫ t

−∞

eλβ (t−s)V
(drive)

γ (s)ds, α = 1 . . .3N, (10)

where ϖβγ =
1

τBγ

+λβ , corresponds to the indirect effect, via the network connectivity,

of the stimulus drive on (i) BCs, for α = 1 . . .N; (ii) ACs for α = N + 1 . . .2N; (iii)

RGCs α = 2N +1 . . .3N. Thus, this equation describes the response of all cells to the

stimulus. Especially, it tells us how the direct input (1) to BCs is modulated by the

concerted activity of BCs and ACs.

Mathematically, the term (10) can be interpreted as follows. The drive (index γ =

1 . . .N) triggers the eigenmodes β = 1 . . .3N of L , with a weight proportional to P−1
βγ

.

The mode β , in turn, acts on the voltage of cell α = 1 . . .3N with a weight proportional

to Pαβ . The time dependence and the effect of the drive are controlled by the integral∫ t
−∞

eλβ (t−s)V
(drive)

γ (s)ds.

The Receptive Field of all cell types. Introducing the function eβ (t) ≡ eλβ t H(t) so

that
∫ t
−∞

eλβ (t−s)V
(drive)

γ (s)ds ≡
[

eβ

t∗ KBT

t∗
(

KBSγ

x,y
∗ S

)]
(t), and using the sepa-
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rated kernel form (2), the response (10) reads:

E
(drive)
α (t) =

[
K

α

x,y,t
∗ S

]
(t), (11)

with:

K
α
(x,y, t) =

3N

∑
β=1

(
Pαβ Uβ (t) ×

N

∑
γ=1

P−1
βγ

ϖβγ KBSγ
(x,y)

)
, (12)

where we have set Uβ (t) ≡
[

eβ

t∗ KBT

]
(t). The response of cell α is thus expressed

as a convolution of the stimulus with a spatio-temporal kernel K
α
(x,y, t), an expected

result from the linear response. Nevertheless, it’s important to point out that the expres-

sion (12) holds for all cell types, not only RGCs and that it contains the network effects

induced by the BCs-ACs network. Thus, for α = 1 . . .N, equation (12) characterizes

the indirect (network induced) response of BCs to the stimulus drive, in addition to

the direct response (1). For α = N +1 . . .2N, equation (12) represents the RF of ACs.

Finally, for α = 2N + 1 . . .3N we obtain the RF of RGCs. We focus on this last case

from now on, essentially because this predicted RF can be confronted to experiments,

whereas we have no experimental access to BCs or ACs RF.

The Receptive Field of RGCs. Henceforth, we will refer to K
α
(t) as KGα

(t), to

make explicit that we are dealing with RGCs. The RF of RGCs can be often written as

a product of a space dependent term and a time dependent term (separability). In our

case, this would correspond to write KGα
(x,y, t) in the form of a product KGα

(x,y, t) =

KGTα
(t)×KGSα

(x,y) where:

KGTα
(t) =

3N

∑
β=1

Pαβ Uβ (t), (13)
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is a temporal kernel and:

KGSα (x,y) =
N

∑
γ=1

P−1
βγ

ϖβγ KBSγ
(x,y), (14)

is a spatial kernel.

This separation is not strictly possible in eq. (12), because there is a dependency

on β on the term ∑
N
γ=1 P−1

βγ
ϖβγ KBSγ

(x,y). Nevertheless, depending on the structure

of the matrix P constrained by connectivity, we can neglect this dependence, ergo

separability holds with a very good accuracy (Cessac, 2022).

The spatial part of the RGCs RF. Equation (14) appears as an overlap of spatial RFs

of BCs. In such naive overlaps approximations, spatial RFs of BCs are just summed up

with a uniform weight. However, here the contribution of each RFs of BCs is weighted

by the term P−1
βγ

ϖβγ which is constrained by ACs lateral connectivity. In particular,

equation (14) is not necessarily circular even if BCs RFs are, and the center of the RGC

cell RF is not necessarily at the barycentre of connected BCs RFs. This holds, for

example, if AC connectivity is not invariant by rotation.

The temporal part of the RGCs RF, (13). As we consider monophasic temporal

kernels KBT of BCs with the form (2) we have:

Uβ (t) = A0


[

2τ2
RF eλ

β
t−
(

t2 (λβ τRF+1)
2
+2tτRF(λβ τRF+1)+2τ2

RF

)
e
− t

τRF

]
2(λβ τRF+1)

3
τ2

RF

 H(t) (15)

Uβ , and, thereby, KGTα
(t) is the temporal part of the RGC receptive field, that

changes their shape due to variations in the eigenvalues of L , who are themselves
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controlled by model parameters. A striking effect arises when some eigenvalues be-

come complex, leading to temporal oscillations of Uβ . This remark is at the core of the

analysis exposed in section 3.2.2.

3.1.2 Fitting the RFs of ganglion cells

In order to assess the validity of the model, we have first fitted the recorded RGCs in

CTL and CNO conditions. We have a data base of 117 cells sensitive to CNO, i.e.

exhibiting increase or decrease in firing rate beyond a certain threshold. Experimen-

tally, RGCs RFs were reconstructed from Spike Triggered Average (STA) in response

to Shifted White Noise (SWN) (Pamplona et al., 2021). This resulted in temporal traces

with duration 600 ms sampled with a rate 33/4 = 8.25 ms.

These reconstructed RFs provide the linear response of a RGC to a spatially uni-

form flashed stimulus, mathematically corresponding to a Dirac distribution. As we

wanted to compare our model’s output, the RGC voltage, VG, to this experimental RF,

computed from firing rates, we neglected the effect of non linearities and assumed that

the experimental response is proportional to the RGC voltage. We considered a one

dimensional model (chain) with N = 60 cells of each type, with nearest neighbours

connectivity where the cells at the boundaries have a fixed, zero, voltage (zero bound-

ary conditions), corresponding to the reference rest state. To reduce the boundaries

effect, we made the fit for the RGC in the center of the network.

