
HAL Id: hal-04161872
https://hal.science/hal-04161872v2

Submitted on 23 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fully-coupled parallel solver for the simulation of
two-phase incompressible flows

Simon El Ouafa, Stéphane Vincent, Vincent Le Chenadec, Benoît Trouette

To cite this version:
Simon El Ouafa, Stéphane Vincent, Vincent Le Chenadec, Benoît Trouette. Fully-coupled paral-
lel solver for the simulation of two-phase incompressible flows. Computers and Fluids, 2023, 265,
pp.105995. �10.1016/j.compfluid.2023.105995�. �hal-04161872v2�

https://hal.science/hal-04161872v2
https://hal.archives-ouvertes.fr

Fully-coupled parallel solver for the simulation of two-phase
incompressible flows

Simon El Ouafa∗, Stéphane Vincent, Vincent Le Chenadec, Benoît Trouette
aLaboratoire MSME, CNRS UMR 8208, Université Gustave Eiffel, 5 Boulevard Descartes

Marne-la-Vallée, 77454, France

Abstract

In the framework of the in-house code Fugu, a fully-coupled solver is developed for
massively parallel simulations of three-dimensional incompressible multiphase flows.
The linearized momentum and continuity equations arising from the implicit solu-
tion of the fluid velocities and pressure are solved simultaneously. The method uses a
BiCGStab(2) [1] iterative solver with an original preconditioner for the velocity block
and an approximation of the inverse of the Schur complement. This is achieved by
using PFMG or SMG from HYPRE and an efficient sparse matrix-vector multipli-
cation using the CSR storage format. The construction and the tracking of the
interface separating the different involved phases is based on a conservative VOF
method. Test cases, such as a spherical bubble rising in quiescent liquid and the free
fall of a dense sphere, are performed to validate the models, especially in the presence
of strong density and viscosity ratios between fluids. Other cases, such as the phase
inversion, demonstrate the ability of the new fully-coupled solver to solve two-phase
problems with more than 1 billion degrees of freedom with excellent scalability.

Keywords: Fully coupled solver, linear system preconditioning, two-phase flows,
large density and viscosity ratios, HPC

∗Corresponding author
Email addresses: simon.elouafa@univ-eiffel.fr (Simon El Ouafa),

stephane.vincent@univ-eiffel.fr (Stéphane Vincent),
vincent.le-chenadec@univ-eiffel.fr (Vincent Le Chenadec),
benoit.trouette@univ-eiffel.fr (Benoît Trouette)

1MSME, Univ Gustave Eiffel, CNRS UMR 8208,
Univ Paris Est Creteil,
F-77454 Marne-la-Vallée, France

Preprint submitted to Computers and Fluids

1. Introduction
Multiphase flows with separated phases are ubiquitous in nature and in industrial

applications. Energy [2, 3], environment [4], chemical engineering [5, 6], hydrology,
material processes [7, 8], petroleum engineering [9], vehicle design [10] or civil en-
gineering, are examples of applications where the conditions and two-phase flow
regimes encountered spread wide and far in terms of density and viscosity ratios,
inertial, viscous, gravity or capillary effects. Because of the complexity of the under-
lying physics, the understanding of these flows is of high interest in order to control
or prevent malfunctions such as for boiling in nuclear power plants, overflow in dams
or cavitation in turbo-machinery, to mention just a few.

Experimental investigations, although widely developed in many research works,
sometimes suffers from certain limitations or implementation difficulties. It is even
more difficult to apply to some two-phase problems. Indeed, in addition to the com-
plexity of these flows, i.e. the topology of the interfaces (separated or dispersed
phases), the nature of the interactions (friction, capillary effects, etc ...), the flow
regimes (in terms of Reynolds or Weber numbers, for example) or the presence of
different scales in space and time (from the separated phase to the scale of small in-
terfaces), it is sometimes impossible to simultaneously reproduce the real conditions
at the laboratory scale and to measure quantities of interest such as droplet size
distributions, interfacial area density or turbulence intensity. Consequently, numeri-
cal simulation has become an indispensable tool to better understand and therefore
control the bearing of complex two-phase flows. Over the past few decades, this
approach has become a central tool for investigation, adopted by the fluid mechanics
community to complement experiments.

However, numerical simulation faces several challenges that need to be overcome,
not only in terms of the sensitivity of the numerical results to the choice of model
and mesh, but also in terms of the robustness and accuracy of the solver and solution
algorithms, allowing the simulation of complex two-phase problems with high den-
sity or viscosity ratios without causing numerical oscillations or divergence and with
acceptable time-to-solution. The simulation of these flows at a small scale requires
taking into account the turbulence far from the interfaces and the coupling between
the fluids present at the interfaces on the other hand where the vorticity is generated
as a result of the high shear caused by large density or viscosity ratios. The math-
ematical structure of the Navier-Stokes incompressible equations considered in the

2

present work (algebraic non-linear differential system) make their solution challeng-
ing, especially in the presence of high density and viscosity ratios which deteriorate
the conditioning of the system and whose spatial distributions vary in space and
time. Thus, it is necessary to make numerical solvers and related algorithms run
on massively parallel machines, and to optimise them in order to take advantage of
intensive computing distributed over thousands of processors.

Two aspects are responsible for the fidelity of the solution: the first is related
to the choice of the model and the second to the efficiency of the solver and res-
olution algorithms on HPC architectures. Concerning the former, there exists two
approaches to numerical modeling of two-phase flows. The so-called two-fluid models
describe multiphase mixing at different levels [11, 12]. In their most complete ver-
sion, these models take the form of two Navier-Stokes systems, coupled by additional
source terms that represent the exchanges (mass, momentum and energy) between
the two phases. An important aspect is that both sets of equations hold over the
entirety of the domain, which challenges the model in the void regions (where only
one phase is present). In contrast, the one-fluid approach consists in modelling the
two-phase flow as a single fluid, possessing sharply varying thermodynamic proper-
ties as well as source terms representing the capillary effects [13]. This results in
a single set of Navier-Stokes equations, supplemented by a scalar advection equa-
tion to characterize the interface position. The one-fluid model is devoted to fully
resolved interfaces without any further closure requirements whereas two-fluid mod-
els are generally adapted to two-phase dispersed flows laying on a scale separation
assumption. In the present work, the one-fluid model will be considered.

The latter iss related to the treatment of velocity-pressure coupling which, in
the incompressible limit, has been the subject of numerous documented studies and
is relatively well understood as far as single-phase flows are concerned. On the
contrary, in the context of two-phase flows with high density and viscosity ratios,
numerical difficulties appear, linked to the presence of large interface deformations
and associated material fluid property jumps. They lead to ill-conditioned linear
systems. At the discrete level, the problem takes the form of a saddle point system
which is costly to solve. Upon discretization and linearization, it leads to a system
of the form [

Fu BT
p

Bu 0

](
un+1

pn+1

)
=

(
f
0

)
(1)

where Fu includes the convective and viscous transport operators, BT
p the pressure

gradient operator, Bu the velocity divergence and un+1 and pn+1 denote the velocity
and the pressure variables. There are two approaches to solve this large system of

3

equations: either the use of specialized solvers (e.g. iterative with preconditioning),
in which case the method is referred to as exact, monolithic or coupled method, or
the approximation by a simpler problem whose solution is more affordable (Chorin-
Temam type projection [14] and its variants [15, 16], methods also referred to as
approximate or segregated).

Segregated methods do not solve for all of the unknowns at the same time. In-
stead, they approximate the original system via operator splitting, resulting in two
decoupled equations: one to update the velocity field and the other the pressure
field. Instead, coupled methods solve both fields (velocity and pressure) simultane-
ously, thus preserving the consistency of the discretized system with the continuous
equations. In coupled methods, the original saddle point system is inverted, thus
keeping the velocity-pressure coupling at each time step. This saddle point system
can be solved either directly by a fully-coupled solver [17, 18, 19, 20, 21] or with an
augmented Lagrangian (AL) method [22, 23, 10]. The interest of these methods is
to allow a very accurate and robust resolution, without splitting errors.

The present work develops a coupled method, in particular block preconditioners
dedicated to the resolution of the saddle point systems from the discretization of
the one-fluid model. They rely on recent advances in the field of iterative solvers
and preconditioners, and their implementation with open source parallel libraries
(HYPRE [24], MUMPS [25, 26] and LIS [27]). The objective is to include the mas-
sively parallel computing component in the 3D numerical modeling of a physical
problem in order to reduce the execution time of computationally expensive appli-
cations.

The rest of the manuscript describes the models, the numerical algorithms and
their performances. Different test cases are presented in order to verify the accuracy
and robustness of the proposed fully-coupled solver: a three-dimensional rising bub-
ble, the free fall of a dense sphere and a phase inversion between two incompressible
liquids.

2. Models and numerical methods
All the developments described and validated in the present work are part of the

Fugu code developed by the Heat and Mass Transfer team of MSME laboratory at
Gustave Eiffel University.

4

2.1. Governing equations of two-phase flows

In this work, the dynamics of the two immiscible phases is described by the one-
fluid model (OFM) [28]. The incompressible Navier-Stokes equations are solved for
an equivalent single fluid with variable material properties, with an additional source
term in the momentum equation that introduces the capillary force. An additional
transport equation describes the evolution of the phase function C, an indicator
field transported by the incompressible fluid velocity u. One defines C (t,x) = 1
(C (t,x) = 0) if x belongs to the domain occupied by fluid 1 (fluid 2) at time t.
The OFM is flexible in the sense that it can be solved on a fixed mesh, and can be
used to simulate various geometries or interface conditions. With mixing rules for
the effective density ρ and viscosity µ, the governing equations read

ρ
∂u

∂t
+∇ · (ρu⊗ u) + ¯̄B · (f(u)− u∞) = −∇p+∇ · ¯̄T+ ρg + Fs (2a)

∇ · u = 0 (2b)
∂C

∂t
+ u∇C = 0 (2c)

ρ(C) = ρ1C + (1− C)ρ2 (2d)
µ(C) = µ1C + (1− C)µ2 (2e)

where u = (u, v, w)T is the fluid velocity, p the pressure field, t the time, ρ and µ are
the density and viscosity of the equivalent fluid given by an arithmetic average, with
ρ1, ρ2, µ1 and µ2 the densities and the viscosities of fluids 1 and 2, respectively. In
addition, the viscous stress tensor for a Newtonian fluid is ¯̄T =

[
µ
(
∇u+ (∇u)T

)]
,

whereas Fs = σκnδi is the capillary term acting on the interface, modelled in this
study by the Continuum Surface tension Force model (CSF) [29]. The normal vec-
tor to the interface is n, σ is the coefficient of surface tension, δi is the surface
Dirac function and κ is the local interfacial curvature. Finally, ¯̄B · (f(u)− u∞) is a
Darcy-like penalty term used for specifying domain boundary conditions or immersed
boundaries [30]. For example, along a boundary Γ, the tensor ¯̄B has diagonal compo-
nents that tend to infinity while they are identically zero inside the fluid domain Ω.
The user-specified function f(u) can vary over space and specify problem-dependent
boundary conditions (Dirichlet, Neumann, Robin).

