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ABSTRACT

Spherical flows are a classic problem in astrophysics which are typically studied from a global perspective. However, much like
with accretion discs, there are likely many instabilities and small scale phenomena which would be easier to study from a local
perspective. For this purpose, we develop a local model for a spherically contracting/expanding gas cloud, in the spirit of the
shearing box, -plane, and expanding box models which have had extensive use in studies of accretion discs, planets, and stellar
winds, respectively. The local model consists of a, spatially homogeneous, periodic box with a time varying aspect ratio, along
with a scale factor (analogous to that in FRW/Newtonian cosmology) relating the box coordinates to the physical coordinates of
the global problem. We derive a number of symmetries and conservation laws exhibited by the local model. Some of these reflect
symmetries of the periodic box, modified by the time dependant geometry, while others are local analogues for symmetries of
the global problem. The energy, density, and vorticity in the box also generically increase(/decrease) as a consequence of the
collapse(/expansion). We derive a number of non-linear solutions, including a local analogue of uniform density zonal flows,
which grow as a consequence of angular momentum conservation. Our model is closely related to the accelerated expanding

box model of Tenerani & Velli and is an extension of the isotropic model considered by Robertson & Goldreich.

Key words: hydrodynamics —methods: analytical — stars: formation — stars: winds, outflows.

1 INTRODUCTION

Spherically expanding/collapsing flows are a classic problem are
a classic problem in astrophysics. Such flows include the classic
Bondi spherical accretion problem Bondi (1952); the von Neumann—
Sedov-Taylor solution for a spherical shock wave, used as a model
of supernova explosions Sedov (1946); Taylor (1946, 1950); Bethe
et al. (1958); solar and stellar winds (Velli, Grappin & Mangeney
1992; Grappin, Velli & Mangeney 1993; Grappin & Velli 1996;
Tenerani & Velli 2017; Shi et al. 2020; Huang et al. 2022) and
the spherical collapse problem (Larson 1969; Penston 1969; Hunter
1977; Shu 1977; Foster & Chevalier 1993) important for star and
planet formation. While in many of these problems the spherically
symmetric flow provides a useful approximation to the leading order
dynamics, one expects there to be local departure from spherical
symmetry that could be important in many applications. This is
particularly true of the collapse problem as rotational flows are
expected to grow during the collapse due to conservation of angular
momentum (see also Velli et al. (1992); Grappin et al. (1993);
Grappin & Velli (1996); Tenerani & Velli (2017); Shi et al. (2020);
Huang et al. (2022) for an application where local flows are important
in an expanding flow).

One can study local departures from the axisymmetric flows in
the global picture, such as by performing full 3D simulations of the
expansion/collapse. However it can be prohibitively computationally
expensive to resolve both the scale of interest, while simulating the
entire spherical expansion/collapse. Instead one can turn to local
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models, which are commonly used in astrophysics and planetary
sciences to tackle such problems. Commonly used local models
include the shearing box model (Goldreich & Lynden-Bell 1965;
Hawley, Gammie & Balbus 1995; Latter & Papaloizou 2017), used
in the study of accretion discs; the B-plane model Rossby (1939),
used to study rotating planets; and, of particular relevance to our study
here, the Expanding Box Model (EBM; Velli et al. 1992; Grappin
et al. 1993; Grappin & Velli 1996) and Accelerated Expanding
Box (AEB; Tenerani & Velli 2017), used to study stellar winds
and the FRW like model of Robertson & Goldreich (2012) used to
study turbulence in cosmological (i.e. homogeneous and isotropic)
collapses. Such local models have had a number of notable successes
in astrophysics, the most famous of which is the (re-)discovery of
MRI by Hawley et al. (1995).

Of the existing local model the most relevant to our work is the
EBM model for stellar winds, developed by Velli et al. (1992);
Grappin et al. (1993); Grappin & Velli (1996). This model follows
a local box in a (supersonic), uniformly, expanding magnetohy-
drodynamic (MHD) flow to study local instabilities and waves in
the outer regions of solar and stellar winds. In this paper we are
interested in deriving an expanding box like model valid for both
radially and temporally varying spherical flows. The generalization
of the EBM to radially varying flows was done in Tenerani & Velli
(2017). The generalization to background flows which are also time
dependant, motivated by the stellar formation problem, results in a
model close to the AEB (although our treatment of pressure will
be closer to the distorted shearing box models of Ogilvie & Latter
(2013); Ogilvie & Barker (2014)). We shall focus, in this paper, on
the hydrodynamic case as it posses a number of important features
that are worth understanding before generalizing to MHD.

© 2023 The Author(s)

Published by Oxford University Press on behalf of Royal Astronomical Society

202 11dY 0 U 1s9NB Aq 08581.2./01 L 1/2/¥2S/aI0Ie/Seluw/wod"dno-olwapeoe//:sdiy oy papeojumod


mailto:elliot.lynch@ens-lyon.fr

Global Model LocaILModeI
xy R +y
RN XY,

T

Figure 1. Geometry of the domain. Globally (left) the domain is bounded by
radial shells which can approach or recede from each other depending on the
gradients in the background velocity. Points within the domain move in the
radial direction due to the spherically symmetric background flow. The local
model (right) is a rectangular domain where the horizontal coordinates are
equivalent to the latitude/longitude on the sphere and the vertical direction
moves between spherical shells comoving with the background flow. The
aspect ratio of this local box changes as the distance between the spherical
shells varies.

In Section 2, we present the derivation of our local model.
Sections 2.4 and 2.5 derives symmetries and conservation laws of
the local model. Section 3 presents some non-linear solutions to the
local model — and discuss how these relate to the global problem.
In Section 4, we derive the linear theory of our local model. We
discuss possible extension of our model in Section 5. We present
our conclusions in Section 6 and additional mathematical details
(including alternative formulations which maybe more convenient
for implementation in hydrocodes) are presented in the appendices.

2 DERIVATION

2.1 Global geometry

To derive a local model for spherical collapse/expansion consider a
local neighbourhood of a point, o, located on the equator of a sphere
of radius R. The line element of the usual spherical polar coordinate
system is

ds? = dR? + R*(d6?* + sin 0 d¢?). 1)

We are interested in describing the local dynamics near to p
occurring on a horizontal length-scale Ly <« R (See Fig. 1, which
show the relationship between the global and local geometries).
Without loss of generality, we can locate our local model on the
equator of the sphere (6§ = 7/2) meaning we can approximate the
line element by

ds? = dR* + R*(d6* + d¢*) + O(Ly/R)*d¢?), 2)
which results in metric tensor components,

grr =1,  8oo = gpp = R*, A3)

and inverse metric tensor components

RR 1
)

g =1, " =g"=R7, )

with all other components zero. The Christoffel symbols compo-
nents, for this coordinate system, are

R R
rf =Tk = —R,
Tor = Tk = qu;R = rﬁd) =R, 5)
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with all others vanishing. The fluid equations in this coordinate
system are

2 1
Du’ + Zufy® = —R72 (agcb + fa9p> , (6)
R P
o 2 R0 -2 1
Du? + —u"u® = —R 0,®+ —04p ), @)
R p
1
Du® — Ru®u® — Ru’u? = — <6R<1>+78Rp> , ®)
0
Dp = —pR729;(R*u"), )

where the Lagrangian derivative is
D=20,+u'0;. (10)

Note, we have listed the R component of the momentum equation last
as it will become the z momentum equation in the local coordinate
system. To close this system of equations, we must supplement
them with an equation of state determining p, which we assume
is barotropic,

p = p(p). (11)

2.2 Spherical collapse/expansion

For the background fluid flow we wish to consider a spherically sym-
metric expanding/contracting fluid in a (potentially time dependant)
central potential & = ®(z, R). Consider a spherically symmetric fluid
in this potential with density pg = po(R, 1) and purely radial velocity
field U' = U(R, t)é',. The density of the fluid then evolves according
to the continuity equation,

Dopo = —poR *dr(R*U), (12)

where the Lagrangian derivative of the background flow Dy is given
by,

Dy = 0, + UO0g. (13)

The radial momentum equation for the background flow determines
how U(R, f) evolves,

1
DoU = —0r® — —0r po, (14)
Po

where py = p(po) is the fluid pressure. Spherical symmetry ensures
that the 6 and ¢ components of the momentum equation are satisfied.

This background flow naturally sets a characteristic time-scale,
tyg ~ R/|U|, which is the time-scale over which the background flow
evolves (in the AEB model of Tenerani & Velli (2017) their expansion
time-scale 7, is equal to our #,,). In the collapse case we also have
Leollapse (typically ~tg), which is the time-scale for the completion
of the collapse (e.g. the free-fall time or fcoiapse ~ fpg ~ %)) in the
isothermal sphere model of Shu (1977)). In general one expects
tyg to evolve with the background flow, typically getting longer in
expanding flows and shorter for collapses.