We perform simulations of the model (3) using a spatially uniform Dirac pulse

as the stimulus and compute the cell responses, using two modalities: simulation of

the differential equations (3) (green traces labelled "Sim" in Figure 3) and analytic

computation (12) (black traces labelled "Th" in Figure 3). We observe that these two

traces are always identical confirming the goodness of the simulation scheme.
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We recall that the parameters shaping this response are: w+, controlling the synaptic

intensity from BCs to ACs; w−, controlling the synaptic intensity from ACs to BCs;

wB
G, controlling the synaptic intensity from BCs to RGCs; wA

G, controlling the synaptic

intensity from ACs to RGCs; τB, the characteristic membrane time scale of BCs; τA,

the characteristic membrane time scale of ACs; τG, the characteristic membrane time

scale of RGCs; τRF , the characteristic membrane time scale of the OPL drive;

We have two additional parameters: A0, the intensity of the OPL input and b0, con-

trolling a slight, residual, depolarization/hyper polarization observed in experimental

responses. This last parameter encompasses the effect of CNO on the polarization of

the RGCs. This effect results from the conjugated action of CNO on ACs (term ζA in

(3)), action of CNO on RGCs (term ζG in (3)) and entangled network effects appearing

in equations (8) and (9). The introduction of a single parameter b0 to mimic this intri-

cate effect is therefore a sharp simplification, making the estimation easier. We note η⃗

the set of all the parameters shaping response. η⃗ is therefore a point in a 10-dimensional

space.

The fit was then done by a gradient descent to minimize the L2-distance D2(⃗η)

between the experimental trace of the time STA, STA(s) and the theoretical temporal

RF (13) which depends on η⃗ . The minimization is done by iterating the differential

equation:
dη⃗

du
=−∇⃗η⃗D2.

The gradient of ∇⃗η⃗D2 involves ∇⃗η⃗KGTα
(s) which can be explicitly computed when

we have the analytic form of RF , or numerically. Note that having the analytic form

gives better results especially because it allows second order corrections (Hessian). Al-

though the theoretical result provides both the temporal and the spatial RF (including
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the surround), it is difficult, experimentally, to fit the spatial part. That is why our min-

imisation is done only on the temporal trace. Nevertheless, the simulation allows us to

draw the corresponding spatial RF.

Although the experimental temporal RFs were quite diverse among cells, we were

able to fit all of them with a very good accuracy (final error smaller than 1%). We

rejected fits where some parameters became unrealistic (e.g. τA larger than 1 s or

|w− |> 1 kHz). We rejected about 4% of the fits. An example of fit is shown in Figure

3. The complete results displayed in the same form as Figure 3 can be found on the web

page https://gitlab.inria.fr/biovision/dreadds where the C-code used for simulations can

also be found, for all experimental cells.

In this synthetic representation the simulated responses of the OPL, BCs and ACs

connected to the RGC located at the centre of the network appears in the top left figure.

We also show the simulated response of the RGC vs the experimental temporal STA

of this cell (bottom left). On the top right we see the numerical spatio-temporal RF

using a color map. Finally, at the bottom right, we show the power spectrum (modulus

of the Fourier transform) of the temporal response. As developed below, this spectrum

provides important information on the cell response.

RGCs RFs in the presence of CNO could be fit equally well with our model. All

fitted cells, in CTL and CNO conditions, can be found on the web page https://

gitlab.inria.fr/biovision/dreadds.
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Figure 3: Summary panel. The top left panel illustrates the simulated responses of

the OPL (term V
(drive)

α (t) in (1), black trace), BCs (red trace), ACs (blue trace) con-

nected to the RGC located at the centre of the network. The bottom left panel shows

the simulated response of the RGC (green, "Sim", and black, "Th", trace) vs the exper-

imental temporal STA of this cell (orange dots). The green trace ("Sim") is the result of

a numerical simulation of the dynamical system (3) under a spatially uniform flashed

stimulus, whereas the black trace ("Th") is the result given by the analytic expression

(12). The top right panel shows the spatio-temporal RF of the RGC, time in abscissa,

space in ordinate. The bottom right panel displays the power spectrum of the time

response, experimental (orange dots) and theoretical (black lines).
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3.2 Network connectivity shapes the receptive fields of ganglion

cells

Throughout our analysis of the experimental data, we observed great variability in

the effect of DREADD activation with CNO on the RGCs responses. Some of them

are expected due to the underlying mechanism of the excitatory DREADD activation

that causes an increase of intracellular concentration of free calcium which leads to

membrane depolarisation. Consequently, the ionic diffusion across the cell membrane

through ion channels increases and this, in turn, affects the permeability and electrical

conductance of these channels to the respective ions. A larger conductance would yield

a shorter time constant, which would make the cell faster. Thus, we should notice an

increase of the baseline activity and decrease of the time constant. However, we didn’t

observe any systematic trend (see Figure 5). This can be justified if we consider that

DREADDs are not only expressed in RGCs, but also ACS, thus CNO activation has a

direct impact on the ACs response and a potential indirect effect on RGCs response.

In a case where a RGC receives input from DREADDs-expressing inhibitory ACs and

does not express DREADDs itself, we would expect to notice a decrease in the baseline

activity of its response and perhaps an increase in the time constant, meaning that the

cell will become more sluggish. If, though, this RGC is also susceptible to CNO, the re-

inforced inhibitory effect of the ACs competes with the direct effect of CNO activation

on the RGC’s response. In this scenario, the net effect of CNO might vary widely.

In this section, we develop the consequences of our mathematical analysis in an

attempt to explain the observed diversity of CNO effects on RF features. We propose

here an explanation purely based on network effects. There are certainly other possible

interpretations based on single cell characteristics such as non linear effects due to
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changes in conductance etc, discussed in the discussion section. The main advantages

of our analysis is that it determines network effects on the RGCs RF, controlled by two

main parameters, and that it predicts the response to more complex stimuli than full

field flashes.

