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Abstract: The microorganisms found on fresh, raw meat cuts at a slaughterhouse can influence the
meat’s safety and spoilage patterns along further stages of processing. However, little is known
about the general microbial ecology of the production environment of slaughterhouses. We used 16s
rRNA sequencing and diversity analysis to characterize the microbiota heterogeneity on conveyor
belt surfaces in the cutting room of a swine slaughterhouse from different production lines (each
associated with a particular piece/cut of meat). Variation of the microbiota over a period of time (six
visits) was also evaluated. Significant differences of alpha and beta diversity were found between
the different visits and between the different production lines. Bacterial genera indicative of each
visit and production line were also identified. We then created random forest models that, based
on the microbiota of each sample, allowed us to predict with 94% accuracy to which visit a sample
belonged and to predict with 88% accuracy from which production line it was taken. Our results
suggest a possible influence of meat cut on processing surface microbiotas, which could lead to better
prevention, surveillance, and control of microbial contamination of meat during processing.

Keywords: production lines; 16S rRNA sequencing; random forest; cutting room; swine slaughter-
house

1. Introduction

Providing safe and organoleptically satisfactory food for the consumer is a major
concern for the food industry [1]. In Canada, 11 million tons of food produced each year are
preventable waste and four million—or one in eight people—become sick every year from
eating contaminated food [2,3]. Spoilage of food by microorganisms is probably responsible
for a quarter of the food waste around the world, leading to significant economic losses
and underscoring food processing environments as a major concern [4,5]. Moreover,
foodborne diseases are the cause of several hundred thousand deaths worldwide every
year [6,7]. Reducing food microbial contamination is a continuing battle for the primary
food-processing sector, especially with meat products since they provide high nutrient
availability for microorganisms and are known vectors of foodborne diseases [4,8].

The quality and safety attributes of final meat products are highly dependent on
the raw materials and on their processing, storage conditions, and production environ-
ments [9,10]. Indeed, it has been shown that the production environment microbiota—in
addition to being potentially involved in the spread of antimicrobial resistance genes [11]
and in the alteration of the integrity of processing surfaces—may pose a threat to the at-
tributes of meat [12,13]. Stellato et al. proposed the hypothesis that an equilibrium between
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the food and the production environment is established since the microbiota found on the
surfaces and tools used during processing are often found on the meat [14,15]. Along this
vein, current food production sanitary measures mainly rely on low contamination of the
production environment while little attention has been paid, as of yet, to the structure of
the bacteria communities and the transmission routes of microorganisms [4,16]. Recently,
Stellato et al. proposed that since the microbiota of a site is under the influence of specific
characteristics such as the type of surface involved, the environmental conditions, and the
processes to which the food is subjected, it can be expected that each site will present a
specific microbiota [17]. A few studies using diversity analysis found this not to be the
case, with environmental processing surface-samples’ clustering according to sampling
time [17] and not according to a specific sampling zone [15,17]. These conflicting results
highlight the need for studies that address the presence of microenvironments in the food
production environment by eliminating, as much as possible, the confounding factors that
can influence results and make comparisons between studies difficult.

The recent introduction of high throughput sequencing technology has allowed the
efficient characterization of complex and diverse microbial communities [18]. To date,
only a limited number of studies have explored the general contamination flows and the
microbial organization patterns of food processing environments using 16S rRNA amplicon
sequencing [4,15]. The pairing of such sequencing techniques with computational methods
has made it possible to infer the sources of origin of microorganisms of interest in a given
environment [4]. Several bacterial source-tracking methods have been proposed to detect
the origins of bacterial contamination such as Bayesian approaches and random forest
algorithms (RF) [19,20].

Slaughterhouses are increasingly identified in the meat processing sector as a key
site where unwanted microorganisms are found [4]. At the slaughterhouse, carcasses
can be contaminated by the animal’s endogenous microbiota during processing. It has
been shown that microorganisms can remain on the surface of a carcass and can survive
and detach when they come into contact with surfaces and production equipment [21].
Thus, the contaminated contact surfaces can be sites of cross-contamination for the meat
products circulating on them [18]. Indeed, contact surfaces such as conveyor belts have
been shown to act as reservoirs for spoilage and pathogen bacteria [21]. Biofilms can
settle in irregularities of conveyor belts and act as sources of contamination [22]. In
natural environments, biofilms are known to be composed of multiple species [23,24]. The
identity of the microorganisms constituting them as well as their interactions have been
identified as contributors to the creation of local microbial ecosystems in the production
environment [24,25]. Although the nature and quantity of microorganisms found on
fresh raw meat at the slaughterhouse represent an initial point that can influence the
safety and the spoilage patterns during further transport and storage, and can spread
contamination to ready-to-eat facility environments [26,27], very little is known about
the general microbial ecology of slaughterhouse production environments, especially
with regard to the contamination during further processing stages such as cutting and
deboning [16]. During these stages, which take place in the cutting room, the meat carcasses
undergo different modifications in order to obtain parts intended to become standard meat
cuts. These meat pieces will undergo their final transformation on specific production lines.
Thus, a specific production line supports the passage of a specific meat cut. Recently, de
Filippis et al. shed light on the significant association between beef microbiota and specific
beef cuts [27]. They showed that different cuts from the same carcass can influence the
microbial contamination of beef. The influence of the type of meat cut on the microbiota of
contact surfaces (production lines) is yet to be established.

Using 16S rRNA sequencing and diversity analysis, the objectives of this study were:
(i) to characterize the heterogeneity of the microbiota of conveyor belt contact surfaces
present in the cutting room of a swine slaughterhouse in the province of Quebec, Canada,
over a period a time (six visits), and to characterize the impact of the production line on the
microbiota diversity of those surfaces; (ii) to identify microbial determinants associated
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with the visit and production line with a focus on bacterial determinants that can include
known spoilage species and known foodborne pathogens; finally, (iii) to ascertain if, by
using the microbiota of a given sample, it is possible to determine which visit and which
production line the sample belongs to using random forest models as a predictive tool. We
believe that understanding the composition of the microbiota on food processing surfaces
is crucial since these distinct bacterial community dynamics are important in determining
the microbial succession patterns that will occur and will influence the quality and safety
of the final meat products. This knowledge could lead to more targeted cleaning and
disinfecting procedures as well as to a more accurate management of the different meat
cuts for further processing. Our study proposes an original approach based on diversity
analysis and random forest models to evaluate, for the first time to our knowledge, the
microbiota heterogeneity of the potential cross-contamination routes driven by the different
production lines and visits in a cutting room of a swine slaughterhouse.

