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In the present study, a machine learning (ML) based approach is proposed to hybridize two well-established methods for multiphase flow simulations, namely the Front Tracking (FT) and the Level Set (LS) methods. Based on the geometric information of the Lagrangian marker elements which represents the phase interface in FT simulations, the distance function field which is the key feature for describing the interface in LS simulations is predicted using a ML model. The trained ML model is implemented in our conventional numerical framework, and we finally demonstrate that the FT-based interface representation can easily and immediately be switched to a LS-based representation whenever needed during the simulation period.

Introduction

Multiphase flow phenomena are ubiquitous not only in our everyday life (e.g., falling raindrops or free surfaces of sea waves) but also in many modern technologies such as drops in inkjet printing, cavitation in the ship industry, solidification, boiling flows in power plants to name a few examples [see Ref.1 and references therein]. Computer simulations for multiphase flows have obviously played critical roles in understanding the complicated physics across various scientific fields, and even in realistic representation of natural phenomena in the art, computer vision, or film industries [START_REF] Gibou | Sharp interface approaches and deep learning techniques for multiphase flows[END_REF].

One of the most popular approaches for multiphase flow simulations is solving the governing equations for all phases simultaneously as a single field formulation on a fixed Eulerian mesh [START_REF] Tryggvason | A Front-Tracking Method for the Computations of Multiphase Flow[END_REF]. Such methods can generally be categorized into two groups: (i) front tracking and (ii) front capturing. The former utilizes an additional Lagrangian moving grid to represent the phase interface [START_REF] Tryggvason | A Front-Tracking Method for the Computations of Multiphase Flow[END_REF], while the latter uses a scalar field to describe the interface (e.g., the color function in the volume of fluid method [START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF] or the distance function in the level set method [START_REF] Osher | Level Set Methods: An Overview and Some Recent Results[END_REF]).

Since each method has its own pros and cons, many attempts have been made to combine two (or more) different methods. For example, the particle level set method [START_REF] Enright | A Hybrid Particle Level Set Method for Improved Interface Capturing[END_REF], the coupled level set and volume of fluid method [START_REF] Sussman | A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows[END_REF], and the level contour reconstruction method [START_REF] Shin | Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[END_REF][START_REF] Shin | High-order level contour reconstruction method[END_REF] have been proposed and have shown their capability to simulate various multiphase flow phenomena. However, such advanced hybrid methods still often require complicated geometric calculations or time-consuming processes. For example, the level contour reconstruction method (LCRM) uses an iterative scheme to obtain an exact level set function field from the Lagrangian front tracking information [START_REF] Shin | High-order level contour reconstruction method[END_REF].

Data-driven strategies have recently shown their powerful ability across diverse fields including the fluid mechanics communities [START_REF] Brunton | Machine Learning for Fluid Mechanics[END_REF][START_REF] Duraisamy | Turbulence Modeling in the Age of Data[END_REF], and a few attempts introducing machine-learning (ML) techniques have also appeared in multiphase flow simulation fields. Qi et al. [START_REF] Qi | Computing curvature for volume of fluid methods using machine learning[END_REF], Larios-Cárdenas and Gibou [START_REF] Larios-Cárdenas | A Deep Learning Approach for the Computation of Curvature in the Level-Set Method[END_REF], and Franca and Oishi [START_REF] França | A machine learning strategy for computing interface curvature in Front-Tracking methods[END_REF] utilized ML strategies to compute the interface curvature for volume of fluid (VOF), level set (LS), and front tracking (FT) simulations, respectively. Ataei et al. [START_REF] Ataei | NPLIC: A machine learning approach to piecewise linear interface construction[END_REF] also used ML to replace the conventional iterative computation for the piecewise linear interface construction (PLIC) in VOF simulation. Although a very few studies are available in literature and those are still at initial stages, they have demonstrated the potential of ML strategies in multiphase flow simulations [START_REF] Qi | Computing curvature for volume of fluid methods using machine learning[END_REF][START_REF] Larios-Cárdenas | A Deep Learning Approach for the Computation of Curvature in the Level-Set Method[END_REF][START_REF] França | A machine learning strategy for computing interface curvature in Front-Tracking methods[END_REF][START_REF] Ataei | NPLIC: A machine learning approach to piecewise linear interface construction[END_REF].

