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Abstract

The relaxation dynamics of a weathercock free-to-rotate, in the presence of
a uniform flow, as it aligns with the flow direction, is investigated experi-
mentally in a wind-tunnel. The dynamics is observed to conveniently follow
a damped harmonic oscillator behavior. At first order, the frequency is set
by the aerodynamic coefficients. We show that a quasi static approach fails
to precisely describe the relaxation dynamics and that non-stationary cor-
rections are required to model the dynamics. A first strategy is to introduce
added mass, added stiffness and added damping to the quasi-static approx-
imation, following what is usually done in the context of vortex-induced
vibrations. A second strategy is to introduce empirical corrections, whose
scaling is obtained from the analysis of the experimental data. Finally, these
two strategies are compared and we discuss the physical interpretations of
the non-stationary corrections.

Keywords: Time domain analysis, Aerodynamics
PACS: 47.85.Gj,
2000 MSC: 74F10, 70K25

1. Introduction

Flows and wind in particular have the particularity of bringing objects to
life, by breathing movement onto them. A good example for this is how wind
makes buildings sing [1] and leaves whistle [2, 3] in the audible spectrum, also
known as wind-induced vibrations.

Flow induced oscillations can eventually lead to fluid-structure instabili-
ties, with strong amplification of the oscillation amplitude. The collapse of
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the Tacoma bridge in 1940 is an emblematic example. Depending on the
oscillation frequency of the object relative to the characteristic aerodynamic
frequency of the surrounding flow, several coupling mechanisms between the
object and the fluid are generally invoked to explain such instabilities, among
which Vortex Induced Vibrations (VIV) and aeroelastic flutter (also called
galloping in civil engineering). Oscillations in flows are not necessarily asso-
ciated to such dramatic instabilities, and can also be observed in stable sys-
tems which are transitionaly displaced out from equilibrium. For instance, a
weathercock released in cross flow conditions will for instance oscillate as its
recover its stable equilibrium position, aligned with the wind.

All these situations have in common that their description in terms of
aerodynamic forces may require non-stationary aerodynamic couplings to be
taken into account. This means that the coupling between the oscillating
object and the wind responsible for its oscillations may not be simply mod-
eled by static drag (lift) coefficients, CD (CL) of the object (as typically
measured for a fixed object in a steady wind stream) as the fluid-structure
interactions may become intrinsically governed by non-stationary phenom-
ena. Spring-attached cylinders or cables are common examples which may
respond to frequencies close to vortex shedding and as such be sensible to
vortex-induced-vibrations (VIV). So is the oscillating weathercock. Usual
non-stationary corrections include for instance added-mass effects, added
damping, etc. [4, 5], or can be accounted for with modified aerodynamic
coefficients.

The necessity of these corrections naturally depends on the frequency f of
the oscillations of the object compared to the typical aerodynamic frequencies
associated to vortex shedding fvs: a quasi-static situation, where static drag
(lift) coefficient apply is expected to be recovered when f � fvs, as then
the instantaneous aerodynamic loads can be effectively averaged over several
vortex shedding periods without smoothing the slower oscillatory dynamics.

The concept of quasi-static versus non-stationary aerodynamic coupling
is therefore crucial to the modelling of such wind-induced oscillations. To
this end, it is common to introduce the reduced velocity Ur = 1

St
fvs
f

(with

St = fvsD/U the Strouhal number, D being the typical size of the oscillating
object and U the mean wind velocity) or the reduced frequency fr = π/Ur.
The quasi-static approach then becomes relevant when Ur � 1 (Ur > 20 in
practice [6]) of equivalently when fr � 1.

In this article, we investigate wind induced oscillations in a system which
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is aerodynamically stable, but which exhibits damped oscillations in the path
towards its final stable equilibrium state when initially put far from equilib-
rium. More specifically, we consider the dynamics of a simple free-to-rotate
object, a balanced disk pendulum, subject to a uniform flow. When the pen-
dulum is initially placed with the disk facing the wind, it experiences self-
oscillations until it eventually reaches its final natural equilibrium position
aligned with the wind, similar to the response of a weathercock to a cross flow.
We address here the question of the dynamics of this idealised weathercock
through its path to equilibrium. In particular, we investigate the relevance
of a quasi-static description (based on the well-known angular dependency of
the normal aerodynamic coefficient CN(α) of an inclined circular disk facing
a uniform flow [7]) (with α the angle of attach of the disk with respect to the
mean wind) and the eventual necessity of non-stationary corrections. Note
that since the weathercock is balanced, contrary to a weighted pendulum, it
has no prescribed natural frequency f which can be used a priori to estimate
the reduced velocity Ur of the system in order to know beforehand the im-
portance of non-stationary effects. As we will see, the natural self-oscillating
frequency is itself an aerodynamic response whose order of magnitude can be
reasonably estimated based on the quasi-static normal drag coefficient, while
the overall dynamics still requires to account for non-stationary corrections.
We discuss different possible strategies for such corrections, either inspired
from VIV approaches or based on empirical corrections of the static normal
drag coefficient of an inclined disk.

