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ABSTRACT: Near-stoichiometric amounts of 18O2 & 17O2 were generated ex situ from endoperoxides in a two-
chamber glassware to oxidize various substrates. This strategy gave [*O2]endoperoxides, [*O1]quinones, [*O1]phe-
nols and [*Ox]artemisin in moderate to good yields and high isotopic enrichments (up to 83%) at affordable costs. 
Moreover, mass spectrometry and 17O NMR of the [*O]products provided valuable information on the chemical 
mechanisms involved 

Among the various elements, oxygen plays a key role in many functional groups, and its isotopic labeling 
often proves determinant for mechanistic insights.1 Indeed, 18O can be easily differentiated by mass analysis from 
the predominant 16O (99.759%), and recent advances in NMR instrumentation allows efficient detection of the 
chemical shifts of 17O (-30 to +1000 ppm).2 Due to the extremely low natural abundance of 18O and 17O (0.204% 
and 0.037%, respectively), the use of isotopically enriched compounds is essential, and synthetic methodologies 
for the incorporation of labeled oxygen (*O) have been extensively studied.3,4,5 They generally rely on one of the 
cheapest isotope precursors: [*O]H2O, but often require harsh conditions limiting their use to simple synthons, 
and/or involve reversible isotopic exchange yielding moderate isotopic enrichments. Advanced isotopic oxygen 
sources ([*O]CO2, [*O]CH3OH,…) are compatible with more specific reactions, but are extremely costly due to 
their low availability. Interestingly, some examples also reported the use of gaseous *O2,

3,6 for which the molar cost 
of the *O-labeled atoms is comparable to [*O]H2O.7 However, the need to employ large excesses of this gas and 
the difficulty to manipulate it precisely greatly increase the overall cost of these procedures, which made them 
under-used. All isotopically labeled gases share these drawbacks, but as demonstrated in the literature for some 
examples such as [*C]CO,8 *H2

9 or [*C2*H4]ethylene,10 they might be solved using a two-chamber glassware and 
a stable precursor able to release “ex situ” stoichiometric amounts of the desired gas. Thus, we decided to investigate 
the ex situ generation of *O2 from easy-to-access solid [*O]compounds to enable cost-efficient *O-labeling 
(Scheme 1, a). 
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Scheme 1: Strategy envisaged for efficient *O-labeling with *O2 and syntheses of EPO [18O2]2 and [17O2]2. 

 

Notably, endoperoxides scaffolds (EPO) are known to be precursors of singlet oxygen,11,12,13 and among 
the various possibilities tested, endoperoxide 2 was selected as the most promising structure. Indeed, it possessed 
both the ability to generate dioxygen quantitatively when heated over 100°C,14 and a high stability at room temper-
ature, which avoided specific storage conditions and ensured practical manipulations. Moreover, multi-gram quan-
tities of its *O-labeled versions [18O2]2 and [17O2]2 were obtained in almost quantitative yields by reacting the 
commercially available 9,10-diphenylanthracene 1 with photosensitized singlet [*O2]dioxygen coming from a low-
pressure gas bottle (1L, 1.02 equiv., Scheme 1, b). Interestingly, the isotopic loss in this step was moderate, and 
starting from 90-99% *O-labeled dioxygen provided the desired EPOs with high isotopic enrichments of 84% and 
82% for [18O2]2 and [17O2]2, respectively.15 Then, the use of these compounds for *O-labeling on small scales (0.2-
0.5 mmol) was explored in combination with a specific two-chamber glassware designed to allow independent 
heating/light irradiation of each chamber.16 Firstly, the efficiency of the *O2 generation & transfer was investigated 
by adding 1.5 equiv. of [18O2]2 in chamber A and 9,10-diphenylanthracene 1 (1 equiv.) in chamber B in dichloro-
methane in presence of a catalytic amount of methylene blue (Scheme 2, a). After flushing the system under N2 by 
freeze-and-pump cycles, chamber A was heated over 150°C for 3 min.17 Then, chamber B was irradiated at r.t. for 
66 h hours under red light (660 nm LEDs), and [18O2]2 could be isolated from this chamber in quantitative yield 
after a simple filtration on an alumina pad. Moreover, the excellent isotopic enrichment of 81% determined for 
[18O2]2 indicated minimal isotopic losses (Scheme 2, a).18 Switching to a limiting amount of starting [18O2]2 in 
chamber A also gave in chamber B [18O2]2 in quantitative yield (based on the initial EPO) with 79% *O-labeling, 
which demonstrated the excellent efficiency of this set-up. Then, the scope of these oxidations by *O-labeled singlet 
dioxygen was explored, and various substrates were engaged with only a slight excess of [*O2]endoperoxides 
[18O2]2 or [17O2]2 (1.5 to 2 equiv.). When 9,10-dimethylanthracene 3 was employed as starting material in condi-
tions A at -10°C, the desired [18O2]4 and [17O2]4 were also obtained in very good yields of 87% and 96%, respec-
tively (Scheme 2, b). These results demonstrated the reproducibility of the procedure, despite observing slightly 
lowered *O-contents in this case (63%-78%). Then, the synthesis [*O2]ascaridole (an anthelmintic natural product) 
was investigated by 1,4-cycloaddition of α-terpinene 5 with *O-labeled singlet oxygen.19 In this case, [18O2]6 & 
[17O2]6 were produced easily in 96% and 67% yields with excellent isotopic contents of 18O/17O ranging from 78% 
to 82% (Scheme 2, c). The oxidation of furfural 7 was also attempted using 1.5 equiv. of [18O2]2 or [17O2]2, and 5-
hydroxy-2(5H)-furanone20 was obtained with excellent yields (93% and 100%, Scheme 2, d). Mass analyses deter-
mined that the main isotopic molecular formula was C4H4O2*O1 for both (83% & 77%), which indicated minimal 
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isotopic losses. However, 17O NMR spectrum of [17O1]8, revealed the presence of two signals with identical inte-
grations. As previously described in the literature,21 this confirmed that either the carbonyl- or the intracyclic-*O-
atom was labeled, the two isotopomers being in equilibrium via the transient opening of the lactone.16 Oxidation of 
naphthoquinol 9 was also explored, and the mono-*O-labeled naphtoquinones [18O1]10 and [17O1]10 were synthe-
sized in one step using conditions A. Yields were moderate (32-51%), but high isotopic enrichments were again 
measured (68%-83%, Scheme 2, e). Applying directly these conditions to substituted naphthoquinols 11 and 13 
also gave the desired quinones, but yields were only ranging from 11% to 17%. However, this method still provided 
a straightforward access to the isotopically labeled versions of menadione (vitamin K3)22 [*O1]12 and juglone2 3  
[*O1]14 with high *O-enrichments (68-76%, Scheme 2, f & g). Moreover, 13C NMR demonstrated that the desired 
carbonyl possessed the sole 18O-labeled atom in [18O1]12 and [18O1]14.16 