Our main motivation in this study is to examine ML's capability for hybridization of the two different popular simulation methods (FT and LS). We extend our previous work [START_REF] Shin | A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques[END_REF] which directly established the LS distance function (scalar) field on the fixed Eulerian grid from the Lagrangian FT elements. Based on ML techniques instead of the conventional and numerical (iterative) approaches, we demonstrate that a FT-based interface representation can easily and immediately be switched to a LS-based representation whenever needed during the simulation period.
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Learning and interface switching

Front tracking and level set

We first describe key features of each simulation method. In FT simulation [START_REF] Tryggvason | A Front-Tracking Method for the Computations of Multiphase Flow[END_REF], the moving interface is tracked by the Lagrangian mesh elements [see Fig. 1(a)]. The use of such an additional mesh enables accurate representation of phase boundaries. However, dealing with the algorithmic connectivity among Lagrangian elements is sometimes a severe computational burden where interfacial shapes are severely deformed, merged, or broken up [START_REF] Tryggvason | A Front-Tracking Method for the Computations of Multiphase Flow[END_REF][START_REF] Shin | Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[END_REF].

In LS simulation [START_REF] Osher | Level Set Methods: An Overview and Some Recent Results[END_REF], conversely, the distance function f field is used and the contour level of f represents the interface. For example, f > 0 in one phase and f < 0 in the other phase, thus the contour level of f = 0 is regarded as the phase boundary. Since the scalar variable (f) is used, its implementation is relatively straightforward and the topology changes can easily be handled without a Lagrangian approach. A well-known drawback is the numerical diffusion of mass during the advection of the f field, which generally requires additional treatment such as re-initialization of the distance function [START_REF] Osher | Level Set Methods: An Overview and Some Recent Results[END_REF][START_REF] Shin | Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[END_REF].

Conventional iterative numerical techniques for switching from FT-based interface representation to LS-based type are (i) solving a Poisson equation to obtain the indicator function field (which is generally used for describing different physical properties in FT simulation) [START_REF] Tryggvason | A Front-Tracking Method for the Computations of Multiphase Flow[END_REF][START_REF] Shin | Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[END_REF] or (ii) direct computation of the minimal distance between Lagrangian interfacial elements and fixed Cartesian grid cells, as in our previous work [START_REF] Shin | High-order level contour reconstruction method[END_REF][START_REF] Shin | A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques[END_REF]. Since the inverse switching of interface representation (from LS to FT) can be done by linking locations where f = 0 [START_REF] Shin | Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[END_REF][START_REF] Shin | High-order level contour reconstruction method[END_REF][START_REF] Shin | A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques[END_REF], our ML approach will primarily be focused on switching from FT based to LS based representation.

ML strategy

We now describe the data preparation for training our ML model. In FT simulations, the indicator function I is the essential variable for describing material properties for different phases. I has characteristics of the Heaviside function, and can be computed by solving the following Poisson equation:

(1) Here, G contains geometric information which is directly obtained from the Lagrangian elements. The vector field G is commonly calculated along the interface (G) comprised of many line segments as in [START_REF] Tryggvason | A Front-Tracking Method for the Computations of Multiphase Flow[END_REF][START_REF] Shin | Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[END_REF]: [START_REF] Gibou | Sharp interface approaches and deep learning techniques for multiphase flows[END_REF] where xf is the position of the centroid of each interface element A, n is the unit normal vector to A, and dA is the differential area (length of line segments in 2D) of A. δ(x-xf) is the Dirac delta function, which is nonzero only at the interface (i.e., x = xf). Since the Lagrangian interface points, xf, do not necessarily coincide with the Eulerian grid points, xi, j, Peskin's immersed boundary method [START_REF] Peskin | Numerical analysis of blood flow in the heart[END_REF] is utilized to pass the information to the Eulerian grid. Thus, the vector field G can be distributed on the fixed Eulerian grid as [START_REF] Tryggvason | A Front-Tracking Method for the Computations of Multiphase Flow[END_REF][START_REF] Shin | Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[END_REF]: [START_REF] Tryggvason | A Front-Tracking Method for the Computations of Multiphase Flow[END_REF] where q is the number of Largangian interface elements in the surrounding neighbor cells and p is the element index. xi,j is the position vector of the Eulerian cell. D(xi,j -xp) is the Dirac delta distribution which varies smoothly but with finite distance near the interface, and can be computed as [START_REF] Shin | Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[END_REF]:

(4) (5) (6)
Here, xp and yp are the position of the interface element p in the x-and y-directions, respectively. ∆x and ∆y are the dimensions of an Eulerian grid cell. Since G contains the geometric information of the Lagrangian interface, the distance function f (i.e., the distance from the interface) can be approximated by a function of G. Hence, we model the distance function f on a given grid cell i, j as: [START_REF] Sussman | A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows[END_REF] where the unknown function f is now modeled using an ML technique as illustrated in Fig. 2. Note that we consider a two-dimensional simulation in the present study for simplicity, but our strategy can be extended to a full three-dimensional simulation in a straightforward way. To prepare a synthetic dataset, we use the 10-arm star-like shape (see Fig. 3) using the following equation: [START_REF] Shin | Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[END_REF] In a 1×1 unit computational domain resolved by a 128´128 grid, the 10-arm star is rotated using the velocity field: [START_REF] Shin | High-order level contour reconstruction method[END_REF] where the axis of rotation is placed at (0.5, 0.5). To obtain the accurate f fields as the true data from the Lagrangian FT interface elements shown in Fig. 3, we use the direct computation and distribution algorithm [START_REF] Shin | A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques[END_REF] with the high-order iterative method [START_REF] Shin | High-order level contour reconstruction method[END_REF]. Note that this shape contains local curvature variations along both convex and concave interfacial shapes. Note also that G and f are normalized by the grid size, thus one resolution is sufficient.
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A total of 28 cases are used to obtain G and f data by varying R0 from 0.1 to 0.3, and an exponential function is applied for varying R0 to sufficiently sample the smaller R0 (high curvature) cases [START_REF] Qi | Computing curvature for volume of fluid methods using machine learning[END_REF]. For each R0 case G and f data are extracted until θ reaches π/5, at which the rotated shape becomes equal to the initial shape. 500 time-steps are used to resolve this period (θ = 0-π/5). A total of 10,229,936 data samples are finally obtained, and normalized curvature hκ (where h and κ are the grid size
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and the curvature, respectively) is varied from -1.0 to 1.0. Note that this range sufficiently covers the realistic range of the normalized interfacial curvature (0.002-0.5) which appears in multiphase flow simulations [START_REF] Patel | Computing interface curvature from volume fractions: A machine learning approach[END_REF].

To model the unknown function f, the functional relationship between G and f, the multilayer perceptron (MLP, also known as multilayer neural network) [START_REF] Rosenblatt | The Perceptron, a perceiving and recognizing automaton project para[END_REF] is applied. Fig. 4(a) illustrates the schematic hierarchy of a typical MLP structure, which consists of one input layer, multiple hidden layers, and one output layer. The input features (i.e., G) are first provided from the input layer to the first hidden layer. Then, linear combinations of the inputs are constructed and forwarded to the next hidden layer after nonlinearization. Such a feedforward procedure is performed over all the hidden layers, and the output layer provides the final output value (f) without nonlinearization. The output value of the m th neuron in the n th layer is computed as: [START_REF] Brunton | Machine Learning for Fluid Mechanics[END_REF] where N is the number of nodes of each layer, and wml is the weight between the m th node of the current layer and l th node of the previous layer. b is the bias, and g is the activation function for nonlinearization. w and b are automatically updated during the learning procedure of MLP training by the backpropagation algorithm [START_REF] Rumelhart | Neurocomputing: Foundations of Research, Learning Representations by Back-propagating Errors[END_REF]. After manual search (trial and error approach), we found that using 3 hidden layers, N = 60, and the ReLU function as the activation function work well in terms of accuracy and simplicity. More details on the fundamentals of MLP, its feedforward procedure, and optimization techniques can also be found in Ref. [START_REF] Rosenblatt | The Perceptron, a perceiving and recognizing automaton project para[END_REF] and Ref. [START_REF] Nielsen | Neural Network and Deep Learning[END_REF].

The prepared dataset is randomly divided into three subsets: (i) the training dataset (70 %, 7,160,956 data samples), (ii) the validation dataset (15 %, 1,534,490 data samples), and (iii) the test dataset (15 %, 1,534,490 data samples). After training of our MLP model, we evaluate the prediction accuracy using the mean square error (MSE): [START_REF] Duraisamy | Turbulence Modeling in the Age of Data[END_REF] where M is the number of data samples of the test dataset. 

Interface switching based on ML model

We now test the ML-based switching capability from FT based interface representation (i.e., using Lagrangian mesh elements) to LS based (i.e., using the distance function f field). In order to enable switching the interface representation anytime during si mulation periods, the feedforward procedure of our trained ML model described above is implemented into our existing inhouse FT simulation code. Fig. 5 shows the test result for the square-shaped interface case. A 1´1 unit computational domain resolved by a 128´128 mesh is applied for this test. The length of a side of the square is set to 0.5. Note that this shape contains very extreme local curvatures (a right angle and a straight line). In Fig. 5(a), (b), and (c), three different interface representations for the same shape, i.e., FT-based representation (before switching), LS-based representation (after switching, but using conventional iterative technique), LS-based representation (after switching using our proposed ML technique) are depicted.

