
HAL Id: hal-04161872
https://hal.science/hal-04161872

Submitted on 19 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fully-coupled parallel solver for the simulation of
two-phase incompressible flows

Simon El Ouafa, Stéphane Vincent, Vincent Le Chenadec, Benoît Trouette

To cite this version:
Simon El Ouafa, Stéphane Vincent, Vincent Le Chenadec, Benoît Trouette. Fully-coupled paral-
lel solver for the simulation of two-phase incompressible flows. Computers and Fluids, 2023, 265,
pp.105995. �10.1016/j.compfluid.2023.105995�. �hal-04161872�

https://hal.science/hal-04161872
https://hal.archives-ouvertes.fr

Fully-coupled parallel solver for the simulation of
two-phase incompressible flows

Simon El Ouafa�, Stéphane Vincent,
Vincent Le Chenadec, Benoît Trouette
simon.elouafa@univ-eiffel.fr

stephane.vincent@univ-eiffel.fr
vincent.le-chenadec@univ-eiffel.fr

benoit.trouette@univ-eiffel.fr

MSME, Univ Gustave Eiffel, CNRS UMR 8208,
Univ Paris Est Creteil, 77454 Marne-la-Vallée, FRANCE

Version: July 19, 2023

Contents
1 Introduction 3

2 Models and numerical methods 5
2.1 Governing equations of two-phase flows . 5
2.2 Discretization of mass and momentum equations . 6

2.2.1 Time integration . 6
2.2.2 Spatial discretization . 7
2.2.3 Solution of the linear system . 8

2.3 Block preconditioning techniques . 10
2.3.1 The velocity block . 11
2.3.2 The Schur complement . 14

� corresponding author

1

3 Fully coupled solver parallelization 15
3.1 Parallel operations . 16
3.2 Performance evaluation . 17

4 Applications to physical cases 19
4.1 Phase inversion between two incompressible liquids 19
4.2 3D rising bubble . 20
4.3 Free fall of a dense sphere . 25

5 Conclusions 27

A Discretization with finite volumes in Fugu code 28
A.1 Convective term . 28
A.2 Viscous terms . 28

A.2.1 Elongation viscosity (κΛlm),m, u-component 28
A.2.2 Shear viscosity (ζΞlm),m, u-component . 29
A.2.3 Rotational viscosity (−ηΓlm),m, u-component 29

A.3 Pressure gradient ∇p, u-component . 29
A.4 Divergence ∇ · un+1 of the velocity field . 30

B Physical boundary conditions 30

C Algorithms 32
C.1 Iterative solver general structure . 32

D Phase inversion results 33

Abstract

In the framework of the in-house code Fugu, a fully-coupled solver is developed for mas-
sively parallel simulations of three-dimensional incompressible multiphase flows. The lin-
earized momentum and continuity equations arising from the implicit solution of the fluid
velocities and pressure are solved simultaneously. The method uses a BiCGStab(2) [1] itera-
tive solver with an original preconditioner for the velocity block and an approximation of the
inverse of the Schur complement. This is achieved by using PFMG or SMG from HYPRE
and an efficient sparse matrix-vector multiplication using the CSR storage format. The con-
struction and the tracking of the interface separating the different involved phases is based on
a conservative VOF method. Test cases, such as a spherical bubble rising in quiescent liquid
and the free fall of a dense sphere, are performed to validate the models, especially in the
presence of strong density and viscosity ratios between fluids. Other cases, such as the phase
inversion, demonstrate the ability of the new fully-coupled solver to solve two-phase problems
with more than 1 billion degrees of freedom with excellent scalability.

2

Keywords: Fully coupled solver – linear system preconditioning – two-phase flows – large
density and viscosity ratios – HPC

1 Introduction
Multiphase flows with separated phases are ubiquitous in nature and in industrial applications.

Energy [2, 3], environment [4], chemical engineering [5, 6], hydrology, material processes [7, 8],
petroleum engineering [9], vehicle design [10] or civil engineering, are examples of applications
where the conditions and two-phase flow regimes encountered spread wide and far in terms of
density and viscosity ratios, inertial, viscous, gravity or capillary effects. Because of the complexity
of the underlying physics, the understanding of these flows is of high interest in order to control
or prevent malfunctions such as for boiling in nuclear power plants, overflow in dams or cavitation
in turbo-machinery, to mention just a few.

Experimental investigations, although widely developed in many research works, sometimes
suffers from certain limitations or implementation difficulties. It is even more difficult to apply to
some two-phase problems. Indeed, in addition to the complexity of these flows, i.e. the topology
of the interfaces (separated or dispersed phases), the nature of the interactions (friction, capillary
effects, etc ...), the flow regimes (in terms of Reynolds or Weber numbers, for example) or the pres-
ence of different scales in space and time (from the separated phase to the scale of small interfaces),
it is sometimes impossible to simultaneously reproduce the real conditions at the laboratory scale
and to measure quantities of interest such as droplet size distributions, interfacial area density
or turbulence intensity. Consequently, numerical simulation has become an indispensable tool to
better understand and therefore control the bearing of complex two-phase flows. Over the past few
decades, this approach has become a central tool for investigation, adopted by the fluid mechanics
community to complement experiments.

However, numerical simulation faces several challenges that need to be overcome, not only in
terms of the sensitivity of the numerical results to the choice of model and mesh, but also in terms
of the robustness and accuracy of the solver and solution algorithms, allowing the simulation
of complex two-phase problems with high density or viscosity ratios without causing numerical
oscillations or divergence and with acceptable time-to-solution. The simulation of these flows at
a small scale requires taking into account the turbulence far from the interfaces and the coupling
between the fluids present at the interfaces on the other hand where the vorticity is generated as
a result of the high shear caused by large density or viscosity ratios. The mathematical structure
of the Navier-Stokes incompressible equations considered in the present work (algebraic non-linear
differential system) make their solution challenging, especially in the presence of high density and
viscosity ratios which deteriorate the conditioning of the system and whose spatial distributions
vary in space and time. Thus, it is necessary to make numerical solvers and related algorithms

3

run on massively parallel machines, and to optimise them in order to take advantage of intensive
computing distributed over thousands of processors.

Two aspects are responsible for the fidelity of the solution: the first is related to the choice
of the model and the second to the efficiency of the solver and resolution algorithms on HPC
architectures. Concerning the former, there exists two approaches to numerical modeling of two-
phase flows. The so-called two-fluid models describe multiphase mixing at different levels [11, 12].
In their most complete version, these models take the form of two Navier-Stokes systems, coupled
by additional source terms that represent the exchanges (mass, momentum and energy) between
the two phases. An important aspect is that both sets of equations hold over the entirety of
the domain, which challenges the model in the void regions (where only one phase is present).
In contrast, the one-fluid approach consists in modelling the two-phase flow as a single fluid,
possessing sharply varying thermodynamic properties as well as source terms representing the
capillary effects [13]. This results in a single set of Navier-Stokes equations, supplemented by a
scalar advection equation to characterize the interface position. The one-fluid model is devoted
to fully resolved interfaces without any further closure requirements whereas two-fluid models are
generally adapted to two-phase dispersed flows laying on a scale separation assumption. In the
present work, the one-fluid model will be considered.

The latter is related to the treatment of velocity-pressure coupling which, in the incompressible
limit, has been the subject of numerous documented studies and is relatively well understood as far
as single-phase flows are concerned. On the contrary, in the context of two-phase flows with high
density and viscosity ratios, numerical difficulties appear, linked to the presence of large interface
deformations and associated material fluid property jumps. They lead to ill-conditioned linear
systems. At the discrete level, the problem takes the form of a saddle point system which is costly
to solve. Upon discretization and linearization, it leads to a system of the form[

Fu BT
p

Bu 0

](
un+1

pn+1

)
=

(
f
0

)
(1)

where Fu includes the convective and viscous transport operators, BT
p the pressure gradient oper-

ator, Bu the velocity divergence and un+1 and pn+1 denote the velocity and the pressure variables.
There are two approaches to solve this large system of equations: either the use of specialized
solvers (e.g. iterative with preconditioning), in which case the method is referred to as exact,
monolithic or coupled method, or the approximation by a simpler problem whose solution is more
affordable (Chorin-Temam type projection [14] and its variants [15, 16], methods also referred to
as approximate or segregated).

Segregated methods do not solve for all of the unknowns at the same time. Instead, they
approximate the original system via operator splitting, resulting in two decoupled equations: one
to update the velocity field and the other the pressure field. Instead, coupled methods solve both

4

fields (velocity and pressure) simultaneously, thus preserving the consistency of the discretized
system with the continuous equations. In coupled methods, the original saddle point system is
inverted, thus keeping the velocity-pressure coupling at each time step. This saddle point system
can be solved either directly by a fully-coupled solver [17, 18, 19, 20, 21] or with an augmented
Lagrangian (AL) method [22, 23, 10]. The interest of these methods is to allow a very accurate
and robust resolution, without splitting errors.

The present work develops a coupled method, in particular block preconditioners dedicated to
the resolution of the saddle point systems from the discretization of the one-fluid model. They rely
on recent advances in the field of iterative solvers and preconditioners, and their implementation
with open source parallel libraries (HYPRE [24], MUMPS [25, 26] and LIS [27]). The objective is
to include the massively parallel computing component in the 3D numerical modeling of a physical
problem in order to reduce the execution time of computationally expensive applications.

The rest of the manuscript describes the models, the numerical algorithms and their perfor-
mances. Different test cases are presented in order to verify the accuracy and robustness of the
proposed fully-coupled solver: a three-dimensional rising bubble, the free fall of a dense sphere
and a phase inversion between two incompressible liquids.

2 Models and numerical methods
All the developments described and validated in the present work are part of the Fugu code

developed by the Heat and Mass Transfer team of MSME laboratory at Gustave Eiffel University.