The photooxidation of substituted phenols was also investigated by irradiating substrate 15 under green 
light in presence of catalytic amounts of rose bengal & cesium carbonate,24 while being exposed to *O-labeled 
dioxygen generated from two equivalents of [*O2]2. A mixture of quinol [*O1]16a and epoxyquinol [*O2]16b was 
obtained in both cases, with overall yields of 32% to 53% (Scheme 2, h). Isotopic enrichments of 84% and 77%, 
were determined for [18O1]16a and [17O1]16a, respectively. These values indicated very limited isotopic losses from 
the parent EPO [*O2]2, and 17O NMR of [17O1]16a confirmed the unique labeling at the hydroxyl group. On the 
other hand, despite an overall 18O-content of 77% for the alcohol and epoxide functions of [18Ox]16b, the distribu-
tion of the isotopic molecular formulas was determined as 72% of C8H10

16O1
18O2, 24% of C8H10

16O2
18O1 and 4% of 

C8H10
16O3.

16 Taking in account the isotopic distribution of the initial endoperoxide of 84% of [18O2]2 and 16% of 
[16O2]2,16 the high ratio of mono-*O-labeled compound [18O1]16b observed was more consistent with an independ-
ent labeling of the two oxygen atoms rather than with an intramolecular double-oxidation pathway. Similar ratios 
were also measured for [17Ox]16b, and the 17O NMR experiment revealed that the two signals of the hydroxy and 
epoxy groups had equivalent integrations.16 Taken together, these results demonstrated that the epoxidation of the 
double bond mainly occurred by an intermolecular reaction with the hydroperoxide intermediate generated after 
the first step of phenol oxidation.24c Finally, the photooxidation of boronic acids into phenols25 was investigated 
using this two-chamber set-up with 1.5 equivalent of *O-labeled endoperoxide [*O2]2. Interestingly, irradiation of 
arylboronic acids 17, 19 and 21 under green light in presence of 40 mol% of triethylamine and 5 mol% of rose 
bengal in ethanol at r.t. for 36 h provided smoothly the desired *O-phenols [*O1]18, [*O1]20 and [*O1]22. Espe-
cially, good yields ranging from 51% to 90% and excellent isotopic enrichments of 78-83% were obtained (Scheme 
2, i, j & k). These results confirmed that the labeled *O-atom introduced originated from of O2 even at a low partial 
pressure. Moreover, these conditions were also applied to prepare in one-step [ƞ-17O1]-(S)-N-Boc-tyrosine 24 in 
40% yield and 72% of 17O-labeling at the phenol position (Scheme 2, l), which, after N-Boc-deprotection, can be 
used to study protein structures by 17O NMR.26 
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Scheme 2: Oxidations of various substrates by near-stoichiometric amounts of *O2 produced ex situ from 

EPO [18O2]2 or [17O2]2. 