2. Materials and Methods
2.1. Facility Structure, Sampling, Total Microbiota Harvesting, DNA Extraction, Amplicon
Library Preparation, and 16S rRNA Sequencing

It should be noted that this study is part of a larger project which was developed in
two phases. The first phase aimed to evaluate spatial and temporal Listeria monocytogenes
contamination on the six production lines in a swine slaughterhouse cutting room in
Quebec, Canada and to identify microbial determinants of the presence or absence of the
bacteria on those surfaces [28]. The current study is the second phase of that project and
aims to evaluate the microbiota’s homogeneity on contact surfaces according to processing
line (each line is dedicated to a specific cut of meat) and according to different visits
using the samples harvested during the first phase. The sampling procedures as well as
the processing of the microbiota samples have been described in detail in the work of
Shedleur-Bourguignon et al., 2021 [28].

Briefly, the conveyor belt surfaces of six production lines present in the cutting room of
a swine slaughterhouse with a capacity of 600 pigs per hour were sampled during midday
production on six occasions between September 2017 and March 2018. Surfaces of 900 cm2

were sampled, first by using small brushes in order to mobilize the surface microbiota and
second by collecting the biomass with sterile wipes (Innovation Diagnostics, Saint-Eustache,
QC, Canada). Six production lines were present in the cutting room, and each production
line supported the passage of a specific part of the carcass intended to become a standard
meat piece (according to North American standards): half-carcasses, bellies, loins, Bostons,
picnics, or hams. Fifty-four surface samples were taken on the main production line (CP),
48 on the belly production line (FL), 48 on the loin production line (LO), 48 on the Boston
production line (BO), 48 on the picnic production line (PI), and 48 on the ham production
line (FE). One experimental control sample per visit was also taken, which consisted of
wipes and brushes that were taken out of their packaging in the cutting room and not
allowed to come into contact with any surfaces. Specifically, upon arrival at the laboratory
facilities, the heads of the brushes were cut and added to Falcon tubes containing 25 mL
of a solution composed of Tris-HCL (10 mM), EDTA (10 mM), and NaCl (0.85%). The
used wipes were subsequently cut in half under sterile conditions at the lab and each half
wipe was added to the solution and the samples were stomached (Biomérieux Canada, QC,
Canada) (the other half wipe was tested in a previous study [28]). Twenty mL was then
transferred into two conical tubes of 15 mL (Sarstedt Inc, Saint-Laurent, QC, Canada). The
Falcon tubes were then centrifuged (VWR, Saint-Laurent, QC, Canada), the supernatants
were discarded, and the bacterial pellets were individually stored at −80 ◦C until DNA
extraction and purification.

The two bacterial pellets belonging to the same sample were pooled. The total DNA
of the combined bacterial pellets was then extracted and purified using a modified version
of a phenol–chloroform protocol as previously described [28]. Final DNA concentration
was measured using the Qubit 3.0 High Sensitivity range assay (Fisher Scientific, Ottawa,
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ON, Canada). The purity of the DNA was evaluated by using a Nanodrop ND-1000
Spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and by gel electrophoresis
(1% of agarose). A 291 bp segment of the V4 hypervariable region of the 16S rRNA gene
was amplified using universal primers (515F_Ill and 806R_Ill; Invitrogen, Thermo Fisher
Scientific, Waltham, MA, USA) [29,30]. A 30 µL PCR reaction was carried out using the
Platinum SuperFi PCR Master Mix (Invitrogen, Burlington, ON, Canada) as described by
Shedleur-Bourguignon et al. 2021 [28]. An artificial community (ZymoBIOMICS Microbial
Community DNA Standard) (Zymo Research, Irvine, CA, USA) served as a positive control
and as an indicator of sequencing quality. The theoretical composition of the artificial
community based on 16S sequencing is: 18.4% Lactobacillus; 17.4% Bacillus; 15.5% Staphy-
lococcus; 14.1% Listeria; 10.4% Salmonella; 10.1% Escherichia, 4.2% Pseudomonas, and 9.9%
Enterococcus. Six experimentation controls (wipes) and five negative sequencing controls
(DNA extraction and PCR steps) were integrated into the plates. The amplicons were then
sent to McGill University Genome Quebec Innovation Center (Montreal, QC, Canada) for
purification, barcoding, and sequencing by Illumina MiSeq 250 paired-end sequencing.

2.2. Sequencing Data Processing, Diversity, and Statistical Analysis

Diversity analyses were performed in order to characterize the composition and the
structure of bacterial populations present on conveyor belt contact surfaces. As previ-
ously described by Shedleur-Bourguignon et al., the cleaning and the analyzing of the
sequences were executed using Mothur 1.39.5 [28,31]. Alpha and beta diversity analysis
were performed using RStudio 3.6.1. The lowest number of sequences in the samples
was used as subsampling. For the alpha diversity, the coverage of the subsampling was
measured as well as the number of operational taxonomic units (OTUs) in each sample,
and their evenness was measured using the inverse Simpson and the Shannon indices. The
indices were calculated by using the estimate_richness function of the phyloseq package
version 1.24.2 [32]. Comparison statistics were performed between the samples from the
different visits and between the different production line samples using Student t-tests and
the Kruskal–Wallis test, both with a significance level of 0.05. For the beta diversity, the
Jaccard index based on the presence/absence of OTUs and the Bray–Curtis index based
on the relative abundance of OTUs were used on the same subsampling. The distance
matrices were plotted using 2D nonmetric multidimensional scaling graphs (NMDS) using
the ordinate function of the phyloseq package and the ggplot2 package [33], and statistical
variations between the different groups (visits and production lines) were assessed using
permutational analysis of molecular variance (PERMANOVA) using the ADONIS function
of the vegan package [34]. The Bonferroni correction was used in order to correct the signif-
icance level in the presence of multiple comparisons. The impact of production lines on the
beta diversity of the visits was taken into consideration by adding the production line factor
in strata during statistical tests. The same procedure was used to remove the influence
of the visits on the beta diversity of the production lines. The Multivariate Association
with Linear Models method (MaAsLin version1) was used to identify OTUs that were
significantly, positively, or negatively associated with each visit and with each production
line in terms of relative abundance using the MaAsLin package [35]. The two variables
(visit and production line) were used as a fixed effect and were put into the boost formula
to consider the influence of the variables on each other. An association was considered
significant at a p-value ≤ 0.05 and a q-value ≤ 0.25.