2.1 Governing equations of two-phase flows

In this work, the dynamics of the two immiscible phases is described by the one-fluid model
(OFM) [28]. The incompressible Navier-Stokes equations are solved for an equivalent single fluid
with variable material properties, with an additional source term in the momentum equation
that introduces the capillary force. An additional transport equation describes the evolution of
the phase function C, an indicator field transported by the incompressible fluid velocity u. One
defines C (t,x) = 1 (C (t,x) = 0) if x belongs to the domain occupied by fluid 1 (fluid 2) at time
t. The OFM is flexible in the sense that it can be solved on a fixed mesh, and can be used to
simulate various geometries or interface conditions. With mixing rules for the effective density ρ

5

and viscosity µ, the governing equations read

ρ
∂u

∂t
+∇ · (ρu⊗ u) + ¯̄B · (f(u)− u∞) = −∇p+∇ · ¯̄T+ ρg + Fs (2a)

∇ · u = 0 (2b)
∂C

∂t
+ u · ∇C = 0 (2c)

ρ(C) = ρ1C + (1− C)ρ2 (2d)
µ(C) = µ1C + (1− C)µ2 (2e)

where u = (u, v, w)T is the fluid velocity, p the pressure field, t the time, ρ and µ are the density
and viscosity of the equivalent fluid given by an arithmetic average, with ρ1, ρ2, µ1 and µ2 the
densities and the viscosities of fluids 1 and 2, respectively. In addition, the viscous stress tensor for
a Newtonian fluid is ¯̄T =

[
µ
(
∇u+ (∇u)T

)]
, whereas Fs = σκnδi is the capillary term acting on

the interface, modelled in this study by the Continuum Surface tension Force model (CSF) [29].
The normal vector to the interface is n, σ is the coefficient of surface tension, δi is the surface Dirac
function and κ is the local interfacial curvature. Finally, ¯̄B · (f(u)− u∞) is a Darcy-like penalty
term used for specifying domain boundary conditions or immersed boundaries [30]. For example,
along a boundary Γ, the tensor ¯̄B has diagonal components that tend to infinity while they are
identically zero inside the fluid domain Ω. The user-specified function f(u) can vary over space
and specify problem-dependent boundary conditions (Dirichlet, Neumann, Robin).

2.2 Discretization of mass and momentum equations

Without loss of generality, a conservative VOF approach from [31] is used to solve Eq. (2c)
beforehand rewritten in its conservative form. As the interface tracking technique is not the main
topic of this paper, the focus is on the discretization of mass and momentum equations and the
resulting linear system. The system (2) is then split. Phase function evolution (Eq. (2c)) is first
solved. From the updated volume fraction field C, mixing rules (Eqs. (2d) and (2e)) are applied
in order to obtain the fluid effective density ρ and viscosity µ. Finally, a sub system made up of
the mass and the momentum conservation equations (Eqs. (2a)-(2b)) remains to be solved.

2.2.1 Time integration

For unsteady applications, the time step ∆t is an important numerical parameter for the
stability and the quality of the numerical solution. The solution is obtained over different discrete
times, given by tn = n∆t, with n the iteration number. For sake of simplicity, the time integration
is performed in the following with a first order backward Euler. Note that the use of high order
time discretization schemes, such as the Gear scheme, does not introduce additional difficulty. In

6

such case, the convective terms are linearized by extrapolating the velocity at time (n+1) . With
the first order Euler scheme, the resulting semi-discrete system is written as:

ρ

∆t

(
un+1 − un

)
+∇ ·

(
ρun ⊗ un+1

)
+ ¯̄B ·

(
f(un+1)− u∞

)
= −∇pn+1

+∇ · ¯̄Tn+1 + ρg + Fs

(3a)

∇ · un+1 = 0 (3b)

where ¯̄Tn+1 =
[
µ
(
∇un+1 + (∇un+1)T

)]
.

2.2.2 Spatial discretization

The OFM formulation (Eqs. (2)) is solved on Cartesian uniform staggered meshes, as originally
proposed by [32]. The discrete velocity and pressure variables are then arranged in a staggered
way, each one having its appropriate control volume and connectivities with other coupled variables
as illustrated in Fig 1. Staggered meshes guarantee the consistency of the differential operators

x

y

z

15
16

0

1
2

3

4

5

6
7

8

9
10

11
12

13
14

x

y

z

01
2

3

4
5

6

Figure 1: Staggered u-velocity (left) and pressure (right) unknowns and their respective local
indexes. Velocity control volume is centered on u-velocity (▽ symbols). Local index 0 stands for
global indexes i, j and k. Directional full (±1) or half shifts (±1/2) allow to reach neighbours
used in the 3 points discretization stencil. The horizontal velocity is linked through divergence and
diffusive terms to v- and w- components (□ and D) and also to the pressure (◦). Similar notations
and connectivities are adopted for the treatment of v- and w-components. All the three velocity
components then involve 17 coupled variables at the discrete level.

such as the divergence and the gradient and it also avoids spurious oscillations on the pressure
field. Furthermore, the spatial operators acting in the one-fluid formulation are discretized using a
finite volume approximation [33, 34]. This method consists of integrating conservation equations

7

on each control volume Ω(i,j,k) (Ωu(i,j,k) for u and Ωp(i,j,k) for p) that are delimited by the surface
Σ(i,j,k) (Σu(i,j,k) for u and Σp(i,j,k) for p). Here, i, j and k are control volume indices in x-, y- and
z-directions, respectively. Using the divergence and gradient theorems, the spatial integration of
sub-system (3) leads to {[

M (ρ)
u +N (ρ)

u + L(µ)
u

]
un+1 +BT

p p
n+1 = f (4a)

Buu
n+1 = 0 (4b)

where

Buu
n+1 =

∫
Σp(i,j,k)

un+1 · n dS (5a)

M (ρ)
u un+1 =

∫
Ωu(i,j,k)

[
ρun+1

∆t
+ ¯̄B · f(un+1)

]
dV (5b)

N (ρ)
u un+1 =

∫
Σu(i,j,k)

(ρun+1 ⊗ un) · n dS (5c)

L(µ)
u un+1 = −

∫
Σu(i,j,k)

¯̄Tn+1 · n dS (5d)

BT
p p

n+1 =

∫
Σu(i,j,k)

pn+1n dS (5e)

f =

∫
Ωu(i,j,k)

[ρ

∆t
un + ¯̄B · u∞ + ρg + Fs

]
dV (5f)

with n the outward pointing normal with respect to the control volume Σi,j,k. To characterize the
fluxes across the surfaces Σu(i,j,k) or Σp(i,j,k) of the control volume Ωu(i,j,k) or Ωp(i,j,k), the mesh
spacings ∆x, ∆y and ∆z are defined, respectively in the x-, y- and z-directions. For the sake of
simplicity, only constant mesh spacing are presented here. Moreover, the integrals are explicitly
written for the velocity component u in the x-direction (the extension to the other components is
carried out in the same way) and for each control volume. Details are given in appendix A with
particular focus on the treatment of the viscous stress tensor. The penalty terms used for handling
boundary conditions are discussed in appendix B.

2.2.3 Solution of the linear system

Finite volumes and penalty methods on a staggered mesh, together with an implicit temporal
discretization of Eqs. (2a) and (2b), result in large and non-symmetric linear saddle point systems.
The unknowns of the problem, the discrete velocity u and pressure p fields, are coupled by the
incompressibility constraint ∇ · u = 0. As presented in the introduction, this saddle point system

8

can be reformulated as follows: [
Fu BT

p

Bu 0

](
un+1

pn+1

)
=

(
f
0

)
(6)

with Fu = M
(ρ)
u +N

(ρ)
u + L

(µ)
u . The reduced system can be rewritten as Ax = b with A the matrix

associated with the discretization coefficients in time and space, b the right-hand side associated
with each component of the solution vector and x = (un+1, pn+1)T the updated flow variables.

In order to compute x, it is necessary to choose a method for solving this linear system Eq. (6).
Many techniques exist to do so, such as direct methods that include Gaussian elimination, fac-
torisation techniques (LU, QR, Cholesky, . . .) and multifrontal methods. These techniques are
very robust with respect to various problems but typically do not scale well with problem size
and becomes prohibitively expensive for three-dimensional configurations. Alternative approaches
are iterative methods, such as fixed-point (Jacobi, Gauss-Seidel, relaxation, . . .), Krylov or multi-
grid methods. They are however usually effective for specific kind of matrices (symmetric, dense
or sparse matrices for example). It is therefore necessary to estimate the structure of the linear
system. According to the discretization schemes proposed in the previous paragraph, with the
evaluations of fluxes on faces of each control volumes, each equation of the linear system couples
only a few components of the solution. With the choice of 3 point wide stencil per direction, if
u-component equation is for example considered, 7 degrees of freedom are coupled by the diffusive
or inertial terms, 8 more are used for the coupling between u and v as well as between u and w
and 2 more are needed for the pressure gradient (see Fig. 1). On the whole, 17 degree of freedom
are coupled for each control volume. In addition, 6 additional degree of freedom are used for
the velocity divergence. The same reads for equations v- and w-velocity components. With the
example of a mesh composed of Nx × Ny × Nz control volumes, and N = Nx = Nz = Nz, the
solution vector has 4N3 +3N2 unknowns, the additional 3N2 coming from the choice of staggered
meshes. The matrix A will be a square sparse matrix of (4N3 + 3N2)2 coefficients. Thus, only 17
non-zero diagonals (see Fig. 2) acting on each velocity component and 6 non-zero diagonals coming
from the discretization of the velocity divergence will be involved in the matrix. In order to save
memory space, only the non-zero coefficients arising from the discretization of the incompressible
Navier-Stokes equations (Eqs. (2a)-(2b)) are stored using the Compressed Storage Raw (CSR)
format.