2.3 Deriving the local model

The local model we shall derive is similar to the AEB (Tenerani &
Velli 2017), however, we allow for a time dependant background
flow and our treatment of pressure is closer to the distorted shearing
box models of Ogilvie & Latter (2013); Ogilvie & Barker (2014).
We are also interested in what happens when such a model is run in
reverse as a model of a spherical collapse.

Consider local, non-linear, perturbations to the background, spher-
ically symmetric, flow. We now write the fluid motion as the sum of

MNRAS 524, 1710-1726 (2023)
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the background spherical collapse/expansion and a relative velocity

vl

uw =Ué, +v'. (15)

The fluid dynamical equations for the relative velocity are, without
approximation,

2 1 1
DV + (U Ry, 0 _ 09 po — —— g p. 16
v+ oW k2P0 T g2 %ep (16)
2 1
DV + 2(U + 0"’ = — d,p0— —d,4p, 17
v +R( + v Rz 0P paOep a7
1 1
DvR + vRaRU — Rv®v? — Ruu® = —Ogrpo — —Ogrp, (18)
Lo P
Dp = —p[A + R729;(R*v")], (19)
where the Lagrangian derivative is
D=20,+Udx+0'0, (20)

and we have introduced the velocity divergence of the background
flow,

A = R729x(R*U). 21

As the fluid is barotropic, we can introduce the pseudo-enthalpy
h(p)= f p( 0)dp~!, and the momentum equations can now be written
as

2
Dv’ + E(U +vfpf = —ﬁagh, (22)
D¢+3(U+ R)‘f’—fiah (23)
v R vt = 72 0ol
DvR + vRRU — Rv?u? — Rubu® = —0rh — dgho, (24)

where hy = h(pg).

We are interested in describing local, non-linear, perturba-
tions occurring on a horizontal length-scale Ly <« R and verti-
cal length-scale Ly < R, where the non-linear curvature terms
2vRy?, ZuRy? R(v*v? + v7v%)) can be neglected at leading order.
For a hypersonic collapse/expansion these terms are subdominant
relative to the global curvature terms % and the vertical advection
of the background flow, vRUor (assuming Ugo ~ U/R). This is
the regime considered in the EBM of Velli et al. (1992); Grappin
et al. (1993); Grappin & Velli (1996)." It also results in a similar
asymptotic ordering scheme to that used to derive the shearing box
(in particular the ‘distorted’ eccentric and warped variants, Ogilvie &
Latter (2013); Ogilvie & Barker (2014)). However, typical collapse
profile (such as Shu 1977) start out subsonic and transition to a
hypersonic flow at late times and one would ideally like our local
model to be able to handle this situation. In the highly subsonic
regime, the local flows primarily consist of sound and vortical waves
and the local model is (at leading order) a Cartesian, periodic,
box with an anisotropic sound speed. The main influence of the
background flow on the model, in this regime, is the slow variation

!There is a subtlety in the EBM as the uniform expansion means that Ugy =
0 so that, strictly, R?v? + v?v?) cannot, in general, be neglected. In the
expanding box application one is saved by the fact that v?, v? tend to get small
with the expansion as a consequence of angular momentum conservation
meaning if they are small enough initially the non-linear curvature terms
should remain small throughout the expansion. This is not the case if one
were to run the expanding box in reverse to model a uniform collapse and
thus extra care must be taken in this instance.

MNRAS 524, 1710-1726 (2023)

of the horizontal and vertical sound speed with time. Thus the non-
linear curvature term is subdominant to the terms involving pressure
gradients.

In general then, in order that we can neglect the non-linear
curvature terms we require

Rv*v? « max(v?RU, (Lu/R)™'c?), (25)
Rv®v? « max(W’RU, (Ly/R)™'c?), (26)
R(?v? 4+ v'v?) « max(v® RUgo, (Ly/R)™'c?). @7

To ensure that these terms are subdominant to either the terms
involving the pressure gradient or the terms involving the background
flow.

This requirement that the non-linear curvature terms be negli-
gible tends to introduce a time-scale, f.,, over which the local
approximation is valid and time-scales longer than z.,,, the neglected
terms cause a significant departure from the predictions of the
local model. This is particularly true for the collapse case (U <
0) as the non-linear curvature terms are expected to grow with
time, eventually violating Conditions equations (25)—(27). This just
reflects the expectation that (hydrodynamic) collapses tend to be
halted when they achieve sufficient rotational support. Thing are
easier for spherical expansions as the neglected terms tend to get
smaller with the expansion. If 7., 2> Teollapse ™~ Ivg then we can
successfully employ the local model over most of the collapse.
However when foyry < feollapse ™~ fbg OUr model breaks down before
the collapse completes. While this is a limitation of the local model
it’s worth noting that physically if feur < feollapse this means the
background spherical collapse is also not valid on time-scales longer
than 7, as local/non-spherical perturbations have grown sufficiently
non-linear to modify the background collapse.

In addition to the non-linear curvature terms, we must also consider
how to deal with the background pressure gradient, —0gho. In
the small box limit that we are considering, this term is always
subdominant relative to the main pressure gradient term —0gh. In
the hypersonic limit, this term is also subdominant to the background
advection terms and it is evident that one can neglect this term.
The hypersonic limit (neglecting the —0zh( term) is a consistent
asymptotic limit of the background flow similar to the ‘small’
compressible shearing box as described in Latter & Papaloizou
(2017). It is less obvious what should be done in the subsonic limit
as here the advection terms are also subdominant. Tenerani & Velli
(2017) have argued that both the background pressure gradient and
background advection terms should be maintained as they are of the
same order. However, it has been found that keeping the pressure
gradient terms leads to spurious instabilities such as unstable sound
waves (See Latter & Papaloizou 2017, for a discussion in the
shearing box context). This may be a consequence of the fact the basic
state of the local model including the background pressure gradient
is incompatible with the imposition of periodic boundaries that are
typically required for numerical applications. The advection terms,
on the other hand, are a relatively benign subdominant term in the
subsonic limit. In fact on can show that the effects of the advection in
the subsonic limit are equivalent to their effects on short-wavelength
waves in the hypersonic limit. Therefore the correct approach appears
to be to neglect the background pressure gradient, but maintain

21t’s unclear whether the gradients in the background magnetic field in the
model of Tenerani & Velli (2017) will lead to similar spurious instabilities in
the magnetosonic waves.
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the background advection terms, provided that the box is small
enough.

Neglecting the non-linear curvature terms, and background pres-
sure gradient, the equations simplify to

2 1
0 0 __
Dv’ + EUU = —ﬁagh, (28)
Dv? + EUM’ = —ia h (29)
R TR
DvR +vRORU = —0zh, (30)
Dp = —p[A+0;v']. (31)

Consider a reference point following the spherical flow, starting
at an initial radius Ry, and angular coordinates 6 = 7/2, ¢ = 0 at
t = 0. Let R(¢) be the solution of dR(t)/dt = U(R(t), t) subject
to the initial condition R(0) = Ry. Then the coordinates of the
reference point are (R(t), 0, ¢) = (Ry, 7/2,0). We now consider
a local neighbourhood of the reference point

o=y,

where x, y are O(Ly/R), and z is O(Ly/R) in our units. Thus our
coordinate system consists of a (small) rectangular domain on the
equator of a sphere of radius R, with x, y being Cartesian coordinate
describing the location of the point on this sphere and z denoting the
height above the reference sphere along lines of radius. The radius
of the reference sphere is then free to change with time — accounting
for the spherical collapse/expansion in the global system.

Because of it’s appearance in the Lagrangian derivative we must
expand the background velocity vertically as follows

U = U()(T) + UR()(T)Z. (33)

0=m/2+x, R=R(#t)+z, t=r, (32)

All other geometrical/background quantities are evaluated at the
reference point and are thus functions of time only.

Because of the time dependence of the coordinate system the old
and new time derivatives are related by

0; + UpOg = 0., (34)
while the Lagrangian time derivative is
D =0, 4+ Ugozd. + v'9;. (35)

The resulting fluid equations in this coordinate system are then

2U 1
DUX+%UX=_W6XP, (36)
2U 1
Dv” + %Uy = —Wa),p, (37)
. 1
Dv* +vUpgo = —Eazp, (38)

where p = p(p) is given by the barotropic equation of state. One
drawback of the above coordinate system is that, excepting for the
case of a uniformly contracting/expanding fluid, there is an explicit
dependence on the vertical coordinate through the Lagrangian time
derivative. This makes it harder to setup boundary conditions in the
vertical direction. Similar to local models of distorted discs (e.g.
Ogilvie & Barker 2014), we can rectify this deficiency by adopting
a Lagrangian or Stretched vertical coordinate 7 = z/L,(7). Z is a
Lagrangian coordinate with respect to the background flow, that is,
Doz = 0, where Dy = 0, + Ugrz0,. L, is a characteristic vertical
length-scale which encompasses the vertical stretching/compression
of the fluid flow due to radial variations of the background velocity

A local model for spherical flows 1713
U. L, evolves according to
dL,
= =UgoL:, 39)
dt

In principle, one can rescale the vertical coordinate such that L,(0) =
Ry. However, taking L,(0) = L.y, which need not equal R, allows
for the exploration of flows with different horizontal and vertical
length-scales.