3.2.1 Two main parameters constrain the RF shape of ganglion cells

The entangled, feedback effects of ACs-BCs can be characterized by two a-dimensional

parameters. The first one, r = τA
τB

, characterizes the ratio between the ACs and BCs

membrane integration times. The second, s = w−

w+ , characterizes the ratio between the

ACs → BCs interaction (w−) and the BCs → ACs interaction (w+). Of course, the

other parameters play an important role when fitting a specific RF. But, what we argue

here is that the shape of RF and its space-time scaling essentially depend on the value

of r,s.

The theoretical explanation is that the RF of a RGC is given by the formula (11),

which is a cascade of convolutions involving the BC response to the stimulus (OPL

input) and the network effects expressed in terms of eigenvalues λβ and eigenvectors

components Pαβ appearing in equation (12). As explained in the supplementary sec-

tion 4.1.4, these eigenvalues and eigenvectors are essentially tuned by the two param-

eters r,s. There is also a dependence on other parameters discussed in section 3.2.3.

Depending on the location in the space r,s, some eigenvalues are real, some others are

complex. All eigenvalues have a negative real part, ensuring the stability of the linear

system. Imaginary parts in eigenvalues introduce oscillations in the response, whereas

the real part fixes a characteristic decay time. The RF formula (12), involving a sum

of exponentials eλβ t mixes these effects. As we considered monophasic OPL response

here, the time RF of RGCs is monophasic when all eigenvalues are real. In contrast,
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oscillations in this RF can appear when some eigenvalues are complex. However, the

shape of this RF depends in more detail on the period of oscillations, brought by the

imaginary part of complex eigenvalues, and on the characteristic decay times, brought

by the real parts.

When moving in the (r,s) plane, the eigenvalue n switches from real to complex

conjugate pair when crossing a critical line, depending on n, whose equation (36) is

given in the supplementary section 4.1.4. There are 2N eigenvalues associated with the

BCs-ACs network each one determining a critical line in the plane (r,s). The set of

all these lines is what we call the "skeleton". An example of this skeleton is shown

in Figure 4, where we only show some of the critical lines. These lines delimit color

regions corresponding to the number of complex eigenvalues (see colorbar legend on

the right of the figure).

3.2.2 The RFs map

The existence of this skeleton determines regions in the (r,s) plane with specific shapes

for the temporal RF, given by eq. (13), a linear combination of functions Uβ (t) given

by (15). The Fourier transform Ûβ (ω) of Uβ (t) is:

Ûβ (ω) =
1

(1+ iωτRF )3
1

iω −λβ

. (16)

Thus, the Fourier transform of (13) is:

KGTα
(ω) =

3N

∑
β=1

Pαβ Ûβ (ω), (17)
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a linear combination of rational fractions. Extending to complex ωs, Ûβ (ω) has two

poles: ω = i
τRF

and ω = −iλβ , corresponding to complex resonances. The contribu-

tions of all these poles (for β = 1 . . .3N) are combined in eq. (17) with weights Pαβ .

As we move in the (r,s) plane, we notice the following. When (r,s) are small,

eigenvalues are real and the terms Pαβ are close to diagonal. In this case, the dominant

pole contribution in (17) is the pole ω = i 1
τRF

corresponding to the OPL contribution.

Equation (17) has a single peak centered at ω = 0, corresponding to a monophasic re-

sponse. For larger values of r,s some eigenvalues become complex, giving potential

additional peaks in the power spectrum. Actually, we observed two cases mutually

compatible. First, the central peak at ω = 0 switches to a non zero value. This cor-

responds to the appearance of an exponentially damped oscillation in the RF, giving a

biphasic response. However, secondary peaks may appear leading to residual oscilla-

tions, in addition to the main trend (monophasic or biphasic). This gives what we call a

polyphasic response. Such residual oscillations were observed in our experiments and

were relatively numerous (about 40%). There are, of course, other hypotheses explain-

ing these residual oscillations, but here, we will support the hypothesis that they are

generated by a network effect. An example is given in Figure 3 where we observe, at

the bottom left, residual oscillations after the main biphasic response, and, at the bottom

right, the power spectrum with a main peak not centered at zero and a secondary peak

corresponding to the residual oscillations. Note that this secondary peak is observed on

experimental data but we failed to reproduce it in the fits. This is further explained in

the discussion section.

This analysis lead us to broadly decompose the (r,s) plane into 3 regions corre-

sponding to cells response phases: monophasic, biphasic, polyphasic. One switches
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from one phase to the other when some peaks in the power spectrum appear or disap-

pear, driven by the spectrum of L .

The corresponding "phase diagram", obtained numerically, constitutes what we call

the "RFs map" shown in Figure 4 (top right). There are four points, labelled A,B,C,D,

on this map, each representing a different cell response phase. For each point, we have

plotted the RGC temporal RF, as computed with the model (bottom panels). A more

general representation of what is going on when moving along a specific pathway in

this map can be found at the web page https://team.inria.fr/biovision/cno_

paper_supplementary/, where one can see movies showing how the network effects

shape the RGCs RFs when (r,s) vary.

Figure 4 illustrates how the BCs-ACs network shapes the RF of a RGC by a subtle

balance between BCs-ACs, BCs-ACs interactions (parameter s) and the time scale of

their response (parameter r). For simplicity, we consider here ON BCs, but the expla-

nation holds also for OFF BCs.

The OPL drive (black line) induces a depolarisation of BCs (red line) within a time

scale of order τB. This excites the connected ACs (blue line), with an intensity w+. The

excitation of ACs hyperpolarises BCs with an intensity w− within a time scale of order

τA. RGCs receive a combination of excitatory and inhibitory inputs from their afferent

circuit with respective weights wB
G and wA

G.

