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---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract  In the present study, a machine learning (ML) based approach is proposed to hybridize two well-established methods 
for multiphase flow simulations, namely the Front Tracking (FT) and the Level Set (LS) methods. Based on the geometric information 
of the Lagrangian marker elements which represents the phase interface in FT simulations, the distance function field which is the 
key feature for describing the interface in LS simulations is predicted using a ML model. The trained ML model is implemented in our 
conventional numerical framework, and we finally demonstrate that the FT-based interface representation can easily and immediately 
be switched to a LS-based representation whenever needed during the simulation period. 

 
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
1. Introduction 

Multiphase flow phenomena are ubiquitous not only in our 
everyday life (e.g., falling raindrops or free surfaces of sea 
waves) but also in many modern technologies such as drops in 
inkjet printing, cavitation in the ship industry, solidification, boil-
ing flows in power plants to name a few examples [see Ref.1 
and references therein]. Computer simulations for multiphase 
flows have obviously played critical roles in understanding the 
complicated physics across various scientific fields, and even in 
realistic representation of natural phenomena in the art, com-
puter vision, or film industries [2]. 

One of the most popular approaches for multiphase flow sim-
ulations is solving the governing equations for all phases simul-
taneously as a single field formulation on a fixed Eulerian mesh 
[3]. Such methods can generally be categorized into two groups: 
(i) front tracking and (ii) front capturing. The former utilizes an 
additional Lagrangian moving grid to represent the phase inter-
face [3], while the latter uses a scalar field to describe the inter-
face (e.g., the color function in the volume of fluid method [4] or 
the distance function in the level set method [5]). 

Since each method has its own pros and cons, many attempts 
have been made to combine two (or more) different methods. 
For example, the particle level set method [6], the coupled level 
set and volume of fluid method [7], and the level contour recon-
struction method [8,9] have been proposed and have shown 
their capability to simulate various multiphase flow phenomena. 

However, such advanced hybrid methods still often require com-
plicated geometric calculations or time-consuming processes. 
For example, the level contour reconstruction method (LCRM) 
uses an iterative scheme to obtain an exact level set function 
field from the Lagrangian front tracking information [9]. 

Data-driven strategies have recently shown their powerful 
ability across diverse fields including the fluid mechanics com-
munities [10,11], and a few attempts introducing machine-learn-
ing (ML) techniques have also appeared in multiphase flow sim-
ulation fields. Qi et al. [12], Larios-Cárdenas and Gibou [13], and 
Franca and Oishi [14] utilized ML strategies to compute the in-
terface curvature for volume of fluid (VOF), level set (LS), and 
front tracking (FT) simulations, respectively. Ataei et al. [15] also 
used ML to replace the conventional iterative computation for 
the piecewise linear interface construction (PLIC) in VOF simu-
lation. Although a very few studies are available in literature and 
those are still at initial stages, they have demonstrated the po-
tential of ML strategies in multiphase flow simulations [12-15]. 

Our main motivation in this study is to examine ML’s capability 
for hybridization of the two different popular simulation methods 
(FT and LS). We extend our previous work [16] which directly 
established the LS distance function (scalar) field on the fixed 
Eulerian grid from the Lagrangian FT elements. Based on ML 
techniques instead of the conventional and numerical (iterative) 
approaches, we demonstrate that a FT-based interface repre-
sentation can easily and immediately be switched to a LS-based 
representation whenever needed during the simulation period. 
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2. Learning and interface switching 
2.1 Front tracking and level set 

We first describe key features of each simulation method. In 
FT simulation [3], the moving interface is tracked by the Lagran-
gian mesh elements [see Fig.1(a)]. The use of such an addi-
tional mesh enables accurate representation of phase bounda-
ries. However, dealing with the algorithmic connectivity among 
Lagrangian elements is sometimes a severe computational bur-
den where interfacial shapes are severely deformed, merged, or 
broken up [3,8]. 