The vertical partial derives are related by 9, = LZ_l 0; and the verti-
cal velocities are related by v° = L;' v*. Upon adopting the stretched
vertical coordinates the Lagrangian time derivative transforms to a
spatially homogeneous form,

D=a,+vxax+vyay+vfaz. (40)

The Jacobian determinant of the new coordinate systemis J = L, R?
and the coordinate system has the following line element

ds? = R*(v)ldx* + dy*] + Li(1)dz". (41)

This choice of vertical coordinate puts the vertical and horizontal
coordinates on equal footing. Both are dimensionless variables
with an associated length-scale (L, and R, respectively). Using the
relationship between R and Uy, along with equation (39) we can
write A in terms of the time derivative of the Jacobian,

A—2U0+U _2dR+lsz_1dJ 42)
TR R=Rdar " L.dr  Jdt
In the stretched coordinate system the momentum and continuity
equations of the local model are

2 1

Dv* + —v' = ——>0,p, 43

vt 4+ = v R )4 (43)
20y 1

Dv’ + %U' = —Wa},p, (44)

Dv* + 2v°Ugy = _Tl@azp’ (45)

Dp=—p [A+axv«‘+ayv~V+a5vf]. (46)

equations (43)—(46) form our local model. As explored in subsequent
sections, one unusual property of this model, that can be deduced
from the form of these equations, is the differing effective sounds
speeds for sound waves propagating in the vertical and horizontal
directions when L, # R.

Alternatively, the momentum equation can be written in terms of
the covariant velocity, v;, which are in many ways simpler,

1

Dv, = ——0,p, 47)
0
1

Dv, = ——0,p, (48)
0
1
0

Notably this implies conservation of the generalized momenta, pv;.

With this choice of coordinate systems we can now use reflec-
tive/closed boundaries (for no mass/momentum flux with neighbour-
ing radial shells) or periodic boundaries in the vertical direction.
In the horizontal direction, periodic boundaries are the physically
meaningful boundary conditions as these allow use to consider the
behaviour of high-m perturbations to spherical flows in alocal model.
The possibility to use periodic boundaries significantly simplify
numerical implementation of the model.

A more general choice of boundary condition which will allow
for the study of a much wider class of flows is to adopt shear-
periodic boundary conditions analogous to those seen in shearing

MNRAS 524, 1710-1726 (2023)
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1714  E. M. Lynch and G. Laibe

box models, provided the shear across the box is not too large such
that the curvature terms become important. Using shear periodic
boundary conditions likely allows for the modelling of a weakly
rotating collapse/expansion within the local framework. A proper
exploration of the shear-periodic local model and it’s correspondence
with a weakly rotating spherical flows is beyond the scope of this
paper and will be left for future work.

The local model can be derived from the following Lagrangian
density

1 1 I
L= py E’Rz(v‘”vx +vYvY) + ELgvzvZ —e¢f, (50)

where ¢ is the specific internal energy.
We can also reformulate the local model in terms of a FRW like
metric:

ds® = a*(0)[dx* + dy? + b*(r))d7?), (51)

where a is the scale factor and b the box aspect ratio. One has the
choice to absorb the dimensions into the scale factor or the coordinate
system. a and b are related to ‘R and L, through

a=R, b=L./R. (52)

This leads to the following fluid equations

Dv* 4+ 2Hv" = ——0,p, (53)
a-?

Dv' +2Hv' = ——90,p, (54)
o O

i _ - 252
Dv* +2Hv +2-v° = — 0:p, (55)
0

b ! : :

Dp:—p 3H—|—Z+ava +ayv} +azU" ’ (56)

where we have defined the Hubble parameter H = a/a. For a
constant aspect ratio box, b = 0, these equations are equivalent to
Robertson & Goldreich (2012). Various alternative formulations of
the local model, of potential use for numerical implementations, are
given in Appendix A. Of note is the time dependant background terms
in the continuity equation, and in front of the pressure gradients, can
be absorbed into a time dependant, anisotropic, and effective sound
speed.

2.4 Symmetries of the local model

Ideal gas dynamics has a number of important symmetries, such
as Galilean transforms, rotations, and length-scale, time-scale, and
mass rescaling. The global problem similarly has many symmetries
— in particular global rotational symmetries along with the choice of
rotating frame. One would also expect that many of these symmetries
should be reflected in the local model. In this section we shall explore
which of these symmetries are carried over/modified in the local
model.

Fluid dynamics in periodic, Cartesian boxes are invariant under
Galilean transforms. In the local model, one expect such Galilean
transforms will be modified by the time dependant geometry.
Consider a modified Galilean transform where the new position and
time-scale are related to the old ones by

X =x— /Vg(‘[)d'[, =1, (57)

where v,(?) is the new frame velocity which is uniform across the
box, but can undergo acceleration. The velocity transforms according

MNRAS 524, 1710-1726 (2023)

to

V=v—v,. (58)
This results in partial derivatives which transform according to

0, =0 — v;ai, 0, =0. (59)

The Lagrangian time derivative is unchanged by this transform with
D =9, + v}, similarly the divergence of the relative velocity is
left unchanged (9;v' = 9/v'"). This means the continuity equation is
unchanged by the transform. In order for the momentum equations to
remain unchanged by this transform we require that the frame
velocity, v,, satisfy

o, 20
Ug + %Ug = O, (60)
. 200
Ug + 71}2 =0, (61)
v+ 2Ugov} = 0. (62)

We see that during a collapse (Uy < 0), horizontal frame translations
accelerate with time in order to conserve angular momentum in
the global frame. These horizontal translations in the local frames
thus correspond to a (slow) global rotation of the reference sphere.
The vertical frame translation correspond to a acceleration of the
reference sphere relative to the background flow — that is, the
reference sphere falls/rises at a slightly faster/slower rate than the
background flow.

Ideal gas dynamics in Cartesian geometry exhibit a similarity
transform where the dynamics are invariant under rescaling of the
length-/time-scale. The local model exhibits a similar similarity
transform, however here we must be careful to also perform an
appropriate rescaling of the background flow. Consider a rescaling
of space, time and fluid entropy by constant factors such that the
length and time-scale transform like

X AX, T > UT, (63)

while (assuming a perfect gas) the pressure transforms like
P Kp. (64)
Under this rescaling, the partial derivatives transform according to

a, = /Lila,, ai = )fla,», (65)

and the velocity transforms according to
Vi au v, (66)

This results in the Lagrangian time derivative transforming like
D 1~ D. This transformation works provided that the background
flow is also transformed like

R (k/MN)VPR, L, (/M) VL, (67)

Uo = (/W)™ Uy, Ugo > 1 Ungo. (68)

This also results in Az ~' A. This allows us to relate the local flows
of two different, but homologous, spherical flows by a rescaling of
the length-scale, time-scale and entropy of the local flow.

Independently of this similarity transform one can also rescale the
vertical length-scale of the local model — corresponding to changing
the aspect ratio of the box. Consider a rescaling of the vertical length-
scale, L, by a constant factor r with L_+> ' L_. If we simultaneously
rescale the stretched vertical coordinate by

7 rZ, (69)
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then as, physical vertical coordinate z = ZL, is left unchanged by
this transform, the dynamics are unchanged by this rescaling, that
is, if we rescale L, by a constant factor then the local dynamics are
left unchanged if we simultaneously rescale the vertical extent of the
box. Under this change of aspect ratio the vertical partial derivative
transforms as 0: > r~'d:, while the vertical velocity transforms
according to

Vi vt (70)

meaning D is unchanged by this change of aspect ratio. One
consequence of this rescaling, however, is the velocity field in
the new coordinate system may posses shear where the original
contained none. This will be particularly important to the diagonally
propagating sound waves discussed in subsequent section.

Finally the local model is invariant under mass rescaling (p — Ap,
p — Ap), assuming a perfect gas, and horizontal rotations. Unlike
fluid dynamics in a periodic, Cartesian, box, the local model is not
symmetric to rotations in the vertical direction unless the aspect ratio
of the box is fixed (L, o« R). This is a consequence of the different
effective sound speed in the vertical and horizontal direction, along
with the differing contributions from the background velocity.

