
HAL Id: hal-04161853
https://hal.science/hal-04161853

Submitted on 13 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Extension of OWL-S with Quality Standards
Stéphane Jean, Francisca Losavio, Alfredo Matteo, Nicole Lévy

To cite this version:
Stéphane Jean, Francisca Losavio, Alfredo Matteo, Nicole Lévy. An Extension of OWL-S with Quality
Standards. Fourth IEEE International Conference on Research Challenges in Information Science
(RCIS 2010), May 2010, Nice, France. pp.483-494, �10.1109/RCIS.2010.5507520�. �hal-04161853�

https://hal.science/hal-04161853
https://hal.archives-ouvertes.fr

An Extension of OWL-S with Quality Standards
Stéphane Jean∗, Francisca Losavio†, Alfredo Matteo† and Nicole Levy‡

∗Laboratory of Applied Computer Science
LISI/ENSMA and University of Poitiers

BP 40109, 86961 Futuroscope Cedex, France
jean@ensma.fr

†Laboratorio MoST, Centro ISYS, Escuela de Computacion, Facultad de Ciencias
Universidad Central de Venezuela, Venezuela

francislosavio@gmail.com, almatteo@cantv.net
‡University of Versailles

St-Quentin en Yvelines, France
nlevy@prism.uvsq.fr

Abstract—With the increasing amount of Web Services avail-
able on the Web, Web Services discovery issues are becoming in-
creasingly important. Since current Web Services standard tech-
nologies (e.g. UDDI) only provide syntactic descriptions of Web
Services (mainly their signatures), semantic discovery approaches
based on ontologies (e.g. OWL-S) have been developed. These
approaches lead to more precise descriptions of Web Services
functionalities, but they provide few mechanisms to capture non
functional aspects of Web Services collectively referred as Quality
of Services (QoS). To fill this gap, some works have proposed
Web Services discovery approaches based on QoS ontologies.
However these approaches do not take into account existing
standards about software quality and the relationships that can
be established between them. Yet, these standards could be
used as a shared understanding between services providers and
customers and thus, they would ease the Web Services discovery
process. In this article we first propose an extension of OWL-S to
describe QoS according to one or many quality standards. Then,
we develop an approach based on this extension of OWL-S to
improve the Web Services discovery process. This approach is
based on an extension of SPARQL that simplifies expression of
Web Services discovery queries. Relationships between standards
are used to return Web Services even if they are described with
quality properties defined in an other standard that the one used
to express queries. Finally, non functional requirements can be
expressed as user preferences. Thus, they can be used to rank
Web Services fulfilling functional requirements during the Web
Service discovery process.

I. INTRODUCTION

As Web Services (WS) technologies gain popularity, the
design of an increasing number of software applications is
based on existing WS. However, selecting the convenient WS
for a given application is not an easy task. Indeed this selection
process requires to find those WS that provide the exact
functionalities required by the designed application (functional
requirements). Moreover, these functionalities must be ac-
complished with a certain degree of quality (non functional
requirements). In this paper, we only consider non functional
requirements related to quality. In the domain of services, the
term Quality of Service (QoS) is used, i.e. the set of quality
properties that a WS must fulfill.

The WS selection process may be accurate only if services

are described very precisely. However, current techniques
based on SOAP (Simple Object Access Protocol), WSDL
(Web Services Description Language) and UDDI (Univer-
sal Description Discovery and Integration) only rely on a
syntactical description of WS interfaces. Recently, semantics
approaches based on ontologies have been developed. In par-
ticular, the OWL-S ontology [1] has been defined to describe
semantically WS. Nevertheless, if OWL-S is a rich model for
describing WS functionalities, it offers few QoS concepts to
express their qualities.

Different standards have been defined by institutions and
organizations such as ISO/IEC [2], [3] or the W3C [4], to
describe precisely quality properties characterizing software
products. The wide usage of these standards in the domain of
WS should help WS consumers and providers to communicate
with a common language on WS quality and thus, to find
an agreement. However, even if different approaches have
been developed on QoS to improve WS discovery, few works
have taken into account the existing standards on software
products quality. As a consequence, evaluating quality of a
WS described according to one of these approaches is difficult.
Moreover, even if quality standards were used, the availability
of several standards may lead to difficulty for evaluating a WS
if it is described with another standard that the ones knows.
Thus it is necessary to represent and exploit relationships that
can be established among the quality properties definitions and
metrics defined in the various standards.

In this paper, we propose an extension of OWL-S for QoS-
based WS description using existing software product quality
standards. Our approach is based on the ontology we have
proposed in [5]. This ontology can be used to represent quality
properties defined for a given domain (for example, the WS
domain), as they have been defined by different standards.
Moreover, relationships that can be established among these
properties (for example, the properties that are equivalent in
two standards), can also be specified. We first show how
OWL-S can be extended with this ontology. Then we study
WS discovery capabilities offered by this extension. In order
to facilitate the WS discovery process, we propose (1) an

extension of the SPARQL query language [6] that simplifies
the expression of a WS discovery query, (2) a set of rules
to exploit relationships that can be established among quality
properties, eventually defined by different standards and (3)
an approach to express non functional requirements as user
preferences and thus, to order services satisfying functional
requirements according to quality preferences.

The rest of this paper is organized as follows. In the next
section, we review related QoS-based approaches on semantic
WS description and discovery. In section III the ontology on
which our approach is based is presented, and in section IV we
show how it can be used to extend OWL-S. Section V details
the interest of this extension for WS discovery. Section VI
presents an implementation we have made for validating
our approach; advantages and limitations of our proposition
are also discussed. Finally, we conclude in section VII and
describe perspectives opened by this work.

II. RELATED WORK

Numerous ontology-based approaches have been proposed
to deal with QoS, such as [7], [8], [9], [10]. In a recent state-
of-the-art [11], Tran.et al. show that each existing approaches
focus on particular aspects of the QoS representation and
management but does not provide a complete solution with
all desirable features. This section describes related work on
QoS ontologies which are mainly based on OWL-S such as
the proposed approach in this paper. For each one of them,
the QoS aspects on which the described ontology focuses on,
is pointed out.

OWL-Q [7] is an extension of OWL-S that provides com-
plex and extensible mechanisms to associate metrics to quality
properties. Indeed, it includes concepts to represent simple
and complex (derived from others) metrics, and even to add
new metrics. Moreover, complex algorithms are provided to
compare and exploit these metrics in queries.

QOS-MO [8] defines concepts to represent QoS of WS
described in OWL-S. QOS-MO focuses on the description of
interactions between WS consumers and providers. Indeed,
this ontology defines the concept of QoSContract relating
QoSOffered to QoSRequired in order to represent an
agreement on quality of WS between WS consumer and
provider.

onQoS [9] associates QoS description to OWL-S WS pro-
files. This ontology proposes a powerful data type system
to define quality properties values. These values can then be
evaluated using metrics, scales or mathematical formula.