 

General protocol: [*O2]2 (x equiv.) was placed in chamber A, substrate (0.2 to 0.4 mmol) & photosensitizer were solubilized 

in the solvent in chamber B. The system was flushed by N2 using freeze-and-pump cycles. Chamber A was heated over 150°C 

for 3 min, then chamber B was irradiated by a suitable light. Conditions A: methylene blue (5 mol%), CH2Cl2 or CH3OH, r.t. 

or -10°C, 660 nm LEDs (150W), 2 d. Conditions B: Cs2CO3 (15 mol%), rose bengal (1 mol%), MeOH, r.t., 525 nm LEDs 

(40W), 36-48h. Conditions C: NEt3 (40 mol%), rose bengal (5 mol%), EtOH, r.t., 525 nm LEDs (40W), 36h. Isotopic enrich-

ments determined by mass analyses. δ(17O) in orange. See SI for detailed conditions. aIsolated in mixture with 1.bisolated in 

mixture with 16% of p-cymene. c5-hydroxy-2(5H)-furanone [*O]8 converted partially converted into [*O]-trans-β-

formylacrylic acid after isolation dCalculated on the *O-atoms introduced. 
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Finally, the possibility to perform complex and/or multiple oxidations was investigated, and artemisin 27 
was identified as a suitable molecular target. Indeed, this well-studied anti-malarial drug is a natural endoperoxide 
compound27 that can be obtain from dihydroartemisinic acid 25 by two consecutive dioxygen oxidations involving 
a postulated intermediary Hock cleavage.28 In this context, compound 25 was placed in CH2Cl2 under N2 in the 
chamber B of the two-chamber glassware with 5 mol% of methylene blue, while chamber A was previously loaded 
with three equivalents of [*O2]2 (Scheme 3). After thermal release of 18O2 or 17O2, chamber B was irradiated under 
red light at r.t. for three days to enable the desired ene-reaction that formed in situ endoperoxide [*O2]26. In a 
second step, trifluoroacetic acid was added to the reaction mixture via a gas tight syringe to favor the one-pot Hock 
cleavage leading to the enol. Interestingly, it could reacted directly with the residual *O-labeled triplet oxygen in 
the two-chamber glassware, and spontaneous cyclization occurred to give the desired *O-labeled versions of arte-
misinin [18Ox]27 and [17Ox]27 in decent isolated yields of 18% and 20%, respectively. 

Scheme 3: Synthesis of [*Ox]Artemisinin 27 by one-pot double oxidation of dihydroartemisinic acid 25 using 
*O2 produced ex situ from 3 equivalents of [18O2]2 or [17O2]2. 

 

MB: methylene blue. Isotopic distribution determined by mass analyses. δ( 17O) in orange. See SI for exact experimental con-

ditions. 

In both cases, mass analyses revealed a mixture of isotopic formulas ranging from zero to five oxygen 
atoms labeled, yet the expected [*O4]27 was the main specie detected in 43% to 45%. Detailed examination of the 
isotopic mass distribution for the 18O-labeled artemisinin showed that summing the proportions for [18O4]27 & 
[18O3]27 (= 73%) and [18O2]27 & [18O1]27 (= 22%) gave values close to the expected results (i.e. 71% of [18O4]27, 
26% of [18O2]27 and 3% of [18O0]27). This suggested that one *O-labeled atom was lost partially during the double 
oxidation process. These results confirmed the Hock mechanism (Scheme 4), which involved the *O-*O bond 
cleavage of [*O2]26 via protonation of the terminal oxygen of the peroxide and consecutive [*O]H2O departure. 
Indeed, the water molecule is recaptured in these case by the carbocation issued from the vinyl migration. Thus, as 
unlabeled H2O is in the final cyclization cascade, competition occurred at this stage between [*O]H2O and [16O]H2O 
to trap the carbocation, which decreased partially from one the number of *O-labeled atoms in the final [*Ox]arte-
misin 27. Moreover, the unreacted *O-labeled water generated was able to freely exchange with the *O-atoms of 
the carboxylic acid until the cyclization step, which explains the small amounts of [18O5]27 detected (3.8%, Scheme 
3). Finally, the 17O NMR spectra of [17Ox]artemisin 27 showed the presence of three main signals (endoperoxide at 
268 ppm, O-ester at 200 ppm and O-acetal at 88 ppm) and a small signal at 367 ppm, confirming a minimal amount 
of *O-atoms in the C=O bond.16 

To conclude, easy-to-handle EPOs [18O2]2 and [17O2]2 were synthesized and used to produce near-stoichi-
ometric amounts of *O2 ex situ in a two-chamber glassware. This strategy allowed the 18O- and 17O-labeling of 
various compounds on small scales with very high isotopic enrichments and at affordable costs. Particularly, ana-
lyzing the [*O]products by mass spectrometry and 17O NMR provided valuable information on the chemical mech-
anisms involved. Thus, we believe that this method will bring significant benefits for studies on oxidations with 
O2. 
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Scheme 4: Proposed mechanism for the formation of [*Ox]artemisinin from peroxide [*O2]26 
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