This article is organized as follows. The experimental setup, consisting
of a balanced pendulum immersed in a wind tunnel, is described in Sec. 2.
Signal analysis of the measurements of the time evolution of the relaxation of
the weathercock towards its equilibrium position, and of their interpretation
is also detailed in Sec. 2. Non-stationary corrections are then introduced in
Sec. 3. Theses corrections are compared in Sec. 4 and physical interpretations
of the correction parameters are discussed in Sec. 4. Finally, Sec. 5 concludes
this article.
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Flows and wind in particular have the particularity of bringing objects to life,
by breathing movement onto them. A good example for this is how wind
makes buildings sing [1] and leaves whistle [2, 3] in the audible spectrum,
also known as wind-induced vibrations. However, wind-induced vibrations
are not necessarily fast and many of their frequencies fall in the infrasound
spectrum.

Flow induced oscillations can eventually lead to fluid-structure instabili-
ties, with strong amplification of the oscillation amplitude. The collapse of
the Tacoma bridge in 1940 is an emblematic example. Depending on the
oscillation frequency of the object relative to the characteristic aerodynamic
frequency of the surrounding flow, several coupling mechanisms between the
object and the fluid are generally invoked to explain such instabilities, among
which Vortex Induced Vibrations (VIV) and aeroelastic flutter (also called
galloping in civil engineering).

VIV refers to a modal coupling where an instability develops whenever
the characteristic aerodynamic frequency fvs associated to vortex shedding
(characterized by the Strouhal number St = fvsD/U , with D the character-
istic dimension of the object and U the mean wind velocity) gets close to the
natural frequency f of any structural mode of the object. In such conditions,
the fluid-structure interactions are intrinsically governed by non-stationary
phenomena (vortex shedding) and cannot be simply modeled based on quasi-
static aerodynamic coefficients (drag and lift). Usual non-stationary correc-
tions include for instance added-mass effects, added damping, etc. [4, 5].
Spring-attached cylinders or cables are common examples which may re-
spond to frequencies close to vortex shedding and as such be sensible to
vortex-induced-vibrations (VIV).

Flutter occurs when the motion of the body modifies the effective flow
seen by the body and then the aerodynamic loads and motion of the body
in return. This eventually leads to a positive aerodynamic feedback with ex-
ponentially growing oscillations. When the oscillation frequency f is smaller
than fvs, flutter can be modeled from simple quasi-static aerodynamic coef-
ficients. In this case, the shape of the object relative to the wind direction is
the main parameter controlling the instability onset, as it conditions the evo-
lution of the quasi-static aerodynamic coefficients as the object moves. For
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instance, for a pendular system with one-degree of freedom (say its angular
position α), the system may be stable or unstable under flutter depending
on the angular dependency of the drag, CD(α), and lift, CL(α), coefficients.
Flutter can take many forms, from translational motions to higher dimen-
sional motions, including rotational and torsional modes. Translational flut-
ter is particularly well-documented in the literature, be it experimental, nu-
merical or theoretical approaches [5]. Due to its importance in engineering,
translational-torsional flutter has been investigated extensively in the con-
text of bridges [8, 9, 10] or transmission lines [11, 12]. On the other hand,
modeling of torsional flutter has been proposed decades ago [13, 6], despite
very few experimental investigations [13, 5].

The concept of quasi-static versus non-stationary aerodynamic coupling
is therefore crucial to the modelling of wind-induced instabilities. To this
end, it is common to introduce the reduced velocity Ur = 1

St
fvs
f

. For VIV

instabilities fvs ≈ f and Ur is of order unity (Ur ≈ 5 for an object with
St ≈ 0.2). In this case, non-stationary effects cannot be neglected. When
Ur � 1 (Ur > 20 in practice [6]), a quasi-static approach becomes relevant,
using for instance drag and lift coefficients as traditionally measured in wind-
tunnels for static objects and steady wind conditions, averaging the effective
aerodynamic loads over many vortex shedding periods. While flutter often
develops as a slow instability with Ur � 1 compatible with a quasi-static
description, depending on the body geometry, it can also appear at moder-
ate reduced velocities, requiring in that case more complex non-stationary
modeling.

The role of quasi-static and non-stationary aerodynamic couplings in
wind induced oscillations phenomena is relevant beyond the sole question
of fluid structure instabilities. While research on wind-induced oscillations
and in particular bridge flutter, though still active, can be traced back to the
19th century [14, 15], recent environmental considerations have for instance
broadened the scope of such nature-induced vibrations to the development
of new ways of energy production, though flutter- and VIV-based energy
harvesters [16, 17, 18, 19].

In this article, we investigate wind induced oscillations in a system which
is aerodynamically stable, but which exhibits damped oscillations in the path
towards its final stable equilibrium state when initially put far from equilib-
rium. More specifically, we consider the dynamics of a simple free-to-rotate
object, a balanced disk pendulum, subject to a uniform flow. When the
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pendulum is initially placed with the disk facing the wind, it experiences
self-oscillations until it eventually reaches its final natural equilibrium po-
sition aligned with the wind, similar to the response of a weathercock to a
cross flow. We address here the question of the dynamics of the weathercock
through its path to equilibrium. In particular, we investigate the relevance
of a quasi-static description (based on the well-known angular dependency of
the normal aerodynamic coefficient CN(α) of an inclined circular disk facing
a uniform flow [7]) and the eventual necessity of non-stationary corrections.
Note that since the weathercock is balanced, contrary to a weighted pendu-
lum, it has no prescribed natural frequency f which can be used a priori
to estimate the reduced velocity Ur of the system in order to know before-
hand the importance of non-stationary effects. As we will see, the natural
self-oscillating frequency is itself an aerodynamic response whose order of
magnitude can be reasonably estimated based on the quasi-static normal
drag coefficient, while the overall dynamics still requires to account for non-
stationary corrections, in the spirit of VIV approaches.