DAML-QoS [10] proposes an extension of DAML-S (an-
tecedent of OWL-S) for QoS. Using this ontology, one can
define constraints that can be associated to quality properties.
For example, the concept of QoSPrecondition can be used
to define conditions which must be fulfilled by WS consumers
to obtain the QoS specified by providers.

We note that none of the previous approaches deal with the
representation and exploitation of software products quality
standards and relationships that can be established between
them. Indeed, even if these ontologies could be used to

represent quality properties defined by a given standard, origin
of these properties could not be preserved. For example, these
approaches can not represent the quality model (structured
set of characteristics that describes the quality of a software
product [2]) of the standard in which a given quality property
has been defined. Yet, this information could be useful to
understand the described quality of a WS. Moreover, these ap-
proaches define few relationships between quality properties.
Equivalence and subsumption relationships between classes
are available in OWL but they do not apply on instances and
thus on quality properties. These relationships are needed to
establish a mapping between quality properties defined in the
various standards considered. This mapping could be useful
to solve problems related to the diversity of existing standards
on software products quality.

Furthermore, considering the WS discovery process, these
approaches have mainly developed algorithms exploiting data
types and metrics associated to quality properties values.
Expression of a WS discovery request using a query language
is barely considered. Moreover, non functional requirements
are used in these approaches to filter WS. Yet, non functional
requirements are often used by users to rank WS fulfilling
functional requirements. All these observations have driven
us towards the development of a QoS approach centered on
quality standards.

III. ONTOLOGY FOR SOFTWARE QUALITY STANDARDS

The quality-driven WS discovery approach proposed in
this paper is based on the Ontology for Software Quality
Standards (OSQS) described in [5]. In this section, we present
its main components.

A. Software Products Quality Standards Considered

Defining precisely a quality property such as Security is
very difficult. Nevertheless, clarifying the meaning of a quality
property is necessary to help WS providers and customers find-
ing an agreement. Several software products quality standards
have been defined to solve this problem. They provide precise
definitions of many quality properties with associated metrics
when possible. The OSQS ontology presented below allows
integrates the following standards.

Web Services Architecture (WSA) [4].

The WSA reference architecture has been defined
by the Web Services Architecture Working Group to
guarantee the interoperability of WS-based applications.
The specification of this architecture defines a set of
quality properties or goals to evaluate the compliance of
a WS to this architecture. This specification defines seven
quality goals: Interoperability, Reliability,
WWW Integration, Security, Scalability and
Extensibility, and Team Goals. For example the
Security goal of a WS has two requirements: (1)
Protection from threats of a WS across distributed
domains and platforms, and (2) Privacy protection
(enable privacy policy on WS) for the consumer of a

WS. Protection from threats is further refined
into sub-goals such as Threat of accessibility
attacks, Authentication of the parties,
Authentication of authorship of data and
Authorization. Note that metrics are not provided by
this standard.

The ISO/IEC 9126-1 standard [2]

The ISO/IEC 9126-1 standard defines quality properties for
software products. These quality properties are organized in a
hierarchy, where the higher abstraction level is constituted by
six main characteristics: Functionality, Reliability,
Usability, Efficiency, Maintainability and
Portability. These characteristics are refined until
measurable characteristics, called attributes, are obtained.
For example, Functionality implies existence of a
set of functions that satisfy particular needs. It is re-
fined into sub-characteristics such as Suitability,
Accuracy, Interoperability and Security. These
sub-characteristics can be further refined according to the
specific application domain. The ISO 9126-1 hierarchy of
quality characteristics, sub-characteristics, attributes and met-
rics constitutes the quality model of an application in a given
domain. Contrary to WSA, this standard is not specific to
the WS domain: ISO 9126-1 is a framework that must be
adapted to the WS domain eliminating the non applicable
characteristics or adding new sub-characteristics if necessary.

The ISO/IEC 13236 standard [3]

The ISO/IEC 13236 standard concerns quality of services.
In this context, the term service has a very broad sense; for ex-
ample it includes, but is not limited to, the provisioning of in-
teractions, the processing and information repository functions
by entities, objects, applications, processes, communication
services, etc. The ISO 13236 standard defines a terminology
and several concepts on QoS to provide a common language
for WS providers and customers. Moreover, it introduces a
set of characteristics, mechanisms and metrics for describing,
specifying and managing QoS requirements. More precisely,
it proposes categories of high level quality characteristics.
A characteristic represents some aspect of the QoS of an
application, service or resource that can be identified and quan-
tified. These characteristics are mainly time-related, capacity-
related, reliability-related, safety-related or security-related.
An example of characteristic is Security. Security
can be refined into Access control (protection against
unauthorized access to a resource) and Data protection
(protection against unauthorized access to data); the metrics
for both properties are described as a value derived from the
application of an access control or a data integrity policy,
respectively. Actually, the probability of failure of the pol-
icy (real value) and also the presence or not of the policy
(boolean value) can be considered acceptable metrics for these
attributes.

The diversity of software quality standards leads to termi-
nology variability. To solve this problem, we have proposed in

[5] an ontology to represent these various standards with their
relationships. This ontology, on which our approach is based,
is described in the next section.

B. Description of the OSQS Ontology

The main components of the OSQS ontology are shown in
Figure 1.

Architectural_Quality

Quality_Property

expressed_by

Quality_Model

Standard
Attribute

Metrics

defined_by

defined_by

measured_by

refined_into

Legend:

relation
is_a

attribut

datatype unit

formula

architecture

name

name

name
definition

equivalent_to

name

commentary

Fig. 1. Extract of the OSQS ontology

• Architectural_Quality: represents the quality of an ar-
chitectural style for a family of applications. This quality
is expressed by a set of quality properties that must be
fulfilled. SOA is an example of architectural style fulfill-
ing the mandatory quality properties of interoperability,
security, availability and maintainability.

• Quality_Property: represents a quality characteristic
which can be refined into one or many other quality char-
acteristics, which can or cannot be measured. Security
is an example of a quality property. According to WSA,
it is refined into Protection from threats and
Privacy policy; Protection from threats
is further refined into the measurable quality attribute
Authorization. The relation equivalent_to may
be used to establish correspondences between quality
properties defined by different standards. For exam-
ple, according to the ISO 13236 and WSA standards,
ISO 13236 Access_control is equivalent to WSA
Authorization, because an access control implies
an authorization service and vice-versa. To simplify Fig-
ure 1, we have not shown all relationships that can be es-
tablished between quality properties. These relationships
will be detailed in section V-C.

• Attribute: represents a quality property that can be mea-
sured. For example, the measure of Access_control
defined in ISO 13236 is the value obtained from the appli-
cation of an established access control policy. Notice that
properties defined in a particular standard without metric
can be characterized by the metric of an equivalent prop-
erty. For example, even if the WSA standard does not pro-
vide any metric, the WSA Authorization property
can be associated to the boolean metric (shown in Fig-
ure 2) because it is equivalent to the Access_control
of ISO 13236. Notice also that some metrics are implicit.