In the monophasic region, ACs respond in the same time scale as BCs. One ob-

serves, for RGCs a monophasic response (Panel "A", middle left) whose intensity de-

pends on the ratio between excitation, provided by BCs, with a weight wB
G and inhibi-

tion, with a weight wA
G. When moving to the biphasic region, ACs respond with a longer

time scale as BCs, leading to the biphasic response illustrated with panel "B". When

moving upward in the RFs map (increasing s) this biphasic response becomes polypha-
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Figure 4: Top Left. The skeleton. Map in the (r,s) plane showing the "skeleton" of eigenvalues

structure (white lines). When crossing line n the eigenvalue n switches from real to complex. The color

corresponds to the number of complex eigenvalues (see the color bar on the right side). Top right. The

RFs Map. This figures summarizes how the entangled effects of the BCs-ACs network act on the RF of

RGCs. In this map in the (r,s) plane we distinguish three main regions (see text for their determination):

monophasic, biphasic, polyphasic. The points labelled "A", "B, "C", "D" correspond to the temporal RF

plotted in the bottom panels respectively called "Panel A", "Panel B", "Panel C", "Panel D". We use the

same representation as in Figure 3. 27



sic with oscillations. This is illustrated in panel "C". BCs start to raise due to the OPL

drive, leading to a rising of ACs, slower than BCs, leading to a hyper-polarisation of

BCs. This leads to a decrease of ACs voltage, thereby, to a rising of BCs which still

respond to the OPL drive. This cycle can be repeated several times, depending again

on the parameters r,s. Note that the amplitude is always decreasing exponentially fast.

The period of the observed oscillations and the damping characteristic time depend on

the location in the Map. Finally, panel "D" is the point at the intersection of the 3 phases

regions. We show it for completeness. Note that increasing s leads to a decrease of the

RGCs response. When s is too high, the response becomes too weak to be observed

experimentally.

3.2.3 Experimental cells spread in the RFs map

To confront our theoretical insight with experiments, we have placed the recorded cells

in the RFs map as shown in Figure 5. That is, for each experimentally recorded RGC,

we fit the model parameters η⃗ as explained in section 3.1.2) thereby providing an es-

timation of r,s. This defines a virtual network, made of identical cells in each layer,

where all RGCs are responding like the experimental RGC. Thus, the map is only

a projection of η⃗ , which exists in a 10 dimensional space, in the two dimensional

plane r,s. Some parameters are linked together though. The mathematical analysis

in the supplementary section 4.1.4 shows us that the skeletons obtained for a fixed

value of τB,w+, can be extrapolated to other values τ ′B,w′+ by the simple rescaling

r′ = r,s′ =
(

w′+ τ ′B
w+ τB

)2
s. Using this property, the map of Figure 5 has been drawn for

a specific value of w+ = 8.5 Hz and τB = 30 ms. This corresponds to mean values of

these parameters, averaged over the set of experimental cells (in CTL conditions). In

this two dimensional representation, extra information coming from the other parame-
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ters τG,wB
G,w

A
G,A0,b0 is lost.

Figure 5, left, shows us the repartition of cells in the map, in CTL conditions. A few

of them are monophasic, but many of them are biphasic, with a significant proportion

close to the polyphasic region and showing residual oscillations. The figure 5, right,

shows the same cells in CNO conditions.

The main observation is that CNO (right panel), does not dramatically change the

repartition of cells in the RFs map. This is made more explicit in the bottom panels

of figure 5. We show the mean and standard deviation of the main model parameters:

τA,τB,w−,w+,b0 in CTL and CNO conditions, separating the two subclasses of inves-

tigated genes: Grik4 and Scnn1a, and separating ON or OFF cells. These parameters

are essentially constant showing that there is no statistical trend induced by CNO.

The situation is radically different when investigating the effect on individual cells.

Indeed, the application of CNO makes some cells to move their representative point

from one region in the RF map to the other, thereby drastically changing the cell’s

response. Two examples are shown in Figure 6 and 7. In Figure 6, the application of

CNO induces a tiny motion of the representative point in the RFs map. However, as

the cell is close to the area separating the monophasic from the biphasic phase, this

motion impacts dramatically the shape of the time response. Actually, the RFs map

can be refined by plotting the value of the main period T1 (corresponding to the main

peak in the power spectrum) as shown in the top right figure. In CTL conditions, the

cell is located in yellow-green region with a high T1 of order 600 ms, in the limit of

experimental resolution. With CNO, the cell switches to a region where T1 is of order

300 ms. At the bottom of the figures, the synthesis panel (same representation as in

Figure 3) for CTL (left) and CNO conditions (right) is presented.

In Figure 7 we show a motion inducing a switch from biphasic to polyphasic. Here,
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Figure 5: Top. Repartition of fitted experimental cells in the RFs map. Each point corre-

sponds to an experimental cell (upper case corresponds to cell number while the index is the

experience index). Top left. CTL conditions. Top right. CNO conditions Middle. Mean and

standard deviation of τA (left), τB (center), r (right), fitted from experiments, for genes Grik4

and Scnn1a, in CTL and CNO conditions. We have separated the estimation for OFF cells

(blue), ON Cells (green) and all cells (red). Bottom. Mean and standard deviation of w− (left),

w+ (center), s (right), fitted from experiments. The representation is the same as the previous

row.
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Figure 6: CNO may change the cell response. Left top. Application of CNO moves

the representative point of the cell (here label 832) in the RFs map. Although this

motion looks small, it corresponds to a switch from monophasic to biphasic region

(Bottom panel). More precisely, as shown Right top, there is a displacement from a

region where the oscillation period is quite high (larger than the observation time) to a

region where it is of order 300 ms.
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CNO drives the cell from the boundary of the polyphasic region to the biphasic region.