This article is organized as follows. The experimental setup, consisting
of a balanced pendulum immersed in a wind tunnel, is described in Sec. 2.
Signal analysis of the measurements of the time evolution of the relaxation of
the weathercock towards its equilibrium position, and of their interpretation
is also detailed in Sec. 2. Non-stationary corrections are then introduced in
Sec. 3. Theses corrections are compared in Sec. 4 and physical interpretations
of the correction parameters are discussed in Sec. 4. Finally, Sec. 5 concludes
this article.

=======================================================================================
=======================================================================================
=======================================================================================
=======================================================================================

6



Figure 1: a)Experimental setup showing the test section of the wind-tunnel, the pendulum
made of a thin disk and the coil for setting the pendulum to the vertical. b) Details on
the pendulum for setting the initial position with the coil. c) Definition of the effective
flow velocity Ueff and effective angle of attack αeff acting on the moving disk.

2. Material and Methods

2.1. Experimental setup

A schematic view of the experimental setup is provided in Fig. 1. A
balanced disk pendulum, acting like a weathercock, is placed in a wind tunnel.
The disk pendulum consists of a thin disk of diameter d, surface area S =
πd2/4, and thickness e, made of aluminium or Vivakr and glued to a sanded
saw blade of length 31 cm. The pendulum is balanced by coinciding the pivot
with the center of mass. Frictionless rotation is ensured by an air bushing
(OAVTB16i04 from OAV Labs) equipped with a contact-less rotary encoder
that records the angular position α of the blade with minimal friction (DS-
25, 17-bit digital encoder from Netzer). The typical length L between the
center of mass and the center of the disk is 10 cm. In order to vary the
moment of inertia of the weathercock, the blade can be weighted on the
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opposite side to the disk with a thin circular magnet, aligned with the wind.
In this article, we investigate the influence of the disk diameter d, the length
L, the moment of inertia J on the dynamics of the weathercock relaxation.
As discussed in Sec.4, the influence of these parameters is understood using
a single dimensionless parameter, the reduced velocity, defined in Eq. 8.
As further discussed below, for moderate wind velocities, the magnet also
allows to non-intrusively impose the initial out-of-equilibrium position of
the weathercock and release it on demand. Table 1 summarizes the various
parameters used in the experiments presented in this article.

Diameter ddisk (cm) 3 4 5 6 8 9 10
Material Al Al Al Al Al Vivakr Vivakr

Thickness e (mm) 0.3 0.3 0.3 0.3 0.3 0.6 0.6
Distance L (cm) 13.5 13.8 13.3 12.9 11.8 12.5 12.1
Inertia J (kg cm2) 1.34 1.57 1.66 1.89 2.24 2.57 2.90
Equivalent Ur 91.2 55.0 36.9 27.8 17.8 14.6 12.8
Equivalent k 0.034 0.057 0.085 0.11 0.18 0.22 0.25
L with magnet (cm) 17.4 17.5 17.3 16.9 16.2 16.5 16.0
J with magnet (kg cm2) 2.36 2.63 2.86 3.25 3.95 4.31 4.82
Equivalent Ur 107 63.3 42.5 31.8 20.1 16.5 14.3
Equivalent k 0.029 0.050 0.074 0.10 0.16 0.19 0.22

Table 1: Physical characteristics of the different weathercocks used in the experiment.
Each disk enables for two sets of experiments, one with a magnet at the blade’s opposite
end and the other without. Al stands for aluminium.

The wind tunnel in which the weathercock is placed is a closed-loop wind
tunnel with a square test section of 51×51 cm2. The turbulence rate of
the wind tunnel (defined as the ratio of the velocity standard deviation to
the mean) is about 2% after the flow has been conditioned through a 6 mm
honeycomb. The experiment is conducted with the weathercock in the center
of the wind tunnel so that the dynamics of the weathercock is not affected
by effects from the walls .

In order to carry a statistically significant characterization of the return
to equilibrium of the weathercock, several realizations are repeated for each
set of weathercock parameters (according to table 1) and for different mean
wind velocities.

The exact same protocol is followed for all these experimental realization.
First, the weathercock is set at the vertical (α = 90°). This is achieved either
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using the magnet and a coil placed below the test section of the wind tunnel
(see Fig. 1 or manually using a stick. Then, the flow velocity is increased
to its desired test value. The weathercock is finally released (by turning off
the magnetic field or removing the stick) and left free to oscillate and to
reach its final equilibrium position, which by static considerations is at the
horizontal. Note, that the maximum available magnetic torque limits the
magnetic release to low wind velocities (typically U < 2 m s−1 for the 6 cm
disk). This protocol is then repeated for about 10 times for around 8 to
14 values of U for each of the 14 weathercock configurations, leading to 751
independent realizations of the relaxation dynamics, which are analyzed in
the following.