2.5 Conservation laws
The conservative form of the continuity equation in the local model
is
0:(Jp) + 0, (Jpv™) + 3,(J pv?) + 3:(Jpv¥) =0 . (71)
In an ideal barotropic fluid, vorticity is a conserved tensor

density which is related to the relabelling symmetries of ideal fluid
Lagrangian (Padhye & Morrison 1996). The local model preserves
this relabelling symmetry so we should expect the model to have
a form of vorticity conservation. In the global coordinates the fluid
vorticity obeys
Do’ = Do’ — a)jVjui +injuj,

=@, +u'd)o —wdju +'Vul,

=0, (72)
where, in this paragraph only, D = 0, + u'V; is the Lagrangian time
derivative with respect to the total (global + local) flow. The latter
expression being a consequence of the symmetry of the Christoffel

symbols. The vorticity depends only on the relative velocity as the
background flow is irrotational,

o =& v, (73)
where &¥% is the volume element of the local model. Substituting
equation (15), into equation (72), for the fluid velocity we obtain, in
local (unstretched) coordinates,

Do’ + o' [A + v + 0,vY + 0.v°] — a)zURoS;

— (0" 0y + @3, + w0, V' =0. (74)
Upon introducing the stretched vertical coordinate, Z, this simplifies
to

Do’ + o'[A + 9,0 + oyv” + 9:v7)
— (@0, + @0, + @' =0. (75)

It is informative to write the above in terms of the tensor density
advection operator with respect to the relative flow, Dy,

D@ = —'A (76)
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where, when acting on the vorticity, the advection operator with
respect to the background flow is

D' = Do’ + @' 907 — /30, 7

with D = 9, + v'0; the usual Lagrangian time derivative in the local
model. Thus we see that the change in box volume, through A,
results in a source/sink of vorticity. In the global picture the vorticity
is advected by the total flow, in the local picture the vorticity is
advected by the relative flow with the background flow appearing
as a source/sink. This is analogous to the situation in cosmology
where the peculiar velocities redshift to zero in an expanding FRW
metric resulting in w; oca~' (Mo, Van den Bosch & White 2010). The
closely related quantity, Jo', is conserved by the local model, with no
source/sink from the box volume change. The effect of the changing
box volume on the fluid vorticity can be seen in the simulations of
Robertson & Goldreich (2012) (where it is referred to as adiabatic
heating), with a rapidly contracting box leading to a strengthening
of large scale eddies and a corresponding increase in the turbulent
velocities.

The kinetic helicity, Hy, is a conserved quantity associated with
the vorticity which is conserved in barotropic ideal fluids. Despite
the collapse/expansion acting as a source/sink of vorticity, one can
show that the kinetic helicity of the relative flow is conserved. The
kinetic helicity of the relative flow is

Hk = [//vieijkajvkdv,
= ///vieijkajkadxdde. (78)

Taking the time derivative of Hy,

H, = [f/ (0:67%0 v + v;%d 0y ) Jdx dy dz,
—[// {(v“aavi + a,h) Sijkajl}k

+ v,»eijkaj (v"aavk + ak]’l) Jdx dy dZ,

—///6_,- (sijkvkv“aavi + 8ijkvk6ih) Jdxdydz,
0.

where we have made use of the antisymmetry of £¥*, 9,(e"%J) = 0,
along with the periodic boundary conditions. Conservation of kinetic
helicity in the local model is not surprising as the stretching due to
the background flow is not able to change the flow topology in the
box.

Unlike hydrodynamics in both Cartesian and spherical geometries,
the local model does not posses time translation symmetry. One
can still obtain an energy equation for the relative motion. The
conservative form of the energy equation for the relative motion
in the, stretched, local coordinates is

0, (Jpgrell) +0; [Jvi (pgrell + P)]

(79

s = U ,
= —Jp |UpLvv" + %W (Vv +0"0) | = JpA,  (80)
where the energy of the relative motion is given by
1 |
Erell = EL?vaz + ERz(t)[v"v" +v'vY] +e. (81)

Thus we see that the background flow is a source/sink of energy for
the local model, through the pdV work done by the flow, and through

MNRAS 524, 1710-1726 (2023)
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Figure 2. Horizontal shear flows in the local model are equivalent to (uniform
density) zonal flows on the collapsing(/expanding) reference sphere in the
global model.

the gradients in the background flow which are accessed through the
Reynolds stresses. This is similar to the energy equations obtained
in distorted shearing box models (e.g. Ogilvie & Barker 2014)

3 NON-LINEAR-SOLUTIONS

3.1 Horizontal shear flows

We can consider solutions to the local model with a spatially
homogeneous density p = p(t) and a purely horizontal velocity
field (v* = 0) of the form

v = Ao, V' (2), (82)
where A = 97(Z)x — 0°(Z)y. This flow consists of a horizontal shear
flow that is uniform along the flow direction, ¥, but can vary
perpendicular to ¥. This result in shear across these perpendicular
directions. We set A = 1 at some initial time 7 = 7, so that
vg(Z, 1)D' (%) represents the initial velocity field in the fluid.
Note that we have
axvx + ayv" = A (ﬁxaxvo + l’)yayvo>
= A (0"9"9,v9 — 079" 05v0)
=0, (83)

meaning this velocity field doesn’t cause a change in density, or
pressure. Also, we have
Dvy = Avg (0*0,vo + 99, v9)

= A"Uo (f}"f)-"axvo — ﬁ’vﬁxa)\l}o)

=0. (84
Given the above expression, equation (82) is a solution to the local
model provided that the amplitude A evolves according to

. 2Up

A+ —A. 85

R (85)
Making use of dR/dt = Uy we find that
A=(R/R)™, (86)
yielding the following for the velocity field at time ¢
v = vp(Z, 0¥ (@)x — T @@ (R/Ro) . &7

This is the local manifestation of conservation of angular momentum
in the zonal flows of the global model.

These represent stratified zonal flows, of constant density, in the
global geometry (as illustrated in Fig. 2) which grow/attenuate due
to conservation of angular momentum with a change in the size of

MNRAS 524, 1710-1726 (2023)

the reference sphere. The orientation of these zonal flows is free to
vary with height due to the absence of shear stress.

In a collapse, these zonal flows grow in strength with time. It is
unlikely that the shear flow can steepen indefinitely without going
unstable, likely by going Kelvin—Helmbholtz unstable at the locations
of maximum shear. This may result in zonal flows of approximately
constant velocity separated by horizontal vortices/rolls. As the
collapse proceeds still further these zonal flows will continue to
strengthen. Whether the non-linear outcome of this collapse results
in a disruption of the ordered vortex layer, zonal flow geometry into
fully developed turbulence throughout the box, or in a reorientation
of the zonal flows until they self-organize into a stable shear flow
will require numerical simulation to determine.

Of course if the collapse is allowed to proceed indefinitely, the
zonal flows will become so strong that they break the asymptotic
scheme used to derive the local model. In the global model these
zonal flows will ultimately grow strong enough to provided rotational
support to the gas, slowing or halting the collapse.

3.2 Elevator flows

A second class of non-linear flows which can be supported by the
local model are vertically homogeneous ‘elevator flows’ of constant
density. These can only occur for periodic vertical boundaries, an
appear to be analogous to the elevator flows seen in some unstratified
disc simulations (e.g. Dewberry, Latter & Ogilvie 2019; Dewberry
et al. 2020). Here the density, and pressure, is a function of time
only p = p(t). The horizontal velocities are zero, v = v¥ = 0. The
vertical velocity is given by,

v® = B(T)vi(x, ), (88)

where v0 is the vertical velocity at t = t¢. This works because
9:v® = 0, meaning this velocity field results in no change in density,
and Dvj = v¥dlv§ = 0. Substituting equation (88) into the vertical
momentum equation we obtain the following equation for the
evolution of B,

B +2BUgy =0. (89)
Making use of dL,/dt = UgoL, we find that

B = (L:/L)"", (90)
yielding the following for the velocity field at time ¢,

V' = v V(L:/ L) ™. on

This grows provided that Ugy < 0.

These elevator flows can only occur with vertically periodic bound-
aries, and do not occur for closed/reflective boundary conditions.
Unlike the horizontal flows considered in Section 3.1, which are the
local realization of zonal flows present in the global geometry, these
vertical elevator flows may be an artefact of periodic boundaries.
Similar elevator flows are found in simulations of accretion discs
with vertically periodic boundaries, despite not being present in the
global problem (Dewberry et al. 2019; Dewberry et al. 2020).

3.3 Diagonal flows

There are a set of diagonal flows of the form

V' = (R/Ro) > vy (y), 92)

v = (L,/L0) > v5(y), 93)
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Figure 3. More generally these uniform density shear flows in the local
model are local representations of a (weakly) differentially rotating flow with
the streamlines in the global model spiralling towards/away from the centre
of the sphere.

where, without loss of generality we can align the diagonal flow with
the x-axis. Globally these flows represent a uniform density spiral
in the global flow (as illustrated in Fig. 3) where the pitch angle
of the spiral varies with ‘latitude’ on the reference sphere. As the
vertical and horizontal velocities evolve separately the pitch angle of
the spiral changes with time.

In general the horizontal shear, elevator and diagonal flows are
local representations of weak departures from spherical symmetry
in the global model. This is similar to the local representation of
disc warps and eccentricity in (circular) shearing box (e.g. Balbus &
Ricotti (1999); Latter & Ogilvie (2006); Ogilvie (2022)).