For example, Privacy_policy is associated to a
boolean metric because a service may or may not have a
privacy policy.

• Metrics: represents a metric expressed by a value of a
given data type. This value can be characterized by a
unit and can be computed by a formula. For example,
a measure for Data_protection - refinement of
the ISO 13236 Security characteristic - can be the
probability of failure of the protection. This metric has
real values (between 0 and 1); it has no unit of measure,
nor formula (thus, its values are defined by users). Due
to space limitations, we do not detail representation
of units of measure. Metrics definition depends on the
implementation model chosen. For example, the PLIB
ontology model [12] natively supports metrics, whilst
OWL [13] does not provide built-in unit constructors. In
the second case an ontology such as the Measurement
Units Ontology1 may be used as an extension.

• Quality_Model: represents a set of quality properties
specifying the quality of a software product.

• Standard: represents an agreement on a certain view of
software quality. ISO 13236 and WSA are examples of
quality standards in the WS domain.

Figure 2 shows an instantiation of OSQS using previ-
ous examples. In this example, the SOA architecture is
characterized by quality properties from the standards ISO
13236 and WSA. For readability, we have not represented
the complete quality models of these standards; we have
just shown the higher level properties and pre-fixed them
with the corresponding standard. These quality properties
can be refined into attributes. For example, Security of
ISO 13236 is refined into attributes Data_protection,
measured by a real value and Access_control, measured
by a boolean value. WSA_security can be refined into
Privacy_policy and Protection_from_threats;
the Privacy_policy and Authorization are attributes
measured by a boolean value.

SOA

expressed_by

WSA_interoperability WSA_reliability WSA_scalability
WSA_security

Authorization

ISO_13236_security

Access _controlData_protection

equivalent_to

refined_into
refined_into

BooleanMetrics

RealMetrics

datatype=boolean

datatype=real

measured_by measured_by

measured_by

Privacy_policyProtection_from_threats

refined_into

Fig. 2. Instantiation example

1http://idi.fundacionctic.org/muo/muo-vocab.html

We have used the OSQS ontology presented in this section
to extend OWL-S.

IV. PROPOSED EXTENSION OF OWL-S

OWL-S [1] is an ontology defined by researchers from
different organizations that aims to declare and describe WS.
The goal of this ontology is to facilitate the dynamic discovery
and invocation of WS and also their composition. If this ontol-
ogy includes many concepts to describe precisely functional
characteristics of a service, we show in what follows that it
provides few QoS concepts.

A. Limitations of OWL-S for QoS

In OWL-S, a service is described according to the following
three dimensions.

• ServiceProfile: describes the functionalities offered by a
service in terms of inputs, outputs, preconditions, param-
eters and results.

• ServiceModel: describes how to use a service, detailing
its parameters and indicating the step by step process
leading to the results from these parameters.

• ServiceGrounding: describes how to access a service.
In particular, it specifies a communication protocol and
message formats.

The OWL-S specification states that the
ServiceProfile can be used to specify quality of
WS. Indeed, the ServiceProfile is associated to a set
of ServiceParameter to characterize a service by pairs
(criterion, value). Nevertheless, this very simple model has
some limitations. First, the description of quality properties
(expressing the goals of non functional requirements) can not
be represented with this simple model. Thus, the definition
given by the standard defining a quality property can
not be specified. Yet, this definition may be very useful
for users interactions. Secondly, this simple model can
not be used to represent relationships between qualities
properties. In particular, it is not possible to refine or establish
correspondences between them. However, these relationships
can be useful to exploit the specified quality of services.
For example, the work presented in [14] shows that these
relationships are useful to identify the relevant quality criteria
for a software product audit. In section V-C we show that
they can also be useful for WS discovery. Finally, the model
proposed by OWL-S to represent QoS does not include
concepts to associate metrics to quality properties, especially
complex metrics based on mathematical formula or units
of measure. However, most of quality properties need this
modeling feature.

In order to overcome these limitations, we propose to extend
OWL-S with the OSQS ontology introduced in section III-B.

B. Proposed Extension

Our proposed extension of OWL-S is presented in Fig-
ure 3. In OWL-S, the ServiceProfile characterizes
the service functionality, detailing elements such as input

(ServiceInput) and output (ServiceOutput) of a ser-
vice. As it has been already pointed out, ServiceProfile
is also described by a set of ServiceParameter com-
posed of a name (serviceParameterName) and a
value (sParameter). Our OWL-S extension is based
on the specialization of ServiceParameter by the
Quality_Property class of the OSQS ontology. The
remaining elements of the OSQS ontology are kept un-
changed, except for the property name associated to
Quality_Property which disappear, since it is now
inherited from the ServiceParameter class, and for
Architecture_Quality which is suppressed since
OWL-S is only concerned by a specific style of architecture:
the SOA architecture.

ServiceParameter

Quality_Property Quality_Model

StandardAttribute

Metrics

defined_by

defined_by

measured_by

refined_into

datatype unit

formula

name

name

definition

equivalent_to

name

commentary

serviceParameterName

sParameter

OWL-S

Extension

ServiceProfile

ServiceOutput

hasInput

serviceParameter

ServiceInput

hasOutput

Service
presents

Fig. 3. Proposed extension of OWL-S with OSQS

In this section we have first identified several limitations
of OWL-S for describing non functional aspects of WS and
then, shown how this ontology can be extended with the OSQS
ontology considering the software products quality standards.
In the next section we present the interest of this extension
for the WS discovery process.

V. WS DISCOVERY ACCORDING TO QUALITY CRITERIA

The OWL-S extension proposed in this paper can be useful
for the different actors involved in the diffusion and utilization
of WS. For example, a WS registry administrator can use it
to select one or several quality standards that must be used to
describe the non functional aspects of the services declared in
its registry. Then, service providers will have to register their
services specifying values of quality properties defined in these
standards. This process can be assisted using our extension of
OWL-S by displaying definitions and comments of the quality
properties used.

In this paper we focus on the interest of the proposed
extension of OWL-S for the customer searching for a WS.
We begin by describing the query capabilities offered by this
extension and by pointing out their limitations.

A. Query Capabilities Offered by our OWL-S Extension

Since OWL-S is an ontology, an ontology query language,
such as SPARQL [6] or OntoQL [15], can be used to search
for a WS.
Example. The following SPARQL query2 search for the

services having as input a credit card that use an
access_control as it is defined in the ISO 13236
standard.