The representation is the same as for Figure 6 except that the top right figure displays

the period of the second period T2 (secondary peak in the power spectrum).
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Figure 7: CNO may change the cell response. Left top. Application of CNO moves

the representative point of the cell (here label 531) in from polyphasic to biphasic region

resulting in a change in the cell response (Bottom panel). The figure Right top shows

how the period of polyophasic oscillations depends on the place in the RFs map.
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4 Discussion

In this paper we investigated the role of AC-mediated lateral connectivity in the re-

sponse of RGCs to visual stimuli. Our conjecture was that these responses are strongly

constrained by such lateral connectivity. Based on the mathematical analysis of a net-

work featuring the interaction of BCs-ACs-RGCs we were able to produce an analytic

form for the spatio-temporal response (receptive fields) of all cell types in the model.

This finding has significant implications for the usefulness, identifiability (i.e. its pa-

rameters could be obtained from experimental data) and interpretability of the model.

First, it provides an algorithmic way to fit the model parameters to the light responses

recorded from mouse RGCs, using the analytical formula of the RF. This means that

we are able not only to find the parameters that best fit the variables concerning the

RGCs responses, but also to infer the possible behaviour of ACs and BCs leading to the

RGCs responses, even if we don’t measure them experimentally. Second, it provides an

intuitive understanding of the role of various model variables and highlights the impact

of two phenomenological parameters (with a physical meaning) on the spatio-temporal

response (i), the intensity of the interactions BCs-ACs, and, (ii), the characteristic time

scale of these cells response. This can be summarized in the two dimensional RF maps,

where one observes phases corresponding to different modalities in the response. We

were able to validate experimentally these modelling results, based on the ability to

pharmacologically modify the level of ACs and RGCs neural activity using pharmaco-

genetics (DREADD-CNO). We would like now to comment some caveats and potential

extensions of this work.

Polyphasic phase. Although we observe about 40% of polyphasic cells in the exper-

imental plots (characterized by secondary peaks in the power spectrum) the model has
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difficulty to properly fit them. This is visible in figure 5 where no cell is within the

polyphasic region whereas the secondary peaks are clearly visible in the experimental

power spectra (see Figure 7). This can be explained by several factors. First, the fitting

method, trying to estimate a model with 10 parameters from a trace with a few hundreds

of points, has clearly limits. In particular, the secondary peaks, having a few points in

the power spectrum, are hard to capture and require a patient fine tuning. The main

limitations may also come from the model itself, as developed in the following.

Connectivity. The nearest neighbors connectivity has been essentially chosen for

mathematical convenience, but the realistic connectivity is certainly quite more com-

plex. In particular, it depends on the cell subclasses and it remains a challenge to

determine the effective connectivity experimentally. Note that, in addition to chemi-

cal synapses, roughly featured in the model, gap junctions are also present. Including

them would essentially not change the structure of the model (see (Souihel and Cessac,

2019)).

Inhomogeneities. The model assumes that there is only one subclass for each cell

type, represented by a unique set of parameters, while the real retinal network is quite

more complex. The intrinsic heterogeneity of cell types and physiology can in particu-

lar explain the widespreading variety of parameters observed in the model and the fact

that there is no systematic trend when applying CNO.

Rectification. The model includes weak non linearities (rectification) that were ne-

glected in the mathematical computations. The effects of such rectification can be

mathematically investigated (Cessac, 2022). Mainly, rectification projects dynamics on

the subspace of non rectified cells. This means that the dimensionality of the dynam-
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ical system changes in time, depending on the stimulus and network parameters, with

strong consequences on the spectrum of L , and thereby, on the power spectrum briefly

discussed in the supplementary section 4.1.4.

Local non linearities vs network effects. Additional non linearities take place in

retinal dynamics. Ion channels have a non linear behaviour inducing phenomena such

as bifurcation and bursting, essential, for example, in the development of the retina

were bursting Starburst Amacrine Cells generate retinal waves (Hennig et al., 2009;

Karvouniari et al., 2019; Cessac and Matzakou-Karvouniari, 2022). In addition, gain

control plays also a central role in the response to spatio-temporal stimuli inducing, for

example, retinal anticipation (Berry et al., 1999; Chen et al., 2013; Souihel and Cessac,

2021).

All these key assumptions and simplifications, regarding the model structure and its

parameters, are certainly crucial in shaping the RGC RFs. Yet, they made the model

tractable mathematically and numerically, and aided its identifiability, i.e. its parame-

ters could be obtained from experimental data, thus providing interesting insights in the

retinal network dynamics.

Although our study was limited to responses to full-field flashes we would like to

extend the consequence of our analysis to more complex stimuli. First, the presence

of peaks in the power spectrum implies the existence of resonances, that is preferred

frequencies for the RGCs. Exciting a cell with a resonance frequency will produce a

maximal response. When applying a stimulus like the Chirp stimulus (Hilgen et al.,

2022; Baden et al., 2016) there is a phase where periodic flashes, with constant contrast

but increasing frequency, are applied. One observes frequently a bump in the experi-
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mental RGCs response that might correspond to such a resonance.

In addition to preferred time frequencies, our analysis also shows that the response

of RGCs, induced by the network, may also involve specific space scales. Mathemat-

ically, these scales appear in the eigenvectors of the transport operator (see eq. (37)

in the Supplementary section 4.1.5). The practical implication would be that, present-

ing a local time periodic stimulus at a resonant frequency and with small radius, and

increasing slowly this radius, one may observe scales where the response is maximal.

One of these scales may correspond to the size of the RF but we conjecture that there

should be other, larger, scales where this phenomenon appears. This would actually be

a way to disentangle local, intrinsic responses of cells, to network induced responses,

by blocking the ACs synapses (e.g. strychnine for glycinergic cells). More generally,

the existence of time resonances and preferred space scales would also induce resonant

response to moving objects with the appropriate speed. Such resonances effects could

be involved in the mechanism generating anticipatory waves (Menz et al., 2020).