A typical time series obtained following the above-detailed protocol is
shown in Fig. 2 a). This signal shows that the weathercock dynamics resem-
bles that of a damped harmonic oscillator, sinusoidal oscillations modulated
by an exponential attenuation as evidenced in Fig. 2 b). This signal can be
parameterized by two characteristic times, its period T = 2π/ω and its atten-
uation time τ = 2/β, with ω the pulsation of oscillation and β the damping
coefficient. The weathercock dynamics could then be described by a simple
damped harmonic oscillator equation:

α̈ + βα̇ + ω2α = 0 (1)

This is not trivial, as the overall aerodynamic forces acting on the weath-
ercock have complex angular dependencies, as illustrated in Fig.2 c) which
represents the normal static drag coefficient CNst(α) of a fixed inclined disk
as a function of the angle of attack [7]. We show in the next sub-section
that the damped harmonic oscillator behavior is qualitatively expected in a
quasi-static description of the aerodynamics of the weathercock in the limit
of small oscillations (more precisely in the range of linearity of CNst(α), i.e.
for α ∈ [−40◦; 40◦]). In section 3 we will show however that a quantita-
tive description requires non-stationary aerodynamic effects to be accurately
accounted for.

2.2. Quasi-static momentum equation

In the absence of any weight and any external forcing other than the aero-
dynamic forces on the disk, the momentum equation governing the weather-
cock dynamics can be written as:

Jα̈ = Γaero(t, α, α̇) (2)
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a) b)

c)

Figure 2: a) Example of an experimental signal: the pendulum is set to the vertical and left
to oscillate (ddisk = 4 cm, J = 2.63 kg cm2, and U = 3 m s−1). b) Semi-log presentation
of the signal amplitude over time. A pulsation ω can be defined from the period T of
oscillation and a damping coefficient β can be extracted from the exponential decrease of
amplitude of characteristic time τ . c) Static CN coefficient for a disk [7], stall is represented
by the dashed green lines.

with Γaero the instantaneous aerodynamic torque. Note that in a fully non-
stationary situation the dependency of aerodynamic quantities as Γaero may
depend on higher order temporal derivatives of the angular dynamics α(t)
(added-mass effects, further discussed in the sequel, involve for instance ac-
celeration dependent corrections). For the simplicity of notations we shall
however only write f(t, α, α̇) when referring to any instantaneous quantity f
eventually subject to non-stationary aerodynamic effects.

In the range of Reynolds numbers Re investigated here (i.e. between
103 and 104, based on the mean wind velocity and the disk diameter, the
aerodynamic coefficients are Re-independent. It is convenient to introduce
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the normal aerodynamic coefficient CN as CN = −CL sin(α) + CD cos(α),
with CL and CD being respectively the lift and drag coefficients. A standard
expression for Γaero based on dimensional analysis then reads Γaero(α(t), t) =
1
2
ρSU2LCN(α(t), t), with ρ the air density, and the notation α(t) refers to

non stationary mechanisms depending upon α, α̇ and α̈. We stress here that
the flow velocity and the angle of attack need to be corrected to account
for the actual relative velocity between the disk and the mean stream [20],
resulting in an effective flow velocity Ueff and an effective angle of attack αeff

(see Fig. 1.c) :  U2
eff = U2 + 2LUα̇ sin(α) + L2α̇2

αeff = α + arctan

(
Lα̇ cos(α)

U + Lα̇ sin(α)

)
(3)

A first approximation for the expression of normal drag coefficient CN(αeff(t), t)
is to use its static value CNst(αeff), which is tabulated in the literature for
static inclined disks [7], and is displayed in Fig. 2 c). The quasi-static weath-
ercock dynamics then follows the equation :

Jα̈ =
1

2
ρSLU2

effCNst(αeff(t)) (4)

A Taylor expansion in α around the equilibrium position α = 0° (considering
the expressions for αeff and Ueff in eq. (3)), then leads to a damped harmonic
oscillator equation,

α̈ + βstα̇ + ω2
stα = O(α3) (5)

reminding of Eq.1 with
ω2
st =

ρSLU2

2J

dCNst

dα

∣∣∣∣
0

βst =
ρSL2U

2J

dCNst

dα

∣∣∣∣
0

=
L

U
ω2
st

(6)

We note here that the pulsation of the quasi-static regime is given by the
slope of the CN coefficient at the origin. We expect the expansion around
α = 0° to hold over the entire linear regime of CNst , i.e. up to the stall
angle (α ∼ 40°, see fig. 2a), which means that this approximation should
hold for the observed relaxation dynamics after the first minimum for the
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signal shown in Fig. 2 (i.e. for t > 1.2 s). We also stress that the quasi-static
modeling does not take into account the unsteadiness behavior due to vortex
shedding and is thus expected to fail for the lowest values of the reduced
velocity, as developed in the next section.