2.3. Evaluation of the Predictability of a Visit and a Production Line Using Random Forest Models

The models were built in order to classify the samples according to the visit during
which they were collected or according to the production line from which they came based
on their microbiota. The high number of covariates (OTUs) implicated in the analysis as
well as the potential interactions between them guided the choice of using a nonparametric
random forest approach as a predictive tool [36]. Two predictive models were built with
RStudio 3.6.1 using the RandomForest and the caret packages [37,38]. For each of the two
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models, eight randomly chosen samples per visit and eight randomly chosen samples per
production line were used as a test database to evaluate the performance of the models
in order to avoid overfitting. The remaining samples were used to fit the random forest
models. As each run of random forest could produce different results, one hundred random
forests were performed per model to assess the robustness of the results. A median accuracy
(rate of correct predictions) and an empirical 95% confidence interval were estimated to
evaluate the performance for each model on the 100 iterations. Confusion matrices of
the predictions were also computed on the first iteration of random forest for each model
using the yardstick package [39]. The importance of each OTU in the prediction of a
sample belonging to a particular production line or visit was determined to identify the
most relevant OTUs. The importance was computed using the median of the decrease in
accuracy when an OTU is removed from the model among the 100 replications of random
forest (Liaw and al., 2002). In order to identify these OTUs, a random noise variable was
introduced in the model. OTUs with a higher importance than the random noise in 95% of
the replications of the random forest were considered as important in the prediction.

3. Results
3.1. 16S rRNA Gene Amplicon Sequencing

The V4 region of the 16S rRNA gene was sequenced from 310 samples: 294 conveyor
belt surface samples were collected on six production lines over six visits, six experimen-
tation controls (one per visit), five negative sequencing controls (PCR and sequencing
negative controls), and five DNA positive controls (ZymoBIOMICS Microbial Community
DNA Standard). A total of 7,198,363 sequences with an average of 23,437 sequences per
sample were obtained after read processing and were grouped into 33 phyla, 84 classes,
152 orders, 313 families, and 952 operational taxonomic units (OTUs). The experimentation
controls and the negative sequencing controls contained an average of 16,536 sequences
and 7692 sequences, respectively, and no band was visible on gel electrophoresis for these
two types of controls prior to sequencing. The ZymoBIOMICS Microbial Community
DNA Standard positive controls were composed of the eight bacterial genera expected
and showed an average of 17,733 sequences. The average composition of the positive
samples based on 16S sequencing was: 16.2% Salmonella; 10.0% Escherichia/Shigella; 13.8%
Bacillus; 13.2% Staphylococcus; 17.7% Lactobacillus; 11.5% Listeria; 9.5% Pseudomonas; and
4.4% Enterococcus.

3.2. Production Line Surface Microbiota Description

In order to avoid the description of the sporadic presence of bacterial genera and to
instead focus the analyses on results of higher biological value, only the bacterial genera
(OTUs) with a relative abundance equal to or greater than 5% in at least five samples
from a visit or a production line were compiled in Tables 1 and 2. Therefore, the 15 most
abundant OTUs for all visits combined were from the most abundant to least abundant:
Fusobacterium (13.5%); Trueperella (12.9%); Peptoniphilus (12.7%); Acinetobacter (11.9%); Pseu-
domonas (11.1%); Bacteroides_unclassified (10.6%); Rothia (9.9%); Aerococcaceae_unclassified
(9.7%); Porphyromonas (9.7%); Clostridium_sensu_stricto (9.6%); Enhydrobacter (9.5%); Staphy-
lococcus (9.3%); Macrococcus (8.7%); Psychrobacter (8.4%); and Halomonas (8.3%). The 15
most abundant OTUs for all the production lines combined were: Fusobacterium (18.8%);
Rothia (15.6%); Trueperella (14.7%); Peptoniphilus (14.6%); Acinetobacter (13.8%); Staphylococcus
(12.6%); Enhydrobacter (12.1%); Aerococcaceae_unclassified (11.3%); Peptostreptococcus (10.7%);
Bacteroides_unclassified (10.5%); Macrococcus (10.3%); Pseudomonas (10.1%); Porphyromonas
(10.1%); Clostridium_sensu_stricto (9.6%), and Psychrobacter (7.6%).
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Table 1. Bacterial genera with an average relative abundance equal to or greater than 5% according to the six visits independent of production line.

Genus
V1 V2 V3 V4 V5 V6

% Nbr % Nbr % Nbr % Nbr % Nbr % Nbr

Fusobacterium 16.66 42 10.47 24 14.39 39 12.72 21 12.97 34 13.94 34
Trueperella 11.27 23 13.17 20 13.62 26 11.98 17 13.50 27 13.82 31

Pseudomonas 10.31 17 12.45 23 11.1 21 13.49 32 8.88 24 10.15 20
Acinetobacter 14.32 22 11.56 20 12.51 22 12.22 34 8.80 20 12.19 20
Peptoniphilus 13.32 15 15.29 9 13.01 9 10.36 5 13.50 11 10.93 31

Rothia 11.19 13 12.8 17 10.12 5 7.43 5 8.56 6 9.36 5
Enhydrobacter 10.96 8 10.48 9 15.92 7
Staphylococcus 23.06 9 10.34 7

Bacteroides_unclassified 12.12 24 9.88 11 7.54 11 12.53 5 11.45 26 9.79 12
Aerococcaceae_unclassified 6.77 6 12.45 12 12.58 16 13.00 12

Psychrobacter 7.07 8 9.12 5 10.40 10
Porphyromonas 11.35 11 9.35 8 10.84 19 7.22 7 12.45 15 6.78 5

Parvimonas 5.9 5 7.57 17
Clostridium_sensu_stricto 9.34 5 9.64 6 9.58 8

Peptostreptococcus 16.69 6
Macrococcus 8.98 8 18.58 9

Chryseobacterium 6.74 6 7.25 9
Epilithonimonas 11.6 7

Prevotella 7.43 10
Clostridiaceae_1_unclassified 6.64 5

Only the bacterial genera (OTUs) with a relative abundance equal to or greater than 5% in at least five samples from a visit were compiled. V1: Visit one; V2: Visit two; V3: Visit three; V4:
Visit four; V5: Visit five; V6: Visit six. %: Average relative abundance of OTU in samples present at 5% or more. Nbr: Number of samples in which OTU is present at 5% or more. OTUs
with an increase in mean relative abundance of at least 5% compared to other visits are identified in green.
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Table 2. Bacterial genera with an average relative abundance equal to or greater than 5% according to the six production lines and independent of visit.