To conclude, this research supports the view that RGCs do not act independently,

just to convey local spatio-temporal information, but rather encode visual information

at the population level as well. We argue that this capability is due to the lateral in-

hibitory circuitry provided by the population of ACs, which creates a dense network

connecting BCs, ACs and RGCs locally and globally. This has two implications for in-

formation processing in the retina. Firstly, RGCs diverse responses arise from a unique

combination of network excitation and inhibition, which relies on the activities and in-

teractions of upstream neurons projecting onto RGCs. This means that natural variation

in RGC types cannot be only attributed to single cell characteristics, such as morphol-

ogy, genetics, physiology, etc. Future studies should therefore include individual and
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population properties, when exploring the functional diversity in RGCs. Second, alter-

ing the activity in any one neuron might affect the activity of any other neuron belong-

ing to this network. Consequently, disrupting the balance of excitatory and inhibitory

inputs within a given circuit, using e.g. genetic-based tools, allows to dismantle inner

retinal circuits and understand how ACs shape retinal output. Our results are part of a

rapidly growing body of literature, arguing that ACs hold a more universal role in reti-

nal encoding, like parallel processing or motion anticipation (Franke and Baden, 2017;

Souihel and Cessac, 2021).

Our work could easily be used in future studies to explore the role of other RGCs

subclasses or other retinal neurons and their interactions. In addition, it could be used

to disassemble the components of other retinal circuits, by manipulating the activity of

specific neurons. It could also potentially benefit research in other parts of the nervous

system, as fundamental properties of the inner retina are shared with other parts of the

brain.
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Supplementary

4.1 Mathematical analysis of network dynamics

4.1.1 Joint dynamics

The joint dynamics of all cells type is given by the dynamical system (3), that we rewrite

here for convenience:

dVBi
dt = − 1

τBi
VBi +∑

NA
j=1W A j

Bi
N (A) (VA j

)
+FBi(t), i = 1 . . .N

dVA j
dt = − 1

τA j
VA j +∑

NB
i=1W Bi

A j
N (B) (VBi )+ζA , j = 1 . . .N,

dVGk
dt = − 1

τGk
VGk +∑

NB
i=1W Bi

Gk
N (B)(VBi)+∑

NA
j=1W A j

Gk
N (A)(VA j)+ζG, k = 1 . . .N.

We use Greek indices α,β ,γ = 1 . . .3N and define the state vector X⃗ with entries:

Xα =


VBi, α = i, i = 1 . . .N;

VA j , α = N + j, j = 1 . . .N;

VGk , α = 2N + k, k = 1 . . .N.

We introduce F⃗ with entries:

Fα =


FBi, α = i, i = 1 . . .N;

ζA, α = N + j, j = 1 . . .N;

ζG, α = 2N + k, k = 1 . . .N;
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and the rectification vector R⃗(X⃗ ) with entries:

Rα(X⃗ ) =


N (B) (VBi ) , α = i, i = 1 . . .N;

N (A) (VA j

)
, α = N + j, j = 1 . . .N;

0, α = 2N + k, k = 1 . . .N;

We introduce the N ×N matrices:

T =


−diag [τBi ]i=1...N 0NN 0NN

0NN −diag
[

τA j

]
j=1...N 0NN

0NN 0NN −diag
[

τGk

]
k=1...N

 , (18)

characterizing the characteristic integration times of cells,

W =


0NN W A

B 0NN

W B
A 0NN 0NN

W B
G W A

G 0NN

 , (19)

summarizing chemical synapses interactions. Then, the dynamical system (3) reads, in

vector form:
dX⃗

dt
= T −1.X⃗ +W .R⃗(X⃗ )+ F⃗ (t). (20)

We remark that eq. (20) has a specific product structure: the dynamics of RGCs

is driven by BCs and ACs with no feedback. This means that one can study first the

coupled dynamics of BCs and ACs and then the effect on RGCs.
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4.1.2 Linear evolution

We consider the evolution of eq. (20) from an initial time t0. Typically, t0 is a reference

time where the network is at rest, before the stimulus is applied. The dynamical system

has almost the form of a non-autonomous linear system driven by the term F⃗ (t). There

is however a weak non linearity, due to the piecewise linear rectification appearing in

the term R⃗(X⃗ ). Therefore, when all cells voltage are large enough the system is linear.

Mathematically, there is a domain of R3N :

D =
{

VBi ≥ θB,VA j ≥ θA, i, j = 1 . . .N
}
, (21)

where R
(

X⃗
)

is linear so that eq. (20) is linear too (check (Cessac, 2022) for more

details).

From on we consider this linear case. We write L = T −1.X⃗ +W so that:

L =


−diag

[
1

τBi

]
i=1...N

W A
B 0NN

W B
A −diag

[
1

τA j

]
j=1...N

0NN

W B
G W A

G −diag
[

1
τGk

]
k=1...N

 ,

(22)

We introduce the N dimensional vector 1⃗N = (⃗1)N
i=1, and the 3N dimensional vector

C⃗ =


−θAW A

B .⃗1N

−θBW B
A .⃗1N

−
(

θBW B
G .⃗1N + θAW A

G

)
.⃗1N

 and (20) reads dX⃗
dt = L .X⃗ + F⃗ (t) + C⃗ .

We assume that L is invertible. This assumption, and more generally, the spectrum
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of L is further discussed in section 4.1.4. The general solution of eq. (20) is:

X⃗ (t) = eL (t−t0).X⃗ (t0) +
∫ t

t0
eL (t−s) F⃗ (s)ds − L −1.

[
I3N,3N − eL (t−t0)

]
.C⃗ .

(23)

where I3N,3N is the 3N dimensional identity matrix.

Although this equation is general, it actually stands when one can define a notion of

asymptotic regime. That is, when L has stable eigenvalues (eigenvalues with a strictly

negative real part). The spectrum of L is studied below and conditions ensuring the

stability of eigenvalues are given. Here, we are going to assume that eigenvalues are all

stable and that t − t0 is large so that we can remove the transient term eL (t−t0).X⃗ (t0)

depending on the initial condition X⃗ (t0). In addition, the last term converges to:

X⃗ ∗ =−L −1.C⃗ , (24)

the rest state of the linear system, which vanishes whenever the thresholds θA,θB are

set to 0.