It is thus clear that the matrix generated by the discretization of the Navier-Stokes equations
will be very sparse. There is therefore no interest in using direct methods. A survey of the litter-
ature reveals that only two recent studies were documented to have tackled two-phase problems
with large density and viscosity ratios by a fully-coupled approach. In the first one, Bootland et
al [17] discretize the conservation equations with 2D finite elements using an implicit scheme for
the inertial term and apply the sparse direct solver SuperLU [35] to the velocity block. However, an
approximation of the inverse of the pressure Schur complement matrix is performed using the PCD
operator technique (Pressure Convection Diffusion) [17]. In the second study, Nangia et al [18]

9

Fuu

Fvv

Fww

Fuv Fuw

Fvu Fvw

Fwu Fwv

Bu Bv Bw

Bu

Bv

Bw

0

(Nx + 1)×Ny ×Nz

Nx × (Ny + 1)×Nz

Nx ×Ny × (Nz + 1)

Nx ×Ny ×Nz

Figure 2: Structure of the fully-coupled matrix, 7 diagonal form the 3 directional points stencil (in
red for u-, green for v- and blue for w-component, respectively). Black lines for velocity coupling,
magenta for pressure gradient and cyan for divergence.

use 3D finite volumes with an explicit scheme for the inertial term and a flexible GMRES Krylov
solver preconditioned by a variable-coefficient projection method solver. Our proposed strategy
to solve the sparse linear system resulting from the discretization of the motion equations is to
employ a Krylov solver, here the BiCGStab(2) [1] solver, on the entire system. This involves build-
ing an efficient preconditioner P ≈ A to stabilize and accelerate the iterative solver convergence.
Indeed, for difficult problems corresponding to ill-conditioned matrices, it is essential to combine
the BiCGStab(2) algorithm with a suitable preconditioner to avoid possible numerical instabilities
and to speed-up convergence. Then, instead of solving Ax = b, the left-preconditioned system
P−1Ax = P−1b is preferred, for which cond(P−1A) < cond(A) is expected. Therefore, in the
BiCGStab(2) algorithm, every matrix-vector product z = Ax is followed by the computation of
P−1z. The same transformation must be applied to the right-hand side b ← P−1b. The pseudo
code given in Alg. 3 in appendix C describes the overall algorithm to solve the system up to a cho-
sen threshold ε starting from an initial guess x(0). The following section focuses on the construction
of the preconditioner P .

2.3 Block preconditioning techniques

To build the preconditioning matrix P required in subsection 2.2.3, a large variety of precondi-
tioners exist. Among them, ILU type preconditioning, also called incomplete Gauss factorisation,
allows to reach low residuals when several millions of unknowns are involved. However, these
preconditioners are not easily scalable as they induce a global dependence on the unknowns, and
therefore require numerous and repeated exchanges in the domain decomposition framework. It
is possible to use ILU techniques and their derived versions in a block implementation, i.e. the
preconditioning is performed in a decomposed fashion where the linear operators, decomposed

10

along rows, neglect the contributions from the out-of-core degrees-of-freedoms. Nevertheless, in
most of the representative cases, the classical preconditioners of the literature such as ILU fail to
provide an efficient solution of the fully-coupled Navier-Stokes equations. This was highlighted
in a number of documented studies [36], in the context of the augmented Lagrangian method for
example with applications to both unsteady laminar and turbulent two-phase flows, but it was
limited to 3D cases around 100 million cells. The strategy implemented in this work is to build the
preconditioner of the problem by taking a LU block decomposition of the original matrix A and to
introduce a second spatial discretization of the momentum equation in the discrete pressure space.
Applied on the linear system (6), the LU block factorization reads[

Fu BT
p

Bu 0

]
=

[
Iu 0

BuF
−1
u Ip

] [
Fu BT

p

0 Sp

]
(7)

where Sp = −BuF
−1
u BT

p is the Schur complement of the pressure block. Thus, if the upper-
triangular block U is considered as preconditioner, the preconditioning operator P directly reads:

P =

[
Fu BT

p

0 Sp

]
(8)

According to this choice, the iterative solver would need exactly two iterations to compute the
solution [37]. However, it is not feasible to use the exact Schur complement Sp and the velocity
block Fu as a part of the preconditioning operator, as they require the knowledge of their inverses,
respectively S−1

p and F−1
u , two dense matrices that are time-dependent and are indeed more expen-

sive than solving the saddle point (6) by direct methods. Due to this difficulty, an approximation
of the action of the inverse of the velocity block Fu and the Schur complement Sp on any vector
has to be considered. The way to achieve this is described in the next sections.

2.3.1 The velocity block

It is important to note here that an appropriate resolution of the Navier-Stokes equations en-
tails the use of an efficient preconditioning for the velocity blocks. This is especially true when
an augmented Lagrangian or a fully-coupled solver is used. These velocity blocks are sparse, large
and ill-conditioned in the presence of large viscosity ratios. They therefore require resolution by
an efficient and robust preconditioning, which must address the challenge raised by the coupling
between velocity components due to the large viscosity ratios typically encountered in multiphase
flows applications. In this context, this section describes some techniques for the precondition-
ing of the coupling between velocity components, essentially based on an approximate algebraic
preconditioner for the Schur complement.

Let us consider the sparse and non-symmetric matrix Fu, arising from the discretization of the
linearized momentum equations (Eqs. (5)). This matrix can be split into a 3 × 3 block matrix,

11

rewritten in the following compact form

Fu =

[
Auv Auvw

Awuv Fww

]
(9)

with
Auv =

[
Fuu Fuv

Fvu Fvv

]
, Auvw =

[
Fuw

Fvw

]
and Awvu =

[
Fwu Fwv

]
(10)

The preconditioning studied in our case takes advantage of the block LU decomposition of Eq. (9),
by carefully considering the specific block upper triangular preconditioner given by:

F̃u =

[
Auv Auvw

0 Fww − AwvuA
−1
uvAuvw

]
(11)

where AwvuA
−1
uvAuvw is the exact Schur complement of Fu, which can be rewritten as below by

introducing a new matrix G:
Fww − AwvuA

−1
uvAuvw = Fww

(
I − F−1

wwAwvuA
−1
uvAuvw

)
= Fww (I −G)

(12)

As a result, the direct action of the inverse of F̃u on a standard vector zu = (zu, zv, zw)
T should

be achieved by a backward elementary substitution. This can be achieved by solving two lin-
ear systems and performing a single matrix-vector product. In the corresponding algorithm 1,
approximations of the inverses of Fww (I −G) and Auv are required.

Algorithm 1 Block triangular preconditioner for the velocity block. Approximation of the inverse
of the velocity block F̃u on a vector zu = (zu, zv, zw)

T , the solution vector is ru = (ru, rv, rw)
T ,

with ru =bu, qu, vu, su, wu and t are a sequence of vectors generated at each BiCGStab(2) (for
further details, the reader is referred to algorithm 3 in appendix C).
1: Fww (I −G) rw = zw ▷ Solve
2: Update ruv ←− ruv − Auvwzw with ruv = (ru, rv)

T ▷ Update
3: Auvruv = zuv with zuv = (zu, zv)

T ▷ Solve

In terms of application of the inverse of the block Fww(I − G) to the vector z, it is assumed
that the matrices (I −G) and Fww are invertible, and that the inverse (I −G)−1 can be developed
as an infinite series of expansions of the different terms that are present in the operator (I − G).
Using the following Neumann series expansion [38] and the definition of G (Eq. (12)), it follows
that

(I −G)−1 =
∞∑
k=0

Gk

=
∞∑
k=0

(
F−1
wwAwvuA

−1
uvAuvw

)k (13)

12

Thus, the inverse of the block Fww(I −G) reads:

[Fww(I −G)]−1 =

[
∞∑
k=0

(F−1
wwAwvuA

−1
uvAuvw)

k

]
F−1
ww. (14)

When a single term (order 0) of the infinite series is retained, F̃u from Eq. (11) becomes the
block Gauss-Seidel preconditioner. In the case where Auvw = 0 is assumed , F̃u is a block Jacobi
preconditioner.

In the problem at hand, the matrix from Eq. (14) is obtained by truncating the expansion at
order 0, which leads the following:

[Fww(I −G)]−1 ≃ F−1
ww (15)

When two terms are retained (order 1), a block triangular preconditioner is built:

[Fww(I −G)]−1 ≃
(
I + F−1

wwAwvuA
−1
uvAuvw

)
F−1
ww (16)

Regardless of the truncation order, the inverse of the block Auv is not known explicitly in
Eq. (11). As a consequence, an approximation of this block has to be found. This is done using
the same reasoning as above from Eq. (11) but considering the Auv block defined in Eq. (10) instead
of Fu. To order 0, this reads

Ã(0)
uv =

[
Fuu Fuv

0 Fvv

]
(17)

and to order 1

Ã(1)
uv =

[
Fuu Fuv

0 Fvv − FvuF
−1
uu Fuv

]
(18)

Eventually, the form of our velocity preconditioner at orders 0 and 1 are:

F̃ (0)
u ≈

Fuu Fuv Fuw

0 Fvv Fvw

0 0 Fww

 , F̃ (1)
u ≈

Fuu Fuv Fuw

0 Fvv − FvuF
−1
uu Fuv Fvw

0 0 Fww − AwvuA
−1
uvAuvw

 (19)

The Gauss-Seidel block was found to perform slightly better than the Jacobi block and trian-
gular block preconditioners when compared in 2D simulations of a rising bubble at different CFL
numbers. It was therefore preferred. Finally, no improvement in time-to-solution were obtained
when increasing the order of the approximation.

13

2.3.2 The Schur complement

In the literature, a number of preconditioning techniques for the Schur complements Sp have
been proposed. In the context of Stokes flow, [39] proposed an approach for homogeneous flows.
Later a more sophisticated preconditioner for heterogeneous flows was developed by [40]. In the
context of the incompressible Navier-Stokes equations with constant coefficients, numerous issues
werer met in the construction a good approximation of the Schur complement Sp. [41] suggested
a new technique referred to as LSC (Least Squares Commutator). More recently, [42] have stud-
ied a preconditioner coined PCD (Pressure Convection Diffusion). A few studies have also been
dedicated to two-phase flows at large density and viscosity ratios. The projection preconditioner,
which has been developed by [43] for variable coefficient problems, and adapted by [18], is one
example. In addition, [17] have proposed extensions of the PCD and LSC techniques to two-phase
flows. To improve performances, the PCD preconditioning with suitable scalability are retained in
this work. This preconditioner is given by S−1

p = ŜPCD with

Ŝ−1
PCD = (M (1/µ)

p)−1 + (A(1/ρ)
p)−1(N (1)

p +∆t−1M (1)
p)(M (1)

p)−1 (20)

with the following operators defined for the pressure space discretization

A(1/ρ)
p ϕ =

∫
Ωp(i,j,k)

∇ ·
(
ρ−1∇ϕ

)
dV (21a)

M (1/µ)
p ϕ =

∫
Ωp(i,j,k)

1

µ
dV (21b)

N (1)
p ϕ =

∫
Ωp(i,j,k)

∇ · (uϕ) dV (21c)

(21d)

where M
(1/µ)
p is the diagonal pressure mass matrix scaled by the inverse of the viscosity 1/µ,

M
(1)
p is the diagonal standard pressure mass matrix, N (1)

p represents the convective term in the
pressure space, and A

(1/ρ)
p is the scaled Laplacian that corresponds to the discretization of the term

∇ · (ρ−1∇ϕ). In order to approximate the inverse of the Schur complement Ŝ−1
PCD, the multigrid

solver of HYPRE library [24] is used, for which the action of A(1/ρ)
p is required. This solver was

indeed designed specifically for elliptic equations with variable coefficients. The two diagonal mass
matrices are then inverted, namely (M

(1/µ)
p)−1 and (M

(1)
p)−1, by applying a rescaling to suitable

vectors followed by a matrix-vector product for the operator F (1)
p = N

(1)
p +∆t−1M

(1)
p . Furthermore,

the pressure convection-diffusion preconditioner requires the construction of a Laplacian A
(1/ρ)
p and

a convection-diffusion operator N
(1)
p + ∆t−1M

(1)
p , together with appropriate choices of boundary

conditions (the reader is referred to [44] for more information). In relation to the velocity block, it
requires the resolution of three linear systems, involving velocity blocks Fww, Fvv and Fuu, which

14

are all performed using the aforementioned multigrid solver. These resolutions are completed by
two matrix-vector products and two updates of the right-hand side. The overall algorithm is
summarized in the algorithm 2 presented in appendix C.