Genus
CP FL LO BO PI FE

% Nbr % Nbr % Nbr % Nbr % Nbr % Nbr

Fusobacterium 14.63 28 24.46 33 17.24 21 16.32 44 23.48 35 16.36 33
Trueperella 15.39 19 24.28 36 11.35 6 12.17 41 14.51 27 10.49 15

Pseudomonas 9.17 32 7.68 10 8.03 22 9.24 22 9.34 13 17.04 38
Acinetobacter 10.57 32 10.34 13 21.39 22 14.75 24 12.3 17 13.5 30
Peptoniphilus 10.19 5 16.58 20 10.46 8 15.24 15 19.99 15 14.97 17

Rothia 10.27 28 34.35 7 10.98 11 6.92 5
Enhydrobacter 14.52 9 15.74 5 14 5 10.82 5
Staphylococcus 16.34 15

Bacteroides_unclassified 8.13 12 10.26 20 9.89 5 12.23 20 15.53 27 6.65 5
Aerococcaceae_unclassified 10.38 16 17.51 15 14.87 10 8.07 8

Psychrobacter 10.23 16 5.73 8
Porphyromonas 8.58 14 14.92 6 9.37 14 8.73 10 10.12 17

Parvimonas 7.06 6 7.93 6 6.43 11
Clostridium_sensu_stricto 10.46 18 9.26 5

Peptostreptococcus 13.82 8
Macrococcus 11.91 24
Streptococcus 8.02 5

Chryseobacterium 7.87 9
Epilithonimonas 11.43 8

Rhodopseudomonas 5.98 9
Prevotella 7.94 6

Clostridiaceae_1_unclassified 6.62 5

Only the bacterial genera (OTUs) with a relative abundance equal to or greater than 5% in at least five samples from a production line were compiled. CP: Main production line; FL: Belly
production line; LO: Loin production line; BO: Boston production line; PI: Picnic production line; FE: Ham production line. %: Average relative abundance of OTU in samples present at
5% or more. Nbr: Number of samples in which OTU is present at 5% or more. OTUs with an increase in mean relative abundance of at least 5% on one production line over any other
lines are shown in green.
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3.3. Microbiota Diversity of Conveyor Belt Surfaces Based on Visit and on Production Line
3.3.1. Alpha Diversity

Alpha diversity analyses were performed in order to describe the bacterial richness
and distribution within samples depending on visit and production line using the Observed
index, the Shannon Evenness index, and the Inverse Simpson index. Alpha diversity mea-
sures of visit samples and production line samples are shown in Tables 3 and 4. Student’s
t-test revealed differences in alpha diversity between several pairs of visits and between
multiple pairs of production lines using the three indices. Kruskal–Wallis tests showed
significant differences between the visits with the Shannon Evenness and Inverse Simpson
indices as well as differences between the production lines with the three indices.

Table 3. Comparison of the alpha-diversity indices of the microbiota samples from the six visits.

Observed Shannon Inv. Simpson

V1 193 *V3, V4, V5, V6 2.97 *V2, V3, V4, V5 9.85 *V2, V4, V5

V2 218 3.28 *V1, V6 13.64 *V1, V6

V3 221 *V1 3.16 *V1, V4, V5 11.17 *V4, V5

V4 239 *V1 3.39 *V1, V3, V6 14.51 *V1, V3, V6

V5 245 *V1 3.47 *V1, V3, V6 16.5 *V1, V3, V6

V6 226 *V1 3.07 *V2, V4, V5 10.35 *V2, V4, V5

All visits p-values 0.0838 0.0008 ** 0.0003 **
Diversity indices were calculated with 1000 iterations based on 10,087 sequences. Each line in the graph corre-
sponds to the alpha diversity measures associated with a visit. Pairs of visits showing a significant difference of
alpha diversity according to Student’s t-tests are indicated with superscript after the symbol * at the appropriate
line. For example, for the Observed Index, visit one is significantly different from visits three, four, five, and six.
V1: Visit one; V2: Visit two; V3: Visit three; V4: Visit four; V5: Visit five; V6: Visit 6. ** Significant differences with
the Kruskal-Wallis test.

Table 4. Comparison of alpha-diversity indices of the microbiota samples from the six production
lines.

Observed Shannon Inv. Simpson

CP 372 *LO, FL, BO, PI, FE 3.73 *LO, FL, BO, PI, FE 18.5 *LO, FL, BO, PI, FE

LO 169 *CP, PI, FE 3.22 *CP, FL, BO 11.87 *CP, FL

FL 180 *CP, FE 2.95 *CP, LO, FE 9.18 *CP, LO, FE

BO 167 *CP, PI, FE 3.03 *CP, LO, FE 10.46 *CP, FE

PI 196 *CP, LO, BO, FE 3.06 *CP, FE 11.51 *CP

FE 237 *CP, LO, FL, BO, PI 3.29 *CP, FL, BO, PI 13.52 *CP, FL, BO

All production lines
p-values 2.2 × 10−16 ** 4.64 × 10−10 ** 1.32 × 10−8 **

Diversity indices were calculated with 1000 iterations based on 10,087 sequences. Each line in the graph corre-
sponds to the alpha diversity measures associated with a production line. Pairs of production lines showing a
significant difference of alpha diversity according to Student’s t-tests are indicated with superscript after the
symbol * at the appropriate line. For example, for the observed index, the FL production line is significantly
different from the CP and FE production lines. CP: Main production line; FL: Belly production line; LO: Loin
production line; BO: Boston production line; PI: Picnic production line; FE: Ham production line. ** Significant
differences with the Kruskal-Wallis test.

3.3.2. Beta Diversity

The similarity of the microbiota’s structure was compared at the OTU level between
the samples according to the different visits using the Bray–Curtis index and the Jaccard
index. The similarity of the microbiota’s structure was also compared between the samples
according to the different production lines using the same indices. Statistically significant
differences were found between all pairs of visits (p < 0.001) with both indices. Figure 1—
which illustrates the structure of the microbiota between samples belonging to the different
visits using the Bray–Curtis index—does not show apparent clustering between samples
belonging to the same visit (see Figure 1). However, when each visit was plotted in two-
by-two NMDS plots, more important differences emerged between some pairs of visits:
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V1 and V3, V1 and V4, V1 and V5, V3 and V4, and V4 and V5 (see Figure 2). Statistically
significant differences were also found between all pairs of production lines (p < 0.001)
with the Jaccard and the Bray–Curtis indices. These differences in bacterial community
composition of the different production lines can be clearly visualized in an NMDS graph
using the Bray–Curtis index (see Figure 3). Figure 3 shows a clustering between samples
from the same production line. This clustering is even more apparent when the different
production lines were plotted two-by-two (see Figure 4). Similar distance matrix NMDS
plots were obtained using the Jaccard index (see Figures S1–S4 (Supplementary Materials)).