In LS simulation [5], conversely, the distance function f field 
is used and the contour level of f represents the interface. For 
example, f > 0 in one phase and f < 0 in the other phase, thus 
the contour level of f = 0 is regarded as the phase boundary. 
Since the scalar variable (f) is used, its implementation is rela-
tively straightforward and the topology changes can easily be 
handled without a Lagrangian approach. A well-known draw-
back is the numerical diffusion of mass during the advection of 
the f field, which generally requires additional treatment such as 
re-initialization of the distance function [5,8]. 

Conventional iterative numerical techniques for switching 
from FT-based interface representation to LS-based type are (i) 
solving a Poisson equation to obtain the indicator function field 
(which is generally used for describing different physical proper-
ties in FT simulation) [3,8] or (ii) direct computation of the mini-
mal distance between Lagrangian interfacial elements and fixed 
Cartesian grid cells, as in our previous work [9,16]. Since the 
inverse switching of interface representation (from LS to FT) can 
be done by linking locations where f = 0 [8,9,16], our ML ap-
proach will primarily be focused on switching from FT based to 
LS based representation. 

 
2.2 ML strategy 

We now describe the data preparation for training our ML 
model. In FT simulations, the indicator function I is the essential 
variable for describing material properties for different phases. I 
has characteristics of the Heaviside function, and can be com-
puted by solving the following Poisson equation:  
 

  (1) 

 
 
Fig. 2. Schematic diagram for describing input and output parameter for 
the ML model. 
 

Here, G contains geometric information which is directly ob-
tained from the Lagrangian elements. The vector field G is com-
monly calculated along the interface (G) comprised of many line 
segments as in [3,8]: 
 

 
 (2) 

 
where xf is the position of the centroid of each interface element 
A, n is the unit normal vector to A, and dA is the differential area 
(length of line segments in 2D) of A. δ(x-xf) is the Dirac delta 
function, which is nonzero only at the interface (i.e., x = xf). Since 
the Lagrangian interface points, xf, do not necessarily coincide 
with the Eulerian grid points, xi,j, Peskin’s immersed boundary 
method [17] is utilized to pass the information to the Eulerian 
grid. Thus, the vector field G can be distributed on the fixed Eu-
lerian grid as [3,8]: 
 

 
 (3) 

 
where q is the number of Largangian interface elements in the 
surrounding neighbor cells and p is the element index. xi,j is the 
position vector of the Eulerian cell. D(xi,j - xp) is the Dirac delta 
distribution which varies smoothly but with finite distance near 
the interface, and can be computed as [8]: 
 

 
 (4) 

 

 
 (5) 
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Fig. 1. Schematic diagrams for describing interface representations in (a) 
front tracking (FT) and (b) level set (LS) methods. 
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of an Eulerian grid cell. Since G contains the geometric infor-
mation of the Lagrangian interface, the distance function f (i.e., 
the distance from the interface) can be approximated by a func-
tion of G. Hence, we model the distance function f on a given 
grid cell i, j as: 
 

 
 (7) 

 
where the unknown function f is now modeled using an ML tech-
nique as illustrated in Fig.2. Note that we consider a two-dimen-
sional simulation in the present study for simplicity, but our strat-
egy can be extended to a full three-dimensional simulation in a 
straightforward way. 

 

 
Fig. 3. The shape of the 10-arm star used in the present study. 

 

 
Fig. 4. (a) Schematic hierarchy of the multilayer perceptron (MLP) applied 
in the current study. (b) Predicted f using the current ML model vs. true 
f data from the test dataset. 
 

 To prepare a synthetic dataset, we use the 10-arm star-like 
shape (see Fig.3) using the following equation:  
 

 
 (8) 

 
In a 1×1 unit computational domain resolved by a 128´128 grid, 
the 10-arm star is rotated using the velocity field: 
 

 
 (9) 

 
where the axis of rotation is placed at (0.5, 0.5). To obtain the 
accurate f fields as the true data from the Lagrangian FT inter-
face elements shown in Fig.3, we use the direct computation 
and distribution algorithm [16] with the high-order iterative 
method [9]. Note that this shape contains local curvature varia-
tions along both convex and concave interfacial shapes. Note 
also that G and f are normalized by the grid size, thus one res-
olution is sufficient. 