3.4 Other non-linear solutions

Itis possible to find additional non-linear solutions; notably it appears
to be possible to generalize homentropic/Kidda-like vortex solution
for certain background flows. Additionally adopting shear periodic
boundary allows for a more general class of shear flow than those
considered here. We leave exploration of both of these classes of
solution to future work as they are of interest in their own right.

4 LINEAR PERTURBATIONS

We now explore the behaviour of linear waves in the local model.
For our background state we take p = p(7) and v’ = 0, where

Dp = —pA, (94)

with A the velocity divergence of the background flow. The linearized
equations of motion and continuity, on top of this background state
are

20, . .

D&v* + %av* = —R29,6h (95)
2U,

Dsv’ + 2 2svY = —R20,8h (96)
= )

DSV 4 2Ugodv° = —L*0:8h (97)

DSp = —p0;8v' — SpA. (98)

The enthalpy perturbation, 6/, can be written in terms of the relative
density perturbation §yr = %” through

8h = clsy. 99)
The relative density perturbation evolves according to

D&y = —0;8v'. (100)
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Introducing a Lagrangian displacement (following Lynden-Bell &
Ostriker 1967; Papaloizou 2005) of the form & = & exp(ik - x) such
that v = D& and the relative density perturbation which is related
to the Lagrangian displacement by

s = —ik - £. (101)
Substituting these into the linearized momentum equation we obtain
D + %Dé" =~k k&l (102)
D& + %Dé“ = —clykykiE', (103)
D*E 4 2UpoDE* = —c? k:kiE'. (104)

The can be derived from the following Lagrangian density (which
can alternatively be obtained from equation (50))

1 1 UV | .
L= ERZ(Sﬁ*sﬁx + 80780) + ELisazsaz - ch(kié’)z, (105)

where, without loss of generality we can rotate the box such that
ky = 0. Variation with respect to & leads to equations (102)-(104).
Associated with this Lagrangian we have the Hamiltonian density

1 1, .
H= ER’Z(ﬁf + A7+ bR + ch(k,-g')z, (106)

where #, = R?§0%, #, = R?60, #; = L260° and we have made
use of the aspect ratio b = L,/R. Performing a canonical transform
using the following generating function

G = PkiE + Py(REY + 285 + P&, (107)

where ® and J° are to be determined. This results in the following
relationship between old and new coordinates and momenta,

o = Puky + PR (108)
Ay =P, (109)
fr = Pyk: + P32 (110)
o = k&', (111)
B =NE"+2E, (112)
y =8, (113)

Consider the contribution to the Hamiltonian density from #2 +
b~2#Z. Writing this in terms of the new momenta we obtain

A2+ 57272 = (Pyky + PpR)? + b2 (Pyks + P30y
= (kK + bk P; + (R + 52T P;
+2(Rk, + k:b2D) P, Pp. (114)

For boxes of constant aspect ratio we can diagonalize this by setting
Rk, + k:b~21 = 0, meaning the «, B, and y linear perturbations are
decoupled. In general choosing

N = L, (115)
\/ K2 + K2
kb2
[ 0 (116)

\/ K25 + k2

3The Hebrew letters aleph and beth

MNRAS 524, 1710-1726 (2023)
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where we have introduced by = b(0), means that the dynamics of the
o, B, and y waves are initially independent, but changes to the box
aspect ratio introduces a ‘mixing’ of the o and g waves. With this

choice this leads to the following, transformed, Hamiltonian density:
1 k2b2(b/by) ™% + k2

= R UG +b22)p2 4 077 T p2

=3 {(XJF et kbi+k2 7

ksky 1
+2——[1 - (b/bo)‘Z]PaPﬂ+P§}+—c?a2. 117)

K2k 2”

This Hamiltonian is independent of both 8 and y, meaning Pg and
P,, are both constants of motion and 8 and y satisfy

. K2b3(b/bo) ™% + k2 1 — (b/bg) 2
p=R2EOT 0(2/20) 2+ “P,g—l—R’zkzkxi( /b0) P,, (118)
k3by + ks \/ K205 + k2
y=R7’P,. (119)

The latter just being a linear shear flow in the y —direction. Pg and P,,
can be related to the Fourier components of the vorticity perturbation,
Sw', through

.

Sw* = —’TZPV, (120)
X __ _i 27,2 2

8" = == \/k2b5 + K2 Py, (121)
. ik,

S0’ = lTPy. (122)

The linearized form of equation (76) is 9;(J8w') = 0, so we see that
Pg and P, being integrals of motion arises as a result of vorticity
conservation. We can thus identify the («, P,) with the sound wave,
while (B8, Pg) and (y, P,) are vortical waves. Changes in the box
aspect ratio leads to coupling between the sound wave and the (8,
Pyg) vortical waves.

Treating Pg and P, as parameters, the Hamiltonian for the
dynamics of («, P,) reduces to

1
Ho= SR +bIDP;
1 —(b/bo)?

N R

One can show that the dynamics of this system correspond to a
forced harmonic oscillator with a variable frequency by switching
the position and momenta,

1o
Py Pg + —c;a”. (123)

R 2ksk,
+ : 56

1 1
H = 5H2 + szxz —gPsX, (124)
where 1 = ¢,0, X = —c;' P, and we have introduced the sound

wave frequency, w, and coupling coefficient, g,
w = ¢kl = ¢;(R72k} + L7k2)', (125)

1 —(b/by)*

\/ K23 +k§‘

There are two regimes depending on whether the waveperiod is
short relative to trg. When wty, > 1 we have the WKB/modulated
wave regime where the linear wave consists of a simple wave
propagating on a slowly varying background. Taking w as a large
parameter, with g = O(w?), and provided Py = O(w™?) then the
WKB solution for X is

X =Xi0 Pexp (:l:i /a)dt) ) (127

g = ¢, R kk: (126)
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Figure 4. Amplitude (as measured by 7,) of a horizontally propagating
sound waves for a freely falling box with R = Rp(1 — t/tc)z/ 3Ry =1,
t. = 0.5, and wavenumbers k, = nc;()l, where n is an integer. The solutions
correspond to Bessel functions (See Appendix B1). In the freeze out regime
(wtpg S 1) the solution has no nodes on the time-scale of the collapse.

The WKB solution for «, P, are then
a~Fic] Xow'exp (:l:i /wdr) : (128)

Py~ —c; X1 exp (ii / wdr) , (129)

while Pg is a (small) constant. The WKB solutions, specifically
equation (128) which is related to the density perturbation, show that
if w — oo at late times, for some choice of k, /k; then there exists
perturbations to the basic state (sound waves) which can grow to large
amplitude. For horizontally propagating waves this corresponds to
R — 0 (at late times), while for vertically propagating waves this is
L, — 0. This condition is not sufficient, however, to determine if the
non-linear saturation of such growing perturbations allows them to
attain sufficient amplitude to affect the background flow.

In the opposite regime wt,, < 1 we have the freeze out regime
where the wave phase cannot undergo a full cycle on the time-
scale of the background flow and the wave becomes a roughly
static pattern which is deformed by the background flow. These
two regimes (modulated wave versus freeze out), seen in linear
waves, has similarly been found for turbulence in contracting boxes
(Robertson & Goldreich 2012), where a rapidly contracting box leads
to an increase in the turbulent velocities on a time-scale too short for
energy to be passed down the turbulent cascade.

A more detailed analysis of the linear waves in the local model is
presented in Appendix B. Appendix B1 derives exact solutions for
sound waves which are decoupled from the vortical wave (i.e. g = 0),
for various background flows. Figs 4 and 5 show example solutions
for horizontally propagating sound waves for free fall (R = Ry(1 —
t/t.)*/*) and uniform collapse (R = Ry + Uyt) profiles respectively.
In both cases the solution possesses no nodes on the time-scale of
the collapse in the freeze out regime. The uniform collapse profile
provides a useful illustration of the transition to the freeze out regime

as P, takes the form P, «x R'/?*** where A = %\/1 — 4(csk, /Uy

Fork, > 1% )isimaginary and we have a left and right propagating

2%
sound waves. While for k, < %%‘J, A is real and the left and right
sound waves are frozen out, becoming two non-propagating waves
with differing growth rates.

Appendix B2 explores the diagonal linear waves (i.e. with k,, k; #

0) in more detail. Notably for diagonal waves the sound wave (P,
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FigureS. Amplitude of a horizontally propagating sound waves for a uniform
collapse with R = Ro + Upt, Ry = 1, Uy = 2, and wavenumbers k, = nc;()l s
where n is an integer. The solution corresponding to (complex) power laws.
In the freeze out regime the power-law exponent is strictly real and there are

no oscillations of the wave.

Figure 6. Cartoon illustrating the relationship between the diagonal sound
waves and shear flows. The shear flow is generated parallel to the direction
of the sound wave propagation. Likewise a diagonal shear flow will generate
bands in the density running parallel to the shear flow as a result of exciting
a standing sound wave.