SELECT ?service
WHERE {
?service rdf:type Service
?service presents ?profile
?profile hasInput <http://cordio.bs/CreditCard>
?profile serviceParameter ?parameter
?parameter defined_by ?qualityModel .
?qualityModel defined_by <http://iso.org/ISO13236>
?parameter serviceParameterName "access_control"
?parameter sParameter ?value
FILTER (?value = true) }

Explanation. The first triple of the WHERE clause introduces
the ?service variable iterating through the whole set of
services. This variable is used in the SELECT clause to
return all the services satisfying other triples. Since the
properties needed to express the request are defined by
the service profile, the second triple uses the presents
property to introduce it through the ?profile vari-
able. Next, the third triple checks that the service has
a credit card as input. The fourth triple introduces the
?parameter variable in order to iterate over the quality
properties describing the service. The next two triples
restrict the quality properties considered to those defined
in the ISO 13236 standard quality model. The last three
triples check that the service is described by the qual-
ity property named (property serviceParameterName)
access_control and that it satisfies this property (value
true).
This example shows that our extension of OWL-S allows

users to search for a service on the basis of quality properties
defined by a particular standard. More complex queries could
be written to retrieve values of all quality properties describing
the service with their definitions provided by the correspond-
ing standards. Moreover metrics could be used in queries. For
example, it could be useful to retrieve units of measure of
quality property values.

However, we identify that the capabilities offered by our
proposed extension of OWL-S present the following three
shortcomings.

• Queries are written encoding the proposed extension of
OWL-S. Moreover, quality properties are not used in
queries as other properties. Indeed, before testing values
of quality properties, it is first necessary to retrieve them
through the sParameter property.

• Results of queries are produced without considering
relationships that can be established between quality
properties. For example, the previous query will not

2For conciseness we omit namespaces in queries.

return services that fulfill the Authorization quality
property of WSA, even if this quality property is equiv-
alent to the ISO 13236 access_control.

• All conditions expressed in queries on quality properties
are strict constraints; i.e. a service will only be returned
if it satisfies them. Yet, a user will in general look
in a first place for services accomplishing the required
functionalities (strict constraints on the functional re-
quirements), and will secondly look for those satisfying
the required quality properties (soft constraints on non
functional requirements).

We detail in next sub-sections our proposed solutions to
overcome these drawbacks.

B. SPARQL Extension for Quality-based WS Discovery

As we have pointed out in the previous section, the SPARQL
syntax is not adapted for searching for a WS according to
quality criteria. More precisely, we identify the following three
problems.

• The proposed OWL-S extension is encoded in queries.
For example, the query of the previous example is written
indicating that quality properties are related to a service
profile through the serviceParameter property. As
a consequence, writing such a query requires a deep
knowledge of our OWL-S extension. Moreover, this query
is tight to this extension and thus to its possible evolution.

• Quality properties are used differently from other on-
tology properties. Indeed, in order to test a value of
a quality property, it is necessary to retrieve the value
using the sParameter property before testing it. For
homogeneity and simplicity sake, it would be better to
use them as other properties.

• Functional and non functional requirements are mixed
in queries. Indeed, the WHERE clause of our example
contains both triples for functional requirements (the
one that uses the hasInput property) and triples for
non functional requirements (the subsequent triples). For
readability and modularity of the query, these two types
of triples must be distinguished.

In order to overcome these problems, we propose an exten-
sion of the SPARQL language.

1) Syntax of the Proposed SPARQL Extension: Our aim is
to extend the SPARQL language to facilitate the search for
WS according to quality criteria. Since this requirement is
very specific, the proposed extension should be modular and,
for sake of homogeneity, it should keep a syntax similar to
the one of SPARQL. In order to fulfill these requirements,
we propose to add a new clause, named QUALITY, to the
SPARQL language. This clause has a syntax3 similar to the
WHERE clause:

QualityClause ::= QUALITY ’{’ TriplesQuality+ ’}’

3This syntax is simplified and is based on notations used at the URL
http://www.w3.org/TR/rdf-sparql-query/ to define the SPARQL grammar. In
particular, the complete syntax makes it possible to use the FILTER and
OPTIONAL operators in the QUALITY clause.

TriplesQuality ::= VarOrTerm PropQualityOrProp Object

Explanation. The QUALITY clause is composed of a set
of triples (subject, predicate, object). The
subject can be a variable or a term (VarOrTerm)
as defined in the SPARQL syntax. Thus, a quality prop-
erty can be subject of a triple which could be useful
to retrieve its description. The predicate can be a
property of an ontology or a quality property (instance
of the Quality_Property class, or of its subclass
Attribute). The object is similar to the definition
given in the SPARQL grammar.
This SPARQL extension can be used to rewrite the previous

query example as follows:
SELECT ?service
WHERE {
?service rdf:type Service
?service presents ?profile
?profile hasInput <http://cordio.bs/CreditCard> }
QUALITY {
?profile access_control "true"
access_control defined_by ?qualityModel .
?qualityModel defined_by <http://iso.org/ISO13236>
}

Explanation. As this example shows, our SPARQL extension
distinguishes clearly functional (in the WHERE clause) and
non functional (in the QUALITY clause) requirements. The
first triple of the QUALITY clause shows that a quality
property can be used as a usual property. The next two
triples remain similar to the initial query.
2) Semantics of the Proposed SPARQL Extension: If the

syntax of the WHERE and QUALITY clauses is similar, their
interpretation is quite different. The following rule shows the
interpretation of a triple (s, p, o), where p is a quality
property:

(s p o) ∧ (p type Quality_Property)
⇒ (s serviceParameter ?param) .

(?param serviceParameterName p) .

(?param sParameter o)

Explanation. If p is a quality property, the triple (s,p,o)
must be interpreted as a set of triples. The first two triples
search for p among the quality properties using its name
(value of the property serviceParameterName). The
third triple indicates that the object of the triple (o) cor-
responds to the value of the sParameter property. Note
that a similar interpretation is made if a quality property is
used as a subject of a triple.
The following example illustrates the previous rule:

Example. When the quality property access_control is
used as a usual property, the following interpretation is
made:

(?profile access_control ”true”)

⇒ (?profile serviceParameter ?param) .

(?param serviceParameterName ”access_control”) .
(?param sParameter ”true”)

The other rules we have defined concern metrics that can
be associated to quality attributes. The following rule shows
the interpretation of a triple (s, p, o) where o is a value
characterized by a data type (notation: ˆ d̂atatype). We
suppose in this rule that p is a quality property (more precisely
an attribute) interpreted according to the previous rule.

(s p o^̂ type)

⇒ (s p o) . (p measured_by ?m) . (?m datatype type)

Explanation. If the value o is characterized by the data type
type, the metrics associated to p is used to check that
this value is really defined according to this data type.
This interpretation is done by expanding the initial triple
into three triples. The first triple checks that the literal
value (without data type) is associated to the subject s
by the property p. The next two triples check that the
quality property p is measured by a metric (retrieved by
the measured_by property) characterized by (datatype
property) the data type type.

Example. The following example shows the interpretation
of the access_control attribute characterized by the
xsd:boolean data type.

(?profile Access_control ”true” ^̂ xsd : boolean)

⇒ (?profile access_control ”true”) .

(Access_control measured_by ?m) .

(?m datatype ”xsd : boolean”)

In our approach, we have chosen to manage units of measure
following a commonly used approach4. This approach consists
in using units of measure as data types (with the same notation
ˆ ûnit). Thus, a rule similar to the one presented above
describes a triple (s, p, o), where o is characterized by a
unit of measure.