3. Results

Following the previous considerations, it is tempting to compare the mea-
sured weathercock relaxation dynamics towards equilibrium to the quasi-
static damped oscillator dynamics associated to Eq. (5). Figure 3 shows
the experimental values for ω2 and β (computed by fitting the experimental
signals as a damped harmonic oscillator dynamics) as functions of their es-
timations using the static coefficient approximation ω2

st and βst (Eq. (6)). It
can be seen that, for the range of explored parameters, both the the oscil-
lating pulsation ω and the damping coefficient β are linearly related to the
quasi-static predictions. The quasi-static damping coefficient βst slightly un-
derestimate the actual damping coefficient β, while the quasi-static estimate
of the the pulsation ωst systematically overestimate the actual pulsation ω.
This suggests that, although the quasi-static approximations ωst and βst give
the correct order of magnitude for the oscillating frequency and damping,
corrections to the quasi-static model are still required. The quasi-static val-
ues for the oscillating frequency and the damping coefficient can therefore be
considered as a reasonable first order approximation, from which quantita-
tive corrections are to be derived in the frame of a refined modelling of the
weathercock dynamics. In the following, we propose two ways of recovering
the experimental dynamics by extending the quasi-static dynamics given by
Eq. (4), first in the context of a VIV-inspired expansion, second by intro-
ducing an empirically determined dynamical normal drag coefficient CNin

.
According to Eq. (2), the corrections are expected to depend not only on the
angular position α, but explicitly upon the time t and/or the higher time
derivatives of α(t) (angular velocity and acceleration). In the following, we
introduce such corrections that can be computed a priori, and we show that
they only depend upon the reduced velocity Ur or the flow velocity U .

3.1. VIV-inspired time domain correction

We propose in this section a refinement of the quasi-static model account-
ing for possible non-stationary corrections that would be responsible for the
deviations observed for the weathercock dynamics, in particular regarding
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Figure 3: a) Experimental measured pulsation ω2 with respect to the static estimated
pulsation ω2

st. b) Experimental measured damping coefficient β with respect to the static
estimated damping βst. Dash-dotted lines represent identity and the color codes for the
Ur parameter of each experiment on both graphs.

the expected oscillation frequency. When such frequency shifts are observed
in unsteady aerodynamics, a common theoretical approach is the addition of
stiffness and mass to the dynamics equation, thus taking into account the
effective global impact of vortex shedding on the free dynamics. We note
that for a rotating system as the one investigated here, the equivalent of an
added mass would correspond to an added moment of inertia.

This approach, mostly used in vortex-induced vibration (VIV) theory, as-
sumes that the behavioral dynamics depends on the ratio between the vortex
shedding frequency and the frequency of natural oscillation of the system.
Non-stationary aerodynamic corrections are expected to be dominant when
natural oscillations are rapid or comparable to vortex shedding, while a quasi-
static approach should hold for slow oscillations. As already stated in Sec. 1,
this competition between natural oscillations and vortex shedding is usually
quantified by the reduced velocity Ur, a characteristic dimensionless number
which characterizes the unsteadiness of the aerodynamic couplings:

Ur ≡ 1

St

fvs
f

=
U

df
, (7)

where fvs is the vortex shedding frequency, f the natural oscillation frequency
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of the structure in the wind and St = dfvs/U the Strouhal number.
In the present situation, as the weathercock is perfectly balanced, it has no

structural natural oscillation frequency associated to its rotational dynamics
(contrary to a weighted pendulum for instance). The linear relation between
ω and ωst shows indeed that the oscillation frequency has an aerodynamic
origin, whose order of magnitude and trends are reasonably captured by the
quasi-static Eq. (6). In the present case, the reduced velocity is therefore
defined using the quasi-static oscillating frequency: f = fst ≡ ωst/2π. This
leads to the following expression for Ur:

Ur =
1

St

fvs
f

=
U

d

2π√
1

2

ρSU2L

J

dCN
dα

∣∣∣∣
0

=
4

d2

√√√√√ 2πJ

ρL
dCN
dα

∣∣∣∣
0

. (8)

Remarkably, Ur is found to be independent of the flow velocity U , linked
to the fact that the natural oscillations of the balanced weathercock are self-
induced by aerodynamic couplings. As such, Ur is varied in the experiments
by the modifications of parameters d, J and L of the weathercock. The
range of explored Ur in this study spans from 14 to 120 (see Table1). We
note that this broad range of accessible values of reduced velocity confirms
that the observed oscillations of the weathercock are not primarily driven by
vortex shedding, what would lead to values of Ur = O(St−1) ' 10 (since
the Strouhal number for flat disks as investigated here is of order 10−1 [21]).
Vortex shedding is however expected to contribute to the observed deviations
of the weathercock dynamics when compared to the quasi-static description.
Modeling its contribution to the weathercock dynamics is the goal of this
subsection.

In vortex-induced vibration models, added mass, stiffness and damping
are appended to the system dynamics equation in the simplest possible way,
as additive linear corrections to the quasi-static equation Eq. (5), which
becomes:

(1 +m)α̈ + (βst + γU)α̇ + (ω2
st + k)α = 0 (9)

with m the added mass (added moment of inertia in the present case), γU
the added damping and k the added stiffness, all normalized by the moment
of inertia J . It follows that in the context of this refined model, the corrected
predictions for the oscillation pulsation and damping coefficient are:
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Figure 4: Added stiffness k, mass m and damping γ obtained for each Ur parameter in
the experiments. Dash-dotted line represents 1/St with St ' 0.07.