As seen, the ML-based f field [Fig. 5(c)] clearly represents the original FT-based interface representation (see where f = 0), and also shows good agreement with the f field obtained by the existing method [START_REF] Shin | A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques[END_REF]. Note that the practical region where the f field should be precisely evaluated is only near the interface in this type of hybrid simulation because the primary purpose for using the f field is to describe the interface in terms of scalar values. For regions far from the interface, only the sign of f with sufficiently high (or low) values of f are sufficient to distinguish each phase [START_REF] Shin | A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques[END_REF].

Fig. 6 depicts the test result for the well-known vortex-in-a-box problem [22]. In this case, a circular interface of diameter 0.4 is initially placed at (0.5,0.75), then starts its deformation by the vortical velocity field given as: [START_REF] Qi | Computing curvature for volume of fluid methods using machine learning[END_REF] Note that this case contains a very severely deformed interfacial shape, thus the 1´1 unit computational domain is now resolved with a 256´256 mesh. The interfacial shapes at t = 1.875 are compared in Fig. 6. The LS distance function f field obtained by the ML model [Fig. 6(c)] still clearly represents the original FTbased interface boundaries (see where f = 0) and also shows good agreement with the f field computed by the existing iterative scheme [START_REF] Shin | A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques[END_REF], even for such a highly stretched case. To quantitatively check the switching accuracy, we further compare volume loss from the initial circular interface for those two cases [Fig. 6(b) and(c)]. The volume losses due to the switching operations are 0.050% [Fig. 6(b)] and 0.053% [Fig. 6(c)], showing very good agreement again.

We finally test our ML-based switching capability incorporating the flow solvers, thus the governing equations for incompressible two-phase flows are now considered together. The numerical procedure and solution techniques for the governing equations, surface tension force, discretization and other detailed information can be found in Shin and Juric [START_REF] Shin | Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[END_REF][START_REF] Shin | High-order level contour reconstruction method[END_REF].

A 2D drop oscillation problem in zero gravity is considered. In a doubly periodic domain of [-10,10] 2 resolved by a 128´128 mesh, the initial shape of the droplet is given as x 2 /9 + y 2 /4 = 1. The density of the droplet phase and the ambient phase are set to ρ1 = 1.0 and ρ2 = 0.01, respectively, whereas the viscosities are µ1 = 0.01 and µ2 = 5´10 -5 . The surface tension coefficient is set to σ = 1. Note that all variables are nondimensionalized, and more detailed simulation settings and conditions for this test can also be found in Ref. 6

To check its switching capability more quantitatively and also to examine its applicability to practical multiphase flow simulations, we now reconstruct the Lagrangian FT interface elements using the f field obtained by both the conventional iterative numerical method [START_REF] Shin | A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques[END_REF] and the ML technique during the simulation period. Since the contour level f = 0 denotes the phase interface in the LS simulation, FT elements can be reconstructed by linking those points where f = 0 based on the existing LCRM algorithm [START_REF] Shin | Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[END_REF][START_REF] Shin | High-order level contour reconstruction method[END_REF]. Therefore, comparison between the original FT elements (before switching from FT to LS) and the reconstructed elements (after inverse-switching from LS to FT) can measure how accurately the ML-based switching works because those two interfaces should ideally be identical to each other.

The initially stretched droplet starts retracting due to the presence of the surface tension force. Then, the droplet continues oscillatory motions until all kinetic energy is dissipated by viscous damping. The simulation is performed until t = 200, and 100 switching-reconstruction operations are performed during this simulation period (0 ≤ t ≤ 200). In Fig. 7(a), the droplet interfacial shapes are plotted for two different time instants (t = 6.0 and 11.0) where the droplet reaches the first maximal stretching state in the vertical and the horizontal directions, respectively. As seen, the reconstructed interface using the f field obtained by the proposed ML-based simulation (see red lines) is sufficiently identical to the original FT interface (see black lines) as well as the interface reconstructed using the conventional iterative method (see blue lines) [START_REF] Shin | A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques[END_REF]. Those three interfaces are practically very difficult to distinguish since they are almost exactly superposed, thus showing excellent switching capability of the proposed ML model.

In Fig. 7(b), we plot the droplet kinetic energies obtained by three simulations, i.e., the case where no switching procedure is performed (pure FT simulation) and two cases where 100 switching-reconstruction procedures are performed using the current ML technique and the conventional iterative method [START_REF] Shin | A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques[END_REF]. The computed kinetic energies from these droplets are almost identical. In particular, the results of two hybrid simulations (red and blue lines) show excellent agreement. A minor deviation from the original FT simulation is presumably caused by the interpolation for very frequent switching-reconstruction operations (100 times).