2.2. Discretization of mass and momentum equations

Without loss of generality, a conservative VOF approach from [31] is used to solve
Eq. (2c) beforehand rewritten in its conservative form. As the interface tracking

5

technique is not the main topic of this paper, the focus is on the discretization of
mass and momentum equations and the resulting linear system. The system (2) is
then split. Phase function evolution (Eq. (2c)) is first solved. From the updated
volume fraction field C, mixing rules (Eqs. (2d) and (2e)) are applied in order to
obtain the fluid effective density ρ and viscosity µ. Finally, a sub system made up
of the mass and the momentum conservation equations (Eqs. (2a)-(2b)) remains to
be solved.

2.2.1. Time integration

For unsteady applications, the time step ∆t is an important numerical parameter
for the stability and the quality of the numerical solution. The solution is obtained
over different discrete times, given by tn = n∆t, with n the iteration number. For
sake of simplicity, the time integration is performed in the following with a first
order backward Euler. Note that the use of high order time discretization schemes,
such as the Gear scheme, does not introduce additional difficulty. In such case, the
convective terms are linearized by extrapolating the velocity at time (n+ 1) . With
the first order Euler scheme, the resulting semi-discrete system is written as:

ρ

∆t

(
un+1 − un

)
+∇ ·

(
ρun ⊗ un+1

)
+ ¯̄B ·

(
f(un+1)− u∞

)
= −∇pn+1

+∇ · ¯̄Tn+1 + ρg + Fs

(3a)

∇ · un+1 = 0 (3b)

where ¯̄Tn+1 =
[
µ
(
∇un+1 + (∇un+1)T

)]
.

2.2.2. Spatial discretization

The OFM formulation (Eqs. (2)) is solved on Cartesian uniform staggered meshes,
as originally proposed by [32]. The discrete velocity and pressure variables are then
arranged in a staggered way, each one having its appropriate control volume and
connectivities with other coupled variables as illustrated in Fig 1. Staggered meshes
guarantee the consistency of the differential operators such as the divergence and the
gradient and it also avoids spurious oscillations on the pressure field. Furthermore,
the spatial operators acting in the one-fluid formulation are discretized using a finite
volume approximation [33, 34]. This method consists of integrating conservation
equations on each control volume Ω(i,j,k) (Ωu(i,j,k) for u and Ωp(i,j,k) for p) that are
delimited by the surface Σ(i,j,k) (Σu(i,j,k) for u and Σp(i,j,k) for p). Here, i, j and k are
control volume indices in x-, y- and z-directions, respectively. Using the divergence

6

x

y

z

15
16

0

1
2

3

4

5

6
7

8

9
10

11
12

13
14

x

y

z

01
2

3

4
5

6

Figure 1: Staggered u-velocity (left) and pressure (right) unknowns and their respective local
indices. Velocity control volume is centered on u-velocity (▽ symbols). Local index 0 stands for
global indices i, j and k. Directional full (±1) or half shifts (±1/2) allow to reach neighbours
used in the 3 points discretization stencil. The horizontal velocity is linked through divergence and
diffusive terms to v- and w- components (□ and D) and also to the pressure (◦). Similar notations
and connectivities are adopted for the treatment of v- and w-components. All the three velocity
components then involve 17 coupled variables at the discrete level.

and gradient theorems, the spatial integration of sub-system (3) leads to{[
M (ρ)

u +N (ρ)
u + L(µ)

u

]
un+1 +BT

p p
n+1 = f (4a)

Buu
n+1 = 0 (4b)

7

where 

Buu
n+1 =

∫
Σp(i,j,k)

un+1 · n dS (5a)

M (ρ)
u un+1 =

∫
Ωu(i,j,k)

[
ρun+1

∆t
+ ¯̄B · f(un+1)

]
dV (5b)

N (ρ)
u un+1 =

∫
Σu(i,j,k)

(ρun+1 ⊗ un) · n dS (5c)

L(µ)
u un+1 = −

∫
Σu(i,j,k)

¯̄Tn+1 · n dS (5d)

BT
p p

n+1 =

∫
Σu(i,j,k)

pn+1n dS (5e)

f =

∫
Ωu(i,j,k)

[ρ

∆t
un + ¯̄B · u∞ + ρg + Fs

]
dV (5f)

with n the outward pointing normal with respect to the control volume Σi,j,k. To
characterize the fluxes across the surfaces Σu(i,j,k) or Σp(i,j,k) of the control volume
Ωu(i,j,k) or Ωp(i,j,k), the mesh spacings ∆x, ∆y and ∆z are defined, respectively in the
x-, y- and z-directions. For the sake of simplicity, only constant mesh spacing are
presented here. Moreover, the integrals are explicitly written for the velocity compo-
nent u in the x-direction (the extension to the other components is carried out in the
same way) and for each control volume. Details are given in appendix Appendix A
with particular focus on the treatment of the viscous stress tensor. The penalty
terms used for handling boundary conditions are discussed in appendix Appendix B.

2.2.3. Solution of the linear system

Finite volumes and penalty methods on a staggered mesh, together with an im-
plicit temporal discretization of Eqs. (2a) and (2b), result in large and non-symmetric
linear saddle point systems. The unknowns of the problem, the discrete velocity u
and pressure p fields, are coupled by the incompressibility constraint ∇ · u = 0.
As presented in the introduction, this saddle point system can be reformulated as
follows: [

Fu BT
p

Bu 0

](
un+1

pn+1

)
=

(
f
0

)
(6)

with Fu = M
(ρ)
u + N

(ρ)
u + L

(µ)
u . The reduced system can be rewritten as Ax = b

with A the matrix associated with the discretization coefficients in time and space,

8

b the right-hand side associated with each component of the solution vector and
x = (un+1, pn+1)T the updated flow variables.

In order to compute x, it is necessary to choose a method for solving this linear
system Eq. (6). Many techniques exist to do so, such as direct methods that include
Gaussian elimination, factorisation techniques (LU, QR, Cholesky, . . .) and multi-
frontal methods. These techniques are very robust with respect to various problems
but typically do not scale well with problem size and becomes prohibitively expensive
for three-dimensional configurations. Alternative approaches are iterative methods,
such as fixed-point (Jacobi, Gauss-Seidel, relaxation, . . .), Krylov or multigrid meth-
ods. They are however usually effective for specific kind of matrices (symmetric,
dense or sparse matrices for example). It is therefore necessary to estimate the
structure of the linear system. According to the discretization schemes proposed
in the previous paragraph, with the evaluations of fluxes on faces of each control
volumes, each equation of the linear system couples only a few components of the so-
lution. With the choice of 3 point wide stencil per direction, if u-component equation
is for example considered, 7 degrees of freedom are coupled by the diffusive or inertial
terms, 8 more are used for the coupling between u and v as well as between u and w
and 2 more are needed for the pressure gradient (see Fig. 1). On the whole, 17 degree
of freedom are coupled for each control volume. In addition, 6 additional degree of
freedom are used for the velocity divergence. The same reads for equations v- and w-
velocity components. With the example of a mesh composed of Nx×Ny×Nz control
volumes, and N = Nx = Nz = Nz, the solution vector has 4N3+3N2 unknowns, the
additional 3N2 coming from the choice of staggered meshes. The matrix A will be a
square sparse matrix of (4N3 + 3N2)2 coefficients. Thus, only 17 non-zero diagonals
(see Fig. 2) acting on each velocity component and 6 non-zero diagonals coming from
the discretization of the velocity divergence will be involved in the matrix. In order
to save memory space, only the non-zero coefficients arising from the discretization
of the incompressible Navier-Stokes equations (Eqs. (2a)-(2b)) are stored using the
Compressed Storage Raw (CSR) format.

It is thus clear that the matrix generated by the discretization of the Navier-
Stokes equations will be very sparse. There is therefore no interest in using direct
methods. A survey of the litterature reveals that only two recent studies were doc-
umented to have tackled two-phase problems with large density and viscosity ratios
by a fully-coupled approach. In the first one, Bootland et al [17] discretize the con-
servation equations with 2D finite elements using an implicit scheme for the inertial
term and apply the sparse direct solver SuperLU [35] to the velocity block. However,
an approximation of the inverse of the pressure Schur complement matrix is per-
formed using the PCD operator technique (Pressure Convection Diffusion) [17]. In

9

Fuu

Fvv

Fww

Fuv Fuw

Fvu Fvw

Fwu Fwv

Bu Bv Bw

Bu

Bv

Bw

0

(Nx + 1)×Ny ×Nz

Nx × (Ny + 1)×Nz

Nx ×Ny × (Nz + 1)

Nx ×Ny ×Nz

Figure 2: Structure of the fully-coupled matrix, 7 diagonal form the 3 directional points stencil (in
red for u-, green for v- and blue for w-component, respectively). Black lines for velocity coupling,
magenta for pressure gradient and cyan for divergence.

the second study, Nangia et al [18] use 3D finite volumes with an explicit scheme for
the inertial term and a flexible GMRES Krylov solver preconditioned by a variable-
coefficient projection method solver. Our proposed strategy to solve the sparse linear
system resulting from the discretization of the motion equations is to employ a Krylov
solver, here the BiCGStab(2) [1] solver, on the entire system. This involves building
an efficient preconditioner P ≈ A to stabilize and accelerate the iterative solver con-
vergence. Indeed, for difficult problems corresponding to ill-conditioned matrices, it
is essential to combine the BiCGStab(2) algorithm with a suitable preconditioner to
avoid possible numerical instabilities and to speed-up convergence. Then, instead
of solving Ax = b, the left-preconditioned system P−1Ax = P−1b is preferred, for
which cond(P−1A) < cond(A) is expected. Therefore, in the BiCGStab(2) algo-
rithm, every matrix-vector product z = Ax is followed by the computation of P−1z.
The same transformation must be applied to the right-hand side b ← P−1b. The
pseudo code given in Alg. 3 in appendix Appendix C describes the overall algorithm
to solve the system up to a chosen threshold ε starting from an initial guess x(0).
The following section focuses on the construction of the preconditioner P .