3.3.3. Multivariate Association with Linear Model Analysis

Multivariate association with linear model analysis (MaAsLin 1) was assessed to
identify OTUs positively or negatively associated with the different visits and the different
production lines. The number of total OTUs positively and negatively associated with
the different visits in terms of relative abundance as well as a summary of associated
OTUs of interest (bacterial genera, which can include known spoilage species and known
foodborne pathogens species) are detailed in Table 5. Production line associations from the
MaAsLin test are presented in Table 6. The information is presented in the same way as
the MaAsLin visit data. The complete list of the taxonomic attribution of OTUs associated
with the various visits and production lines is available in the Supplementary Materials
(see Tables S1–S4).
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Figure 1. Non-Metric Multidimensional Scaling Graph (NMDS) of the microbiota structures of the six
visit samples using Bray–Curtis index. Each point represents a sample, and each visit is represented
by the combination of a symbol and a color. Blue square: Visit one; Orange circle: Visit two; Pink
triangle: Visit three; Turquoise star: Visit four; Yellow x: Visit five; Purple diamond: Visit six.
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Figure 2. Non-Metric Multidimensional Scaling Graphs (NMDS) using Bray–Curtis index illustrating
sample microbiome beta-diversity according to visit and paired two by two. Blue square: Visit one;
Orange circle: Visit two; Pink triangle: Visit three; Turquoise star: Visit four; Yellow x: Visit five;
Purple diamond: Visit six.
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Figure 3. Non-Metric Multidimensional Scaling Graph (NMDS) of the microbiota structures of the
six production line samples using Bray–Curtis index. Each point represents a sample, and each
production line is represented by the combination of a symbol and a color. Turquoise star: Boston
production line (BO); Blue square: Main production line (CP); Purple diamond: Ham production line
(FE); Orange circle: Belly production line (FL); Pink triangle: Loin production line (LO); Yellow x:
Picnic production line (PI).
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star: Boston production line (BO); Blue square: Main production line (CP); Purple diamond: Ham
production line (FE); Orange circle: Belly production line (FL); Pink triangle: Loin production line
(LO); Yellow x: Picnic production line (PI).
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Table 5. Relevant bacteria (i.e., commonly known bacterial genera that can include potential spoilage
species or potential foodborne pathogen species) extracted from the list of OTUs identified using the
MaAsLin test and associated with the different visits.

Positive Associations Negative Bacterial Associations

Total Unique Relevant Bacterial
Genera Total Unique Relevant Bacterial Genera

V1 0 0 0 0

V2 14 4 Listeria_80__Otu00067 20 1 Escherichia_Shigella_Otu00046
Brochothrix_Otu00245

Streptococcus_Otu00029

V3 39 10

Acinetobacter_Otu00084

20 2

Lactococcus_Otu00132
Flavobacterium_Otu00354 Streptococcus_Otu00029
Pseudomonas_Otu00173
Psychrobacter_Otu00047

V4 39 11

Acinetobacter_Otu00084

23 1

Escherichia_Shigella_Otu00046
Enterococcus_77__Otu00071 Aerococcus_Otu00053
Flavobacterium_Otu00138 Lactococcus_Otu00132
Lactobacillus_Otu00092
Psychrobacter_Otu00047
Streptococcus_Otu00024

V5 49 12

Campylobacter_Otu00197

22 1

Escherichia_Shigella_Otu00046
Brochothrix_Otu00245 Aerococcus_Otu00053

Enterococcus_77__Otu00071 Lactococcus_Otu00132
Flavobacterium_Otu00354 Streptococcus_Otu00029
Flavobacterium_Otu00138
Flavobacterium_Otu00160
Lactobacillus_Otu00092
Pseudomonas_Otu00173
Psychrobacter_Otu00047

V6 33 8

Campylobacter_Otu00197

24 4

Escherichia_Shigella_Otu00046
Campylobacter_Otu00233 Brochothrix_Otu00245
Campylobacter_Otu00024 Carnobacterium_58__Otu00055
Campylobacter_Otu00233 Pseudomonas_Otu00037
Flavobacterium_Otu00160 Streptococcus_Otu00029
Flavobacterium_Otu00354
Flavobacterium_Otu00138
Lactobacillus_Otu00092
Psychrobacter_Otu00047

Column: 1—Visit ID; 2—Total number of OTUs positively associated with one or more visits; 3—Number of
OTUs positively associated with only one particular visit; 4—Potential spoilage or pathogen OTUs positively
associated with a visit (potential pathogen bacteria are identified in bold); 5—Total number of OTUs negatively
associated with one or more visits; 6—Number of OTUs negatively associated with only one particular visit;
7—Potential spoilage or pathogen OTUs negatively associated with one or more visits (potential pathogen bacteria
are identified in bold). V1: Visit one; V2: Visit two; V3: Visit three; V4: Visit four; V5: Visit five; V6: Visit 6.

3.4. Random Forest

The two models based on random forests were used to classify the samples according
to the visit during which they were collected or according to the production line from
which they came based on their microbiota. The confusion matrices obtained for the visit
model and for the production line model are presented in Figures 5 and 6, respectively. The
visit model had an average prediction rate of 94.3% (89.6–100.0%). Visit one showed the
best prediction rate (99.0%) and visit three showed the lowest rate of prediction (90.0%).
Visits two, four, five, and six showed prediction rates of 95.8%, 91.5%, 92.9%, and 96.9%,
respectively. The production line model has an average production rate of 88.1% (81.3–
93.9%). The ham production line showed the best prediction rate (96.8%), while the loin
production line showed the lowest prediction rate (77.5%). The main production line,
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the belly production line, the Boston production line, and the picnic production line,
respectively, showed prediction rates of 87.4%, 92.5%, 96.3%, and 78.0%. The importance of
variables (OTUs) in the prediction of a visit or a production line was evaluated. Among the
952 OTUs determined in the study, only a small proportion of them—143 and 182—were
considered important to predict the visits and the production lines, respectively. The
complete lists of these OTUs can be seen in Tables S5 and S6.

Table 6. Relevant bacteria (i.e., commonly known bacterial genera that can include potential spoilage
species or potential foodborne pathogen species) extracted from the list of OTUs identified using the
MaAsLin test and associated with the different production lines.