(s p o^̂unitOfM)

⇒ (s p o) . (p measured_by ?m) . (?m unit unitOfM)

Explanation. The rule is similar to the previous one but it
is now based on the unit of measure given by the unit
property. The query engine uses namespaces (xsd for data
types, mymw for units) to distinguish a unit of measure from
a data type.

Example. The following example shows the interpretation of
the maxTimeByTransaction attribute characterized by
the second unit of measure.

(?profile maxTimeByTransaction ”1” ^̂ mymw : second)

⇒ (?profile maxTimeByTransaction ”1”) .

(maxTimeByTransaction measured_by ?m) .

(?m unit ”mymw : second”)

We have presented our SPARQL extension to improve ex-
pression of queries searching for WS according to functional

4see https://forge.morfeo-project.org/wiki_en/index.php/How_to_use_
MUO for a detailed explanation.

and non functional requirements. In the next section we
propose an approach to improve results of these queries by
exploiting relationships that can be established between quality
properties.

C. Exploitation of Relationships between Quality Properties

Many types of relationships can be established between
quality properties. We consider the types of relationships
established by Kruchten [16] and, more precisely, their inter-
pretations given in [14]. Nevertheless, in opposition to these
works that use them mostly for software products audits, we
exploit them to improve the search for WS.

1) Relationships between Quality Properties: In sec-
tion III-B we have introduced the equivalent_to relation-
ship, indicating that two quality properties are equivalent. This
relationship is particularly useful to establish correspondences
between quality standards. In addition, we consider four ad-
ditional relationships: constrains, subsumes, forbids
and conflicts. In opposition to the equivalent_to re-
lationship, these relations are only applied to quality properties
evaluated with a boolean value. These relationships are defined
as follows:

• constrains. If X constrains Y, the quality prop-
erty Y may be satisfied only if X is also satisfied.
For example, authentification5 constrains
authorization, if we consider that if an application
does not require an authentication of users, it cannot
perform an access control.

• subsumes. If X subsumes Y and the quality
property X is satisfied then Y is also satisfied.
For example, dataEncryption subsumes
digitalSignature, if we consider that when
an application performs data encryption, it necessarily
uses numerical signatures.

• forbids. If X forbids Y and the quality property
X is satisfied, then Y cannot be equally satisfied. For
example, portability forbids codedInC, if we
consider that a portable application cannot be coded in
the C programming language.

• conflicts. If X conflicts Y then X forbids
Y and Y forbids X. For example, portability
conflicts codedInC, if we also consider that when
an application is coded in C, it cannot be portable.

As we show in next section, these relationships can be used
to facilitate the WS discovery process.

2) Interpretation of Relationships between Quality Proper-
ties: The different types of relationships we have presented
above, can be used to perform some reasoning, i.e. deduce new
information from existing information. The deduced informa-
tion can be exploited during query processing to return relevant
results that could not be returned without the reasoning.

In this section we present reasoning capabilities enabled by
each type of relationships. These reasoning capabilities are

5defined also in the WSA standard as a refinement of
Protection_from_threats

defined by deductive rules; an example of application is given
for each rule.
equivalent_to :

(prop1 value v) ∧ (prop1 equivalent_to prop2)

⇒ (prop2 value v)

Explanation. This deductive rule states that if a quality prop-
erty prop1 has a value v and is equivalent to a quality
property prop2, then it can be deduced that prop2 also
has the value v.

Example. If access_control and authorization are
equivalent, the following rule can be written.

(access_control value true) ∧
(access_control equivalent_to authorization)

⇒ (authorization value true)

constrains :

(prop1 value false) ∧ (prop1 constrains prop2)

⇒ (prop2 value false)

Explanation. This deductive rule states that if a quality prop-
erty prop1 is not satisfied and constrains a quality property
prop2, then it can be deduced that prop2 is not satisfied
either.

Example. If authentication constrains
authorization, the following rule can be written.

(authentification value false) ∧
(authentification constrains authorization)

⇒ (authorization value false)

subsumes :

(prop1 value true) ∧ (prop1 subsumes prop2)

⇒ (prop2 value true)

Explanation. This deductive rule states that if a quality prop-
erty prop1 is satisfied and subsumes a quality property
prop2, then it can be deduced that prop2 is also satisfied.

Example. If dataEncryption subsumes
digitalSignature, the following rule can be
written.

(dataEncryption value true) ∧
(dataEncryption subsumes digitalSignature)

⇒ (digitalSignature value true)

forbids :

(prop1 value true) ∧ (prop1 forbids prop2)

⇒ (prop2 value false)

Explanation. This deductive rule states that if a quality prop-
erty prop1 is satisfied and forbids a quality property
prop2, then it can be deduced that prop2 is not satisfied.

Example. If portability forbids codedInC, the
following rule can be written.

(portability value true) ∧
(portability forbids codedInC)

⇒ (codedInC value false)

conflicts :

(prop1 conflicts prop2)

⇒ (prop1 forbids prop2) ∧ (prop2 forbids prop1)

Explanation. This deductive rule states that if a quality prop-
erty prop1 is in conflict with a quality property prop2,
then prop1 forbids prop2 (previous rule) and vice-versa.

Example. If portability and codedInC are in conflict,
the following rule can be written.

(portability conflicts codedInC)

⇒ (portability forbids codedInC) ∧
(codedInC forbids portability)

In this section we have shown that quality properties rela-
tionships can be used to make deductions and thus to improve
query results. These relationships can be applied between
quality properties belonging to different standards. Thus, a
service may be returned even if it is described with another
standard that the one used to express the query. In the next
section, we show that the WS discovery process could also be
improved by expressing quality criteria as user preferences.

D. Expression of Non Functional Requirements as User Pref-
erences

In general, functional requirements are considered as the
most important criteria when searching for a WS. They must
be satisfied. In contrast, non functional requirements are often
soft constraints. They are used to rank WS fulfilling functional
requirements. Nevertheless, most of existing approaches do
not distinguish functional requirements from non functional
requirements. As a consequence, queries based on these ap-
proaches do not return WS fulfilling functional requirements
that satisfy only partially non functional requirements. Thus, if
users express their non functional requirements, it often results
in queries that do not return any answer.

In the last years, several work have been conducted on
the notion of user preferences in the context of ontologies
[17], [18], [19], [20]. In these approaches user preferences
are defined according to ontologies. These preferences may
then be used in queries as soft constraints. Thus, these ap-
proaches are well suited for WS discovery according to non
functional requirements. However, they must be extended so
that non functional requirements could be expressed as user
preferences. We have chosen to extend the work of Tapucu
et al. [20] because it proposes a rich and extensible model
to define user preferences and an extension of SPARQL and
OntoQL to exploit them. In the next section we briefly present
this approach.