2.3. Block preconditioning techniques

To build the preconditioning matrix P required in subsection 2.2.3, a large va-
riety of preconditioners exist. Among them, ILU type preconditioning, also called
incomplete Gauss factorisation, allows to reach low residuals when several millions
of unknowns are involved. However, these preconditioners are not easily scalable as
they induce a global dependence on the unknowns, and therefore require numerous

10

and repeated exchanges in the domain decomposition framework. It is possible to use
ILU techniques and their derived versions in a block implementation, i.e. the precon-
ditioning is performed in a decomposed fashion where the linear operators, decom-
posed along rows, neglect the contributions from the out-of-core degrees-of-freedoms.
Nevertheless, in most of the representative cases, the classical preconditioners of the
literature such as ILU fail to provide an efficient solution of the fully-coupled Navier-
Stokes equations. This was highlighted in a number of documented studies [36], in
the context of the augmented Lagrangian method for example with applications to
both unsteady laminar and turbulent two-phase flows, but it was limited to 3D cases
around 100 million cells. The strategy implemented in this work is to build the pre-
conditioner of the problem by taking a LU block decomposition of the original matrix
A and to introduce a second spatial discretization of the momentum equation in the
discrete pressure space. Applied on the linear system (6), the LU block factorization
reads [

Fu BT
p

Bu 0

]
=

[
Iu 0

BuF
−1
u Ip

] [
Fu BT

p

0 Sp

]
(7)

where Sp = −BuF
−1
u BT

p is the Schur complement of the pressure block. Thus, if
the upper-triangular block U is considered as preconditioner, the preconditioning
operator P directly reads:

P =

[
Fu BT

p

0 Sp

]
(8)

According to this choice, the iterative solver would need exactly two iterations to
compute the solution [37]. However, it is not feasible to use the exact Schur com-
plement Sp and the velocity block Fu as a part of the preconditioning operator, as
they require the knowledge of their inverses, respectively S−1

p and F−1
u , two dense

matrices that are time-dependent and are indeed more expensive than solving the
saddle point (6) by direct methods. Due to this difficulty, an approximation of the
action of the inverse of the velocity block Fu and the Schur complement Sp on any
vector has to be considered. The way to achieve this is described in the next sections.

2.3.1. The velocity block

It is important to note here that an appropriate resolution of the Navier-Stokes
equations entails the use of an efficient preconditioning for the velocity blocks. This
is especially true when an augmented Lagrangian or a fully-coupled solver is used.
These velocity blocks are sparse, large and ill-conditioned in the presence of large
viscosity ratios. They therefore require resolution by an efficient and robust precon-
ditioning, which must address the challenge raised by the coupling between velocity

11

components due to the large viscosity ratios typically encountered in multiphase
flows applications. In this context, this section describes some techniques for the
preconditioning of the coupling between velocity components, essentially based on
an approximate algebraic preconditioner for the Schur complement.

Let us consider the sparse and non-symmetric matrix Fu, arising from the dis-
cretization of the linearized momentum equations (Eqs. (5)). This matrix can be
split into a 3× 3 block matrix, rewritten in the following compact form

Fu =

[
Auv Auvw

Awuv Fww

]
(9)

with
Auv =

[
Fuu Fuv

Fvu Fvv

]
, Auvw =

[
Fuw

Fvw

]
and Awvu =

[
Fwu Fwv

]
(10)

The preconditioning studied in our case takes advantage of the block LU decompo-
sition of Eq. (9), by carefully considering the specific block upper triangular precon-
ditioner given by:

F̃u =

[
Auv Auvw

0 Fww − AwvuA
−1
uvAuvw

]
(11)

where AwvuA
−1
uvAuvw is the exact Schur complement of Fu, which can be rewritten as

below by introducing a new matrix G:

Fww − AwvuA
−1
uvAuvw = Fww

(
I − F−1

wwAwvuA
−1
uvAuvw

)
= Fww (I −G)

(12)

As a result, the direct action of the inverse of F̃u on a standard vector zu =
(zu, zv, zw)

T should be achieved by a backward elementary substitution. This can be
achieved by solving two linear systems and performing a single matrix-vector prod-
uct. In the corresponding algorithm 1, approximations of the inverses of Fww (I −G)
and Auv are required.

Algorithm 1 Block triangular preconditioner for the velocity block. Approximation
of the inverse of the velocity block F̃u on a vector zu = (zu, zv, zw)

T , the solution
vector is ru = (ru, rv, rw)

T , with ru =bu, qu, vu, su, wu and t are a sequence of
vectors generated at each BiCGStab(2) (for further details, the reader is referred to
algorithm 3 in appendix Appendix C).
1: Fww (I −G) rw = zw ▷ Solve
2: Update ruv ←− ruv − Auvwzw with ruv = (ru, rv)

T ▷ Update
3: Auvruv = zuv with zuv = (zu, zv)

T ▷ Solve

12

In terms of application of the inverse of the block Fww(I − G) to the vector
z, it is assumed that the matrices (I − G) and Fww are invertible, and that the
inverse (I −G)−1 can be developed as an infinite series of expansions of the different
terms that are present in the operator (I −G). Using the following Neumann series
expansion [38] and the definition of G (Eq. (12)), it follows that

(I −G)−1 =
∞∑
k=0

Gk

=
∞∑
k=0

(
F−1
wwAwvuA

−1
uvAuvw

)k (13)

Thus, the inverse of the block Fww(I −G) reads:

[Fww(I −G)]−1 =

[
∞∑
k=0

(F−1
wwAwvuA

−1
uvAuvw)

k

]
F−1
ww. (14)

When a single term (order 0) of the infinite series is retained, F̃u from Eq. (11)
becomes the block Gauss-Seidel preconditioner. In the case where Auvw = 0 is
assumed , F̃u is a block Jacobi preconditioner.

In the problem at hand, the matrix from Eq. (14) is obtained by truncating the
expansion at order 0, which leads the following:

[Fww(I −G)]−1 ≃ F−1
ww (15)

When two terms are retained (order 1), a block triangular preconditioner is built:

[Fww(I −G)]−1 ≃
(
I + F−1

wwAwvuA
−1
uvAuvw

)
F−1
ww (16)

Regardless of the truncation order, the inverse of the block Auv is not known
explicitly in Eq. (11). As a consequence, an approximation of this block has to be
found. This is done using the same reasoning as above from Eq. (11) but considering
the Auv block defined in Eq. (10) instead of Fu. To order 0, this reads

Ã(0)
uv =

[
Fuu Fuv

0 Fvv

]
(17)

and to order 1

Ã(1)
uv =

[
Fuu Fuv

0 Fvv − FvuF
−1
uu Fuv

]
(18)

13

Eventually, the form of our velocity preconditioner at orders 0 and 1 are:

F̃ (0)
u ≈

Fuu Fuv Fuw

0 Fvv Fvw

0 0 Fww

 , F̃ (1)
u ≈

Fuu Fuv Fuw

0 Fvv − FvuF
−1
uu Fuv Fvw

0 0 Fww − AwvuA
−1
uvAuvw


(19)

The Gauss-Seidel block was found to perform slightly better than the Jacobi
block and triangular block preconditioners when compared in 2D simulations of a
rising bubble at different CFL numbers. It was therefore preferred. Finally, no
improvement in time-to-solution were obtained when increasing the order of the
approximation.

2.3.2. The Schur complement

In the literature, a number of preconditioning techniques for the Schur com-
plements Sp have been proposed. In the context of Stokes flow, [39] proposed an
approach for homogeneous flows. Later a more sophisticated preconditioner for
heterogeneous flows was developed by [40]. In the context of the incompressible
Navier-Stokes equations with constant coefficients, numerous issues werer met in the
construction a good approximation of the Schur complement Sp. [41] suggested a
new technique referred to as LSC (Least Squares Commutator). More recently, [42]
have studied a preconditioner coined PCD (Pressure Convection Diffusion). A few
studies have also been dedicated to two-phase flows at large density and viscosity
ratios. The projection preconditioner, which has been developed by [43] for variable
coefficient problems, and adapted by [18], is one example. In addition, [17] have
proposed extensions of the PCD and LSC techniques to two-phase flows. To improve
performances, the PCD preconditioning with suitable scalability are retained in this
work. This preconditioner is given by S−1

p = ŜPCD with

Ŝ−1
PCD = (M (1/µ)

p)−1 + (A(1/ρ)
p)−1(N (1)

p +∆t−1M (1)
p)(M (1)

p)−1 (20)

with the following operators defined for the pressure space discretization

A(1/ρ)
p ϕ =

∫
Ωp(i,j,k)

∇ ·
(
ρ−1∇ϕ

)
dV (21a)

M (1/µ)
p ϕ =

∫
Ωp(i,j,k)

1

µ
dV (21b)

N (1)
p ϕ =

∫
Ωp(i,j,k)

∇ · (uϕ) dV (21c)

(21d)

14

where M (1/µ)
p is the diagonal pressure mass matrix scaled by the inverse of the viscos-

ity 1/µ, M (1)
p is the diagonal standard pressure mass matrix, N (1)

p represents the con-
vective term in the pressure space, and A

(1/ρ)
p is the scaled Laplacian that corresponds

to the discretization of the term ∇· (ρ−1∇ϕ). In order to approximate the inverse of
the Schur complement Ŝ−1

PCD, the multigrid solver of HYPRE library [24] is used, for
which the action of A(1/ρ)

p is required. This solver was indeed designed specifically for
elliptic equations with variable coefficients. The two diagonal mass matrices are then
inverted, namely (M

(1/µ)
p)−1 and (M

(1)
p)−1, by applying a rescaling to suitable vectors

followed by a matrix-vector product for the operator F
(1)
p = N

(1)
p +∆t−1M

(1)
p . Fur-

thermore, the pressure convection-diffusion preconditioner requires the construction
of a Laplacian A

(1/ρ)
p and a convection-diffusion operator N

(1)
p +∆t−1M

(1)
p , together

with appropriate choices of boundary conditions (the reader is referred to [44] for
more information). In relation to the velocity block, it requires the resolution of
three linear systems, involving velocity blocks Fww, Fvv and Fuu, which are all per-
formed using the aforementioned multigrid solver. These resolutions are completed
by two matrix-vector products and two updates of the right-hand side. The overall
algorithm is summarized in the algorithm 2 presented in appendix Appendix C.