ω2

viv =
ω2

st + k

1 +m

βviv =
βst + γU

1 +m

(10)

Figure 4 shows the three added parameters (k, m and γ) as functions of
the reduced velocity Ur (the parameters are obtained by fitting the measured
oscillation pulsation and damping with expressions (10)). The three of them
exhibit the same overall trend with a peak around Ur ' 15 followed by a
rapid decrease as Ur increases. The peak is attained for a value of reduced
velocity of the order of Ur ∼ St−1 ' 15 (St' 0.07 is the value reported in the
literature for transverse vortex shedding for a disk [22] ; the vertical dashed
line in Fig. 4 indicates St−1). Such a “diverging” behavior around UrSt ∼ 1
(i.e. f = fvs) is expected in VIV systems, as it corresponds to situations
for which the object oscillations and vortex shedding couple together due to
the similarity of frequencies, leading to lock-in synchronicity between vortex
shedding and natural oscillations.

Overall, the trends observed in Fig. 4 are in agreement with the intu-
itive expectation that non-stationary corrections become preponderant when
the oscillation frequency approaches that of vortex shedding. As expected
these corrections then rapidly decrease as the reduced velocity increases (i.e.
as the oscillation frequency becomes significantly smaller than vortex shed-

15



ding frequency). The available data does not allow to be fully conclusive
on whether the corrective parameters would decrease to zero as Ur keeps
increasing or would tend to a finite, non-vanishing, asymptotic value. Hence,
the quasi-static approximation is approached but not fully recovered even for
Ur ∼ 100, while it is expected to hold in the the limit Ur→∞. We cannot
rule out the blade to be at the origin of these non-vanishing values of the
added coefficients for Ur ∼ 100, especially since the largest values of Ur were
probed using the smallest 3-cm diameter disk.

Another observation is that the maximum value of the added mass is close
to 0.5, which reminds of the added mass coefficient found in particle-laden
flows for a sphere immersed in fluid. A possible interpretation for this value
would thus be that at synchronization of oscillations with vortex shedding,
the disk and its wake behave as an effective ”sphere” of fluid that does only
detach at specific moments in the oscillation cycle.

3.2. Empirically corrected CN coefficient approach

We now investigate an empirical model, which, contrary to the previous
approach, does not assume a priori a damped-harmonic oscillator behavior.
It is indeed possible to empirically retrieve an instantaneous normal drag
coefficient CN(αeff(t), t) using Eq. 4 and the experimental measurement of
the angular dynamics of the weathercock.

The experimental instantaneous CN coefficient is compared to its static
equivalent CNst computed from reported measurements for a fixed disk [7]
(dashed blue line) in Fig. 5.a), as a function of the effective angle of attack
αeff . The color codes the flow velocity U from 3.8 m s−1 (lighter color) to
8 m s−1 (darker color) with steps of 0.7 m s−1. Interestingly, the instantaneous
CNin

recovers (after the first oscillation) a simple linear angular dependency,
in the range αeff ∈ [−40°; 40°], reminiscent of the linear region for the static
coefficient CNst . We observe however that the slope of the linear region is
strongly dependent on experimental conditions: it is consistently close to the
static case for the lowest tested wind velocity U , but then systematically
decreases when U is increased. This dependency on U is less pronounced
on the initial oscillation starting at α = 90°, although the global behavior
on this part of CN strongly deviates from the static behavior. This initial
phase, which is strongly affected by the effects of stall, is out of the scope of
the present study and shall be further explored in the future.

Another interesting observation is that the evolution of the ratio of the
slope of the instantaneous CNin

(αeff ) coefficient to the slope of the static
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Figure 5: a) Dynamic (solid lines) vs static (dashed line) CN coefficients as function of
the angular position αeff given by Eq. 3 for various flow velocities U , which color codes as
follows: the lighter the color, the smaller U . b) Ratio between the slope of the dynamic
CNin coefficient and the static coefficient CNst with respect to flow velocity. c) Damping
coefficient βem, estimated from the empirical correction on the CNst coefficient, compared
to the experimental damping β.
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CNst(αeff ) coefficient exhibits a U−1/2 power as a function of the flow velocity
U (see Fig. 5.b).

Overall, these observations suggest that, in the range of interest (αeff ∈
[−40°; 40°], i.e. after the first oscillation) a simple empirical correction to
the quasi-static approach can be formulated using an effective instantaneous
normal drag coefficient, with a linear angular dependency whose slope is
related to the static case as:

dCNin

dα

∣∣∣∣
0

=

(
U∗

U

)1/2
dCNst

dα

∣∣∣∣
0

, (11)

where the coefficient U∗ = U

(
dCNin

dα

∣∣∣∣
0

/
dCNst

dα

∣∣∣∣
0

)2

' 3.7 m s−1 is obtained

by the fit shown in Fig. 5b). In order to explore the capacity of this cor-
rected drag coefficient model to capture the weathercock dynamics, we have
solved Eq. (4) using this corrected drag coefficient. The corrected model
nicely reproduces the damped harmonic oscillator dynamics observed in the
experiment, with an almost perfect match for the oscillation frequency and a
reasonable match of the damping coefficient. To better understand the effect
of the corrected drag coefficient, we can consider the same linearization of
Eq. (4) previously introduced for the quasi-static approximation and leading
to Eq. (5), but using relation (11) as normal drag coefficient. The additional
U1/2 factor in CN modifies the linearized dynamics of Eq. (5) which now
reads:

α̈ + βemα̇ + ω2
emα = O(α3), (12)

where ωem and βem are respectively the empirically predicted oscillation pul-
sation and damping:

ω2
em = ω2

st

dCNin

dα

∣∣∣∣
0

/
dCNst

dα

∣∣∣∣
0

βem = βst
dCNin

dα

∣∣∣∣
0

/
dCNst

dα

∣∣∣∣
0

(13)

The damping coefficient βem is plotted against the experimental damping
coefficient in Fig. 5.c), from which it is clear that an additional damping
term is necessary to correctly describe the observed experimental dynamics.
Remarkably, the strength of this additional damping is close to the added
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damping γU from the previous model (not shown here). While its origin is
not clear, the strength of this additional damping as a function of ddisk is
discussed further in section 4.