4.1.3 Derivation of eq. (7)

We note the eigenvalues of L , λβ ,β = 1 . . .3N and its eigenvectors, Pβ (the columns

of the matrix P transforming L in diagonal form). We consider first the case C⃗ = 0⃗.

We have then, from (23):

Xα(t) =
3N

∑
β=1

3N

∑
γ=1

Pαβ P−1
βγ

∫ t

−∞

eλβ (t−s)Fγ(s)ds,

where Fγ = FBi , γ = i = 1 . . .N (BCs).
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We recall that, from (5), FBγ
(t) = V

(drive)
γ

τBγ

+
dV

(drive)
γ

dt , so that:

∫ t

−∞

eλβ (t−s)Fγ(s)ds = V
(drive)

γ (t) + ϖβγ

∫ t

−∞

eλβ (t−s)V
(drive)

γ (s)ds, γ = 1 . . .N,

for B cells, with ϖβγ =
1

τBγ

+λβ and using V
(drive)

γ (−∞) = 0.

For γ = N +1 . . .2N, Fγ = ζA (ACs) we have:

∫ t

−∞

eλβ (t−s)
ζA ds =− 1

λβ

[
1− eλβ (t−t0)

]
ζA.

Finally, for γ = 2N +1 . . .3N, Fγ = ζG (RGCs):

∫ t

−∞

eλβ (t−s)
ζG ds =− 1

λβ

[
1− eλβ (t−t0)

]
ζG.

We remark that:

3N

∑
β=1

3N

∑
γ=1

Pαβ P−1
βγ

V
(drive)

γ (t) =
3N

∑
γ=1

V
(drive)

γ (t)

(
3N

∑
β=1

Pαβ P−1
βγ

)

=
3N

∑
γ=1

V
(drive)

γ (t)δαγ

= V
(drive)

α (t).

It follows that:

Xα(t) = V
(drive)

α (t) +E
(drive)
α (t) + E

(CNOA)
α + E

(CNOG)
α , α = 1 . . .3N.
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with:

E
(drive)
α (t) =

3N

∑
β=1

N

∑
γ=1

Pαβ P−1
βγ

ϖβγ

∫ t

−∞

eλβ (t−s)V
(drive)

γ (s)ds, α = 1 . . .3N,

E
(CNOA)
α = −ζA

3N

∑
β=1

2N

∑
γ=N+1

Pαβ P−1
βγ

λβ

,α = N +1 . . .2N;

E
(CNOG)
α = ζG τGα

, α = 2N +1 . . .3N.

which is (7).

When C ̸= 0⃗, there is an additional term corresponding to the rest state (24).

4.1.4 Eigenvalues and eigenvectors of L

In the following, the term diag(xn )
N
n=1 denotes a diagonal N ×N matrix with diagonal

entries xn.

Linear case. We start from the eq. (22) of the linear operator ruling the dynamics

in the set D defined by (21). We consider, as in the main text, the case where all

characteristic times τBi are equal to τB, all characteristic times τA j are equal to τA and

all characteristic times τGk are equal to τG. Using the same notations as the main text

we have:

L =


−INN

τB
−w−Γ

A
B 0NN

w+Γ
B
A −IN

τA
0NN

wB
G Γ

B
G wA

G Γ
A
G −INN

τG

,


where 0NN is the N ×N 0 matrix and INN the N ×N 0 identity matrix.
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Eigenvalues and eigenvectors. We consider the case where Γ
A
B =Γ

B
A . We note κn,n=

1 . . .N, the eigenvalues of Γ
A
B ordered as |κ1 | ≤ |κ2 | ≤ · · · ≤ |κn | and note the normal-

ized eigenvectors ψ⃗n, n = 1 . . .N.

We seek the eigenvalues, λβ , and eigenvectors, P⃗β , β = 1 . . .3N, of L . It is ev-

ident, from the form of L , that there are N eigenvalues λβ = − 1
τG
,P⃗β = e⃗β where

e⃗β is the canonical basis vector in direction β . We attribute them the indices β =

2N + 1 . . .3N as this indexing corresponds to the form of L when w− = w+ = 0. We

seek the 2N remaining eigenvalues-eigenvectors assuming that P⃗β s has the form:

P⃗β =


ψ⃗n

ρnψ⃗n

φ⃗n

 , n = 1 . . .N, (25)

where ρn is an unknown parameter and φ⃗n a N dimensional vector, to be determined,

from the characteristic equation:

L .P⃗β = λβ P⃗β .

This leads to the system of equations:


λβ = − 1

τB
−w−ρn κn;

w+κn − ρn
τA

= ρn λβ ;

λβ φ⃗n =
(

wB
G Γ

B
G +wA

G ρn Γ
A
G

)
ψ⃗n − 1

τG
φ⃗n,

, (26)

We first assume that w−,w+ > 0 and later discuss the limit when these quantities tend

to zero. Combining the two first equations leads to a second-order polynomial in the
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variable ρn,

w−
κn ρ

2
n − 1

τ
ρn + w+

κn = 0, (27)

giving 2 solutions for each n:

ρ
±
n =


1

2τ w− κn

(
1 ±

√
1−4 µ κ2

n

)
, κn ̸= 0, 1

τ
̸= 0;

w+ τ κn, κn = 0, 1
τ
̸= 0;

±
√

−w+

w− ,
1
τ
= 0.

(28)

where:
1
τ
=

1
τA

− 1
τB

. (29)

and:

µ = w−w+
τ

2 ≥ 0. (30)

The 2N first eigenvalues of L are therefore given by:

λ
±
n =


− 1

2τAB
∓ 1

2τ

√
1−4 µ κ2

n ,
1
τ
̸= 0;

− 1
τA

∓
√

−w−w+κ2
n ,

1
τ
= 0.