15

Algorithm 2 Representation of the application of the block triangular precondi-
tioner. M

(1/µ)
p is the diagonal pressure mass matrix scaled by the inverse of the

viscosity 1/µ, M (1)
p is the diagonal standard pressure mass matrix, N (1)

p represents
the standard convective matrix in the pressure space, A

(1/ρ)
p is the scaled Lapla-

cian, which corresponds to the discretization of the term ∇ · (ρ−1∇ϕ), and Fp is the
convection-diffusion-reaction operator for the momentum equation.

1: SOLVE


Fuu Fuv Fuw BT

pu

0 Fvv Fvw BT
pv

0 0 Fww BT
pw

0 0 0 ŜPCD



ru
rv
rw
rp

 =


zu
zv
zw
zp


2: Approximate the inverse of Schur ŜPCD

3: rp1 = (M
(1)
p)−1zp

4: rp2 = (M
(1/µ)
p)−1zp ▷ Solve

5: rp3 = F
(1)
P rp2 ▷ Matrix-vector product for the operator F

(1)
P

6: A
(1/ρ)
P rp4 = rp3 ▷ Solve Laplace operator

7: rp = rp4+rp1 ▷ Update rp
8: zu = zu −BT

purp ▷ Update zu
9: zv = zv −BT

pvrp ▷ Update zv
10: zw = zw −BT

pwrp ▷ Update zw

11: Approximate the velocity block F̂u

12: rw = F−1
wwzw ▷ Solve

13: r̂uv = Fuwrw + Fvwrw ▷ Matrix-vector product for the operator Fuw and Fvw

14: zuv=zuv−r̂uv ▷ Update
15: rv=F−1

vv zv ▷ Solve
16: r̂u = Fuvrv ▷ Matrix-vector product for the operator Fuv

17: zu = zu − r̂u ▷ Update
18: ru=F−1

uu zu ▷ Solve

3. Fully coupled solver parallelization
The numerical simulation of an unsteady two-phase flow, possibly in turbulent

regime, requires very important resources in terms of mesh size, computational time
and memory storage. The decomposition domain based parallelization of the different
steps, resulting from the equations discretization, is essential to achieve calculations
on grids with more than a billion points. Indeed, parallelization has multiple objec-
tives. On the one hand, to obtain reasonable computational times, ideally inversely

16

proportional to the computational resources. And on the other hand, to be able to
deal with large meshes corresponding to realistic simulations in terms of dimension-
less numbers and of resolution of small-scale phenomena.

Numerical tests have revealed that about 90% of the total CPU time is dedi-
cated to the linear solver for serial applications. Therefore, the focus for optimiza-
tion concerns the parallel algorithmic processing of this specific part of the code,
by leveraging the combined use of iterative solver BiCGStab(2), block and multigrid
preconditioners. The solver requires a large number of matrix-vector multiplications,
dot products, linear combinations and several applications of the multigrid precon-
ditioners. These operations are the most important in terms of execution times. A
domain decomposition approach is used to share the spatial data across processes,
using a Cartesian decomposition of the global mesh, with MPI exchanges across sub-
domain boundaries. This parallelization is adapted to massively parallel computers
with distributed memory.

3.1. Parallel operations

In the BiCGStab(2) algorithm (see. Algorithm 3), for each iteration, are per-
formed:

• 4 matrix-vector multiplications

The strategy used involves partitioning the rows of the matrix, as well as the
vectors between the processors. Each processor Pi performs locally the product
of a block Ai and a vector Xi. The resulting vector (A×X)i has the dimen-
sion of the number of rows of the matrix Ai. Therefore, no communication
is needed in the local computation of the matrix-vector product, instead, this
distribution implements short communication messages before the beginning
of each calculation.

• 9 dot products.

The 9 dot products of this algorithm represent global values using distributed
components of local vectors. Thus, each processor calculates a partial dot
product of two corresponding local vectors by multiplying these two vectors and
summing the components of the partial result. Then each processor sends its
partial result to all the others and receives the products of the other processors
that it sums to its own result. Therefore, a global communication is necessary
in this scalar product.

• 10 linear combinations.

17

Each processor contains a part of each global vector included in the operation
Xi ← Xi+αYi, called local vector. The result vector of the linear combination
obtained is also a local vector. Therefore, no communication is necessary in
this operation.

• 16 multigrid preconditioner applications, corresponding to 4 multigrid per com-
ponent (u, v, w and p).

To apply the preconditioner P which is involved in the BiCGStab(2) algorithm,
20 matrix subsystems per iteration are needed to be solved. This is satisfied
by using the HYPRE parallel computation library, which offers a large choice
of interfaces (structured, semi-structured or algebraic) and multigrid precondi-
tioners (algebraic as BoomerAMG and geometric like PFMG or SMG). In order
to take advantage of the higher efficiency of PFMG, this solution strategy has
been implemented in the code as it reveals to be the most efficient multigrid
solver for our multiphase problems and fully-coupled approach.

3.2. Performance evaluation

The classical approach to qualifying a solver in the high-performance computing
domain is to check its scalability. It allows to evaluate the performance of a parallel
solver when the number of cores is increased. Two metrics, the speed-up S and the
efficiency E are defined and two kinds of scalability achieved within two different
contexts are distinguished:

• Strong scalability: for a fixed problem size, the number of processes is increased.
Ideally, one hopes for linear scalability. In the case of an application that
performs a large number of computations, the aim is to find the point at which a
reasonable computational time is achieved but still limits the overhead induced
by a parallel process.

The speed-up S(p) is defined as the gain of a parallel computation with p
processes compared to the same algorithm over a number of reference processes
pref .

S(p) =
tref
tp

pref (22)

where tref is the time cost for pref processes (note that tref not necessary equals
to tseq as the reference might not be the sequential case), and tp the amount of
time to complete the same unit of work with p processes.

18

• Weak scalability: both number of processes and problem size are increased
proportionately, such that the quantity of data to be processed per process
holds constant. In the case of ideal weak scalability, a constant execution time
of the program should be achieved. This corresponds to a constant efficiency
which is therefore independent of the number of processes.

In this case the speed-up is defined by

S(p) =
tref
tp

p (23)

For both cases, the efficiency provides an assessment of the ”performance” of the
parallel computation. In theory it is less than 1, but for superscalar algorithms the
efficiency can exceed this conventional value. The following expression is used to
define the efficiency:

E(p) =
S(p)

p
(24)

In this section, the parallel performance of the in-house code Fugu and specifically
the new fully-coupled solver are evaluated. For this purpose, we will consider the
strong and weak scalability of the solver as defined above, by checking the evolution
of two criteria: the speed-up and the efficiency.

The weak and strong scalability tests are performed on the simulation of the
liquid-liquid phase inversion [45, 46], on two French supercomputers: SKL Irene,
from CEA’s Very Large Computing Centre (TGCC) in Bruyères-le-Châtel and for
the Jean Zay: HPE SGI 8600 computer from the Institute for Development and
Resources in Intensive Scientific Computing (IDRISS-CNRS). The number of pro-
cessors is increased until 12800.

19

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

S
(p

)

p

ideal
SKL Irene
Jean Zay

(a) S(p)

 0.8

 0.9

 1

 1.1

 1.2

 10 100 1000 10000 100000

E
(p

)

p

ideal
SKL Irene
Jean Zay

(b) E(p)

Figure 3: Strong (filled symbols) scalability on a 138 million scalar cells mesh and weak scalability
(empty ones) on meshes corresponding to 603 × p (from 5 millions up to 1.1 billion scalar cells).

Figure 3 presents the speed-up and efficiency for strong and weak approaches.
The previous definitions (Eqs. (22)-(24)) allow a direct comparison of metrics. Both
scalability analysis have been performed over 30 time iterations of the phase inver-
sion problem tackled in Sec. 4.1 at fixed residual ε = 10−4 of the iterative solver.
Performances have been evaluated using complete computing nodes, i.e. the number
of cores/processors is a multiple of 24 (40) for the SKL Irene (Jean Zay) supercalcu-
lator.

First, a good scalability S associated with the fully-coupled solver is obtained
(Fig. 3a) with a speed-up close to the ideal one. No significant differences are visible
between the two supercomputers.

Thereafter, it can be seen that the code is able to exploit the available computing
resources on these supercomputers. The parallel efficiency E is 96% for a calculation
on 6400 cores with 273 cells/core on Jean Zay and 89% for a calculation on 8064 cores
with 253 cells/core on Irene. In the worst case, the weak scalability study (Fig. 3b)
shows that the parallel efficiency obtained with 603 cells/core loading does not de-
teriorate that much when increasing the problem size. Indeed, the computational
overhead is less than 20% up to a 5120 cores on Jean Zay and 3072 cores on SKL
Irene.

4. Applications to physical cases
This part is addressed to the validation of the fully-coupled solver, and more

specifically the numerical methodologies developed, specifically on two-phase flow
test cases. Single phase validations on standard flow problems of the literature have

20

previously been considered in [20] for the 2D fully coupled method. The contribution
of the fully-coupled method when tackling complex problems with high density and
viscosity ratio will also be studied.

4.1. Phase inversion between two incompressible liquids

A two-phase flow, water-oil for instance, where one phase is dispersed in another,
can correspond to a phase inversion, i.e., the dispersed phase becoming the contin-
uous phase. This unsteady phenomenon is then accompanied by several small and
large scale interfacial processes, such as deformation, ligament formation, interface
breakdown and coalescence [45].