Last but not least, we discuss the fundamental characteristics and expected benefits of the proposed ML strategy. Computational efficiency for the switching-reconstruction procedure using the ML technique can be greatly improved compared to the conventional iterative numerical method. For the problem shown in Fig. 5 above, the computational time for 100 switching-reconstruction operations by the ML technique is measured as 1.9 seconds which accounts for only 12.4 % of that from the conventional iterative method (15.4 seconds). Also, for the problem shown in Fig. 6, the computational time is reduced to 27.3 % if the ML technique is used. Those computational times have been evaluated using the Fortran intrinsic function "cpu_time" and a system equipped with a 4-core Intel® Core(TM) i7-7700 CPU 3.60GHz processor. Although a typical comparison of those two approaches based on the number of numerical additions and multiplications per cell is not straightforward since the two grid systems (Eulerian and Lagrangian) should be considered together, it is evident that the proposed ML technique is much more efficient. In our ML approach, only the Eulerian variable G is used and only simple matrix multiplications and additions are needed in the feedforward procedure to calculate the LS distance function f field, whereas the conventional iterative method should perform numerous iterative operations and complicated geometric calculations dealing with information exchange between two different grid systems [START_REF] Shin | High-order level contour reconstruction method[END_REF][START_REF] Shin | A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques[END_REF]. This characteristic of the ML approach (i.e., use of only the Eulerian variable G) can enable much easier implementation and ideal load balancing for parallel computations as well.

We also expect that the proposed ML model can be applied to the typical grid resolution levels of FT and similar types of simulations because our dataset sufficiently covers a practical range of interfacial curvature which usually appears in multiphase flow simulations. However, if flow phenomena are beyond the typical grid resolution levels used in FT simulations (e.g., very small bubbles having sizes comparable to the Eulerian grid), neither the current ML approach nor the general FT simulation may be sufficient and different simulation methods should be considered.

Conclusions

In this study, the machine learning (ML) strategy is proposed to hybridize two well-established methods for multiphase flow simulations: (i) the Front Tracking (FT), and (ii) the Level Set (LS) methods. The simple ML model is found to predict the LS distance function f field very easily and accurately using the geometric information vector G of the FT simulation. It is further demonstrated that the FT-based interface representation can easily and immediately be switched to LS-based representation during the simulation period and its inverse switching operation can also be incorporated using the existing numerical algorithm.

Although the present study is still confined to 2D simulations, the key features of the current strategy can be extended to 3D in a straightforward way (we are currently working on this issue). In addition, more detailed analysis of the switching capability using ML techniques such as (global and local) switching accuracy, its dependence on the grid resolution, and computational efficiency depending on various simulation cases, can be further investigated to examine more practical applicability.
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 2 Fig. 2. Schematic diagram for describing input and output parameter for the ML model.
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 1 Fig. 1. Schematic diagrams for describing interface representations in (a) front tracking (FT) and (b) level set (LS) methods.
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 3 Fig. 3. The shape of the 10-arm star used in the present study.
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 4 Fig. 4. (a) Schematic hierarchy of the multilayer perceptron (MLP) applied in the current study. (b) Predicted f using the current ML model vs. true f data from the test dataset.
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 5 Fig. 5. Switching test for the square-shaped interface case. (a) FT-based interface representation using Lagrangian elements (before switching). (b) LS-based interface representation using distance function f field obtained by the conventional (numerical) method [16]. (c) LS-based interface representation using distance function f field obtained by proposed ML technique.
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 6 Fig. 6. Switching test for the vortex-in-a-box case. (a) FT-based interface representation using Lagrangian elements (before switching). (b) LSbased interface representation using distance function f field obtained by the conventional (numerical) method [16]. (c) LS-based interface representation using distance function f field obtained by proposed ML technique.
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 7 Fig. 7. Switching test with the flow solvers for the drop oscillation case. (a) Comparison between the original FT interface (before switching) and reconstructed interfaces (after switching and reconstruction) from the f field obtained by the proposed ML model and the conventional iterative method at two different time instants (t = 6.0 and 11.0). (b) Comparison of the kinetic energy of the droplet between original FT simulation and two hybrid simulations using the proposed ML model and the conventional iterative method (100 switching-reconstruction operations are performed).
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 Nomenclature------------------------------------------------------------------G: Geometric information vector in FT simulation