Positive Associations Negative Associations

Total Unique Relevant Bacterial Genera Total Unique Relevant Bacterial Genera

CP 169 97

Campylobacter_Otu00493

13 2

Acinetobacter_Otu00020
Clostridium_sensu_stricto_Otu00016
Clostridium_sensu_stricto_Otu00136
Clostridium_sensu_stricto_Otu00307
Clostridium_sensu_stricto_Otu00441
Clostridium_sensu_stricto_Otu00059

Clostridium_XlVa_75__Otu00385
Enterococcus_77__Otu00071

Flavobacterium_Otu00480
Flavobacterium_Otu00333
Flavobacterium_Otu00160

Lactobacillus_Otu00092, Otu00099
Lactococcus_Otu00262, Otu00132

Moraxella_Otu00259
Pseudomonas_Otu00179, Otu00003

Psychrobacter_Otu00047
Psychrobacter_Otu00012
Psychrobacter_Otu00093

FL 42 14

Clostridium_sensu_stricto_Otu00016

42 2

Acinetobacter_Otu00011, Otu0020
Pseudomonas_Otu00003, Otu00037
Psychrobacter_Otu00012, Otu00047

Moraxella_Otu00045

LO 36 11

Clostridium_sensu_stricto_Otu00016

40 4

Acinetobacter_Otu00020, Otu00011
Enterococcus_77__Otu00071 Moraxella_Otu00045

Flavobacterium_Otu00138
Staphylococcus_99__Otu00008

BO 0 0 0 0

PI 29 5
Clostridium_sensu_stricto_97__Otu00203

16 5
Salmonella_66__Otu00026

Psychrobacter_Otu00047 Acinetobacter_Otu00020, Otu00011
Pseudomonas_Otu00023

FE 45 8

Clostridium_sensu_stricto_Otu00059

21 0

Moraxella_Otu00045
Clostridium_sensu_stricto_Otu00016 Morganella_91__Otu00337
Clostridium_sensu_stricto_Otu00136

Campylobacter_Otu00493
Escherichia_Shigella_Otu00046
Carnobacterium_58__Otu00055

Lactococcus_Otu00262
Psychrobacter_Otu00012

Column: 1—Production lines ID; 2—Total number of OTUs positively associated with one or more production
lines; 3—Numbers of OTUs positively associated with only one particular production line; 4—Potential spoilage
or pathogen OTUs positively associated with a production line (potential pathogen bacteria are identified in
bold); 5—Total number of OTUs negatively associated with one or more production lines; 6—Number of OTUs
negatively associated with only one particular production line; 7—Potential spoilage or pathogen OTUs negatively
associated with a production line (potential pathogen bacteria are identified in bold); CP: Main production line;
FL: Belly production line; LO: Loin production line; BO: Boston production line; PI: Picnic production line; FE:
Ham production line.
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Figure 5. Confusion matrix of the visit model. The x-axis line indicates the identity of the six visits
and the y-axis line shows the prediction of a sample visit based on its microbiota. 1: Visit one; 2: Visit
two; 3: Visit three; 4: Visit four; 5: Visit five; 6: Visit six.
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Figure 6. Confusion matrix of the production line model. The x-axis line indicates the identity of the
six production lines and the y-axis line shows the prediction of a sample production line based on its
microbiota. BO: Boston production line; CP: main production line; FE: Ham production line; FL: Belly
production line; LO: Loin production line; PI: Picnic production line.
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4. Discussion

In our study, a total of 294 samples of production line surfaces associated with the
circulation of different meat cuts were collected in the cutting room of a swine slaughter-
house. The microbiota of the samples was analyzed by 16S rRNA amplicon sequencing in
order to evaluate the impact of visit and production line on the diversity and structure of
bacterial communities found on contact surfaces. The majority of the bacterial sequences
collected in our study belonged to the phyla Proteobacteria (36.4%), Firmicutes (35.9%),
Fusobacteria (31.4%), Actinobacteria (30.0%), and Bacteroidetes (27.2%). The dominance of
these phyla in pig slaughterhouse environments has been reported by previous studies,
with the exception of the Fusobacteria phylum [40,41]. The Fusobacteria phylum is known to
be a normal constituent of the oropharyngeal and gastrointestinal microbiota of pigs [42].
A recent study by Wylensek et al. revealed pig-specific species within the Fusobacterium
genus [43]. Thus, bacteria belonging to this phylum could have been transferred from the
gastrointestinal tract of pigs to the carcasses during evisceration and then transferred to
surfaces in contact with the meat [21,44]. The dominance of the phylum Fusobacteria can
potentially be explained by the specific context of our study since our study was interested
in the microbiota of conveyer belt surfaces in a cutting room during production while most
of the available studies focused on multiple slaughterhouse compartments/rooms [12].
Our results showed that the Fusobacteria phylum had a significantly higher relative abun-
dance during the fourth and the sixth visits and that the phylum was important for the
identification of the visit and production line in the random forest models.

Several genera found among the 15 most abundant bacteria across all visits and pro-
duction lines combined have been characterized in the literature as having phenotypes
allowing them to counteract the stress conditions encountered in the production envi-
ronment. Indeed, the dominant presence of psychotropic genera such as Pseudomonas,
Acinetobacter, and Psychrobacter was expected due to the refrigeration temperatures main-
tained in the cutting room [12]. A study by Botta et al. correlated the greater abundance
and persistence of these three genera in secondary processing rooms with the lowest tem-
peratures of these environments [26]. In addition, several of the most abundant phyla in
our study, such as Staphylococcus, are known to be able to form biofilms. Biofilms can confer
a greater resistance to disinfection products to bacteria but also to shear forces produced
by moving parts in production [45]. A recurrent introduction of microorganisms by the
carcasses following the contact of meat products with processing surfaces in the cutting
room can also not be excluded. Several bacterial genera with potentially pathogenic species
and/or potential spoilage species were among the OTUs with a relative abundance equal
to or greater than five percent in at least five samples from a visit or production line. The
presence of these OTUs on fresh pork meat have been previously described [10]. However,
the presence of the bacterial genus Clostridium among the 15 most abundant OTUs during
visits and on production lines and its strong presence in the cutting room was not expected.
Even though the Clostridium genus is not known to be a problem in the environmental
processing environment of swine slaughterhouses regarding its potential pathogenicity for
humans, the high representation of the genus Clostridium in our study suggests that the
presence of this potential foodborne pathogen may be underestimated.