In this work, a three-dimensional phase inversion case recently studied by [46],
is investigated. In the following, the geometry and the physical parameters of the
problem are briefly presented before a discussion about the numerical results as
well as their comparisons with the reference [46]. An initial cubic blob of light
liquid, referred to as fluid 1, is placed at a bottom corner of a cubic box filled
with a heavier liquid, called fluid 2. The size of the box is (H,H,H), while the
size of the blob of light fluid is (H/2, H/2, H/2). All box walls are considered as
slip walls, so that the normal components as well as normal derivatives of tangential
components are zero. Gravitational acceleration g is applied in the vertical direction.
The dimensionless numbers governing the dynamics of this problem are therefore the
Reynolds number Re = ρ1HUg/µ1 and the Weber number We = ρ1HUg

2/σ. The
velocity scale used in previous studies [45] is Ug =

√
gH/2(ρ2 − ρ1)/ρ1. The liquids

properties are ρ1 = 1000 kg/m3, ρ2 = 900 kg/m3, µ1 = µ2 = 1 Pa·s, g = −9.81 m/s2
and σ = 0.45 kg/s2. The height H = 1 m, leads to Re = 211 and We = 121.

The macroscopic quantities of interest are defined and widely discussed in [45]. In
this paper, the focus is on the enstrophy time evolution. Concerning the numerical
parameters, the simulations are carried out on four grid ranging from 1283 to 10243

cells. The residual of the iterative BiCGStab(2) solver is initially fixed to ε = 10−5.
As far as the time derivatives, a constant time step ∆t = 10−3 s is chosen, and a time
corresponding to 10s of the flow motion is crossed. For the smaller mesh 10243, it
should be noted that the simulations were performed on 6696 processors of the HPC
Occigen cluster of CINES and have taken about 125h of computing time.

Before discussions about the numerical properties of the simulations, it should be
noted that all quantities of interest (kinetic and potential energy, enstrophy, volume
of light fluid in the top of the cavity) defined in [45] well converge, for all times,
through the references solution from a mesh size of 2563 (see Appendix D).

Figure 4 presents the time evolution of the enstrophy integrated for both fluids

21

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9

e
n

s
tr

o
p

h
y
 (

m
3
/s

)

time (s)

fluid-1 ref.
fluid-2 ref.

 4

 5

 6

 3.5 4 4.5 5

(a)

 5.75

 5.8125

 5.875

 5.9375

 6

 6.0625

 3 3.1 3.2 3.3 3.4 3.5

e
n

s
tr

o
p

h
y
 (

m
3
/s

)

time (s)

fluid-1 ref.
∆t = 1.10

-3
, CPU=10.09h

∆t = 2.10
-3

, CPU=7.28h
∆t = 4.10

-3
, CPU=4.25h

(b)

 5.75

 5.8125

 5.875

 5.9375

 6

 6.0625

 3 3.1 3.2 3.3 3.4 3.5

e
n

s
tr

o
p

h
y
 (

m
3
/s

)

time (s)

fluid-1 ref.
ε = 1.10

-3
, CPU=10.09h

ε = 1.10
-2

, CPU=6.80h
ε = 5.10

-2
, CPU=4.60h

(c)

Figure 4: 4a Enstrophy in fluid 1 and 2. 4b Enstrophy in fluid 1 for various time steps. 4c Enstrophy
in fluid 1 for various residuals.

over the whole domain. Results are compared with those of [46].
Figure 4b shows effect of the time step on the enstrophy solution near the first

peak. With a fixed residual, ε = 10−3, and a reference time step ∆t = 10−3 s, the
computational cost is reduced by almost 30% with a time step ∆t/2 and about 60%
with ∆t/4. On this range of time steps, the obtained peak intensity varies less than
1%.

A similar study is presented in Fig. 4c for the residual values. The time step
is fixed, ∆t = 10−3 s. The initial residual is ε0 = 10−3. With a 10 times larger
value of residual, ε = 10ε0, the computational cost is reduced by 30% and by 50%
with a residual threshold ε = 50ε0. On the plotted interval, the difference between
simulations are about 2 while a robust 1% difference is again observed from the
reference solution [46].

4.2. 3D rising bubble

This first case is based on a numerical benchmark [47] investigating rising bubbles
in a liquid column. The studied cases allow to evaluate the robustness of the complete
algorithm when the interface is in motion and undergoes relatively large deforma-
tions. The authors [47] compare different solutions of two configurations, achieved
using numerical codes developed by different teams. Three groups participated in
these two test cases: group 1 (IGPM, RWTH Aachen) with the DROPS code Finite
element/Level-set, group 2 (INS, University of Bonn) with the code NaSt3D finite
difference/Level set, and group 3 with the code OpenFOAM finite volume/VOF. A
qualitative analysis of the characteristic parameters of the rising bubble, such as the
time evolution of the centre of mass or the rising velocity of the bubble, allowed the
authors to establish reference solutions for chosen parameters. Here are compared

22

the simulation results with the reference solutions from [47]2.
A brief description of the problem set-up and characteristics is presented. Ini-

tially, a bubble of radius R0 = 0.25 m and centre (0.5 m, 0.5 m, 0.5 m) is set up
inside a rectangular tank of dimensions [0, 1]× [0, 1]× [0.2] m3. Under the effect of
buoyancy force, the bubble rises in the z-direction. The bubble density, ρ2, is lower
than that of the surrounding liquid (ρ1). No slip boundary conditions at the walls
is assumed, i.e., u = 0 on all boundaries. The dimensionless numbers of this flow
are the Reynolds number Re = ρ1UgD/µ1, and the Eötvös number Eo = ρ1Ug

2D/σ
yielding the ratio between gravitational forces and surface tension effects. The terms
ρ1 and µ1 are the density and viscosity of the carrier fluid, D the bubble diame-
ter, Ug =

√
gD the gravitational velocity and σ the surface tension coefficient. In

both tackled configurations, the evolution of the bubble is studied over 3s. Table 1
gives the physical properties and dimensionless parameters associated with the two
configurations.

Case ρ1 (kg/m3) ρ1/ρ2 µ1 (Pa·s) µ1/µ2 g (m/s2) σ (N/m2) Re Eo
1 1000 10 10 10 0.981 24.5 35 10
2 1000 1000 10 100 0.981 1.96 35 125

Table 1: Physical parameters describing the test cases. Here, ρ2 and µ2 refers to the fluid density
and viscosity respectively inside the bubble whereas ρ1 and µ1 are related to the density and
viscosity of the surrounding fluid. Also, g is the magnitude of the gravity acceleration and σ is the
surface tension coefficient.

For the qualitative analysis of the results, the following characteristics are studied:
the barycenter xc of the bubble and the rise velocity uc. Note that these quantity
definitions can be found in [47]. to validate our solver, we have defined a reference
solution on a fine mesh according to literature reference [47].

For both test cases, the simulations were carried out on three grids with a mesh
size h = 1/32, 1/64 and 1/128 and time step size ∆t = 10−3 s. Our reference solution
is defined as the one achieved on the finest grid 128× 128× 256, i.e. h = 1/128 with
the fully-coupled solver. It will be further compared with those of the three groups
from the benchmark. It should be noted that the reference solution of the first group
(with DROPS code) is provided on a regular initial grid containing 4 × 8 × 4 cells,
each being subdivided into 6 tetrahedra. This grid is then dynamically refined near
the interface, leading to a mesh size of h = 1/32 within the refinement zone. The

2The references data of all quantities of interest are available on the website: http://wissrech.
ins.uni-bonn.de/research/projects/risingbubblebenchmark.

23

http://wissrech.ins.uni-bonn.de/research/projects/risingbubblebenchmark
http://wissrech.ins.uni-bonn.de/research/projects/risingbubblebenchmark

time step size ∆t = 2.5 × 10−4 s. The results of the second group (NaSt3DGPF)
is achieved with 121 × 121 × 241 grid cells and time step size ∆t = 10−4 s. Lastly,
group 3 (OpenFOAM) has constructed a reference solution on a regular grid with
128× 128× 256 cells and a time step ∆t = 10−4 s.

Test case 1

The simulations of the rising bubble obtained at instant t = 2 s and t = 3 s
are shown in Fig. 5. It can be observed that the overall shape of the bubble is
similar with the fully-coupled approach to that of others groups. Indeed, as for
the references, the bubble reaches a stable ellipsoidal shape by extending itself in
directions perpendicular to the flow. Time evolution of the rising velocity are shown

(a) DROPS (b) NaSt3D (c) OpenFOAM (d) present work

Figure 5: Bubble rise for test case 1. The iso value C = 0.5 of colour function is plotted at times
t = 3 s (first row) and t = 2 s (second row) from different codes. Snapshots a, b and c are extracted
from [47].

in figure 6a

24

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.5 1 1.5 2 2.5 3

ri
s
e
 w

-v
e
lo

c
it
y
 (

m
/s

)

time (s)

NaSt3D
DROPS

OpenFOAM
h = 1/32
h = 1/64

h = 1/128
 0.3375

 0.35

 0.3625

 0.75 1 1.25

(a) rise velocity

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0 0.5 1 1.5 2 2.5 3

z
-c

e
n

te
r

o
f

m
a

s
s
 (

m
)

time (s)

NaSt3D
DROPS

OpenFOAM
h = 1/32
h = 1/64

h = 1/128

 0.9

 1

 1.1

 1.4 1.5 1.6 1.7 1.8

(b) center of mass position

Figure 6: Test case 1. a Rise velocity w-component as un function of time. b Center of mass
position. Plain lines stand for the present work while symbols refer to benchmark results [47] from
different codes.

for different grid refinements. Also, the state of the simulation between 0.75 s and
1.25 s is visualized in a zoomed extracted in Fig. 6a. It can be concluded that a very
nice convergence of the solutions is obtained for the fully-coupled solver from grid
h = 1/32. Furthermore, the solutions provide results in good agreement with those
of the DROPS and NaSt3D codes. Furthermore, in the final part of the simulation,
significant differences are noted between the fully-coupled solver and the OpenFOAM
code. With respect to the evolution of the position of the centre of mass, we can
clearly see in Figs. 6b that the solutions converge from the grid h = 1/32, they are
in accordance with the references. It has to be noticed that with the fully coupled
solver, solutions equivalent to other teams have been obtained by using larger time
steps, which is a nice feature of the fully coupled approach.