Algorithm 2 Representation of the application of the block triangular preconditioner. M
(1/µ)
p is

the diagonal pressure mass matrix scaled by the inverse of the viscosity 1/µ, M (1)
p is the diagonal

standard pressure mass matrix, N
(1)
p represents the standard convective matrix in the pressure

space, A(1/ρ)
p is the scaled Laplacian, which corresponds to the discretization of the term∇·(ρ−1∇ϕ),

and Fp is the convection-diffusion-reaction operator for the momentum equation.

1: SOLVE

Fuu Fuv Fuw BT

pu

0 Fvv Fvw BT
pv

0 0 Fww BT
pw

0 0 0 ŜPCD

ru
rv
rw
rp

 =

zu
zv
zw
zp

2: Approximate the inverse of Schur ŜPCD

3: rp1 = (M
(1)
p)−1zp

4: rp2 = (M
(1/µ)
p)−1zp ▷ Solve

5: rp3 = F
(1)
P rp2 ▷ Matrix-vector product for the operator F

(1)
P

6: A
(1/ρ)
P rp4 = rp3 ▷ Solve Laplace operator

7: rp = rp4+rp1 ▷ Update rp
8: zu = zu −BT

purp ▷ Update zu
9: zv = zv −BT

pvrp ▷ Update zv
10: zw = zw −BT

pwrp ▷ Update zw

11: Approximate the velocity block F̂u

12: rw = F−1
wwzw ▷ Solve

13: r̂uv = Fuwrw + Fvwrw ▷ Matrix-vector product for the operator Fuw and Fvw

14: zuv=zuv−r̂uv ▷ Update
15: rv=F−1

vv zv ▷ Solve
16: r̂u = Fuvrv ▷ Matrix-vector product for the operator Fuv

17: zu = zu − r̂u ▷ Update
18: ru=F−1

uu zu ▷ Solve

3 Fully coupled solver parallelization
The numerical simulation of an unsteady two-phase flow, possibly in turbulent regime, requires

very important resources in terms of mesh size, computational time and memory storage. The
decomposition domain based parallelization of the different steps, resulting from the equations

15

discretization, is essential to achieve calculations on grids with more than a billion points. Indeed,
parallelization has multiple objectives. On the one hand, to obtain reasonable computational
times, ideally inversely proportional to the computational resources. And on the other hand, to
be able to deal with large meshes corresponding to realistic simulations in terms of dimensionless
numbers and of resolution of small-scale phenomena.

Numerical tests have revealed that about 90% of the total CPU time is dedicated to the
linear solver for serial applications. Therefore, the focus for optimization concerns the parallel
algorithmic processing of this specific part of the code, by leveraging the combined use of iterative
solver BiCGStab(2), block and multigrid preconditioners. The solver requires a large number of
matrix-vector multiplications, dot products, linear combinations and several applications of the
multigrid preconditioners. These operations are the most important in terms of execution times.
A domain decomposition approach is used to share the spatial data across processes, using a
Cartesian decomposition of the global mesh, with MPI exchanges across subdomain boundaries.
This parallelization is adapted to massively parallel computers with distributed memory.

3.1 Parallel operations

In the BiCGStab(2) algorithm (see. Algorithm 3), for each iteration, are performed:

• 4 matrix-vector multiplications

The strategy used involves partitioning the rows of the matrix, as well as the vectors between
the processors. Each processor Pi performs locally the product of a block Ai and a vector
Xi. The resulting vector (A×X)i has the dimension of the number of rows of the matrix
Ai. Therefore, no communication is needed in the local computation of the matrix-vector
product, instead, this distribution implements short communication messages before the
beginning of each calculation.

• 9 dot products.

The 9 dot products of this algorithm represent global values using distributed components
of local vectors. Thus, each processor calculates a partial dot product of two corresponding
local vectors by multiplying these two vectors and summing the components of the partial
result. Then each processor sends its partial result to all the others and receives the products
of the other processors that it sums to its own result. Therefore, a global communication is
necessary in this scalar product.

• 9 linear combinations.

Each processor contains a part of each global vector included in the operation Xi ← Xi+αYi,
called local vector. The result vector of the linear combination obtained is also a local vector.
Therefore, no communication is necessary in this operation.

16

• 16 multigrid preconditioner applications, corresponding to 4 multigrid per component (u, v,
w and p).

To apply the preconditioner P which is involved in the BiCGStab(2) algorithm, 20 matrix
subsystems per iteration are needed to be solved. This is satisfied by using the HYPRE paral-
lel computation library, which offers a large choice of interfaces (structured, semi-structured
or algebraic) and multigrid preconditioners (algebraic as BoomerAMG and geometric like
PFMG or SMG). In order to take advantage of the higher efficiency of PFMG, this solution
strategy has been implemented in the code as it reveals to be the most efficient multigrid
solver for our multiphase problems and fully-coupled approach.

3.2 Performance evaluation

The classical approach to qualifying a solver in the high-performance computing domain is to
check its scalability. It allows to evaluate the performance of a parallel solver when the number of
cores is increased. Two metrics, the speed-up S and the efficiency E are defined and two kinds of
scalability achieved within two different contexts are distinguished:

• Strong scalability: for a fixed problem size, the number of processes is increased. Ideally,
one hopes for linear scalability. In the case of an application that performs a large number
of computations, the aim is to find the point at which a reasonable computational time is
achieved but still limits the overhead induced by a parallel process.

The speed-up S(p) is defined as the gain of a parallel computation with p processes compared
to the same algorithm over a number of reference processes pref .

S(p) =
tref
tp

pref (22)

where tref is the time cost for pref processes (note that tref not necessary equals to tseq as
the reference might not be the sequential case), and tp the amount of time to complete the
same unit of work with p processes.

• Weak scalability: both number of processes and problem size are increased proportionately,
such that the quantity of data to be processed per process holds constant. In the case of
ideal weak scalability, a constant execution time of the program should be achieved. This
corresponds to a constant efficiency which is therefore independent of the number of processes.

In this case the speed-up is defined by

S(p) =
tref
tp

p (23)

17

For both cases, the efficiency provides an assessment of the ”performance” of the parallel compu-
tation. In theory it is less than 1, but for superscalar algorithms the efficiency can exceed this
conventional value. The following expression is used to define the efficiency:

E(p) =
S(p)

p
(24)

In this section, the parallel performance of the in-house code Fugu and specifically the new fully-
coupled solver are evaluated. For this purpose, we will consider the strong and weak scalability
of the solver as defined above, by checking the evolution of two criteria: the speed-up and the
efficiency.

The weak and strong scalability tests are performed on the simulation of the liquid-liquid phase
inversion [45, 46], on two French supercomputers: SKL Irene, from CEA’s Very Large Computing
Centre (TGCC) in Bruyères-le-Châtel and for the Jean Zay: HPE SGI 8600 computer from the
Institute for Development and Resources in Intensive Scientific Computing (IDRISS-CNRS). The
number of processors is increased until 12800.

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

S
(p

)

p

ideal
SKL Irene
Jean Zay

(a) S(p)

 0.8

 0.9

 1

 1.1

 1.2

 10 100 1000 10000 100000

E
(p

)

p

ideal
SKL Irene
Jean Zay

(b) E(p)

Figure 3: Strong (filled symbols) scalability on a 138 million scalar cells mesh and weak scalability
(empty ones) on meshes corresponding to 603 × p (from 5 millions up to 1.1 billion scalar cells).

Figure 3 presents the speed-up and efficiency for strong and weak approaches. The previous
definitions (Eqs. (22)-(24)) allow a direct comparison of metrics. Both scalability analysis have
been performed over 30 time iterations of the phase inversion problem tackled in Sec. 4.1 at
fixed residual ε = 10−4 of the iterative solver. Performances have been evaluated using complete
computing nodes, i.e. the number of cores/processors is a multiple of 24 (40) for the SKL Irene
(Jean Zay) supercalculator.

18

First, a good scalability S associated with the fully-coupled solver is obtained (Fig. 3a) with a
speed-up close to the ideal one. No significant differences are visible between the two supercom-
puters.

Thereafter, it can be seen that the code is able to exploit the available computing resources on
these supercomputers. The parallel efficiency E is 96% for a calculation on 6400 cores with 273

cells/core on Jean Zay and 89% for a calculation on 8064 cores with 253 cells/core on Irene. In the
worst case, the weak scalability study (Fig. 3b) shows that the parallel efficiency obtained with
603 cells/core loading does not deteriorate that much when increasing the problem size. Indeed,
the computational overhead is less than 20% up to a 5120 cores on Jean Zay and 3072 cores on
SKL Irene.

4 Applications to physical cases
This part is addressed to the validation of the fully-coupled solver, and more specifically the

numerical methodologies developed, specifically on two-phase flow test cases. Single phase valida-
tions on standard flow problems of the literature have previously been considered in [20] for the
2D fully coupled method. The contribution of the fully-coupled method when tackling complex
problems with high density and viscosity ratio will also be studied.