«) and vortical waves (Pg, B) are coupled as a result of the changing
aspect ratio of the box. This means a diagonally propagating sound
wave will generate a shear flow perpendicular to the direction of
wave propagation (illustrated in Fig. 6). Likewise an initially uniform
density diagonal shear flow will generate a standing sound wave
perpendicular to the fluid motion resulting in bands of varying density
running parallel to the shear flow which arise. One complicating
factor is in constant aspect ratio models, with b # 1, diagonally
propagating sound waves, will produce shearing motions in the local
model which are purely a result of the choice of coordinate system
and do not represent physical shearing motions in the fluid. For
numerical implementations, these sound wave generated shearing
motions (either physical or as a result of the choice of coordinates)
may present a challenge to some Riemann solvers.

In the global picture, the coupling occurs as a result of the
advection of the background flow by the velocity perturbations in
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the diagonal waves. In many collapse profiles diagonal flows tend
to become more horizontal with time. Thus one expects a weakly
rotating collapse (which can be represented with a diagonal shear
flow in the local model) to spontaneously generate tightly wound
density waves at late times.

5 DISCUSSION

5.1 Implementing the local model in hydrocodes

The utility of a local model will be dependant on a practical numerical
implementation. This has hindered the adoption of some local models
in the past, notably the distorted shearing boxes with their time depen-
dant geometries, and one is often left with the choice of attempting
to coerce an existing code into running with an unusual geometry,
or writing an entire specialized hydrocodes just for this specific
application. These problems affects even relatively commonly used
local models such as the regular shearing box, in particular with
how to implement shear periodic boundaries. Examples of specific
(magneto-)hydrodynamic codes being developed to model specific
local model such as Paardekooper & Ogilvie (2019) for the warped
shearing box, Wienkers & Ogilvie (2018) for the eccentric shearing
box and Shi et al. (2020); Huang et al. (2022) for the expanding box.
An alternative approach was pursued by Latter & Ogilvie (2006)
and Ogilvie (2022) (for eccentric and warped disc, respectively)
who instead made use of a regular shearing box but used a local
representation of the distorted flow in setting up their model — which
corresponds to the long wavelength part of the fluid flow on the box
length-scale. This latter approach only works if the distorted and
undistorted flows are similar enough that the distorted flow fits into
the box (i.e. this works for linear warps/eccentricity). Appendix A
presents several alternative formulations of the local model which
may be useful for incorporating the model into existing hydrocodes.

5.2 On self-gravity in the local model

In this paper we have chosen not to consider self-gravity in our local
model. It is worth noting that we have not made use of an explicit
closure for the background gravitational potential ®, which is only
constrained to be spherically symmetric and varying on a length-scale
much longer than Ly and Ly. Thus our local model is compatible with
a self-gravitating background flow provided that the self-gravity of
the density perturbations within the box can be ignored.

Looking ahead it seems likely one can include the self-gravity
of the local flow by solving the Poisson’s equation for the density
difference p — p subject to periodic boundaries. p — pg has zero
mean, thus Poisson’s equation can be inverted in Fourier space
and the solutions likely correspond to the high degree spherical
harmonics of the gravitational potential of the global problem. We
leave demonstrating this, and exploring the effects of self-gravity, to
future work.

5.3 Extensions

While interesting in it’s own right, there are a number of useful
generalizations to the local model that could be carried out. The
obvious extension, given the close relationship between our model
and the EBM/AEB, is to extend the model to include magnetic
fields; likely following a similar approach to the MHD eccentric
shearing box (Ogilvie & Barker 2014) rather than the approach of
Tenerani & Velli (2017) for consistency with how we treat pressure.
Regardless of the approach it is worth checking whether including

MNRAS 524, 1710-1726 (2023)
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gradients in the background magnetic field (as done by Tenerani &
Velli (2017)) will lead to spurious instabilities similar to gradients in
the background pressure. We have chosen not to consider magnetic
fields here in order to focus on the properties of the hydrodynamic
model, particularly during collapse which has not been looked at
before. Additionally, while adding magnetic fields to the local model
in an expanding flow is straight forward, for a contracting flow one
encounters additional complications. Magnetic fields in collapses are
known to break spherical symmetry (Galli & Shu 1993; Hennebelle
2001; Galli et al. 2006) meaning one would need to make significant
modifications to both the background flow and the resulting geometry
of the local model to include them.

The second important generalization, particularly for realistic
collapse profiles, is to include rotation in the background flow
(such as Hennebelle 2001, 2003; Galli et al. 2006). As discussed
in Section 3, slowly rotating collapses can already be modelled in
our existing local model and take the form of growing, horizontal,
shear flows in the local model. It should be obvious that faster rotating
background flows will break spherical symmetry and, like with the
inclusion of magnetic field, will necessitate a modification to the
geometry of the local flow. If, however, such a generalization could
be made to allow for the modelling differentially rotating collapses
it would offer the possibility of following a collapse from it’s initial
nearly spherical cloud all the way to the formation of the disc, with
the local model smoothly transitioning from that presented here for
the initial collapse to the classic shearing box model at late times
which provides a local mode for the newly formed disc.

Finally in the specific application of the local model to proto-
planetary disc formation an important additional factor that would
be useful to include is dust. If, as expected, the local model proves
as as rich as the shearing box model in terms of the number of
instabilities and other local phenomena then there should be ample
opportunity for local flows with the collapse to concentrate dust —
potentially jump starting planet formation by allowing the earliest
stages of planet formation to occur prior to the disc being formed,
in agreement with the detection of signposts of planet formation in
very young stellar systems (Miotello et al. 2022; Tsukamoto et al.
2022).

6 CONCLUSION

In this paper, we have developed a local model for a spherically
contracting/expanding gas cloud in the same vein as other local
models which have achieved widespread usage in astrophysics and
planetary science. The model consists of a periodic box with a
Cartesian like, but time dependant geometry.

(i) The model is close to the accelerated EBM of Tenerani &
Velli (2017), although we have a different treatment of pressure
and density consistent with a small box limit. It is an extension
of Robertson & Goldreich (2012) to allow for the non-isotropic
expansion/contraction expected in spherical flows.

(i) The model is spatially homogeneous allowing for the use of
periodic (or shear-periodic) boundary conditions.

(iii)) The model inherits a number of symmetries from fluid
dynamics in periodic Cartesian domains and come from the global
problem. Notably horizontal Galilean like transforms accelerate with
time as consequence of conservation of angular momentum in the
global problem.

(iv) The energy, density, and vorticity of the flow in the box all
increase(/decrease) during the collapse(/expansion).
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(v) We have derived several non-linear solutions to our local
model. The most important of which are the horizontal shear flow,
which correspond to zonal flows in the global problem. These
shear flows grow in strength during a collapse as a consequence
of conservation of angular momentum.

We have suggested several possible extensions to the local model.
Our model will hopefully be of some use in the study of the early
stages of disc/star formation. However the general utility of the
local model will require the development of an effective numerical
implementation.
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APPENDIX A: REFORMULATED EQUATIONS FOR EASIER NUMERICAL IMPLEMENTATION

An issue faced by our local model, which it shares with the distorted shearing box models (e.g. Ogilvie & Latter 2013; Ogilvie & Barker
2014), is how to include the time dependant geometry in existing solvers. This has hindered the implementation of local models in the past
and has led to workarounds such as Latter & Ogilvie (2006) and Ogilvie (2022). In this appendix we derive various (equivalent) alternative
formalism for the local model that may facilitate its implementation in existing hydrocodes.

A1 Modified continuity equations

The momentum equation can be written in Cartesian like geometry which removes the time dependant terms in front of the derivatives, by use
of an asymmetric stress tensor 7j;,

2U, 1
Dv' 4 —Cvt = —0, T, (AD
R P
2U, 1 !
Dv' + 200 = —3, T, (A2)
R )
0
. N 1 -
Dv* + 2UZUR0 = 762TZZ, (A3)
P
where
, p 2z p % 54
T =TW =2 TE__L  puo_72_7i_, (A4)
R?2 L?

One way to interpret this tensor is as an anisotropic sound speed with sound waves propagating at different speeds in the horizontal and vertical
directions. Alternatively we can interpret this as a modified equation of state with stresses from pseudo-self-gravity or pseudo-magnetic field
based on the following stress tensor for a self-gravitating, ideal MHD fluid,

" . 1 . 1 i, 1 o 1 .
TV = —p'8 — —— [ g'g/ — —g?6" | +— ( B'B/ — — BV ). A5
p 12G (gg 58 )+M0< 5 (A5)

Substituting the expressions for the stress tensor components into the above expression we see that we require g* = g° = B* = BY = 0 in order
that the cross terms, 7%, T°° and 7% vanish. Adding 7 + T% (or equivalently 77> + T%%) we arrive at an expression relating the old pressure,
p, to the new pressure, p/,

1/ 1 1
"= =+ ]p A6
P=3 (R2 + L§> P (A6)
Subtracting 7% — T% (equivalently 7*” — T%) we obtain the anisotropic part of the stress which is independent of p’. When L, > R we can
interpret this as a vertical field

) 1 1\ 12
B* = mop (ﬁ - E) ; (A7)
Z

with g = 0. While if R > L, we can instead interpret this as a vertical self-gravitational acceleration,

] 1 1\ 12
~=\/M(L—g—@) : (A8)
with B* = 0. Note that that neither of these are real magnetic or self-gravity fields as they do not evolve in the correct way, or have the
appropriate properties. For example the pseudo-magnetic field given by equation (A7) is not, typically, divergence free.