1) The Used Preference Model: The main elements of
the preference model used in our approach is shown in
Figure 4. In this model, each preference is identified by an
URI (Preference_URI). The different types of preferences
that we use to express non functional requirements are the
following.

• Numeric_Pref: corresponds to preferences expressed
by a numeric value (numberValue). For example, a
preference for 4 stars hotels can be expressed with a
Numeric_Pref.

• Fuzzy_Pref: corresponds to preferences expressed by
a probability value. For example, Fuzzy_Pref can be
used to express that probabilities of preferring 2, 3, and
4 stars hotels are respectively 0.1, 0.2, and 0.7.

• Boolean_Pref: corresponds to preferences expressed
by a list of boolean properties whose values are preferred
to be true. For example, a preference on hotel rooms
having TV, air conditioner and Wifi can expressed using
Boolean_Pref.

• Interval_Pref: corresponds to preferences expressed
by a minimum and a maximum value. For example,
cheap and expensive can be preferences expressed
on the cost of an hotel room. Using Interval_Pref,
cheap can be characterized by the interval of prices
[45..60] and expensive by [90..100].

• Enumerated_Pref: corresponds to preferences ex-
pressed by an enumeration of preferred instances of an
ontology. For example, a preference for cheap hotels can
be expressed by an Enumerated_Pref on instances
{Hotel(Formule1), Hotel(Premiere)}.

The left part of Figure 4 shows the link between prefer-
ences and ontologies. This relationship is established by the
Pref_Link entity. Pref_Link associates a preference to a
class or a property of an ontology. Classes and properties are
represented by the Property_Or_Class entity.

Preferences defined using the model presented above may
be used in queries. Indeed, the approach of Tapucu et al. [20]
proposes an extension of the SPARQL and OntoQL query
languages with a new clause named PREFERRING to take
into account preferences. For example, if a customer has a
preference for cheap hotels, the following SPARQL query
can be used to help him find its preferred hotels:

Preference Preference_URI

Enumerated_Pref

Numeric_Pref
Boolean_Pref

Interval_Pref
Fuzzy_Pref

Pref_Link

min

max

Property_Or_Class

numberValue

probValue

PropertyClass

Property_Or_Class_Instance

properties

values

annotatedassoc_pref
assoc_prop_or_class

Fig. 4. Extract of the used preference model

SELECT ?name ?price
WHERE { ?h type Hotel

?h name ?name
?h price ?price }

PREFERRING { cheap }

Explanation. The PREFERRING clause specifies preferences
used in the query. These preferences are identified us-
ing labels. They are interpreted according to the type of
preference they belong to. In this example, cheap is an
Interval_Pref preference linked to the price prop-
erty and characterized by the [45..60] interval. Thus, hotels
having rooms whose price belongs to this interval will be
returned as first results of this query. Next results will be
those hotels having rooms whose price are close to this
interval.

As we show in the next section, we have adapted the
preference model presented in this section to our OWL-S
extension.

2) Preferences on Quality Properties: The preference
model presented in the previous section can be used to express
preferences on classes and properties. Thus, it can be used to
associate preferences to WS (instances of the Service class).
However, it can not be used to associate preferences to quality
properties as it may be done with ontology properties. Indeed,
quality properties are instances of Quality_Property
and thus they are not considered as usual properties. As a
consequence, we propose to extend this model to express non
functional requirements as user preferences. Figure 5 presents
in italic elements that we have added to this model and
their links to elements of the initial model. The three main
modifications of the initial model are the following.

• In order to associate a preference to a quality property,
Pref_Link is linked to Quality_Property
(part of our OWL-S extension) through the
assoc_qualityProp property.

• In order to define a boolean preference on
quality properties, Boolean_Pref is linked to
Quality_Property through the qualProperties
property.

• In order to define an enumerated preference on qual-
ity properties values, Enumerated_Pref is linked to
Quality_Property_Value (set of all quality prop-
erties values) through the qualProp_values property.

Preference Preference_URI

Enumerated_Pref

Numeric_Pref
Boolean_Pref

Interval_Pref
Fuzzy_Pref

Pref_Link

min

max

Quality_Property

numberValue

probValue

Quality_Property_Value

qualProperties

qualProp_values

annotatedassoc_pref
assoc_qualityProp

...

Fig. 5. Extension of the preference model

Figure 6 illustrates the proposed extension of the pref-
erence model. Two examples of preferences associated to
quality properties are represented as instances of this ex-
tension. The first preference is named Fast. This prefer-
ence is an instance of Interval_Pref (preference de-
fined by an interval) linked by the L1 Pref_Link to
the avgTimeByTransaction quality property. It defines
that services considered as Fast are those services having
an average time by transaction between 10 and 20 mil-
liseconds. The second preference is a boolean preference
named Secured. This preference is associated to all services
(Service) through the L2 link. It defines that Secured
services are those services satisfying the authorization
and dataEncryption quality properties.

avgTimeByTransaction L1 Fast

10^^ millisecond

20^^ millisecond
max

min

assoc_prop_or_class

assoc_pref

Service L2 Secured

authorization

dataEncryption

assoc_qualityProp

assoc_pref
qualProperties

Fig. 6. Example of preferences on quality properties

Preferences associated to quality properties could be speci-
fied in queries using the PREFERRING clause as it is defined
by Tapucu et al. [20]. However, our aim is to propose a mod-
ular approach for the management of non functional require-
ments. Thus, usual preferences must be clearly distinguished
from preferences on quality properties. As a consequence, we
have modified the syntax of the PREFERRING clause in the
following way.

preferring-clause ::= PREFERRING ’{’ boolean-expr ’}’
boolean-expr ::=

boolean-term
| boolean-expr OR boolean-term

boolean-term ::= boolean-factor
| boolean-term AND boolean-factor

boolean-factor ::= [NOT] preference-identifier
| [NOT] QUALITY preference-quality-identifier

Explanation. The syntax of the PREFERRING clause defines
boolean expression (with AND and OR operators) on
preferences identifiers (preference-identifier).
We have added (part in italics) the possibility of

using preferences identifiers on quality properties
(preference-quality-identifier). These
preferences on quality properties are distinguished from
preferences on usual property by using the QUALITY
keyword. Moreover, this keyword simplifies the processing
of queries.
The following query illustrates this syntax. It searches for

services having as input a credit card, knowing that Secured
and Fast services (represented in Figure 6) are preferred.

SELECT ?service
WHERE {
?service rdf:type Service
?service presents ?profile
?profile hasInput <http://cordio.bs/CreditCard>
PREFERRING {
QUALITY Secured AND QUALITY Fast

}

Explanation. Non functional requirements can be expressed as
user preferences using our extension of the PREFERRING
clause. Since the Secured and Fast preferences are
associated to quality properties, they are preceded by the
QUALITY keyword.
The interpretation of preferences on quality properties is

similar to the one defined for preferences on classic properties
(detailed in [20]). For example the preference Fast is
interpreted by the predicate avgTimeByTransaction >=
10 ˆˆ millisecond AND avgTimeByTransaction
<= 20̂ m̂illisecond. Moreover, we have detailed in
section V-B how a quality property could be used as a classic
property. Thus, we have defined all necessary elements to
interpret preferences defined on quality properties.