4.1 Phase inversion between two incompressible liquids

A two-phase flow, water-oil for instance, where one phase is dispersed in another, can correspond
to a phase inversion, i.e., the dispersed phase becoming the continuous phase. This unsteady
phenomenon is then accompanied by several small and large scale interfacial processes, such as
deformation, ligament formation, interface breakdown and coalescence [45].

In this work, a three-dimensional phase inversion case recently studied by [46], is investigated.
In the following, the geometry and the physical parameters of the problem are briefly presented
before a discussion about the numerical results as well as their comparisons with the reference [46].
An initial cubic blob of light liquid, referred to as fluid 1, is placed at a bottom corner of a cubic
box filled with a heavier liquid, called fluid 2. The size of the box is (H,H,H), while the size of
the blob of light fluid is (H/2, H/2, H/2). All box walls are considered as slip walls, so that the
normal components as well as normal derivatives of tangential components are zero. Gravitational
acceleration g is applied in the vertical direction. The dimensionless numbers governing the dy-
namics of this problem are therefore the Reynolds number Re = ρ1HUg/µ1 and the Weber number
We = ρ1HUg

2/σ. The velocity scale used in previous studies [45] is Ug =
√
gH/2(ρ2 − ρ1)/ρ1.

The liquids properties are ρ1 = 1000 kg/m3, ρ2 = 900 kg/m3, µ1 = µ2 = 1 Pa·s, g = −9.81 m/s2
and σ = 0.45 kg/s2. The height H = 1 m, leads to Re = 211 and We = 121.

The macroscopic quantities of interest are defined and widely discussed in [45]. In this paper,

19

the focus is on the enstrophy time evolution. Concerning the numerical parameters, the simula-
tions are carried out on four grid ranging from 1283 to 10243 cells. The residual of the iterative
BiCGStab(2) solver is initially fixed to ε = 10−5. As far as the time derivatives, a constant time
step ∆t = 10−3 s is chosen, and a time corresponding to 10s of the flow motion is crossed. For the
smaller mesh 10243, it should be noted that the simulations were performed on 6696 processors of
the HPC Occigen cluster of CINES and have taken about 125h of computing time.

Before discussions about the numerical properties of the simulations, it should be noted that
all quantities of interest (kinetic and potential energy, enstrophy, volume of light fluid in the top
of the cavity) defined in [45] well converge, for all times, through the references solution from a
mesh size of 2563 (see D).

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9

e
n
s
tr

o
p
h
y
 (

m
3
/s

)

time (s)

fluid-1 ref.
fluid-2 ref.

 4

 5

 6

 3.5 4 4.5 5

(a)

 5.75

 5.8125

 5.875

 5.9375

 6

 6.0625

 3 3.1 3.2 3.3 3.4 3.5

e
n
s
tr

o
p
h
y
 (

m
3
/s

)

time (s)

fluid-1 ref.
∆t = 1.10

-3
, CPU=10.09h

∆t = 2.10
-3

, CPU=7.28h
∆t = 4.10

-3
, CPU=4.25h

(b)

 5.75

 5.8125

 5.875

 5.9375

 6

 6.0625

 3 3.1 3.2 3.3 3.4 3.5

e
n
s
tr

o
p
h
y
 (

m
3
/s

)

time (s)

fluid-1 ref.
ε = 1.10

-3
, CPU=10.09h

ε = 1.10
-2

, CPU=6.80h
ε = 5.10

-2
, CPU=4.60h

(c)

Figure 4: 4a Enstrophy in fluid 1 and 2. 4b Enstrophy in fluid 1 for various time steps. 4c
Enstrophy in fluid 1 for various residuals.

Figure 4 presents the time evolution of the enstrophy integrated for both fluids over the whole
domain. Results are compared with those of [46].

Figure 4b shows effect of the time step on the enstrophy solution near the first peak. With a
fixed residual, ε = 10−3, and a reference time step ∆t = 10−3 s, the computational cost is reduced
by almost 30% with a time step ∆t/2 and about 60% with ∆t/4. On this range of time steps, the
obtained peak intensity varies less than 1%.

A similar study is presented in Fig. 4c for the residual values. The time step is fixed, ∆t =
10−3 s. The initial residual is ε0 = 10−3. With a 10 times larger value of residual, ε = 10ε0, the
computational cost is reduced by 30% and by 50% with a residual threshold ε = 50ε0. On the
plotted interval, the difference between simulations are about 2 while a robust 1% difference is
again observed from the reference solution [46].

4.2 3D rising bubble

This first case is based on a numerical benchmark [47] investigating rising bubbles in a liquid
column. The studied cases allow to evaluate the robustness of the complete algorithm when the

20

interface is in motion and undergoes relatively large deformations. The authors [47] compare
different solutions of two configurations, achieved using numerical codes developed by different
teams. Three groups participated in these two test cases: group 1 (IGPM, RWTH Aachen)
with the DROPS code Finite element/Level-set, group 2 (INS, University of Bonn) with the code
NaSt3D finite difference/Level set, and group 3 with the code OpenFOAM finite volume/VOF. A
qualitative analysis of the characteristic parameters of the rising bubble, such as the time evolution
of the centre of mass or the rising velocity of the bubble, allowed the authors to establish reference
solutions for chosen parameters. Here are compared the simulation results with the reference
solutions from [47]1.

A brief description of the problem set-up and characteristics is presented. Initially, a bubble of
radius R0 = 0.25 m and centre (0.5 m, 0.5 m, 0.5 m) is set up inside a rectangular tank of dimensions
[0, 1]× [0, 1]× [0.2] m3. Under the effect of buoyancy force, the bubble rises in the z-direction. The
bubble density, ρ2, is lower than that of the surrounding liquid (ρ1). No slip boundary conditions
at the walls is assumed, i.e., u = 0 on all boundaries. The dimensionless numbers of this flow
are the Reynolds number Re = ρ1UgD/µ1, and the Eötvös number Eo = ρ1Ug

2D/σ yielding the
ratio between gravitational forces and surface tension effects. The terms ρ1 and µ1 are the density
and viscosity of the carrier fluid, D the bubble diameter, Ug =

√
gD the gravitational velocity

and σ the surface tension coefficient. In both tackled configurations, the evolution of the bubble
is studied over 3s. Table 1 gives the physical properties and dimensionless parameters associated
with the two configurations.

Case ρ1 (kg/m3) ρ1/ρ2 µ1 (Pa·s) µ1/µ2 g (m/s2) σ (N/m2) Re Eo
1 1000 10 10 10 0.981 24.5 35 10
2 1000 1000 10 100 0.981 1.96 35 125

Table 1: Physical parameters describing the test cases. Here, ρ2 and µ2 refers to the fluid density
and viscosity respectively inside the bubble whereas ρ1 and µ1 are related to the density and
viscosity of the surrounding fluid. Also, g is the magnitude of the gravity acceleration and σ is the
surface tension coefficient.

For the qualitative analysis of the results, the following characteristics are studied: the barycen-
ter xc of the bubble and the rise velocity uc. Note that these quantity definitions can be found
in [47]. to validate our solver, we have defined a reference solution on a fine mesh according to
literature reference [47].

For both test cases, the simulations were carried out on three grids with a mesh size h = 1/32,
1/64 and 1/128 and time step size ∆t = 10−3 s. Our reference solution is defined as the one
achieved on the finest grid 128 × 128 × 256, i.e. h = 1/128 with the fully-coupled solver. It will

1The references data of all quantities of interest are available on the website: http://wissrech.ins.uni-bonn.
de/research/projects/risingbubblebenchmark.

21

http://wissrech.ins.uni-bonn.de/research/projects/risingbubblebenchmark
http://wissrech.ins.uni-bonn.de/research/projects/risingbubblebenchmark

be further compared with those of the three groups from the benchmark. It should be noted that
the reference solution of the first group (with DROPS code) is provided on a regular initial grid
containing 4× 8× 4 cells, each being subdivided into 6 tetrahedra. This grid is then dynamically
refined near the interface, leading to a mesh size of h = 1/32 within the refinement zone. The
time step size ∆t = 2.5 × 10−4 s. The results of the second group (NaSt3DGPF) is achieved
with 121 × 121 × 241 grid cells and time step size ∆t = 10−4 s. Lastly, group 3 (OpenFOAM)
has constructed a reference solution on a regular grid with 128 × 128 × 256 cells and a time step
∆t = 10−4 s.

Test case 1

The simulations of the rising bubble obtained at instant t = 2 s and t = 3 s are shown in Fig. 5.
It can be observed that the overall shape of the bubble is similar with the fully-coupled approach
to that of others groups. Indeed, as for the references, the bubble reaches a stable ellipsoidal shape
by extending itself in directions perpendicular to the flow. Time evolution of the rising velocity

(a) DROPS (b) NaSt3D (c) OpenFOAM (d) present work

Figure 5: Bubble rise for test case 1. The iso value C = 0.5 of colour function is plotted at times
t = 3 s (first row) and t = 2 s (second row) from different codes. Snapshots a, b and c are
extracted from [47].

are shown in figure 6a

22

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.5 1 1.5 2 2.5 3

ri
s
e

 w
-v

e
lo

c
it
y
 (

m
/s

)

time (s)

NaSt3D
DROPS

OpenFOAM
h = 1/32
h = 1/64

h = 1/128
 0.3375

 0.35

 0.3625

 0.75 1 1.25

(a) rise velocity

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0 0.5 1 1.5 2 2.5 3

z
-c

e
n

te
r

o
f

m
a

s
s
 (

m
)

time (s)

NaSt3D
DROPS

OpenFOAM
h = 1/32
h = 1/64

h = 1/128

 0.9

 1

 1.1

 1.4 1.5 1.6 1.7 1.8

(b) center of mass position

Figure 6: Test case 1. a Rise velocity w-component as un function of time. b Center of mass
position. Plain lines stand for the present work while symbols refer to benchmark results [47] from
different codes.

for different grid refinements. Also, the state of the simulation between 0.75 s and 1.25 s is
visualized in a zoomed extracted in Fig. 6a. It can be concluded that a very nice convergence of the
solutions is obtained for the fully-coupled solver from grid h = 1/32. Furthermore, the solutions
provide results in good agreement with those of the DROPS and NaSt3D codes. Furthermore, in
the final part of the simulation, significant differences are noted between the fully-coupled solver
and the OpenFOAM code. With respect to the evolution of the position of the centre of mass,
we can clearly see in Figs. 6b that the solutions converge from the grid h = 1/32, they are in
accordance with the references. It has to be noticed that with the fully coupled solver, solutions
equivalent to other teams have been obtained by using larger time steps, which is a nice feature
of the fully coupled approach.