Test case 2

This test was also carried out on grids with a mesh size h = 1/32, 1/64 and
1/128 and time step size ∆t = 10−3 s. As for the reference solutions, the same
numerical parameters are used as in the previous case. According to the diagram
of [48], the bubble in test 2 is in a dimpled ellipsoidal-cap regime where its shape can
be strongly deformed with the interface dug in its wake. This is in particular due to
the value of the surface tension that is lower than in test case 1. In Figure 7, the
evolution of the interface of test 2 is reported at t = 2 s and t = 3 s. The numerical
shapes corresponding to C = 0.5 iso-surface correlates well with experimental result
predicted by the diagram of [48]. As illustrated in this figure, the fully-coupled solver
provides results comparable to the one of the benchmark. In fact, in the resolved

25

regions of the bubble, the overall shape of the bubble is converged as for the other
groups in the benchmark. However, the bubble shapes strongly differ at the bottom
edge between the codes. The rising velocity over time is visualized in Figures 8b

(a) DROPS (b) NaSt3D (c) OpenFOAM (d) present work

Figure 7: Same as Fig. 5 for test case 2.

and 8a. We notice that all the codes have a velocity peak which is of the order of
0.37 at t = 0.5. After this time, the bubble velocity decreases to reach a steady
state. Also, our simulations are in better agreement with the results of DROPS
and OpenFOAM codes than the simulations of NaSt3D code. Finally, Fig. 8a shows
the evolution of the barycenter of the bubble. Here, the numerical results show
good agreement between all codes with less sensitivity of the results regarding the
numerical approaches. On a global point of view, the Fugu solver has been favourably
compared to the results of benchmark [47], by suing larger time steps, which validates
the accuracy and the physical relevancy of the fully-coupled solver.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.5 1 1.5 2 2.5 3

ri
s
e
 w

-v
e
lo

c
it
y
 (

m
/s

)

time (s)

NaSt3D
DROPS

OpenFOAM
h = 1/32
h = 1/64

h = 1/128
 0.3

 0.325

 0.35

 0.375

 0.4 0.6 0.8

(a) rise velocity

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0 0.5 1 1.5 2 2.5 3

z
-c

e
n

te
r

o
f

m
a

s
s
 (

m
)

time (s)

NaSt3D
DROPS

OpenFOAM
h = 1/32
h = 1/64

h = 1/128

 0.9

 1

 1.1

 1.4 1.5 1.6 1.7 1.8

(b) center of mass position

Figure 8: Same as Fig. 6 for test case 2.

26

4.3. Free fall of a dense sphere

The free fall of a dense sphere in air may seem like a simple process at first sight.
However, predicting the behaviour of this two-phase system perfectly is not easy on
a numerical point of view. Indeed, the high density and viscosity ratios lead to ill-
conditioned linear systems and difficulties in solving issues. Consequently, this test
case has a great interest to us for two reasons. On the one hand, it allows checking
whether the resolution is robust, when complex unsteady two-phases problems are
undertaken, in which density and viscosity ratio may exceed 106. On the other hand,
since the exact solution of the falling velocity (wc = −gt m/s in a void medium) and
center of mass (zc = −gt2/2 + z0 m) are known, thereafter we can evaluate the
accuracy of the fully-coupled solver.

The initial configuration consists of highly viscous liquid droplet of radius r =
0.0125 m, density ρ = ρ2 and dynamic viscosity µ = µ2 which is released without
initial velocity in air. Gravity is set at g = −9.81 m/s−2 in the z-direction, while the
surface tension coefficient σ is set to zero. The sphere is centered at (x0, y0, z0) =
(0.05 m, 0.05 m, 0.15 m) in a parallelepipedic cavity full of air whose density and
viscosity are ρ = ρ1 and µ = µ1 respectively. The cavity is 0.2 m high, 0.1 m long
and 0.1 m wide.

Concerning the numerical parameters, the simulations are carried out on a Carte-
sian grid containing 128 × 128 × 256 cells, with a residual of ε = 10−4 for the
BiCGStab(2). As far as the time derivatives, a constant time step ∆t = 1 × 10−4 s
is chosen, and 1500 time steps are computed, corresponding to 0.15 second of the
flow motion. It has to be noted that the simulation were performed on 144 pro-
cessors of the HPC cluster Occigen of CINES and required about 5h of computing
time. The physical parameters for the test case are ρ1 = 1 kg/m3, µ1 = 1 Pa·s,
ρ2/ρ1 = µ2/µ1 = 106 and g = −9.81 m/s2.

As in the case of the rising bubble, the qualitative analysis of the results is
focused on the barycenter xc of the bubble and the rise velocity uc. The simulation
results of the fully-coupled solver after 1500 time iterations are illustrated in Fig. 9.
The corresponding colour function at the interface, vertical velocity and vorticity
magnitude are presented. It can be seen that the fully coupled solver accurately
predicts the fall of the sphere {by conserving the spherical shape of the solid when
neglecting the drag force. Unquestionably, the computation shows that the strain
rate tensor inside the ball vanishes as ∥∇ · ¯̄T∥ = O(µ1/µ2). The Figs. (10a and 10b)
reports the evolution over time of the position of the falling velocity and the centre
of mass of the sphere, obtained by the fully-coupled solver when the reference grid
128× 128× 256 is considered as well as the corresponding analytical solutions. The
numerical solution is in good agreement with the reference solution.

27

(a) phase function C (b) ∥u∥ (c) ∥∇ × u∥

Figure 9: Numerical simulation of a free fall of dense sphere at t = 0.144 s, obtained on a fine mesh
128 × 128 × 256, by the fully coupled solver. The different fields presented in each row are: left
color function, middle: velocity magnitude and right: vorticity magnitude.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

fa
lli

n
g
 z

-v
e
lo

c
it
y

(m

/s
)

time (s)

Exact solution
h=1/128

(a)

-1.5

-1.25

-1

-0.75

-0.5

-0.25

 0

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

fa
lli

n
g

 z
-v

e
lo

c
it
y

(m
/s

)

time (s)

Exact solution
h=1/128

(b)

Figure 10: Vertical velocity and center of mass for test case 1
(
ρ1/ρ2 = µ1/µ2 = 106

)
obtained by

the fully coupled method with several meshes. (a) Vertical velocity and (b) center of mass.

5. Conclusions
An original fully-coupled solver has been presented for computing three-dimensional

unsteady and incompressible two phase flows, in which the velocity-pressure coupling
is kept at each time step. The tracking of the interface has been modelled by solving
an advection equation of phase function by means of conservative VOF scheme. The

28

Navier-Stokes equations have been successfully solved using our new fully-coupled
solver thanks to the development of new block preconditioning techniques for the ve-
locity block. The latter has been done by means of an infinite series development of
the different terms of the velocity block. Further, we have demonstrated the ability
of the solver to deal with complex cases, for high density and viscosity ratios, such
as the case of the free fall of dense sphere or the rising bubble in a liquid column.
In addition, we have shown that the fully-coupled solver is able to resolve two-phase
problems on more than 1 billions cells, with excellent scalability.

Declaration of competing interest
The authors have no competing interest to declare rgarding the publication of

this article.

Acknowledgements
We are grateful for access to the computational facilities of the French CINES

(National computing center for higher education) and TGCC granted by GENCI
under project numbers A0092B06115. We thank the technical and administrative
teams of these supercomputer centers and agencies for their kind and efficient help.

29

Appendix A. Discretization with finite volumes in Fugu
code

Appendix A.1. Convective term

One recalls the convective term in equation 3a, discretized to first order in time,
and integrated over the control volume Ω, bounded by the surface Σ:∫

Ω

∇ · (ρu⊗ u) dV =

∫
Σ

ρulumnm dS ≈
∫
Σ

ρn+1un
mu

n+1
l nm dS (A.1)

The discretization on the 3D staggered mesh of the convective term is performed with
a centered scheme in a semi-implicit way. It is written for the velocity component u:

(A.1)⇒ρn+1
i,j,k

(
un
i,j,k + un

i+1,j,k

2

un+1
i,j,k + un+1

i+1,j,k

2
−

un
i−1,j,k + un

i,j,k

2

un+1
i−1,j,k + un+1

i,j,k

2

)
∆y∆z

+ρn+1
i,j,k

(
vni,j,k + vni,j+1,k

2

un+1
i,j,k + un+1

i,j+1,k

2
−

vni,j−1,k + vni,j,k
2

un+1
i,j−1,k + un+1

i,j,k

2

)
∆x∆z

+ρn+1
i,j,k

(
wn

i,j,k + wn
i,j,k+1

2

un+1
i,j,k + un+1

i,j,k+1

2
−

wn
i,j,k−1 + wn

i,j,k

2

un+1
i,j,k−1 + un+1

i,j,k

2

)
∆x∆y

(A.2)
with ∆x, ∆y and ∆z the sizes of the parallelepipedic control volume in the x-, y-
and z-direction, respectively.