VI. IMPLEMENTATION AND EVALUATION

In previous sections we have presented our proposed ex-
tension of OWL-S and developed an approach that uses this
extension to facilitate WS discovery. In this section we detail
the implementation of this approach we have done to validate
it and discuss advantages and limitations of our proposition.

A. Implementation of our Approach on the OntoDB Database.

The approach presented in this paper could be implemented
on any ontology repository equipped with a SPARQL im-
plementation. Ontology-Based Databases (OBDB) [21] are
examples of such systems, which relay on database technology,
and thus benefit from their advantages (e.g. scalability or
concurrence management). As a consequence, in order to
validate our approach, we have chosen to implement it on the
OntoDB OBDB [22], which also supports an implementation
of the preference model previously discussed. In this section,
the different steps followed to achieve this implementation are
described.

1) Import of the Extended OWL-S Ontology in OntoDB:
OntoDB has been initially designed to support PLIB ontolo-
gies. However, this OBDB is also equipped with an OWL
ontology import module. As a consequence, we have first ex-
tended the OWL-S ontology, as described in section IV, using

the well known editor of OWL ontologies: Protégé6. Then, we
have used the import module of OntoDB to upload it into this
OBDB. More precisely, the OWL-S ontology is decomposed
into four OWL files7: Service.owl, Profile.owl,
Process.owl and Grounding.owl. Since our exten-
sion is related with the OWL-S profile, we have used the
Profile.owl file.

2) Extension of SPARQL with the QUALITY Clause:
OntoQL is the query language associated to OntoDB. This
language has been implemented on OntoDB by translating it
into SQL. OntoDB also has a SPARQL implementation that
consists in translating a SPARQL query into an OntoQL query.
We have chosen to interpret the QUALITY clause as specified
in section V-B, while translating it into OntoQL. This approach
is illustrated in Figure 7.

SELECT ?service
 WHERE {
 ?service rdf:type Service
 ?service presents ?profile
 ?profile hasInput <http://…CreditCard>
 QUALITY {
 ?profile Access_control "true"
}

SELECT s.URI
 FROM Service as s,
 ServiceProfile as sp ,
 Quality_Property as qp
WHERE s.presents = sp.oid
 AND qp.oid = ANY(sp.serviceParameter)
 AND sp.hasInput.URI = ‘http://…CreditCard’
 AND qp. serviceParameterName = ‘Access_control’
 AND qp.sParameter = ‘true’

SPARQL Query OntoQL Query

OntoDB

SQL

Fig. 7. Interpretation of the SPARQL QUALITY clause

Explanation. The initial SPARQL query is presented on the
left side of Figure 7 and its translation in OntoQL on the
right side. The WHERE clause of the SPARQL query is
translated into OntoQL by a join between the Service
and ServiceProfile classes and by a predicate in
the WHERE clause involving the hasInput property. The
QUALITY clause is interpreted by an other join with
the Quality_Property class and new predicates in
the WHERE clause to retrieve the quality property named
Access_control that has the value true. This interpre-
tation encodes the rewriting rules expressed in section V-B.
3) Implementation of Rules Exploiting Quality Properties

Relationships: OntoDB is not equipped with an inference
engine (non deductive database). Thus, the rules specified in
section V-C to interpret quality properties relationships can
not be implemented directly on OntoDB. As a consequence,
we have used the trigger mechanism to implement them. For
example, the rule related to the equivalent_to relation-
ship is implemented by a trigger on the table storing values of
quality properties. This trigger has the following pseudo-code:

When a value v of a quality property p1
is inserted or updated

If p1 is equivalent to a property p2 then
Update the value of p2 set it to v

The other rules have been implemented in the same way.

6http://protege.stanford.edu/
7available at: http://www.ai.sri.com/daml/services/owl-s/1.2/

4) Extension of the Preference Model: The preference
model presented in section V-D1 has been implemented on
OntoDB with the OntoQL language. More precisely, an On-
toQL script creates all the elements of this model into OntoDB.
We have modified this script to take into account the extension
defined in section V-D2. For example, the following OntoQL
statement modifies the boolean preferences Boolean_Pref
so that they can be applied to quality properties:

ALTER ENTITY #Boolean_Pref
ADD qualProperties REF(Quality_Property) ARRAY

For queries, the SPARQL query engine of OntoDB has
been modified to interpret preferences expressed on quality
properties. This interpretation being similar to the one done
for classic properties, we have mainly reused existing code.

B. Advantages and Limitations of our Approach

Compared to other proposed QoS ontologies (detailed in
section II), the originality of our OWL-S extension is to
explicitly represent quality standards and the relationships that
can be defined among them. In order to exploit this feature,
we propose an extension of SPARQL to facilitate WS discov-
ery. This SPARQL extension clearly separates the expression
of functional requirements and non functional requirements.
Moreover, it takes into account relationships that can be estab-
lished between quality properties using a set of deductive rules.
Notice that the establishment of equivalences between quality
properties requires a great amount of expertise on quality
standards; the OSQS ontology extending OWL-S contributes
to organize this expertise as part of the domain knowledge.
Finally, if necessary, the proposed SPARQL extension can be
used to express non functional requirements as soft constraints
(user preferences) in queries. Thus, users can use functional
requirement to search for all services fulfilling their needs and
then rank them using non functional requirements.

Since our OWL-S extension focuses on quality standards,
on some other aspects, this extension is less expressive than
other QoS ontologies. For example, OWL-Q [7] proposes a
richer system of metrics and units of measurement than the
one of our extension. Indeed, this system includes relationships
between metrics, conversions among units, definition of new
units, etc. Similarly, WSMO-QoS [23] do not assume that the
value of a quality property is fixed all the time. Indeed, some
quality properties require to update their values periodically
and some applications may need to record the successive
values of a given quality property. As a consequence, the valid
period of a quality property value can be specified in WSMO-
QoS. This aspect that has an impact on WS discovery is not
natively supported by our approach. As future work, we plan
to integrate specific features of other QoS ontologies into our
proposed OWL-S extension.

VII. CONCLUSION

In this paper we have proposed an extension of OWL-
S to facilitate WS discovery. This extension consists in a

set a concepts allowing users to represent quality properties
describing a WS as they are defined by the main standards
related to software product quality. Using this extension,
users may not only record the standard in which a quality
property has been defined but also represent relationships that
can be established (for example, equivalence or subsumption)
between quality properties. Compared to other proposed QoS
ontologies, taking into account quality standards is the main
specific feature of our approach.