Test case 2

This test was also carried out on grids with a mesh size h = 1/32, 1/64 and 1/128 and time step
size ∆t = 10−3 s. As for the reference solutions, the same numerical parameters are used as in the
previous case. According to the diagram of [48], the bubble in test 2 is in a dimpled ellipsoidal-cap
regime where its shape can be strongly deformed with the interface dug in its wake. This is in
particular due to the value of the surface tension that is lower than in test case 1. In Figure 7,
the evolution of the interface of test 2 is reported at t = 2 s and t = 3 s. The numerical shapes
corresponding to C = 0.5 iso-surface correlates well with experimental result predicted by the
diagram of [48]. As illustrated in this figure, the fully-coupled solver provides results comparable
to the one of the benchmark. In fact, in the resolved regions of the bubble, the overall shape of
the bubble is converged as for the other groups in the benchmark. However, the bubble shapes

23

strongly differ at the bottom edge between the codes. The rising velocity over time is visualized

(a) DROPS (b) NaSt3D (c) OpenFOAM (d) present work

Figure 7: Same as Fig. 5 for test case 2.

in Figures 8b and 8a. We notice that all the codes have a velocity peak which is of the order of
0.37 at t = 0.5. After this time, the bubble velocity decreases to reach a steady state. Also, our
simulations are in better agreement with the results of DROPS and OpenFOAM codes than the
simulations of NaSt3D code. Finally, Fig. 8a shows the evolution of the barycenter of the bubble.
Here, the numerical results show good agreement between all codes with less sensitivity of the
results regarding the numerical approaches. On a global point of view, the Fugu solver has been
favourably compared to the results of benchmark [47], by suing larger time steps, which validates
the accuracy and the physical relevancy of the fully-coupled solver.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.5 1 1.5 2 2.5 3

ri
s
e

 w
-v

e
lo

c
it
y
 (

m
/s

)

time (s)

NaSt3D
DROPS

OpenFOAM
h = 1/32
h = 1/64

h = 1/128
 0.3

 0.325

 0.35

 0.375

 0.4 0.6 0.8

(a) rise velocity

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0 0.5 1 1.5 2 2.5 3

z
-c

e
n

te
r

o
f

m
a

s
s
 (

m
)

time (s)

NaSt3D
DROPS

OpenFOAM
h = 1/32
h = 1/64

h = 1/128

 0.9

 1

 1.1

 1.4 1.5 1.6 1.7 1.8

(b) center of mass position

Figure 8: Same as Fig. 6 for test case 2.

24

4.3 Free fall of a dense sphere

The free fall of a dense sphere in air may seem like a simple process at first sight. However,
predicting the behaviour of this two-phase system perfectly is not easy on a numerical point of view.
Indeed, the high density and viscosity ratios lead to ill-conditioned linear systems and difficulties
in solving issues. Consequently, this test case has a great interest to us for two reasons. On the
one hand, it allows checking whether the resolution is robust, when complex unsteady two-phases
problems are undertaken, in which density and viscosity ratio may exceed 106. On the other hand,
since the exact solution of the falling velocity (wc = −gt m/s in a void medium) and center of
mass (zc = −gt2/2+ z0 m) are known, thereafter we can evaluate the accuracy of the fully-coupled
solver.

The initial configuration consists of highly viscous liquid droplet of radius r = 0.0125 m, density
ρ = ρ2 and dynamic viscosity µ = µ2 which is released without initial velocity in air. Gravity is
set at g = −9.81 m/s−2 in the z-direction, while the surface tension coefficient σ is set to zero.
The sphere is centered at (x0, y0, z0) = (0.05 m, 0.05 m, 0.15 m) in a parallelepipedic cavity full
of air whose density and viscosity are ρ = ρ1 and µ = µ1 respectively. The cavity is 0.2 m high,
0.1 m long and 0.1 m wide.

Concerning the numerical parameters, the simulations are carried out on a Cartesian grid
containing 128 × 128 × 256 cells, with a residual of ε = 10−4 for the BiCGStab(2). As far
as the time derivatives, a constant time step ∆t = 1 × 10−4 s is chosen, and 1500 time steps are
computed, corresponding to 0.15 second of the flow motion. It has to be noted that the simulation
were performed on 144 processors of the HPC cluster Occigen of CINES and required about 5h
of computing time. The physical parameters for the test case are ρ1 = 1 kg/m3, µ1 = 1 Pa·s,
ρ2/ρ1 = µ2/µ1 = 106 and g = −9.81 m/s2.

As in the case of the rising bubble, the qualitative analysis of the results is focused on the
barycenter xc of the bubble and the rise velocity uc. The simulation results of the fully-coupled
solver after 1500 time iterations are illustrated in Fig. 9. The corresponding colour function at
the interface, vertical velocity and vorticity magnitude are presented. It can be seen that the
fully coupled solver accurately predicts the fall of the sphere {by conserving the spherical shape of
the solid when neglecting the drag force. Unquestionably, the computation shows that the strain
rate tensor inside the ball vanishes as ∥∇ · ¯̄T∥ = O(µ1/µ2). The Figs. (10a and 10b) reports the
evolution over time of the position of the falling velocity and the centre of mass of the sphere,
obtained by the fully-coupled solver when the reference grid 128× 128× 256 is considered as well
as the corresponding analytical solutions. The numerical solution is in good agreement with the
reference solution.

25

(a) phase function C (b) ∥u∥ (c) ∥∇ × u∥

Figure 9: Numerical simulation of a free fall of dense sphere at t = 0.144 s, obtained on a fine
mesh 128× 128× 256, by the fully coupled solver. The different fields presented in each row are:
left color function, middle: velocity magnitude and right: vorticity magnitude.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

fa
lli

n
g

 z
-v

e
lo

c
it
y

(m
/s

)

time (s)

Exact solution
h=1/128

(a)

-1.5

-1.25

-1

-0.75

-0.5

-0.25

 0

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

fa
lli

n
g

 z
-v

e
lo

c
it
y

(m
/s

)

time (s)

Exact solution
h=1/128

(b)

Figure 10: Vertical velocity and center of mass for test case 1 (ρ1/ρ2 = µ1/µ2 = 106) obtained by
the fully coupled method with several meshes. (a) Vertical velocity and (b) center of mass.

26

5 Conclusions
An original fully-coupled solver has been presented for computing three-dimensional unsteady

and incompressible two phase flows, in which the velocity-pressure coupling is kept at each time
step. The tracking of the interface has been modelled by solving an advection equation of phase
function by means of conservative VOF scheme. The Navier-Stokes equations have been success-
fully solved using our new fully-coupled solver thanks to the development of new block precondi-
tioning techniques for the velocity block. The latter has been done by means of an infinite series
development of the different terms of the velocity block. Further, we have demonstrated the ability
of the solver to deal with complex cases, for high density and viscosity ratios, such as the case of
the free fall of dense sphere or the rising bubble in a liquid column. In addition, we have shown
that the fully-coupled solver is able to resolve two-phase problems on more than 1 billions cells,
with excellent scalability.

Declaration of competing interest
The authors have no competing interest to declare regarding the publication of this article.

Acknowledgements
We are grateful for access to the computational facilities of the French CINES (National

computing center for higher education) and TGCC granted by GENCI under project numbers
A0112b06115. We thank the technical and administrative teams of these supercomputer centers
and agencies for their kind and efficient help.

27

A Discretization with finite volumes in Fugu code

A.1 Convective term

One recalls the convective term in Eq. (3a), with a first order time discretization, and integrated
over the control volume Ω, bounded by the surface Σ:∫

Ω

∇ · (ρu⊗ u) dV =

∫
Σ

ρulumnm dS (25)

The discretization on the 3D staggered mesh of the convective term is performed with a centered
scheme in a semi-implicit way. It is written for the velocity component u:

(25) ≈ ρi,j,k

(
un
i,j,k + un

i+1,j,k

2

un+1
i,j,k + un+1

i+1,j,k

2
−

un
i−1,j,k + un

i,j,k

2

un+1
i−1,j,k + un+1

i,j,k

2

)
∆y∆z

+ρi,j,k

(
vni,j,k + vni,j+1,k

2

un+1
i,j,k + un+1

i,j+1,k

2
−

vni,j−1,k + vni,j,k
2

un+1
i,j−1,k + un+1

i,j,k

2

)
∆x∆z

+ρi,j,k

(
wn

i,j,k + wn
i,j,k+1

2

un+1
i,j,k + un+1

i,j,k+1

2
−

wn
i,j,k−1 + wn

i,j,k

2

un+1
i,j,k−1 + un+1

i,j,k

2

)
∆x∆y

(26)

with ∆x, ∆y and ∆z the sizes of the parallelepipedic control volume in the x-, y- and z-direction,
respectively.