For more general spherical flows where these inequalities cannot be guaranteed we can instead include a mixture of effective vertical
self-gravitating acceleration of the following form,

B* = /uopR™", (A9)
g = \/4nGpL". (A10)

MNRAS 524, 1710-1726 (2023)

20z 1y 0 uo 3senb Aq 08G81.22/01 L L/2/¥2S/2101Me/SeIuW/WwoD dno-dlwapede//:sd)y Wolj papeojumoq


http://dx.doi.org/10.1093/mnras/stu1795
http://dx.doi.org/10.1093/mnras/stt916
http://dx.doi.org/10.1093/mnras/sty3349
http://dx.doi.org/10.2172/226506
http://dx.doi.org/10.1051/0004-6361:20041947
http://dx.doi.org/10.1093/mnras/144.4.425
http://dx.doi.org/10.1088/2041-8205/750/2/L31
http://dx.doi.org/10.3847/1538-4357/ab5fce
http://dx.doi.org/10.1086/155274
http://dx.doi.org/10.1098/rspa.1946.0044
http://dx.doi.org/10.1098/rspa.1950.0049
http://dx.doi.org/10.3847/1538-4357/aa71b9
http://arxiv.org/abs/2209.13765
http://dx.doi.org/10.1063/1.42861
http://dx.doi.org/10.1093/mnras/sty899

1722 E. M. Lynch and G. Laibe

A2 Relative density

For many numerical implementations (particularly Lagrangian/Particle based methods) it is preferable that there is no modification to the
continuity equation. One can achieve this, for certain equations of state, by rewriting the continuity equation in terms of the relative density
Y = p/prer such that

Dy = — 9,0’ (A11)
The reference density is that of the basic state with p,ef = pref(7), which evolves according to

D)Oref = _lorefA . (A12)

Assuming the equation of state is polytropic, and takes the form p = K(x, y, z)p' * /", which is appropriate for both adiabatic (1 + 1/n = y)

and locally isothermal (n — o0) equations of state, then we can rewrite the equation of state in terms of the relative density by introducing the

reference pressure prs(x, y, z,t) = K(x, y, z)p,le}’l/”. The equation of state is then p = pysiy! * . The fluid equations are then

D+ 2% 2 Z L o) (A13)
v -V = - x ref )s
R sz P/ Pret
20Uy 1

Dy’ + "0 = _Way(p/pref)s (A14)

4 4 l
Dv* 4 2v°Ugo = —maz@/ﬂref), (A15)
Dy = —y [0,v" 4+ 0,v” 4 d:07] . (A16)
These equations can be derived from the following Lagrangian

| oy 1 z.7 Pref  1/m -
L=[vy|3R (V" +0vv") + Lot —n==y | dxdydz, (A17)
Pref

which is useful for deriving smooth particle hydrodynamics base methods. The main difference between this Lagrangian and the more
commonly used Lagrangian for ideal fluid is the presence of the time dependant coefficients, R, L., Prer, and pres.

APPENDIX B: ANALYSIS OF THE LINEAR WAVES

B1 Exact solutions for sound waves when decoupled from the vortical waves

For many simple spherical flows it is possible to obtain exact solutions for sound waves when they are decoupled from the vortical wave
(i.e. with a coupling coefficient g = 0). This occurs for both purely horizontal and purely vertical waves, along with background flow with a
constant aspect ratio (the situation considered in cosmological fluids). To describe the background flow we consider various functional forms
for the reference length-scale L = L(t) and obtain solutions for the sound waves in the local model. We adopt

B 172
kol _, R (ki+bg’kt (B1)
K2+b2%2 )

as our reference length-scale, where |k| denotes the magnitude of the wavevector and |Ko| is the initial |k|. For a horizontally propagating wave
choosing Ly = Ry results in L = R. Similarly for vertically propagating waves, Ly = L results in L = L. Finally for a constant aspect ratio
(b = by) the reference length can be identified with the scale factor a.

We consider two forms of power-law profiles, given by

L = Lo(t/t.)°, (B2)

L = Lo(1 — t/%)°, (B3)
the latter includes the linear/uniform collapse/expansion when = 1. On can also consider an exponential collapse/expansion,
L=Lyexp(H7), (B4)

where H is a constant Hubble parameter. The exponential profile can be obtained from equation (B3) by taking t. = —H '8 and taking the
limit 8 — oo. A logarithmic profile can be similarly obtained by setting Ly = A, for some constant A, and taking the limit 8 — 0. Finally,
although we shall not explicitly obtain sound wave solutions for it, the early stages of the isothermal sphere model of Shu (1977) leads to the
background radius evolving according to

R*=L*=L§[1—(r/7)]. (B5)

The dynamics of the sound wave, when it is decoupled from the vortical wave, can be obtained from the following Hamiltonian:
1 1

H= Ecgzwz(r)P; + chaz, (B6)
where w(t) = ¢;|ko|Lo/L is the sound wave frequency. This equation can be obtained from equation (123) by setting the coupling term,
c;lg(t)Pa Pg, to zero. Hamilton’s equations lead to

MNRAS 524, 1710-1726 (2023)
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0: Py = —cla, (B7)
0.0 = c;za)zPa, (B8)
from which we obtain the following, parametric oscillator, equation for the momentum:

2P, + 0*P, =0. (B9)

For both the power-law profiles the evolutionary equation for the momentum is
2Py +wis TP, =0, (B10)

where a)o = ¢,|K|(t¢/t.)~# and we have introduced s which for the equation (B2) is given by s = (z/7¢)* and for equation (B3) is given by
s = ( )"‘ In both cases this leads to the reference length-scale taking the form L = Ly(t¢/7. )P sP' The characteristic time-scale relevant to

this, tbg = L/|L|, is given by

e = O (B11)
be = — 5
¢ 18]
by setting wt,, = 1, and writing in terms of L, we can calculate the reference length-scale at freeze out (provided 8 # 1),
18] B/(1=B)
Lfreezeoul LO ( > ( ) i (B12)
Te WoTo

which gives the value of L at which a mode of a given wavelength enters (or exits) the freeze out regime. Equation (B10) can be transformed
into Bessel’s equation by setting P, = As*f(s), resulting in the following equation for f,

s2F7(s) 4+ [1 — Va + 221 sf'(1) 4+ [A(L — 1/e) + wpa 155> P/ f(1) =0, (B13)
where we have made use of §5572 = 1 — 1/« and 5> = a1, 25>/,
For 8 # 1, equation (B13) corresponds to Bessel’s equation provided thatoe =1 — 8, A = 2(1 5 and
_ {Il—ﬂlﬂ}”“"”’ (B14)
Cs|k0|7:c'

This results in the following general solution for P,
Py = s PPIAT(5) + BY,(9)], (B15)

where J, and Y, are Bessel functions with order v = ﬁ The solution for the exponential profile can be obtained from the above by taking
the limit 8 — oo. This can, alternatively, be written in terms of the reference length,

. 1— L a=p/B B a=p)/B
po=1ve» iy, |16 ( > + BY, ’—’3’( ) . (B16)
,3 Lfreezeout Lfreezeout
where the freeze out radius can be simplified to
w\*| B [P0
Lereezeont = Lo T 4 s (B17)
T, 1-8
and we have absorbed constant terms into A and B. In terms of the s variable the velocity and density perturbations, due to the sound wave, are
X 2k 1/12(1-p)] P :
Svt = ﬁs {Re[A exp(ik - x)]J, (s) + Re[ B exp(ik - x)1Y,, (5)}, (B18)
Z 2k' g1/20=p)]
vt = {Re[A exp(ik - x)]J, (s) + Re[ B exp(ik - x)]Y, (s)}, (B19)
2,0 1-8
Sp = — s2<1 % sgn($) {Im[A exp(ik - x)]J,—; (s) + Im[B exp(ik - x)]Y,—; (s)}. (B20)
C 70

s

These solutions are very similar to linear perturbation to FRW-cosmology in the presence of a perfect fluid (e.g. see Baumann et al. (2012)).
This similarity is mostly a reflection of the similar mathematical structure (2nd-order linear differential equations with power-law coefficients).
In both cases the background is a spatially homogeneous perfect fluid in an FRW-(like) metric. In our local model we consider perturbations
to the fluid holding the metric fixed. In cosmological perturbation theory, however, one is instead considering perturbations to the metric in
the presence of the fluid.