Appendix A.2. Viscous terms

The viscous stress tensor is decomposed as Tlm = κΛlm+ ζΞlm−ηΓlm where Λ, Ξ
and Γ tensors are defined in by [49]. The coefficient κ, ζ and η are elongational, shear
and rotational viscosities. They are linked to the dynamical viscosity by κ = ζ = 2µ
and η = µ. Tensors Λ, Ξ and Γ respectively read

Λ =

∂u
∂x

0 0
0 ∂v

∂y
0

0 0 ∂w
∂z

 , Ξ =

 0 ∂u
∂y

∂u
∂z

∂v
∂x

0 ∂v
∂z

∂w
∂x

∂w
∂y

0

 , Γ =

 0 ∂u
∂y
− ∂v

∂x
∂u
∂z
− ∂w

∂x
∂v
∂x
− ∂u

∂y
0 ∂v

∂z
− ∂w

∂y
∂w
∂x
− ∂u

∂z
∂w
∂y
− ∂v

∂z
0


(A.3)

The viscous operator is approximated implicitly using standard second-order, cen-
tered finite-differences. It is written explicitly for the u-velocity component:

30

Appendix A.2.1. Elongation viscosity (κΛlm),m, ucomponent

∫
∂

∂x

(
κ
∂u

∂x

)
dV =

(
κi+ 1

2
,j,k

un+1
i+1,j,k − un+1

i,j,k

∆x
− κi− 1

2
,j,k

un+1
i,j,k − un+1

i−1,j,k

∆x

)
∆y∆z

(A.4)

Appendix A.2.2. Shear viscosity (ζΞlm),m, ucomponent

∫
∂

∂y

(
ζ
∂u

∂y

)
+

∂

∂z

(
ζ
∂u

∂z

)
dV =

(
ζi,j+ 1

2
,k

un+1
i,j+1,k − un+1

i,j,k

∆y
− ζi,j− 1

2
,k

un+1
i,j,k − un+1

i,j−1,k

∆y

)
∆x∆z

+

(
ζi,j,k+ 1

2

un+1
i,j,k+1 − un+1

i,j,k

∆z
− ζi,j,k− 1

2

un+1
i,j,k − un+1

i,j,k−1

∆z

)
∆x∆y

(A.5)

Appendix A.2.3. Rotational viscosity (−ηΓlm),m, ucomponent

∫
∂

∂y

(
−η∂u

∂y
+ η

∂v

∂x

)
+

∂

∂z

(
−η∂u

∂z
+ η

∂w

∂x

)
dV

=

(
−ηi,j+ 1

2
,k

un+1
i,j+1,k − un+1

i,j,k

∆y
+ ηi− 1

2
,j+1,k

vn+1
i,j+1,k − vn+1

i−1,j+1,k

∆x

)
∆x∆z

+

(
ηi,j− 1

2
,k

un+1
i,j,k − un+1

i,j−1,k

∆y
− ηi− 1

2
,j,k

vn+1
i,j,k − vn+1

i−1,j,k

∆x

)
∆x∆z

+

(
−ηi,j,k+ 1

2

un+1
i,j,k+1 − un+1

i,j,k

∆z
+ ηi− 1

2
,j,k+1

wn+1
i,j,k+1 − wn+1

i−1,j,k+1

∆x

)
∆x∆y

+

(
ηi,j,k− 1

2

un+1
i,j,k − un+1

i,j,k−1

∆z
− ηi− 1

2
,j,k

wn+1
i,j,k − wn+1

i−1,j,k

∆x

)
∆x∆y

(A.6)

31

Appendix A.3. Pressure Gradient ∇p, ucomponent

For the horizontal velocity component u, the pressure gradient is discretized as
follows: ∫

∂p

∂x
dV = (pi+ 1

2
,j,k − pi− 1

2
,j,k)∆x∆y∆z (A.7)

Appendix A.4. Divergence ∇ · un+1f the velocity field

The divergence ∇ · u of the velocity field un+1 = (un+1, vn+1, wn+1)T is approxi-
mated at cell centers by∫
∇·un+1dV =

(
un+1
i+ 1

2
,j,k
− un+1

i− 1
2
,j,k

∆x
+

vn+1
i,j+ 1

2
,k
− vn+1

i,j− 1
2
,k

∆y
+

wn+1
i,j,k+ 1

2

− wn+1
i,j,k− 1

2

∆z

)
∆x∆y∆z

(A.8)

Appendix B. Physical boundary conditions
To complete the one-fluid formulation, the boundary conditions of the fluid do-

main are imposed via the penalty term ¯̄B · (f(u)− u∞) on Γ = ∂Ω. Boundary con-
ditions such as Dirichlet or Neumann can be enforced on the domain borders. Since
the physical boundaries of the fluid domain coincide with the nodes of the scalar
meshes, it is no longer the variable un+1 that has to be penalised, but a function
f (un+1) of this variable. where

¯̄B =

αu 0 0
0 αv 0
0 0 αw

 (B.1)

is a tensor field whose diagonal components tend to infinity along the boundary Γ and
are identically zero inside the fluid domain Ω. Here, f(un+1) is a discrete function of
un+1, vn+1 and wn+1 , which is written as a linear combination of resolved velocities
un+1
i,j,k , v

n+1
i,j,k , wn+1

i,j,k and their neighbors:

f(u) = a0u
n+1
i,j,k + a1u

n+1
i−1,j,k + a2u

n+1
i+1,j,k + a3u

n+1
i,j−1,k + a4u

n+1
i,j+1,k + a5u

n+1
i,j,k−1 + a6u

n+1
i,j,k+1

(B.2)
f(v) = a0v

n+1
i,j,k + a1v

n+1
i−1,j,k + a2v

n+1
i+1,j,k + a3v

n+1
i,j−1,k + a4v

n+1
i,j+1,k + a5v

n+1
i,j,k−1 + a6v

n+1
i,j,k+1,
(B.3)

f(w) = a0w
n+1
i,j,k +a1w

n+1
i−1,j,k+a2w

n+1
i+1,j,k+a3w

n+1
i,j−1,k+a4w

n+1
i,j+1,k+a5w

n+1
i,j,k−1+a6w

n+1
i,j,k+1.
(B.4)

32

The treatment of the Dirichlet boundary conditions, applied to the left boundary
for example is controlled by the coefficients ai which are then set to the following
values: a0 = a2 =

1
2

and a1 = a3 = a4 = a5 = a6 = 0. Thus, the discrete momentum
equation on the left boundary becomes:

NS(un+1
i,j,k) + αu

(
1

2
un+1
i,j,k +

1

2
un+1
i+1,j,k − u∞

)
= 0. (B.5)

33

34

Appendix C. Algorithms

Appendix C.1. Iterative solver general structure

Algorithm 3 Solving strategy with BiCGStab(2) solver assuming preconditioner P
is known.
1: procedure Initialisation
2: k = 0 k ∈ N+, ▷ iteration number
3: b = P−1b ▷ Precond is applied on r.h.s.
4: z = Ax(0) ▷ x(0) ∈ R is an initial guess
5: q = P−1z
6: r(0) = b− q ▷ Initial residual of the preconditioned system
7: r̃ = r(0) ▷ r̃ is an arbitrary vector, such that r̃ · r(0) ̸= 0
8: ξ0 = ω2 = 1; α = 0; u = 0
9: end procedure

10: while ∥r(k)∥2

∥r(0)∥2
> ε do

11: k = k + 1
12: ξ0 = −ω2ξ0

Even step
13: ξ1 = r̃ · r(k−1); β = αξ1/ξ0; ξ0 = ξ1 ▷ dot product #1
14: u = r(k−1) − βu ▷ linear combination #1
15: z = Au ▷ matrix-vector #1
16: v = P−1z ▷ preconditionner #1
17: γ = r̃ · v; α = ξ/γ ▷ dot product #2
18: r(k) = r(k−1) − αv ▷ linear combination #2
19: z = Ar(k) ▷ matrix-vector #2
20: s = P−1z ▷ preconditionner #2
21: x(k) = x(k−1) + αu ▷ linear combination #3

Odd step
22: ξ1 = r̃ · s; β = αξ1/ξ0 ▷ dot product #3
23: v = s− βv ▷ linear combination #4
24: z = Av ▷ matrix-vector #3
25: w = P−1z ▷ preconditionner #3
26: γ = r̃ ·w; α = ξ0/γ ▷ dot product #4
27: u = r(k) − βu ▷ linear combination #5
28: r(k) = r(k) − αv ▷ linear combination#6
29: s = s− αw ▷ linear combination #7
30: z = As ▷ matrix-vector #4
31: t = P−1z ▷ preconditionner #4

Generalized conjugate gradient part
32: ω1 = r(k) · s ▷ dot product #5
33: λ = s · s ▷ dot product#6
34: ν = s · t ▷ dot product#7
35: τ = t · t ▷ dot product#8
36: ω2 = r(k) · t ▷ dot product #9
37: τ = τ − ν2/λ; ω2 = (ω2 − νω1/λ)/τ ; ω1 = (ω1 − νω2)/λ
38: x(k) = x(k) + ω1r

(k) + ω2s+ αu ▷ linear combination #8
39: r(k) = r(k) − ω1s− ω2t ▷ linear combination #9
40: u = u− ω1v − ω2w ▷ linear combination #10
41: end while

35

Appendix D. Phase inversion results

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

E
K

1

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

Saeedipour et al 512
3

(a) Kinetic energy in fluid 1

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

E
K

2

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

Saeedipour et al 512
3

(b) Kinetic energy in fluid 2

 3800

 3900

 4000

 4100

 4200

 4300

 4400

 4500

 4600

 0 2 4 6 8 10

E
P

1

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

Saeedipour et al 512
3

(c) Potential energy in fluid 1

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10

E
P

2

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

Saeedipour et al 512
3

(d) Potential energy in fluid 2

36

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

E
N

S
1

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

Saeedipour et al 512
3

(a) Enstrophy in fluid 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10

E
N

S
2

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

Saeedipour et al 512
3

(b) Enstrophy in fluid 2

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

In
te

rf
a

c
ia

l
a

re
a

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

Saeedipour et al 512
3

(c) Interfacial area

0.12496

0.12497

0.12498

0.12499

0.12500

0.12501

0.12502

0.12503

0.12504

 0 2 4 6 8 10

V
O

L

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

(d) Mass conservation

37

References
[1] J. J. Dongarra, I. S. Duff, D. C. Sorensen, H. A. Van der Vorst, Numerical linear

algebra for high-performance computers, SIAM, 1998.

[2] S. Fleau, S. Mimouni, N. Mérigoux, S. Vincent, Validation of a multifield ap-
proach for the simulations of two-phase flows, Computational Thermal Sciences:
An International Journal 7 (5-6) (2015).

[3] G. Davy, E. Reyssat, S. Vincent, S. Mimouni, Euler–euler simulations of con-
densing two-phase flows in mini-channel: Combination of a sub-grid approach
and an interface capturing approach, International Journal of Multiphase Flow
149 (2022) 103964.

[4] P. Lubin, S. Vincent, S. Abadie, J.-P. Caltagirone, Three-dimensional large eddy
simulation of air entrainment under plunging breaking waves, Coastal engineer-
ing 53 (8) (2006) 631–655.

[5] G. C. Agbangla, P. Bacchin, E. Climent, Collective dynamics of flowing colloids
during pore clogging, Soft Matter 10 (33) (2014) 6303–6315.