A.2 Viscous terms

The viscous stress tensor is decomposed as Tlm = κΛlm+ζΞlm−ηΓlm where Λ, Ξ and Γ tensors
are defined in [49]. The coefficient κ, ζ and η are elongational, shear and rotational viscosities.
They are linked to the dynamical viscosity by κ = ζ = 2µ and η = µ. Tensors Λ, Ξ and Γ
respectively read

Λ =

∂u
∂x

0 0
0 ∂v

∂y
0

0 0 ∂w
∂z

 , Ξ =

 0 ∂u
∂y

∂u
∂z

∂v
∂x

0 ∂v
∂z

∂w
∂x

∂w
∂y

0

 , Γ =

 0 ∂u
∂y
− ∂v

∂x
∂u
∂z
− ∂w

∂x
∂v
∂x
− ∂u

∂y
0 ∂v

∂z
− ∂w

∂y
∂w
∂x
− ∂u

∂z
∂w
∂y
− ∂v

∂z
0

 (27)

The viscous operator is approximated implicitly using standard second-order, centered finite-
differences. It is written explicitly for the u-velocity component:

A.2.1 Elongation viscosity (κΛlm),m, u-component

∫
∂

∂x

(
κ
∂u

∂x

)
dV ≈

(
κi+ 1

2
,j,k

un+1
i+1,j,k − un+1

i,j,k

∆x
− κi− 1

2
,j,k

un+1
i,j,k − un+1

i−1,j,k

∆x

)
∆y∆z (28)

28

A.2.2 Shear viscosity (ζΞlm),m, u-component

∫
∂

∂y

(
ζ
∂u

∂y

)
+

∂

∂z

(
ζ
∂u

∂z

)
dV ≈

(
ζi,j+ 1

2
,k

un+1
i,j+1,k − un+1

i,j,k

∆y
− ζi,j− 1

2
,k

un+1
i,j,k − un+1

i,j−1,k

∆y

)
∆x∆z

+

(
ζi,j,k+ 1

2

un+1
i,j,k+1 − un+1

i,j,k

∆z
− ζi,j,k− 1

2

un+1
i,j,k − un+1

i,j,k−1

∆z

)
∆x∆y

(29)

A.2.3 Rotational viscosity (−ηΓlm),m, u-component

∫
∂

∂y

(
−η∂u

∂y
+ η

∂v

∂x

)
+

∂

∂z

(
−η∂u

∂z
+ η

∂w

∂x

)
dV

≈

(
−ηi,j+ 1

2
,k

un+1
i,j+1,k − un+1

i,j,k

∆y
+ ηi− 1

2
,j+1,k

vn+1
i,j+1,k − vn+1

i−1,j+1,k

∆x

)
∆x∆z

+

(
ηi,j− 1

2
,k

un+1
i,j,k − un+1

i,j−1,k

∆y
− ηi− 1

2
,j,k

vn+1
i,j,k − vn+1

i−1,j,k

∆x

)
∆x∆z

+

(
−ηi,j,k+ 1

2

un+1
i,j,k+1 − un+1

i,j,k

∆z
+ ηi− 1

2
,j,k+1

wn+1
i,j,k+1 − wn+1

i−1,j,k+1

∆x

)
∆x∆y

+

(
ηi,j,k− 1

2

un+1
i,j,k − un+1

i,j,k−1

∆z
− ηi− 1

2
,j,k

wn+1
i,j,k − wn+1

i−1,j,k

∆x

)
∆x∆y

(30)

A.3 Pressure gradient ∇p, u-component

For the horizontal velocity component u, the pressure gradient is discretized as follows:∫
∂pn+1

∂x
dV ≈

pn+1
i+ 1

2
,j,k
− pn+1

i− 1
2
,j,k

∆x
∆x∆y∆z (31)

29

A.4 Divergence ∇ · un+1 of the velocity field

The divergence∇·u of the velocity field un+1 = (un+1, vn+1, wn+1)T is approximated at pressure
cell centers by ∫

∇ · un+1dV =

∫
un+1 · n dS ≈

(
un+1
i+ 1

2
,j,k
− un+1

i− 1
2
,j,k

)
∆y∆z

+
(
vn+1
i,j+ 1

2
,k
− vn+1

i,j− 1
2
,k

)
∆x∆z

+
(
wn+1

i,j,k+ 1
2

− wn+1
i,j,k− 1

2

)
∆x∆y

(32)

B Physical boundary conditions
To complete the one-fluid formulation, the boundary conditions of the fluid domain are imposed

via the penalty term ¯̄B·(f(u)− u∞) on Γ = ∂Ω. Boundary conditions such as Dirichlet or Neumann
can be enforced on the domain borders. Since the physical boundaries of the fluid domain coincide
with the nodes of the scalar meshes, it is no longer the variable un+1 that has to be penalised, but
a function f (un+1) of this variable. where

¯̄B =

αu 0 0
0 αv 0
0 0 αw

 (33)

is a tensor field whose diagonal components tend to infinity along the boundary Γ and are identically
zero inside the fluid domain Ω. Here, f(un+1) is a discrete function of un+1, vn+1 and wn+1 , which
is written as a linear combination of resolved velocities un+1

i,j,k , v
n+1
i,j,k , wn+1

i,j,k and their neighbors:

f(u) = a0u
n+1
i,j,k + a1u

n+1
i−1,j,k + a2u

n+1
i+1,j,k + a3u

n+1
i,j−1,k + a4u

n+1
i,j+1,k + a5u

n+1
i,j,k−1 + a6u

n+1
i,j,k+1 (34)

f(v) = a0v
n+1
i,j,k + a1v

n+1
i−1,j,k + a2v

n+1
i+1,j,k + a3v

n+1
i,j−1,k + a4v

n+1
i,j+1,k + a5v

n+1
i,j,k−1 + a6v

n+1
i,j,k+1, (35)

f(w) = a0w
n+1
i,j,k + a1w

n+1
i−1,j,k + a2w

n+1
i+1,j,k + a3w

n+1
i,j−1,k + a4w

n+1
i,j+1,k + a5w

n+1
i,j,k−1 + a6w

n+1
i,j,k+1. (36)

The treatment of the Dirichlet boundary conditions, applied to the left boundary for example
is controlled by the coefficients ai which are then set to the following values: a0 = a2 = 1

2
and

a1 = a3 = a4 = a5 = a6 = 0. Thus, for u-component of the velocity, the discrete momentum
equation on the left boundary becomes:

NS(un+1
i,j,k) + αu

(
1

2
un+1
i,j,k +

1

2
un+1
i+1,j,k − u∞

)
= 0. (37)

where NS refers to the momentum conservation of the Navier-Stokes equations.

30

31

C Algorithms

C.1 Iterative solver general structure

Algorithm 3 Solving strategy with BiCGStab(2) solver assuming preconditioner P is known.
1: procedure Initialisation
2: k = 0 k ∈ N+, ▷ iteration number
3: b = P−1b ▷ Precond is applied on r.h.s.
4: z = Ax(0) ▷ x(0) ∈ R is an initial guess
5: q = P−1z
6: r(0) = b− q ▷ Initial residual of the preconditioned system
7: r̃ = r(0) ▷ r̃ is an arbitrary vector, such that r̃ · r(0) ̸= 0
8: ξ0 = ω2 = 1; α = 0; u = 0
9: end procedure

10: while ∥r(k)∥2

∥r(0)∥2
> ε do

11: k = k + 1
12: ξ0 = −ω2ξ0

Even step
13: ξ1 = r̃ · r(k−1); β = αξ1/ξ0; ξ0 = ξ1 ▷ dot product #1
14: z = Au ▷ matrix-vector #1
15: v = P−1z ▷ preconditionner #1
16: γ = r̃ · v; α = ξ/γ ▷ dot product #2
17: r(k) = r(k−1) − αv ▷ linear combination #1
18: z = Ar(k) ▷ matrix-vector #2
19: s = P−1z ▷ preconditionner #2
20: x(k) = x(k−1) + αu ▷ linear combination #2

Odd step
21: ξ1 = r̃ · s; β = αξ1/ξ0 ▷ dot product #3
22: v = s− βv ▷ linear combination #3
23: z = Av ▷ matrix-vector #3
24: w = P−1z ▷ preconditionner #3
25: γ = r̃ ·w; α = ξ0/γ ▷ dot product #4
26: u = r(k) − βu ▷ linear combination #4
27: r(k) = r(k) − αv ▷ linear combination#5
28: s = s− αw ▷ linear combination #6
29: z = As ▷ matrix-vector #4
30: t = P−1z ▷ preconditionner #4

Generalized conjugate gradient part
31: ω1 = r(k) · s ▷ dot product #5
32: λ = s · s ▷ dot product#6
33: ν = s · t ▷ dot product#7
34: τ = t · t ▷ dot product#8
35: ω2 = r(k) · t ▷ dot product #9
36: τ = τ − ν2/λ; ω2 = (ω2 − νω1/λ)/τ ; ω1 = (ω1 − νω2)/λ
37: x(k) = x(k) + ω1r

(k) + ω2s+ αu ▷ linear combination #7
38: r(k) = r(k) − ω1s− ω2t ▷ linear combination #8
39: u = u− ω1v − ω2w ▷ linear combination #9
40: end while 32

D Phase inversion results

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

E
K

1

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

Saeedipour et al 512
3

(a) Kinetic energy in fluid 1

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

E
K

2
time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

Saeedipour et al 512
3

(b) Kinetic energy in fluid 2

 3800

 3900

 4000

 4100

 4200

 4300

 4400

 4500

 4600

 0 2 4 6 8 10

E
P

1

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

Saeedipour et al 512
3

(c) Potential energy in fluid 1

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10

E
P

2

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

Saeedipour et al 512
3

(d) Potential energy in fluid 2

33

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

E
N

S
1

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

Saeedipour et al 512
3

(a) Enstrophy in fluid 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10

E
N

S
2

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

Saeedipour et al 512
3

(b) Enstrophy in fluid 2

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

In
te

rf
a

c
ia

l
a

re
a

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

Saeedipour et al 512
3

(c) Interfacial area

0.12496

0.12497

0.12498

0.12499

0.12500

0.12501

0.12502

0.12503

0.12504

 0 2 4 6 8 10

V
O

L

time (s)

 FC grid 128
3

FC grid 256
3

FC grid 512
3

FC grid 1024
3

(d) Mass conservation

34

References
[1] J. J. Dongarra, I. S. Duff, D. C. Sorensen, H. A. Van der Vorst, Numerical linear algebra for

high-performance computers, SIAM, 1998.

[2] S. Fleau, S. Mimouni, N. Mérigoux, S. Vincent, Validation of a multifield approach for the
simulations of two-phase flows, Computational Thermal Sciences: An International Journal
7 (5-6) (2015).

[3] G. Davy, E. Reyssat, S. Vincent, S. Mimouni, Euler–euler simulations of condensing two-
phase flows in mini-channel: Combination of a sub-grid approach and an interface capturing
approach, International Journal of Multiphase Flow 149 (2022) 103964.

[4] P. Lubin, S. Vincent, S. Abadie, J.-P. Caltagirone, Three-dimensional large eddy simulation
of air entrainment under plunging breaking waves, Coastal engineering 53 (8) (2006) 631–655.

[5] G. C. Agbangla, P. Bacchin, E. Climent, Collective dynamics of flowing colloids during pore
clogging, Soft Matter 10 (33) (2014) 6303–6315.

[6] A. Ozel, J. B. de Motta, M. Abbas, P. Fede, O. Masbernat, S. Vincent, J.-L. Estivalezes,
O. Simonin, Particle resolved direct numerical simulation of a liquid–solid fluidized bed: com-
parison with experimental data, International Journal of Multiphase Flow 89 (2017) 228–240.