A total of 28 cases are used to obtain G and f data by varying 
R0 from 0.1 to 0.3, and an exponential function is applied for var-
ying R0 to sufficiently sample the smaller R0 (high curvature) 
cases [12]. For each R0 case G and f data are extracted until θ 
reaches π/5, at which the rotated shape becomes equal to the 
initial shape. 500 time-steps are used to resolve this period (θ = 
0−π/5). A total of 10,229,936 data samples are finally obtained, 
and normalized curvature hκ (where h and κ are the grid size 
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and the curvature, respectively) is varied from -1.0 to 1.0. Note 
that this range sufficiently covers the realistic range of the nor-
malized interfacial curvature (0.002−0.5) which appears in mul-
tiphase flow simulations [18]. 

To model the unknown function f, the functional relationship 
between G and f, the multilayer perceptron (MLP, also known 
as multilayer neural network) [19] is applied. Fig.4(a) illustrates 
the schematic hierarchy of a typical MLP structure, which con-
sists of one input layer, multiple hidden layers, and one output 
layer. The input features (i.e., G) are first provided from the input 
layer to the first hidden layer. Then, linear combinations of the 
inputs are constructed and forwarded to the next hidden layer 
after nonlinearization. Such a feedforward procedure is per-
formed over all the hidden layers, and the output layer provides 
the final output value (f) without nonlinearization. The output 
value of the mth neuron in the nth layer is computed as: 
 

 
 (10) 

 
where N is the number of nodes of each layer, and wml is the 
weight between the mth node of the current layer and lth node of 
the previous layer. b is the bias, and g is the activation function 
for nonlinearization. w and b are automatically updated during 
the learning procedure of MLP training by the backpropagation 
algorithm [20]. After manual search (trial and error approach),  
 
we found that using 3 hidden layers, N = 60, and the ReLU func-
tion as the activation function work well in terms of accuracy and 
simplicity. More details on the fundamentals of MLP, its feedfor-
ward procedure, and optimization techniques can also be found 
in Ref.19 and Ref.21. 

The prepared dataset is randomly divided into three subsets: 
(i) the training dataset (70 %, 7,160,956 data samples), (ii) the 
validation dataset (15 %, 1,534,490 data samples), and (iii) the 
test dataset (15 %, 1,534,490 data samples). After training of 
our MLP model, we evaluate the prediction accuracy using the 
mean square error (MSE): 
 

 
 (11) 

 
where M is the number of data samples of the test dataset. 
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Fig. 5. Switching test for the square-shaped interface case. (a) FT-based 
interface representation using Lagrangian elements (before switching). 
(b) LS-based interface representation using distance function f field ob-
tained by the conventional (numerical) method [16]. (c) LS-based inter-
face representation using distance function f field obtained by proposed 
ML technique. 
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Fig.4(b) shows the prediction accuracy of our final MLP model 
evaluated from the test dataset. As seen, the trained ML model 
can predict f very accurately using G. Note that the final MSE 
and R2 value are 1.8´10-5 and 0.9999, respectively, demonstrat-
ing its excellent prediction capability. 

 
2.3 Interface switching based on ML model 

We now test the ML-based switching capability from FT based 
interface representation (i.e., using Lagrangian mesh elements) 
to LS based (i.e., using the distance function f field). In order to 
enable switching the interface representation anytime during si 
mulation periods, the feedforward procedure of our trained ML 
model described above is implemented into our existing in-
house FT simulation code. 

Fig.5 shows the test result for the square-shaped interface 
case. A 1´1 unit computational domain resolved by a 128´128 

mesh is applied for this test. The length of a side of the square 
is set to 0.5. Note that this shape contains very extreme local 
curvatures (a right angle and a straight line). In Fig.5(a), (b), and 
(c), three different interface representations for the same shape, 
i.e., FT-based representation (before switching), LS-based rep-
resentation (after switching, but using conventional iterative 
technique), LS-based representation (after switching using our 
proposed ML technique) are depicted.  

As seen, the ML-based f field [Fig.5(c)] clearly represents the 
original FT-based interface representation (see where f = 0), 
and also shows good agreement with the f field obtained by the 
existing method [16]. Note that the practical region where the f 
field should be precisely evaluated is only near the interface in 
this type of hybrid simulation because the primary purpose for 
using the f field is to describe the interface in terms of scalar 
values. For regions far from the interface, only the sign of f with 
sufficiently high (or low) values of f are sufficient to distinguish 
each phase [16]. 