[6] A. Ozel, J. B. de Motta, M. Abbas, P. Fede, O. Masbernat, S. Vincent, J.-
L. Estivalezes, O. Simonin, Particle resolved direct numerical simulation of a
liquid–solid fluidized bed: comparison with experimental data, International
Journal of Multiphase Flow 89 (2017) 228–240.

[7] D. Lacanette, S. Vincent, E. Arquis, P. Gardin, Numerical simulation of gas-
jet wiping in steel strip galvanizing process, ISIJ international 45 (2) (2005)
214–220.

[8] S. Vincent, G. Balmigere, C. Caruyer, E. Meillot, J.-P. Caltagirone, Contribu-
tion to the modeling of the interaction between a plasma flow and a liquid jet,
Surface and Coatings Technology 203 (15) (2009) 2162–2171.

[9] R. F. Cerqueira, E. E. Paladino, F. Evrard, F. Denner, B. van Wachem, Mul-
tiscale modeling and validation of the flow around taylor bubbles surrounded
with small dispersed bubbles using a coupled vof-dbm approach, International
Journal of Multiphase Flow 141 (2021) 103673.

[10] S. Vincent, A. Sarthou, J.-P. Caltagirone, F. Sonilhac, P. Février, C. Mignot,
G. Pianet, Augmented lagrangian and penalty methods for the simulation of

38

two-phase flows interacting with moving solids. application to hydroplaning
flows interacting with real tire tread patterns, Journal of computational physics
230 (4) (2011) 956–983.

[11] M. Ishii, T. Hibiki, Thermo-fluid dynamics of two-phase flow, Springer Science
& Business Media, 2010.

[12] D. A. Drew, S. L. Passman, Theory of multicomponent fluids, Vol. 135, Springer
Science & Business Media, 2006.

[13] G. Tryggvason, R. Scardovelli, S. Zaleski, Direct numerical simulations of gas–
liquid multiphase flows, Cambridge university press, 2011.

[14] A. J. Chorin, Numerical solution of the navier-stokes equations, Mathematics
of computation 22 (104) (1968) 745–762.

[15] J.-L. Guermond, Remarques sur les méthodes de projection pour
l’approximation des équations de navier–stokes, Numerische Mathematik
67 (4) (1994) 465–473.

[16] J.-L. Guermond, P. Minev, J. Shen, An overview of projection methods for
incompressible flows, Computer methods in applied mechanics and engineering
195 (44-47) (2006) 6011–6045.

[17] N. Bootland, A. Bentley, C. Kees, A. Wathen, Preconditioners for two-phase
incompressible navier–stokes flow, SIAM Journal on Scientific Computing 41 (4)
(2019) B843–B869.

[18] N. Nangia, B. E. Griffith, N. A. Patankar, A. P. S. Bhalla, A robust incom-
pressible navier-stokes solver for high density ratio multiphase flows, Journal of
Computational Physics 390 (2019) 548–594.

[19] M. El Ouafa, S. Vincent, V. Le Chenadec, Monolithic solvers for incompressible
two-phase flows at large density and viscosity ratios, Fluids 6 (1) (2021) 23.

[20] M. El Ouafa, S. Vincent, V. Le Chenadec, Navier-stokes solvers for incompress-
ible single- and two-phase flows, Communications in Computational Physics
29 (4) (2021) 1213–1245.

[21] M. El Ouafa, Développement d’un solveur tout-couplé parallèle 3d pour la simu-
lation des écoulements diphasiques incompressibles à forts rapports de viscosités
et de masses volumiques, Ph.D. thesis, Université Gustave Eiffel (12 2022).
doi:10.13140/RG.2.2.29047.91040.

39

https://doi.org/10.13140/RG.2.2.29047.91040

[22] M. Fortin, R. Glowinski, Augmented Lagrangian methods: applications to the
numerical solution of boundary-value problems, Elsevier, 2000.

[23] S. Vincent, J.-P. Caltagirone, P. Lubin, T. N. Randrianarivelo, An adaptative
augmented lagrangian method for three-dimensional multimaterial flows, Com-
puters & fluids 33 (10) (2004) 1273–1289.

[24] R. D. Falgout, U. M. Yang, hypre: A library of high performance precondition-
ers, in: International Conference on computational science, Springer, 2002, pp.
632–641.

[25] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix
Analysis and Applications 23 (1) (2001) 15–41.

[26] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, T. Mary, Performance and scala-
bility of the block low-rank multifrontal factorization on multicore architectures,
ACM Transactions on Mathematical Software (TOMS) 45 (1) (2019) 1–26.

[27] H. Kotakemori, H. Hasegawa, A. Nishida, Performance evaluation of a parallel
iterative method library using openmp, in: Eighth International Conference
on High-Performance Computing in Asia-Pacific Region (HPCASIA’05), IEEE,
2005, pp. 5–pp.

[28] I. Kataoka, Local instant formulation of two-phase flow, International Journal
of Multiphase Flow 12 (5) (1986) 745–758.

[29] J. U. Brackbill, D. B. Kothe, C. Zemach, A continuum method for modeling
surface tension, Journal of computational physics 100 (2) (1992) 335–354.

[30] P. Angot, C.-H. Bruneau, P. Fabrie, A penalization method to take into account
obstacles in incompressible viscous flows, Numerische Mathematik 81 (4) (1999)
497–520.

[31] G. D. Weymouth, D. K.-P. Yue, Conservative volume-of-fluid method for free-
surface simulations on cartesian-grids, Journal of Computational Physics 229 (8)
(2010) 2853–2865.

[32] F. H. Harlow, J. E. Welch, Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface, The physics of fluids 8 (12) (1965)
2182–2189.

40

[33] S. V. Patankar, Numerical heat transfer and fluid flow, CRC press, 2018.

[34] C. Hirsch, Numerical computation of internal and external flows: The funda-
mentals of computational fluid dynamics, Elsevier, 2007.

[35] X. S. Li, J. W. Demmel, Super lu-dist: A scalable distributed-memory sparse
direct solver for unsymmetric linear systems, ACM Trans. Math. Softw. 29 (2)
(2003) 110–140. doi:10.1145/779359.779361.
URL https://doi.org/10.1145/779359.779361

[36] S. Vincent, Contribution à la modélisation et à la simulation numérique
d’écoulements diphasiques de fluides non miscibles, Ph.D. thesis, Habilitation à
Diriger des Recherches de l’Université Bordeaux 1 (2010).

[37] H. Elman, D. Silvester, A. Wathen, Finite Elements and Fast Iterative Solvers:
with Applications in Incompressible Fluid Dynamics, Oxford University Press,
2014. doi:10.1093/acprof:oso/9780199678792.001.0001.
URL https://doi.org/10.1093/acprof:oso/9780199678792.001.0001

[38] K. S. Miller, On the inverse of the sum of matrices, Mathematics magazine
54 (2) (1981) 67–72.

[39] H. Elman, D. Silvester, Fast nonsymmetric iterations and preconditioning for
navier–stokes equations, SIAM Journal on Scientific Computing 17 (1) (1996)
33–46.

[40] J. Cahouet, J.-P. Chabard, Some fast 3d finite element solvers for the generalized
stokes problem, International Journal for Numerical Methods in Fluids 8 (8)
(1988) 869–895.

[41] H. C. Elman, Preconditioning for the steady-state navier–stokes equations with
low viscosity, SIAM Journal on Scientific Computing 20 (4) (1999) 1299–1316.

[42] D. Kay, D. Loghin, A. Wathen, A preconditioner for the steady-state navier–
stokes equations, SIAM Journal on Scientific Computing 24 (1) (2002) 237–256.

[43] M. Cai, A. Nonaka, J. B. Bell, B. E. Griffith, A. Donev, Efficient variable-
coefficient finite-volume stokes solvers, Communications in Computational
Physics 16 (5) (2014) 1263–1297.

[44] H. C. Elman, R. S. Tuminaro, Boundary conditions in approximate commuta-
tor preconditioners for the navier-stokes equations, Electronic Transactions on
Numerical Analysis 35 (2009) 257–280.

41

https://doi.org/10.1145/779359.779361
https://doi.org/10.1145/779359.779361
https://doi.org/10.1145/779359.779361
https://doi.org/10.1145/779359.779361
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001

[45] J.-L. Estivalezes, W. Aniszewski, F. Auguste, Y. Ling, L. Osmar, J.-P. Calta-
girone, L. Chirco, A. Pedrono, S. Popinet, A. Berlemont, et al., A phase inversion
benchmark for multiscale multiphase flows, Journal of Computational Physics
450 (2022) 110810.

[46] M. Saeedipour, S. Vincent, J.-L. Estivalezes, Toward a fully resolved volume of
fluid simulation of the phase inversion problem, Acta Mechanica 232 (7) (2021)
2695–2714.

[47] J. Adelsberger, P. Esser, M. Griebel, S. Groß, M. Klitz, A. Rüttgers, 3d in-
compressible two-phase flow benchmark computations for rising droplets, in:
Proceedings of the 11th world congress on computational mechanics (WCCM
XI), Barcelona, Spain, Vol. 179, 2014, p. 274–5285.

[48] R. Clift, J. R. Grace, M. E. Weber, Bubbles, drops, and particles, Academic
Press (2005).

[49] J.-P. Caltagirone, S. Vincent, Sur une méthode de pénalisation tensorielle pour
la résolution des équations de navier–stokes, Comptes Rendus de l’Académie des
Sciences-Series IIB-Mechanics 329 (8) (2001) 607–613.

42

	Introduction
	Models and numerical methods
	Governing equations of two-phase flows
	Discretization of mass and momentum equations
	Time integration
	Spatial discretization
	Solution of the linear system

	Block preconditioning techniques
	 The velocity block
	 The Schur complement

	Fully coupled solver parallelization
	Parallel operations
	Performance evaluation

	Applications to physical cases
	Phase inversion between two incompressible liquids
	3D rising bubble
	Free fall of a dense sphere

	Conclusions
	Discretization with finite volumes in Fugu code
	Convective term
	Viscous terms
	Elongation viscosity -component
	Shear viscosity -component
	Rotational viscosity -component

	Pressure Gradient -component
	Divergence of the velocity field

	Physical boundary conditions
	Algorithms
	Iterative solver general structure

	Phase inversion results