4. Discussion

In this section, we briefly discuss possible physical interpretations of some
of the additional parameters introduced to improve the non-stationary mod-
elling of the weathercock dynamics and then compare the performances of
the different modelling strategies (quasi-static, VIV-inspired, empirical drag
coefficient).

4.1. Physical interpretation of the modelling parameters

Let us first discuss the terms added in the model introduced in Sec. 3.1.
In particular, the added mass (or added inertia) can be interpreted, like in
particle-laden flows and VIV, as the mass of fluid displaced and dragged by
the disk during its motion. We can therefore compute the diameter dair of
an equivalent air sphere around the disk centered at the center of the disk
and of moment of inertia mJ :

d3
air

(
L2 +

d2
air

10

)
=

6mJ

πρ
(14)

As shown in Fig. 6.a), this diameter dair is almost linear in the diameter
of the disk ddisk (with a plateau at the smaller values probably due to the
influence of the rod holding the disk), consistent with the idea that larger
disks drag a proportionally larger equivalent sphere of air.

A phenomenological interpretation of the added stiffness is much more
difficult to conduct. However, it could be linked to the dynamics of the
wingtip vortices as α changes sign. Indeed, when the weathercock crosses
the horizontal, the upper surface becomes the lower surface and the vorticity
of the wingtip vortices is expected to change sign. This could lead to a
restoring spring-like torque −kα due to the coupling of the wingtip vortices
with to the leading- and trailing-edge vortices.

Regarding the added damping in the VIV inspired model, we define a

corrective term ε =
γU

βst
, such that βviv = βst

(
1

1 +m
+ ε

)
. ε represents the

correction required with respect to the quasi-static description, regardless of
the added mass modification 1

1+m
to the quasi-static damping. The evolution
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Figure 6: Evolution of the interpreted added terms dair (a), ε (b left axis) and ξ (b right
axis) as functions of the diameter of the disk ddisk.

of ε as a function of the pendulum diameter ddisk for each pendulum config-
uration is displayed in Fig. 6 b). The value for the smaller disk is close to
0.7, and despite large error-bars, ε tends to converge at higher ddisk towards
a constant value εc, represented by the dash-dotted lines.
Strikingly, a good candidate for this value is εc = π

8
(dark line), which can

be related to the damping of unsteady aerodynamic flutter models using
potential flow theory [23, 6].

Let us now discuss the empirical model presented in Sec. 3.2. As in-
troduced previously, an additional damping to βem is required to correctly
describe the dynamics. It is formally equivalent to implement this additional
damping directly into equation Eq. (4) as a correction on αeff and Ueff , with-
out changing the form of equation Eq. (4) (though for the latter correction,
it would only result in a 3rd order correction, which will be neglected in
the linearized dynamics considered here). It can indeed be noticed that the
damping βst emanates from the Lα̇/U term in Eq. (5), which is the approx-
imation taken for the relative velocity of the counter flow in response to the
pendulum movement (see Fig. 1c)). The required additional damping can

thus be accounted for by a multiplicative factor ξ =
β

βem
on the Lα̇/U term,
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resulting in modified effective parameters: U∗2
eff = U2 + 2ξLUα̇ sin(α) + ξ2L2α̇2

α∗
eff = α + arctan

(
ξLα̇ cos(α)

U + Lξα̇ sin(α)

)
.

(15)

In this context, the dynamics of the weathercock now reads:

Jα̈ =
1

2
ρSLU∗2

effCNst(α
∗
eff)

dCNin

dα

∣∣∣∣
0

/
dCNst

dα

∣∣∣∣
0

Estimated values for ξ are presented in Fig.6.b), for three different config-
urations as examples. Though the uncertainty on the damping and empirical
correction makes it difficult to be fully conclusive on the value of ξ and its
trend, an observation to be made yet is that ξ appears to be higher than
1, meaning that when the aerodynamic coefficient is pondered by a dynam-
ical term, the air around the pendulum moves at a higher velocity than the
pendulum its self. This could be explained by the fact that not only the air
behind the pendulum is dragged away but the air ahead is deviated as well,
and may induce an supplementary advection for the air behind.