Fig.6 depicts the test result for the well-known vortex-in-a-box 
problem [22]. In this case, a circular interface of diameter 0.4 is 
initially placed at (0.5,0.75), then starts its deformation by the 
vortical velocity field given as: 

 

 
 (12) 

 
Note that this case contains a very severely deformed interfa-

cial shape, thus the 1´1 unit computational domain is now re-
solved with a 256´256 mesh. The interfacial shapes at t = 1.875 
are compared in Fig.6. The LS distance function f field obtained 
by the ML model [Fig.6(c)] still clearly represents the original FT-
based interface boundaries (see where f = 0) and also shows 
good agreement with the f field computed by the existing itera-
tive scheme [16], even for such a highly stretched case. To 
quantitatively check the switching accuracy, we further compare 
volume loss from the initial circular interface for those two cases 
[Fig.6(b) and (c)]. The volume losses due to the switching oper-
ations are 0.050% [Fig.6(b)] and 0.053% [Fig.6(c)], showing 
very good agreement again. 

We finally test our ML-based switching capability incorporat-
ing the flow solvers, thus the governing equations for incom-
pressible two-phase flows are now considered together. The nu-
merical procedure and solution techniques for the governing 
equations, surface tension force, discretization and other de-
tailed information can be found in Shin and Juric [8,9]. 

A 2D drop oscillation problem in zero gravity is considered. In 
a doubly periodic domain of [-10,10]2 resolved by a 128´128 
mesh, the initial shape of the droplet is given as x2/9 + y2/4 = 1. 
The density of the droplet phase and the ambient phase are set 
to ρ1 = 1.0 and ρ2 = 0.01, respectively, whereas the viscosities 
are µ1 = 0.01 and µ2 = 5´10-5. The surface tension coefficient is 
set to σ = 1. Note that all variables are nondimensionalized, and 
more detailed simulation settings and conditions for this test can 
also be found in Ref.8 and Ref.23. 
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Fig. 6. Switching test for the vortex-in-a-box case. (a) FT-based interface 
representation using Lagrangian elements (before switching). (b) LS-
based interface representation using distance function f field obtained by 
the conventional (numerical) method [16]. (c) LS-based interface repre-
sentation using distance function f field obtained by proposed ML tech-
nique. 
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To check its switching capability more quantitatively and also 

to examine its applicability to practical multiphase flow simula-
tions, we now reconstruct the Lagrangian FT interface elements 
using the f field obtained by both the conventional iterative nu-
merical method [16] and the ML technique during the simulation 
period. Since the contour level f = 0 denotes the phase interface 
in the LS simulation, FT elements can be reconstructed by link-
ing those points where f = 0 based on the existing LCRM algo-
rithm [8,9]. Therefore, comparison between the original FT ele-
ments (before switching from FT to LS) and the reconstructed 
elements (after inverse-switching from LS to FT) can measure 
how accurately the ML-based switching works because those 
two interfaces should ideally be identical to each other. 

The initially stretched droplet starts retracting due to the pres-
ence of the surface tension force. Then, the droplet continues 
oscillatory motions until all kinetic energy is dissipated by vis-
cous damping. The simulation is performed until t = 200, and 
100 switching-reconstruction operations are performed during 
this simulation period (0 ≤ t ≤ 200). In Fig.7(a), the droplet inter-
facial shapes are plotted for two different time instants (t = 6.0 
and 11.0) where the droplet reaches the first maximal stretching 
state in the vertical and the horizontal directions, respectively. 
As seen, the reconstructed interface using the f field obtained 
by the proposed ML-based simulation (see red lines) is suffi-
ciently identical to the original FT interface (see black lines) as 
well as the interface reconstructed using the conventional itera-
tive method (see blue lines) [16]. Those three interfaces are 
practically very difficult to distinguish since they are almost ex-
actly superposed, thus showing excellent switching capability of 
the proposed ML model. 