[7] D. Lacanette, S. Vincent, E. Arquis, P. Gardin, Numerical simulation of gas-jet wiping in
steel strip galvanizing process, ISIJ international 45 (2) (2005) 214–220.

[8] S. Vincent, G. Balmigere, C. Caruyer, E. Meillot, J.-P. Caltagirone, Contribution to the
modeling of the interaction between a plasma flow and a liquid jet, Surface and Coatings
Technology 203 (15) (2009) 2162–2171.

[9] R. F. Cerqueira, E. E. Paladino, F. Evrard, F. Denner, B. van Wachem, Multiscale modeling
and validation of the flow around taylor bubbles surrounded with small dispersed bubbles using
a coupled vof-dbm approach, International Journal of Multiphase Flow 141 (2021) 103673.

[10] S. Vincent, A. Sarthou, J.-P. Caltagirone, F. Sonilhac, P. Février, C. Mignot, G. Pianet,
Augmented lagrangian and penalty methods for the simulation of two-phase flows interacting
with moving solids. application to hydroplaning flows interacting with real tire tread patterns,
Journal of computational physics 230 (4) (2011) 956–983.

[11] M. Ishii, T. Hibiki, Thermo-fluid dynamics of two-phase flow, Springer Science & Business
Media, 2010.

35

[12] D. A. Drew, S. L. Passman, Theory of multicomponent fluids, Vol. 135, Springer Science &
Business Media, 2006.

[13] G. Tryggvason, R. Scardovelli, S. Zaleski, Direct numerical simulations of gas–liquid multi-
phase flows, Cambridge university press, 2011.

[14] A. J. Chorin, Numerical solution of the navier-stokes equations, Mathematics of computation
22 (104) (1968) 745–762.

[15] J.-L. Guermond, Remarques sur les méthodes de projection pour l’approximation des équa-
tions de navier–stokes, Numerische Mathematik 67 (4) (1994) 465–473.

[16] J.-L. Guermond, P. Minev, J. Shen, An overview of projection methods for incompressible
flows, Computer methods in applied mechanics and engineering 195 (44-47) (2006) 6011–6045.

[17] N. Bootland, A. Bentley, C. Kees, A. Wathen, Preconditioners for two-phase incompressible
navier–stokes flow, SIAM Journal on Scientific Computing 41 (4) (2019) B843–B869.

[18] N. Nangia, B. E. Griffith, N. A. Patankar, A. P. S. Bhalla, A robust incompressible navier-
stokes solver for high density ratio multiphase flows, Journal of Computational Physics 390
(2019) 548–594.

[19] M. El Ouafa, S. Vincent, V. Le Chenadec, Monolithic solvers for incompressible two-phase
flows at large density and viscosity ratios, Fluids 6 (1) (2021) 23.

[20] M. El Ouafa, S. Vincent, V. Le Chenadec, Navier-stokes solvers for incompressible single- and
two-phase flows, Communications in Computational Physics 29 (4) (2021) 1213–1245.

[21] M. El Ouafa, Développement d’un solveur tout-couplé parallèle 3d pour la simulation des
écoulements diphasiques incompressibles à forts rapports de viscosités et de masses volu-
miques, Ph.D. thesis, Université Gustave Eiffel (12 2022). doi:10.13140/RG.2.2.29047.
91040.

[22] M. Fortin, R. Glowinski, Augmented Lagrangian methods: applications to the numerical
solution of boundary-value problems, Elsevier, 2000.

[23] S. Vincent, J.-P. Caltagirone, P. Lubin, T. N. Randrianarivelo, An adaptative augmented
lagrangian method for three-dimensional multimaterial flows, Computers & fluids 33 (10)
(2004) 1273–1289.

[24] R. D. Falgout, U. M. Yang, hypre: A library of high performance preconditioners, in: Inter-
national Conference on computational science, Springer, 2002, pp. 632–641.

36

https://doi.org/10.13140/RG.2.2.29047.91040
https://doi.org/10.13140/RG.2.2.29047.91040

[25] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous multifrontal solver
using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications
23 (1) (2001) 15–41.

[26] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, T. Mary, Performance and scalability of the
block low-rank multifrontal factorization on multicore architectures, ACM Transactions on
Mathematical Software (TOMS) 45 (1) (2019) 1–26.

[27] H. Kotakemori, H. Hasegawa, A. Nishida, Performance evaluation of a parallel iterative
method library using openmp, in: Eighth International Conference on High-Performance
Computing in Asia-Pacific Region (HPCASIA’05), IEEE, 2005, pp. 5–pp.

[28] I. Kataoka, Local instant formulation of two-phase flow, International Journal of Multiphase
Flow 12 (5) (1986) 745–758.

[29] J. U. Brackbill, D. B. Kothe, C. Zemach, A continuum method for modeling surface tension,
Journal of computational physics 100 (2) (1992) 335–354.

[30] P. Angot, C.-H. Bruneau, P. Fabrie, A penalization method to take into account obstacles in
incompressible viscous flows, Numerische Mathematik 81 (4) (1999) 497–520.

[31] G. D. Weymouth, D. K.-P. Yue, Conservative volume-of-fluid method for free-surface simula-
tions on cartesian-grids, Journal of Computational Physics 229 (8) (2010) 2853–2865.

[32] F. H. Harlow, J. E. Welch, Numerical calculation of time-dependent viscous incompressible
flow of fluid with free surface, The physics of fluids 8 (12) (1965) 2182–2189.

[33] S. V. Patankar, Numerical heat transfer and fluid flow, CRC press, 2018.

[34] C. Hirsch, Numerical computation of internal and external flows: The fundamentals of com-
putational fluid dynamics, Elsevier, 2007.

[35] X. S. Li, J. W. Demmel, Super lu-dist: A scalable distributed-memory sparse direct solver
for unsymmetric linear systems, ACM Trans. Math. Softw. 29 (2) (2003) 110–140. doi:
10.1145/779359.779361.
URL https://doi.org/10.1145/779359.779361

[36] S. Vincent, Contribution à la modélisation et à la simulation numérique d’écoulements
diphasiques de fluides non miscibles, Ph.D. thesis, Habilitation à Diriger des Recherches de
l’Université Bordeaux 1 (2010).

37

https://doi.org/10.1145/779359.779361
https://doi.org/10.1145/779359.779361
https://doi.org/10.1145/779359.779361
https://doi.org/10.1145/779359.779361
https://doi.org/10.1145/779359.779361

[37] H. Elman, D. Silvester, A. Wathen, Finite Elements and Fast Iterative Solvers: with Ap-
plications in Incompressible Fluid Dynamics, Oxford University Press, 2014. doi:10.1093/
acprof:oso/9780199678792.001.0001.
URL https://doi.org/10.1093/acprof:oso/9780199678792.001.0001

[38] K. S. Miller, On the inverse of the sum of matrices, Mathematics magazine 54 (2) (1981)
67–72.

[39] H. Elman, D. Silvester, Fast nonsymmetric iterations and preconditioning for navier–stokes
equations, SIAM Journal on Scientific Computing 17 (1) (1996) 33–46.

[40] J. Cahouet, J.-P. Chabard, Some fast 3d finite element solvers for the generalized stokes
problem, International Journal for Numerical Methods in Fluids 8 (8) (1988) 869–895.

[41] H. C. Elman, Preconditioning for the steady-state navier–stokes equations with low viscosity,
SIAM Journal on Scientific Computing 20 (4) (1999) 1299–1316.

[42] D. Kay, D. Loghin, A. Wathen, A preconditioner for the steady-state navier–stokes equations,
SIAM Journal on Scientific Computing 24 (1) (2002) 237–256.

[43] M. Cai, A. Nonaka, J. B. Bell, B. E. Griffith, A. Donev, Efficient variable-coefficient finite-
volume stokes solvers, Communications in Computational Physics 16 (5) (2014) 1263–1297.

[44] H. C. Elman, R. S. Tuminaro, Boundary conditions in approximate commutator precondition-
ers for the navier-stokes equations, Electronic Transactions on Numerical Analysis 35 (2009)
257–280.

[45] J.-L. Estivalezes, W. Aniszewski, F. Auguste, Y. Ling, L. Osmar, J.-P. Caltagirone, L. Chirco,
A. Pedrono, S. Popinet, A. Berlemont, et al., A phase inversion benchmark for multiscale
multiphase flows, Journal of Computational Physics 450 (2022) 110810.

[46] M. Saeedipour, S. Vincent, J.-L. Estivalezes, Toward a fully resolved volume of fluid simulation
of the phase inversion problem, Acta Mechanica 232 (7) (2021) 2695–2714.

[47] J. Adelsberger, P. Esser, M. Griebel, S. Groß, M. Klitz, A. Rüttgers, 3d incompressible two-
phase flow benchmark computations for rising droplets, in: Proceedings of the 11th world
congress on computational mechanics (WCCM XI), Barcelona, Spain, Vol. 179, 2014, p.
274–5285.

[48] R. Clift, J. R. Grace, M. E. Weber, Bubbles, drops, and particles, Academic Press (2005).

[49] J.-P. Caltagirone, S. Vincent, Sur une méthode de pénalisation tensorielle pour la résolu-
tion des équations de navier–stokes, Comptes Rendus de l’Académie des Sciences-Series IIB-
Mechanics 329 (8) (2001) 607–613.

38

https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001

	Introduction
	Models and numerical methods
	Governing equations of two-phase flows
	Discretization of mass and momentum equations
	Time integration
	Spatial discretization
	Solution of the linear system

	Block preconditioning techniques
	The velocity block
	The Schur complement

	Fully coupled solver parallelization
	Parallel operations
	Performance evaluation

	Applications to physical cases
	Phase inversion between two incompressible liquids
	3D rising bubble
	Free fall of a dense sphere

	Conclusions
	Discretization with finite volumes in Fugu code
	Convective term
	Viscous terms
	Elongation viscosity (l m),m, u-component
	Shear viscosity (l m),m, u-component
	Rotational viscosity (-l m),m, u-component

	Pressure gradient p, u-component
	Divergence the velocity field

	Physical boundary conditions
	Algorithms
	Iterative solver general structure

	Phase inversion results