4.2. Comparison of models

Here we aim explore the accuracy of the different modelling strategies
(quasi-static, VIV-inspired, empirical CN) in capturing the experimental be-
havior of the weathercock. We compare the solution of the modelling equa-
tions and the experimental signal for the same initial conditions as in the
experiment (α(0) ' 90° and α̇(0) ' 0 ° s−1). The corresponding signals are
shown in Fig. 7 a). To quantify the discrepancy between the experiment and
the modeling we compute the quadratic angular error

√
〈∆α2〉 between the

experimental signal and each of the models.
While the VIV-inspired model collapses almost perfectly on the experi-

ment with
√
〈∆α2〉 ≤ 2°, the empirical CN model happens to be quite wrong

as
√
〈∆α2〉 ' 10°. This is due to the lack of capacity the this model to

reasonably reproduce the transient dynamics of the first oscillation, which is
strongly impacted by the complex behavior of CN when the disk passes the
stall angle. The good capacity of the VIV-inspired model to reasonably cap-
ture this transient while the corrective model and coefficients (added inertia,
damping and stiffness) have only been derived based on the linearized dynam-
ics past the first oscillation, is striking. The static model exhibits a relatively
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d) Static solution

a)

d) Static solutionc) d)

e) f)

b)

c) Experiment

e) Model corrected with empirical     and damping

f) Model corrected in time-domain expansion

c) Experiment

e) Model corrected with empirical     and damping f) Model corrected in time-domain expansion

Figure 7: Comparison between the experimental signal and the models with initial con-
ditions a) at the vertical and b) at the first minima of oscillation. Phase portraits for
the experiment and models: c) experiment, d) static coefficient model, e) empirical dy-
namic coefficient model with added damping and f) time-domain expansion model. The
color codes for the flow velocity, with the lighter being the smaller velocity. All presented
curves were obtained from the 4 cm weathercock with magnet attached, similar results
were obtained for the other weathercocks.
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small global deviation from the experimental signal, of about
√
〈∆α2〉 ' 5°

only, despite the lack of fidelity in both frequency and damping.
In order to ignore the impact of the transient dynamics, we have consid-

ered the situations where the initial condition is taken at the first minimum
of oscillation (t1), hence already past the stall angle and in the linear part of
the CN coefficient. The corresponding signals, both experimental and from
the models, are shown in Fig. 7 b) as a function of (t−t1). It can be seen that
in that case, the VIV-inspired model and the empirical CN model capture
almost perfectly (with

√
〈∆α2〉 ' 1°) the relaxing dynamics of the weather-

cock. The quasi-static dynamics is on the contrary at odds, indicating that
the moderate error noted for the previously discussed initial conditions was
fortuitous.

Finally, for a deeper insight into the dynamical fidelity of the modelling
we consider the phase portraits (in (α, α̇) space) of the weathercock dynamics
(Fig. 7.c-f). From this point of view, while all models reasonably capture
the qualitative behavior of the experiment, the match seems to be greater for
the empirical CN model, especially regarding the flow velocity dependence.

Hence to conclude, for small oscillations, the two models we propose in
this paper to account for non-stationary aerodynamics correctly reconstruct
the dynamics of the system. However if large oscillations are observed, the
VIV-inspired corrections transcribe better the behavior of stabilization, al-
though further dedicated investigation focusing on the dynamics near stall
would be required to clarify whether this is a reliable or a fortuitous obser-
vation.

5. Conclusion

We have presented two very different approaches to incorporate non-
stationary effects into the static aerodynamic modeling of a relaxing weath-
ercock made of a balanced pendulum composed of a flat disk at the end of a
freely pivoting rod. Past the first oscillation, the weathercock dynamics was
found to be well approximated by a damped harmonic oscillator behavior,
hence characterized by its oscillation frequency and exponential damping co-
efficient. In the limit of small angles (|α| < 40°) this dynamics is qualitatively
retrieved by a simple quasi-static model considering only the (linear) angular
dependency of the static normal drag coefficient CNst of a fixed inclined disk.
This model reasonably captures the qualitative dynamics, but fails capturing
the accurate values for the oscillation frequency and damping coefficient. The
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deviations increase as the frequency of oscillation increases, hence suggesting
that non-stationary aerodynamics effects must be considered to accurately
model these situations. To do so, we have first considered a VIV-inspired
approach, where effects of non-stationarity are modeled based on added mo-
ment of inertia, added damping and added stiffness. Our results show that
the importance of these corrections increases when the reduced velocity Ur
(which in our case does not depend on the wind-speed and is entirely de-
fined by the weathercock geometry) decreases and approaches a value close
to the inverse St−1 of the Strouhal number associated to transverse vortex
shedding, suggesting a strong coupling between shedding and oscillations of
the weathercock in such conditions. As Ur increases, the non-stationary cor-
rections decrease, and remain finite even for Ur ∼ 10St−1 hence pointing
that even at high values of Ur (i.e. when oscillations are slow compared to
vortex shedding the effective normal drag coefficient to be considered for a
quasi-statically freely rotating disk may still deviate from the case of fixed
disk.

As a second modelling strategy of the weathercock dynamics, we have
introduced an empirically determined instantaneous normal drag coefficient.
Our results suggest that, in the angular region of interest (|α| < 40°) this
instantaneous drag coefficient follows the same angular dependency as the
static drag coefficient, but that a velocity dependent factor should be in-
troduced. This factor was found to scale as (U1/2) possibly pointing to a
possible role played by skin friction effects, although future studies would be
required to gain insight into this observation. The comparison of the perfor-
mances of the two modelling strategies with respect to the experimentally
measured weathercock dynamics shows that in the linear region (|α| < 40°),
both models very accurately reproduce the motion of the weathercock. In-
terestingly, the VIV-inspired model also behaves reasonably well beyond the
linear domain for which it has been built, in particular when the weathercock
passes by the static stall angle, a transient that the empirical CN model fails
to capture. Whether the good behavior of the VIV-inspired model in this
transient is real or fortuitous would require further dedicated studies around
the stall angle.
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