The above solutions work for 8 # 1. For § = 1 the above solution is singular as v — oo. Without loss of generality we can set « = 1 and
one sets A = 0 leading to

s2 "+ (cslkolTe)* f = 0. (B21)
This can be solved by setting f = 57, provided
y(y — 1) = — (cskolt)” (B22)
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resulting in the general solution

P,=s[Ass+A s, (B23)
where we have introduced A = %\/W In terms of the reference length-scale the solution is

Py =~L[A,L* +A_L7], (B24)

where, again, we have absorbed constant terms into A, and A_. From this expression we can obtain the following density and velocity
perturbations

sv* Rzk VL {Re[A,L"exp(ik-x)| +Re [A_L " exp(ik-x)]}, (B25)
8v° sz VL {Re [A;L"exp(ik-x)] +Re [A_L " exp(ik -x)]}, (B26)
8p = ipf(’ 2 {Im [((A+1/2) A L* exp(ik-x)] —Im [(A — 1/2) A_LL " exp (ik - X)] } . (B27)

s “c
This solution is useful to illustrate the effects of freeze-out on the wave. For large |ko|, A is imaginary and the + and — solutions corresponds to
left and right travelling waves which grow during a collapse. Reducing |ky| induces a phase shift between the density and velocity perturbation.
When |Kkg| drops below kreezeont = 2c - then the wave enters the freeze-out regime where the left and right travelling waves become standing
waves with differing growth(/decay)-rates.
Solutions for horizontally propagating sound waves in the isothermal sphere collapse of Shu (1977) (equation (BS5)) can similarly be found
in terms of Hypergeomtric functions, however we shall not do this here.

B2 Diagonally propagating waves and sound wave-vortical wave coupling

The density and velocity perturbations with wavenumber +k can be obtained from the («, 8, v, Py, Pg, P,) system of coordinates and
momenta as follows

kz

2
sv* = — < kRe [Py exp(ik - X)| + ——===—=Re [Pgexp(ik -x)| », (B28)
R? N
2
v = 77 Re [P, exp(ik - X)] (B29)
sv° = — { k:Re {P exp(ik - x)] — k'xib%Re [Pﬁ exp(ik - X)] (B30)
L N
8p =2pIm [aexp(ik-x)|, (B31)

where we have made use of the reality of the perturbations where we require §v* = §v and §p* = ép. Pg and P, are integrals of motion related
to the fluid vorticity. The dynamics of the (o, P, )are obtained from the following Hamiltonian,

1 1
H = Ec;zu)z(r)Ps +c;'g(r)P, Py + choﬂ, (B32)

where the sound wave frequency, w, and coupling coefficient, g, are given by equations (125) and (126), respectively.
Neglecting P, we have the following WKB solutions for § 0 and dv,

2c
Sv° A~ — 22 12k Re [X exp (zk X+l/a)d'[> + X_exp (ik-x—i/wdr)} ————Re [Pgexp(ik - x) (B33)
R2 + /7k2b2 —|—k2 B }

keb?

. 2¢ 2
Svt ~ —%a)’l/szRe {X+exp (ik~x+i/a)dr> + X_exp (ik-x —i/wdt)} — Re Pﬁ exp (ik - X)] (B34)
L L Jenz + k2
2
Sp ~ —pwl/zRe [X+ exp (ik -X+ i/wdr) — X_exp (ik X —1 /wdr)} , (B35)
Cs

with §v¥ = 0 and X.. and Pg are (complex) constants. For diagonally propagating waves we require |Pg| < csw~ "X, | in order for the above
approximation to be valid.
It is useful to consider the shear and velocity divergence as a result of the linear waves. The divergence of the velocity is given by

i 2 ) . . 2 kykz
0;6v' = ﬁ(kx—kb kZ)Re[lPaexp(zk-x)]—Fﬁi
\/ K2b% + k2

while the velocity shear (neglecting §v”) can be characterized by

[1— (b/bo)~*] Reli Py exp (ik - X)], (B36)

k:8v" — k,8v° 2 keks(1 — b~2)Re[ P, exp(ik - X)] + Kb+ K
F0V7 — Ky 0U” = —= § KKz e[ Py exp(ik - x e S — .
’ N E

R Re[ Pg exp(ik - x)] ;. (B37)
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Diagonal vortical waves, with P,(0) = «(0) = 0, cause a divergence of the velocity (and thus a density perturbation) when the coupling
coefficient g # 0. This occurs as a result of a varying box aspect ratio. Similarly, from equation (B37), we see that diagonal sound waves (with
Pg = 0) generate a shear flow perpendicular to the direction of propagation if the aspect ratio b # 1. For a constant aspect ratio (b = by) this is
simply a consequence of the choice of coordinate system and does not reflect a physical shear in the fluid flow. However, when the aspect ratio
is time dependant this shear cannot be removed by a suitable rescaling of the coordinates, meaning the propagating sound waves can generate
velocity shear in flows with a time varying b.

APPENDIX C: LOCAL MODELS OF SOME ANALYTICAL BACKGROUND FLOWS

In this section we shall consider some example spherical flows and show how to obtain the geometrical coefficients necessary to formulate the
local model. A wide variety of spherical problems can be described by power-law flows of the form

U = Uy(R/Ry)?, (ChH

where Uy, Ry, and B are constants, over some range of radii. This includes the free-fall case § = —1/2, the Penston (1969) solution away from
the transition point (8 = 1/7 at large R and 8 = 1/2 at small R) and the solution of Hernandez, Nasser & Aguayo-Ortiz (2023) (8 = —1/2).
Steady flows require pg ox R~? 8, however the local model is agnostic to whether the flow is a steady state.

We shall also consider the isothermal spherical collapse problem due to Shu (1977). This has a radial velocity at large radii/early times of

U=—a*A—-2:R"". (C2)

where a and A have the same meaning as in Shu (1977).
Starting with the power-law flow. The reference radius can be obtained from

R=UR)=UR,"R’, (C3)
which has solution
R =Ry [1 + (1 — plpRy 1] 7. (C4)
This allows us to determine Uy and Ugy,
Up=UR) =Uy [1 + (1 — pUpRy 1], (C5)
oU ] _1q-1
Uro = 55 = BUoRy" [1+ (1 — BURy 1] . (Co)
Rlp-r
Substituting the expression for Uy, into the evolutionary equation for L., L, = UgoL., we obtain an expression for L,
L= Lo [1+0—BhRy'1]"" ", 7
with L, the initial vertical length-scale. The divergence of the background flow, A, is then
A=Q+BURy [+ (1= BUUR;'1]™. (C8)
The basic state for this model is v = 0 and a spatially homogeneous density given by
—1,1-@C+p/A=p)
p = punie [1+ (1 = PURy 1)~ (C9)
where piy; 1s the initial density.
For the model of Shu (1977) we can similarly obtain an expression for R,
(,12 1/2
R =Ry {1 - —(A- 2):2} : (C10)
Ry
We thus obtain expressions for Uy and Ugy,
2 -1/2 2 2 -1
2 —1 a 2 a a 2
Up=—a"(A=2)Ry 't |1 — —(A -2 s Uro= (A=t |1 = —(A—-2) . (C11)
Ry Ry Ry
From these we obtain expressions for L,
2 —1/2
L.=Ly {1 - —(A- 2)4 , (C12)
Ry
while the divergence of the background flow is
a® a® N -
A=——A-2t|1 - —(A—-2 . C13
Rg( ) { Rg( ) ] (C13)
The basic state of the local model for the Shu (1977) isothermal collapse is v = 0 and a spatially homogeneous density given by
) ~1/2
a 2
P = Pinit [1 — 5 (A =2 } . (C14)
Ry
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1726 E. M. Lynch and G. Laibe

This appendix has shown how to go from fairly simple collapse profiles (power law and the isothermal sphere model) to the geometrical
terms necessary to formulate the local model. More general global collapse solutions can only be obtained numerically meaning there will
be no closed form solution for the geometric terms. However, the principles of obtaining the geometric terms remain the same and can be
expressed as numerical solutions to the ODEs R = Uy(R, t) and L, = UgoL..

This paper has been typeset from a TEX/IATgX file prepared by the author.

© 2023 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society

MNRAS 524, 1710-1726 (2023)

20z 1y 0 uo 3senb Aq 08G81.22/01 L L/2/¥2S/2101Me/SeIuW/WwoD dno-dlwapede//:sd)y Wolj papeojumoq



	1 INTRODUCTION
	2 DERIVATION
	3 NON-LINEAR-SOLUTIONS
	4 LINEAR PERTURBATIONS
	5 DISCUSSION
	6 CONCLUSION
	ACKNOWLEDGEMENTS
	8 DATA AVAILABILITY

	REFERENCES
	APPENDIX A: REFORMULATED EQUATIONS FOR EASIER NUMERICAL IMPLEMENTATION
	APPENDIX B: ANALYSIS OF THE LINEAR WAVES
	APPENDIX C: LOCAL MODELS OF SOME ANALYTICAL BACKGROUND FLOWS