(31)

where:
1

τAB
=

1
τA

+
1
τB

. (32)

We finally obtain 2N vectors φ⃗n:

φ⃗
±
n =

1
λ
±
n + 1

τG

(
wB

G Γ
B
G +wA

G ρ
±
n Γ

A
G

)
ψ⃗n. (33)

Let us now discuss the limit when w− or w+ or both tend to 0. If w− = 0, ρn =
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w+κnτ from (27). If w+ = 0 there are two solutions of (27), ρn = 0 or ρn = 1
τw−κn

.

Finally, when w− = w+ = 0, ρn = 0 and the ansatz (25) does not apply. Actually, in

this case, L is diagonal, the N first eigenvalues are − 1
τB

, the N next eigenvalues are

− 1
τA

. We have, in this case: λ+
n =− 1

τB
and λ−

n =− 1
τA

. Therefore, we order eigenvalues

and eigenvectors of M such that the N first eigenvalues are λ+
n ,n = 1 . . .N, and the N

next are λ−
n ,n = N +1 . . .2N.

We finally end up with the following form for the eigenvalues and eigenvectors of

L :

λβ = λ+
n ,P⃗β =


ψ⃗n

ρ+
n ψ⃗n

1
λ
+
n + 1

τG

(
wB

G Γ
B
G +wA

G ρ+
n Γ

A
G

)
ψ⃗n

 , β = n = 1 . . .N,

λβ = λ−
n ,P⃗β =


ψ⃗n

ρ−
n ψ⃗n

1
λ
−
n + 1

τG

(
wB

G Γ
B
G +wA

G ρ−
n Γ

A
G

)
ψ⃗n

 , β = N +1 . . .2N, n = 1 . . .N,

λβ =− 1
τG
,P⃗β = e⃗β , β = 2N +1 . . .3N.

(34)

Skeleton. The eigenvalues λ±
n in 31 can be real or complex conjugated. By increasing

µ , they become complex when:

µ >
1

4κn
≡ µn,c. (35)

In this case the real part is − 1
2τAB

, the imaginary part is ± 1
2τ

√
1−4 µ κ2

n . If µ ≤ µn,c,

eigenvalues λβ are real with a negative real part. This implies that the linear dynamical
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system (20) is stable.

The N equations (35) define what we call the "skeleton of the RFs map". In the

main text, we introduced the quantities r = τA
τB
,s = w−

w+ . In these variables, the critical

condition (35) reads:

snc =
1

w+2
τ2

B

1
4κ2

n

(1− r )2

r2 . (36)

This defines two critical lines symmetric with respect to r = 1. These lines are invari-

ant by the variable change r′ = r,s′ =
(

w′+ τ ′B
w+ τB

)2
s. This allows to map the skeleton

obtained from a set of values τ ′B,w′+ to the skeleton obtained with references value

τB,w+.

Rectification. In this paper we have essentially considered a situation where cells are

not rectified, whereas the full model (eq. (3)) considers rectification, in agreement with

realistic biological systems. The mathematical effect of rectification of a cell A j, is to

set to zero the corresponding row in the matrix W A
B . This has several consequences.

First, we cannot apply anymore the useful Ansatz used in the section, that is Γ
A
B = Γ

B
A .

In addition, the vanishing of only one row in L completely modifies its spectrum.

However, thresholding in rectification corresponds to partition the phase space of the

model, a compact subset of R3N , into convex subdomains delimited by hyperplanes.

In each of these domains the matrix W .R⃗(X⃗ ) appearing in eq. (20) is linear with a

number of zero eigenvalues corresponding to the number of rectified cells. This matrix

acts as a projector on the complementary subspace of its kernel. In each of these sub-

domains eq. (7) applies. One can actually compute, for a given stimulus, the time of

entrance and exit in a new subdomain with the effect of modifying the eigenvalues and

eigenvectors appearing in eq. (7). The resulting equation is quite complex though and

will require further investigations. See (Cessac, 2020) for more details.
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4.1.5 Nearest neighbours connectivity

We consider the case where the connectivity matrices Γ
B
A = Γ

A
B have nearest neighbours

symmetric connections. We also assume that the dynamics hold on a square lattice with

null boundary conditions. We define α = ix ∈ {1 . . .L = N } in one dimension and α =

ix +(iy −1)L ∈
{

1 . . .L2 = N
}

in two dimensions. We also set n = nx ∈ {1 . . .L = N }

in one dimension and n = nx +(ny − 1)L ∈
{

1 . . .L2 = N
}

in two dimensions. Then,

the eigenvectors and eigenvalues of these matrices have the form:

ψα,n =
( 2

L+1

) d
2

∏l sin
( nlπ

L+1 il
)
,

κn = 2 ∑l
[

cos
( nlπ

L+1

)]
;

(37)

with l = x for d = 1 and l = x,y for d = 2. Especially, in one dimension:

ψα,n =

√
2

L+1
sin
(

απ

L+1
n
)
,

The quantum numbers (nx,ny ) define a wave vector k⃗n =
( nxπ

L+1 ,
nyπ

L+1

)
corresponding

to wave lengths
(

L+1
nx

, L+1
ny

)
. Hence, the first eigenmode (nx = 1,ny = 1) corresponds

to the largest space scale (scale of the whole retina) with the smallest eigenvalue (in

absolute value) s(1,1) = 2
(

cos
(

π

L+1

)
+ cos

(
π

L+1

)
−2
)
. Each of these eigenmodes is

related to a characteristic time τn =
1
λn

.

Eigenvalues κn can be positive or negative. However, from eq. (31) this has no

impact on the eigenvalues as what matters is κ2
n . This induces however a symmetry

κn →−κn that can be seen in the skeleton Figure 4, not forgetting that this figure is in

log scale.
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