Variability in the mean relative abundance of frequent bacterial genera (OTUs) was
identified. Indeed, several genera showed a higher relative abundance during certain
visits or on certain production lines. For instance, the genus Staphylococcus showed a
higher relative abundance during the third visit. The genera Peptostreptococcus (V2) and
Macrococcus (V4) are also examples of bacteria overrepresented during a single visit. In
addition, our study showed statistical differences in terms of alpha diversity between
several pairs of visits with the three indices. Moreover, statistically significant differences
of beta diversity were found between all pairs of visits, indicating that the structures of
major and minor bacterial populations are affected by the day of production. Put together,
these results, as expected, suggest that the number of different bacterial genera and the
uniformity of their distribution on surfaces are affected by the day of production. Indeed,
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in a different context, Stellato et al. investigated the bacterial biogeographical patterns on
surfaces and tools in a hospital cooking center and showed that, based on the composition
of the microbiota, samples from food production environments grouped according to
sampling time (two months separated the two samplings) [17]. As the slaughter process is
thought to present very little variation, it is possible to hypothesize that the differences in
the mean relative abundance as well as in alpha and beta diversity are mainly supported by
the arrival of different inputs (carcasses) in the cutting room, by the staff working during
these different days, and by differences in the application of washing and disinfection
measures. However, a study by Braley et al., conducted in the same facility as our study,
revealed no significant difference of microbiota between pig carcass batches [46]. The fact
that the study conducted by Braley et al. was realized during a short period of time (one
day) and the sampling in our study took place at monthly intervals could explain these
variations in the impact of time. Another study by Lim et al. showed that depending on
the season, changes in the abundance of certain bacterial genera could be observed on
food-contact and non-food contact surfaces in a foodservice facility [18]. The impact of
season on the microbiota composition of fresh beef meat was also highlighted in a study by
Hwang et al. [47]. As our sampling took place over six months (one sampling each month)
and covered three seasons (summer, autumn, and winter, which are notably distinct in
Canada), it is possible that conditions specific to the seasons have influenced the quantity
and diversity of the microorganisms harvested. It should be noted that the impact of the
visits on the diversity of the processing surfaces microbiotas associated with production
line was taken into consideration in the present study.

Variability in the mean relative abundance of bacterial genera (OTUs) was also iden-
tified in relation to the production line. Indeed, the genera Trueperella (FL), Pseudomonas
(FE), Acinetobacter (LO), Rothia (LO), and Staphylococcus (LO) presented a higher mean
relative abundance on certain production lines. In the same perspective, a study by Biasino
et al. mapped the distribution of microbiological contamination of pig carcasses [44]. They
showed significant differences, using a culture-dependent methodology, in the contamina-
tion level of the different carcass areas regarding the total aerobic bacteria Enterobacteriaceae
and Salmonella. De Filippis et al., for their part, have highlighted a significant association
between beef microbiota and specific beef cuts using 16S rRNA amplicon sequencing [27].
The results of these two studies that highlight the influence of different meat cuts on the
microbial contamination of meat are in line with our observations but leave unanswered
the link between the microbiota of the production surfaces and the pieces of meat they
support.

Our study showed statistical differences in terms of alpha diversity between several
pairs of production lines. The highest alpha diversity measures have been associated
with the CP and the FE production lines. The BO production line showed the lowest
alpha diversity values while the FL, LO, and PI production lines showed variable levels
of diversity depending on the index used. In addition, statistically significant differences
of beta diversity were found between all pairs of production lines. This is the first time
to our knowledge that a study has revealed the presence of bacterial microbiotas distinct
in number, uniformity, and structure between production lines in a cutting room of a
slaughterhouse. As the only difference that exists between the conveyors associated with the
different production lines is the type of meat cut circulating on them, our study represents
a first step in the exploration of the influence of meat cut on surface contact microbiota.
However, these results were obtained in a single slaughterhouse, therefore it would be
interesting and relevant to study whether these observations are present in other cutting
rooms of pig slaughterhouses. These results concur with several studies which have
highlighted the presence of different microbiotas in the food production environment.
Zwirzitz et al. applied the software SourceTracker on full-length 16S rRNA gene sequencing
data from a swine slaughterhouse and revealed that contact surfaces such as the polishing
tunnel and a railing used for the classification of the carcasses strongly contributed to the
composition of the microbiota of meat samples [4]. The study showed that many bacterial
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genera were unique to specific sites in a swine slaughterhouse, indicating that specific
microorganisms occupy environmental niches in the facility. The authors suggested that
the spatial distribution of the microorganisms is the result of specific transmission routes
within the facility. Botta et al. conducted a study in three red-meat slaughterhouses and
revealed significant differences in the meat processing-plant surface microbiota between
the environments (the three different plants), the temporal phases (before or after cleaning
and sanitizing), and between the type of room (deboning rooms and processing room).
Although these studies have explored the general contamination flows and the microbial
organization patterns [1,4] of food processing environments, none of them focused on a
single compartment/room in a food plant.

Multivariate association with linear model analysis (MaAsLin) was assessed to iden-
tify OTUs positively or negatively associated with the different visits and the different
production lines. Among the determinants positively or negatively associated with the
different visits, 12 have been previously identified as possibly containing known spoilage
species and known foodborne pathogen species: Acinetobacter, Flavobacterium, Pseudomonas,
Psychrobacter, Lactobacillus, Lactococcus, Streptococcus, Brochothrix, Carnobacterium, Clostrid-
ium, Enterococcus, and Aerococcus. The identification of visits during which these microbial
genera showed significantly higher relative abundance on contact surfaces raises the ques-
tion as to whether there are differences in the relative abundance of these bacterial genera
on the carcasses. Indeed, it has been shown that microorganisms can remain on the surface
of the carcass, survive, and detach when they come in contact with surfaces and production
equipment [21]. Six of those bacterial genera currently recognized as spoilage determinants
were lactic acid bacteria genera (LAB): Lactobacillus, Lactococcus, Carnobacterium, Aerococcus,
Streptococcus, and Enterococcus. LAB are recognized as important competitors of other
spoilage microorganisms and have been reported to be associated with the souring, for-
mation of slime, bone taint, and greening of refrigerated fresh raw meat [10,48,49]. In
addition to the lactic acid bacteria, the genus Brochothrix (Otu00245), another Gram-positive
bacterium, emerged as a determinant in the MaAsLin tests. The species B. thermosphacta is
known as an important spoiler of various food matrixes, including the formation of slime on
pork meat [10,48]. A study by Hultman and al. suggested that refrigerated food-processing
environments provide conditions for the persistence of Brochothrix spp and LAB and that
meat-contact surfaces could act as reservoirs for those bacteria [15]. The Acinetobacter and
Pseudomonas genera, for their part, are considered as important sources of meat spoilage
products in aerobic conditions [50], while several species of the genus Clostridium have
been identified as causative agents for defects of meat in anaerobic conditions [49].