 In Fig.7(b), we plot the droplet kinetic energies obtained by 
three simulations, i.e., the case where no switching procedure is 
performed (pure FT simulation) and two cases where 100 
switching-reconstruction procedures are performed using the 
current ML technique and the conventional iterative method [16]. 
The computed kinetic energies from these droplets are almost 
identical. In particular, the results of two hybrid simulations (red 
and blue lines) show excellent agreement. A minor deviation 
from the original FT simulation is presumably caused by the in-
terpolation for very frequent switching-reconstruction operations 
(100 times).  

Last but not least, we discuss the fundamental characteristics 
and expected benefits of the proposed ML strategy. Computa-
tional efficiency for the switching-reconstruction procedure using 
the ML technique can be greatly improved compared to the con-
ventional iterative numerical method. For the problem shown in 
Fig.5 above, the computational time for 100 switching-recon-
struction operations by the ML technique is measured as 1.9 
seconds which accounts for only 12.4 % of that from the con-
ventional iterative method (15.4 seconds). Also, for the problem 
shown in Fig.6, the computational time is reduced to 27.3 % if 
the ML technique is used. Those computational times have 
been evaluated using the Fortran intrinsic function “cpu_time” 
and a system equipped with a 4-core Intel® Core(TM) i7-7700 

CPU 3.60GHz processor. Although a typical comparison of 
those two approaches based on the number of numerical addi-
tions and multiplications per cell is not straightforward since the 
two grid systems (Eulerian and Lagrangian) should be consid-
ered together, it is evident that the proposed ML technique is 
much more efficient. In our ML approach, only the Eulerian var-
iable G is used and only simple matrix multiplications and addi-
tions are needed in the feedforward procedure to calculate the 
LS distance function f field, whereas the conventional iterative 
method should perform numerous iterative operations and com-
plicated geometric calculations dealing with information ex-
change between two different grid systems [9,16]. This charac-
teristic of the ML approach (i.e., use of only the Eulerian variable 
G) can enable much easier implementation and ideal load bal-
ancing for parallel computations as well.  

We also expect that the proposed ML model can be applied 
to the typical grid resolution levels of FT and similar types of sim-
ulations because our dataset sufficiently covers a practical 
range of interfacial curvature which usually appears in multi-
phase flow simulations. However, if flow phenomena are be-
yond the typical grid resolution levels used in FT simulations 
(e.g., very small bubbles having sizes comparable to the Eu-
lerian grid), neither the current ML approach nor the general FT 
simulation may be sufficient and different simulation methods 

 
Fig. 7. Switching test with the flow solvers for the drop oscillation case. 
(a) Comparison between the original FT interface (before switching) and 
reconstructed interfaces (after switching and reconstruction) from the f 
field obtained by the proposed ML model and the conventional iterative 
method at two different time instants (t = 6.0 and 11.0). (b) Comparison 
of the kinetic energy of the droplet between original FT simulation and 
two hybrid simulations using the proposed ML model and the conven-
tional iterative method (100 switching-reconstruction operations are per-
formed). 
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should be considered. 
 

3. Conclusions 
In this study, the machine learning (ML) strategy is proposed 

to hybridize two well-established methods for multiphase flow 
simulations: (i) the Front Tracking (FT), and (ii) the Level Set (LS) 
methods. The simple ML model is found to predict the LS dis-
tance function f field very easily and accurately using the geo-
metric information vector G of the FT simulation. It is further 
demonstrated that the FT-based interface representation can 
easily and immediately be switched to LS-based representation 
during the simulation period and its inverse switching operation 
can also be incorporated using the existing numerical algorithm. 

Although the present study is still confined to 2D simulations, 
the key features of the current strategy can be extended to 3D 
in a straightforward way (we are currently working on this issue). 
In addition, more detailed analysis of the switching capability us-
ing ML techniques such as (global and local) switching accuracy, 
its dependence on the grid resolution, and computational effi-
ciency depending on various simulation cases, can be further 
investigated to examine more practical applicability. 
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Nomenclature------------------------------------------------------------------ 

G      : Geometric information vector in FT simulation  
f      : Distance function in LS simulation 
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