To go a step further, we have studied the interest of the
proposed OWL-S extension for WS discovery. Based on this
extension, we have shown that queries can be written to
retrieve WS according to quality criteria expressed using a
given quality standard. However, we have highlighted that the
SPARQL syntax is not adapted to express these queries. As
a consequence, we have proposed an extension of this query
language to clearly distinguish expression of functional and
non functional requirements in queries. Moreover, we have
noticed that relationships between quality properties were not
used to improve queries results and thus, we have defined a
set of deductive rules to exploit them. These rules allow a user
to retrieve a service even if it is described with other quality
properties than the ones used to express the query. Finally,
we have considered the fact that non functional requirements
are often not crucial for users but used to prioritize services
responding to particular functional requirements. As a conse-
quence, we have developed an approach for expressing non
functional requirements as user preferences. This approach is
based on a rich preference model defining different types of
preferences. The defined preferences on WS qualities can be
used in queries and are clearly distinguished from other usual
preferences.

This work leaves open several perspectives. In this paper,
we have not considered composition of services. Indeed, only
single WS can be returned as the result of a query. However,
a composition of WS may fulfill users functional and non
functional requirements. Thus, it would be interesting to study
how our approach can be adapted and extended to composition
of WS. We also plan, as we have already pointed out, to
extend our OWL-S extension with specific features of other
QoS ontologies. Finally, it would be necessary to develop
more usable tools, allowing the different actors that use WS
to benefit from our approach.

Acknowledgment. This work is supported by the Postgrado
en Ciencias de la Computación de la Facultad de Ciencias
and the Consejo de Desarrollo Científico y Humanístico
(CDCH) of the Universidad Central de Venezuela, the CDCH
ADIRE Project No. PG-03-7310-2008/1, the UCV-Proyecto
nro. 2009000624 of Fonacit, and finally the O2M Project,
LISV, France.

REFERENCES

[1] D. Martin, M. Burstein, E. Hobbs, O. Lassila, D. Mcdermott, S. Mcil-
raith, S. Narayanan, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and
K. Sycara, OWL-S: Semantic Markup for Web Services, World Wide
Web Consortium, 2004, http://www.w3.org/Submission/OWL-S/.

[2] ISO/IEC9126-1, “Quality characteristics and guidelines for their use
(1, 2),” International Organisation for Standardisation / International
Electrotechnical Commission, Tech. Rep., 2001.

[3] ISO/IEC13236, “Quality of service: Framework,” International Organi-
sation for Standardisation / International Electrotechnical Commission,
Tech. Rep., 1999.

[4] D. Austin, A. Barbir, C. Ferris, and S. Garg, “Web Services Architecture
Requirements,” W3C Working Group Note 11 February 2004, 2004, http:
//www.w3.org/TR/wsa-reqs/.

[5] F. Losavio, A. Matteo, and N. Levy, “Web Services Domain Knowledge
with an Ontology on Software Quality Standards,” in Proceedings
of the Third International Conferences on Internet Technologies and
Applications (ITA 2009), 2009, pp. 74–85.

[6] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language for
RDF,” W3C Recommendation 15 January 2008, 2008, http://www.w3.
org/TR/rdf-sparql-query/.

[7] K. Kritikos and D. Plexousakis, “OWL-Q for Semantic QoS-based Web
Service Description and Discovery,” in Proceedings of the 1st Workshop
on Service Matchmaking and Resource Retrieval in the Semantic Web
(SMRR 2007), 2007.

[8] G. F. Tondello and F. Siqueira, “The QoS-MO ontology for semantic
QoS modeling,” in Proceedings of the 2008 ACM symposium on Applied
computing (SAC 2008). ACM, 2008, pp. 2336–2340.

[9] E. Giallonardo and E. Zimeo, “More Semantics in QoS Matching,” in
Proceedings of the IEEE International Conference on Service-Oriented
Computing and Applications (SOCA 2007), 2007, pp. 163–171.

[10] C. Zhou, L.-T. Chia, and B.-S. Lee, “DAML-QoS Ontology for Web
Services,” in Proceedings of the IEEE International Conference on Web
Services (ICWS 2004), 2004, p. 472.

[11] V. X. Tran and H. Tsuji, “A Survey and Analysis on Semantics in QoS
for Web Services,” Proceeding of the 23rd International Conference on
Advanced Information Networking and Applications (AINA 2009), vol. 0,
pp. 379–385, 2009.

[12] G. Pierra, “Context Representation in Domain Ontologies and its Use
for Semantic Integration of Data,” Journal Of Data Semantics (JODS),
vol. X, pp. 34–43, 2007.

[13] M. Dean and G. Schreiber, OWL Web Ontology Language Reference,
World Wide Web Consortium, 2004, http://www.w3.org/TR/owl-ref.

[14] R. C. Boer, P. Lago, A. Telea, and H. V. Vliet, “Ontology-Driven
Visualization of Architectural Design Decisions,” in Proceedings of the
8th Working IEEE/IFIP Conference on Software Architecture (WICSA
2009).

[15] S. Jean, Y. Aït-Ameur, and G. Pierra, “Querying Ontology Based
Database Using OntoQL (an Ontology Query Language),” in Proceed-
ings of On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, OTM Confederated International Conferences
(ODBASE 2006), vol. 4275. Springer, 2006, pp. 704–721.

[16] P. Kruchten, “An ontology of architectural design decisions in software
intensive systems,” in Proceedings of the 2nd Groningen Workshop on
Software Variability Management, October 2004, pp. 54–61.

[17] W. Siberski, J. Z. Pan, and U. Thaden, “Querying the semantic web with
preferences,” in In Proceedings of the 5th International Semantic Web
Conference (ISWC 2006), 2006, pp. 612–624.

[18] P. Gurský, T.Horváth, J. Jirásek, and P. Vojtás, “User preference web
search – experiments with a system connecting web and user,” in To
appear in the Computing and Informatics Journal, 2008, pp. 25–32.

[19] A. Toninelli, A. Corradi, and R. Montanari, “Semantic-based discovery
to support mobile context-aware service access.” Computer Communi-
cations, vol. 31, no. 5, pp. 935–949, 2008.

[20] D. Tapucu, S. Jean, Y. Aït-Ameur, and M. O. Ünalir, “An extention
of ontology based databases to handle preferences,” in Proceedings of
11th International Conference on Enterprise Information Systems (ICEIS
2009), 2009, pp. 208–214.

[21] G. Pierra, H. Dehainsala, Y. Aït-Ameur, and L. Bellatreche, “Base de
Données à Base Ontologique : principes et mise en œuvre,” Ingénierie
des Systèmes d’Information, vol. 10, no. 2, pp. 91–115, 2005.

[22] H. Dehainsala, G. Pierra, and L. Bellatreche, “OntoDB: An Ontology-
Based Database for Data Intensive Applications,” in Proceedings of
the 12th International Conference on Database Systems for Advanced
Applications (DASFAA’07), vol. 4443. Springer, 2007, pp. 497–508.

[23] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma, “A QoS-Aware Selection
Model for Semantic Web Services,” in Proceedings of the 4th Interna-
tional Conference on Service-Oriented Computing (ICSOC 2006), 2006,
pp. 390–401.