Regarding the production lines, 12 have been previously identified as common po-
tential meat spoilage bacterial genera. In our study, several LAB (Lactococcus, Lactobacillus,
Carnobacterium, and Enterococcus) showed a positive association in terms of relative abun-
dance with the CP, LO, and FE production lines, suggesting predicted locations of LAB
reservoirs on production lines. The genus Clostridium was the only genus identified as a
determinant of five production lines (CP, FL, LO, PI, and FE). However, it is interesting
to note that the distribution of the OTUs (OTUs 00016, 00059, 00136, 00203, 00307, and
00441) associated with this bacterial genus is differentially organized. For example, the
OTU 00203 and the OTUs 00307 and 00441 were found only on the PI and CP production
lines, respectively. This suggests that particular Clostridium species would be specifically
associated with certain production lines. Thus, since only a fraction of the Clostridium
species is identified as a causative agent for defects in vacuum-packed meat [49], precisely
identifying the species associated with the different production lines could help identify
the cuts of meat best-suited for this type of packaging. Except for the genus Clostridium, no
OTU identified as potential spoilage bacteria showed a positive association with the FL pro-
duction line. On the contrary, four bacterial genera associated with meat spoilage showed
a negative association with the FL production line: Psychrobacter, Moraxella, Acinetobacter,
and Pseudomonas [14,51]. The PI production line also showed a few positive associations
(Clostridium and Psychrobacter genera) but also three negative associations (Acinetobacter,
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Pseudomonas, and Salmonella genera). While Psychrobacter and Moraxella possess a low
spoilage potential due to their lack of several important biochemical attributes such as
proteolysis, Pseudomonas, the species P. fluorescens, P. putida, and P. fragi, in particular con-
tribute to the spoilage of raw meat to a large extent [52]. No association was found with
the BO production line. These results suggest, in the context of our study, that the BO, the
FL, and the PI production lines are the least-concerned production lines in terms of relative
abundance regarding bacteria capable of deteriorating meat quality.

Four bacterial genera potentially pathogenic to humans were found among the bacte-
rial determinants positively or negatively associated with the different visits. The potential
pathogenic genus Campylobacter, of which species C. coli frequently contaminates pigs and
consequently food of porcine origin, was identified as a microbial determinant of visits
five and six [53]. The genus Listeria, of which the species L. monocytogenes has been linked
to several outbreaks associated with the consumption of pork products, was associated
with the second visit [54,55]. Based on these results, the introduction of these two potential
pathogens seems to have been sporadic. It is therefore possible to hypothesize that the
inputs (carcasses) introduced into the cutting room on these two dates had a higher relative
abundance of Campylobacter or Listeria than the inputs from the other visits and could
therefore have transferred these pathogens in higher concentrations to the contact surfaces.
This observation is reinforced by the fact that the OTU associated with the genus Listeria
was unique to visit two.

The Campylobacter genus also showed positive associations with the CP and the FE
production lines in the same way as the genus Escherichia/Shigella, an indicator of fecal
contamination, with the FL and the FE production lines [56]. The Salmonella genus, a major
concern of pork meat-product contamination, showed a negative association with the PI
production line [57,58]. The results of our study are partially in accordance with a study by
Biasino et al. [44], which showed that the ventral and anterior areas (foreleg, head, sternum,
and throat) were the most contaminated parts of pig carcasses by Enterobacteriaceae and
Salmonella. These results are consistent with our study, which showed a lower relative
abundance of the genus Salmonella on the PI production line. However, for E. coli, our
study showed a higher relative abundance of the Escherichia/Shigella genera on the FE
production line [44]. This divergence in results can be explained by differences between
the production facilities sampled, such as the evisceration techniques and the cleaning
and disinfection procedures, by the use of different detection methods, and also by the
fact that the Biasino et al. study was conducted on carcass parts while our study was
conducted on surfaces in contact with these carcass parts [44]. Unfortunately, few studies
have examined the transmission of Campylobacter in the pork industry, which does not
allow the comparison of our results. The Staphylococcus genus showed a unique positive
association with the LO production line. This bacterial genus is a potential opportunistic
pathogen of which pigs and humans are potential hosts [59]. As no association was found
with any visit, the hypothesis of an introduction via workers on this particular production
line is probable. The presence on several conveyors of the genus Clostridium, within which
the C. perfingens species represents a risk to humans, has been discussed above. The
identification (using the MaAsLin test) of microbial determinants positively or negatively
associated with the different production lines shows for the first time to our knowledge the
existence of significant differences in terms of relative abundance in the organization of
microbial communities on the production lines associated with specific meat cuts at the
slaughterhouse.

Having identified bacterial determinants associated with the different visits and the
different production lines, two predictive models were built based on random forests as
proof of concept in order to establish, through the predictive character of these models,
the existence of distinct microbiotas in a cutting room of a slaughterhouse. Based on the
microbiota of a sample, our models were able to predict its visit number at a rate of 94% and
which production line it came from at a rate of 88%. The proof of concept provided by the
creation of our predictive models suggests their usage on a larger scale and their potential
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integration into larger surveillance systems based on blockchain technology. Using these
models could be helpful in predicting the origin of a problematic sample quickly and
efficiently. The predictive value of surface provenance based on a sample of the microbiota
of a piece of meat remains to be explored.

We believe that the results of our study, which identified for the first time to our
knowledge the presence of distinct microbiotas on contact surfaces related to the circulation
of specific meat cuts, represent a crucial step in the understanding of the microbial ecology
of a slaughterhouse. The distinct bacterial community dynamics which take place on the
production lines in a cutting room are important in determining the microbial succession
pattern that will occur and ultimately influence the quality and safety of the final meat
products. Therefore, this study is a step forward in the prevention, surveillance, and control
of the microbial contamination of meat products.
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to the MaAsLin test; Table S3: OTUs positively associated with production line according to the
MaAsLin test; Table S4: OTUs negatively associated with production line according to the MaAsLin
test; Table S5: OTUs hierarchized according to their mean importance for the identification of a visit
in the random forest visit model; Table S6: OTUs hierarchized according to their mean importance
for the identification of a production line in the random forest production line model.
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