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Abstract

A phase-field approach was used in order to model the complex mechanisms of fatigue crack nucleation and growth.
This popular method enables a flexible framework that recovers accurately expected crack patterns. However, it
usually suffers from several efficiency drawbacks, such as the need for a very fine mesh, and the heavy computational
cost associated with the cycle by cycle approach. For this reason, we put forward the coupling of adaptive mesh
refinement and cycle jumps, to significantly accelerate computing time, at a given level of accuracy. Several numerical
examples were studied to showcase the abilities of the proposed coupling and some qualitative numerical/experimental
comparisons were made. In the end, the proposed coupling was able to recover non accelerated results with significant
computing gains.

Keywords: Fracture mechanics, Phase-field, Fatigue crack propagation, Adaptive Mesh Refinement, Cycle jump
scheme

1. Introduction

In modern industry, fatigue fracture is the predomi-
nant mode of failure of industrial components. This phe-
nomenon is usually taken into account by adding broad
safety margins to the final designs. In this context, accu-
rate and robust simulation of crack initiation and prop-
agation is essential to lower manufacturing and mainte-
nance costs, while ensuring safety and reliable designs.

Fatigue crack nucleation and growth are caused by
cyclic loads, and are characterized by load levels that can
be much lower than under monotonic conditions. There
are two main fatigue regimes: oligocyclic fatigue occurs
for high loadings and relatively few cycles, whereas poly-
cyclic fatigue takes place for low loadings and a high
number of cycles. In the case of the former, plastic de-
formation usually plays a role. Conversely, only marginal
amounts of plastic dissipation appear for polycyclic fa-
tigue. In this work an elastic framework was used, and
the study was thus limited to polycyclic fatigue, also
known as high-cycle fatigue.

Most approaches used to model high cycle fatigue
crack propagation rely on empirical laws derived from the
study of linear elastic fracture mechanics introduced by
Griffith [20] and the definition of stress intensity factors
(SIF), K in Irwin’s work [28]. Paris [49] put forward the
idea to set the SIF range over a cycle, ∆K as the driv-
ing force of fatigue crack propagation. When plotting
the representation of this idea, he observed three mate-
rial dependent domains of crack propagation illustrated
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in Fig. 1. On a logarithmic scale, we distinguish domains
of (I) nucleation, (II) stable crack propagation regime,
and (III) unstable failure. The linear regime observed in
(II) can be used to describe simple cases of crack prop-
agation very reliably. However these approaches suffer
from their empirical nature. As they are defined on sim-
ple cases, we can expect less predictive results for multi-
directional loadings or complex crack patterns. Further-
more, since they are based on linear elastic fracture me-
chanics, additional criteria must be setup to recover com-
plex crack patterns. Additionally, crack initiation cannot
be modeled and is therefore studied separately in a dis-
tinct branch of fatigue literature that employs its own set
of empirical methods.
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Figure 1: A typical plot of crack growth rate as a function of the
stress intensity range. The Paris-Erdogan equation displays a de-
cent fit with the central linear section of regime II.

Recently, more flexible frameworks for studying fa-
tigue crack propagation have been put forward in the lit-
erature. Those methods are supported by the phase-field
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approach for brittle fracture, which has recently gained
significant popularity. The method is highly effective
in handling complex crack cases and consistently repli-
cates experimental observations in a unified manner. The
phase-field framework for brittle fracture was based on
Ref. [13] and introduced in Ref. [8], where Griffith’s fun-
damental balance of energy is recast as a variational prob-
lem. Consequently, the crack position is recovered by sim-
ply solving a minimization problem. In order to capture
the crack numerically, a diffuse representation is adopted
such that the initial discrete crack is approximated by a
damage field whose topology is controlled by a density
function [3, 8]. This diffuse representation is the key to
the flexibility of the method in a finite element frame-
work as it regularizes the discontinuity introduced by the
crack. After numerous works applying phase-field to brit-
tle fracture [42, 46], some authors applied this framework
to model fatigue crack propagation. At first, a term was
added to the formulation in order to account for fatigue
degradation, such as in Ref.[7], where a second phase-
field variable is introduced, in Ref [35], where a viscous
term enables fatigue effects, or in Refs. [4, 36], where dis-
sipative terms lower the fracture treshold. However, most
phase-field fatigue extensions rely on the modification of
the damage energy to account for a measure of accumu-
lated strain. These ideas were put forward in a phase-
field framework first in Ref. [2] and extended to 2D/3D
in Ref. [10]. A whole family of methods relying on this ap-
proach was thus born, e.g., references [57, 63, 58], where
the framework is extended to take ductile effects into ac-
count, or Simoes et al. [59] who put forward a shape
memory alloy fatigue phase-field model, and Golahmar
et al. [18] where hydrogen embrittlement is added to the
formulation. Other works, such as Refs. [41, 22, 21], can
be linked to this family of approaches because fatigue
effects rely on the degradation of the toughness of the
material. More recently, multiple authors have been set-
ting a unified framework for such local toughness degra-
dation approaches, such as Alessi et al. [1], where those
approaches are compared and sound theoretical grounds
are set, or Golahmar et al. [19] where multiple degrada-
tion functions and accumulation methods are introduced
to model known fatigue effects. Following these refer-
ences, the proposed implemented fatigue extension was
inspired by the work of Carrara et al.[10].

These approaches have been shown to possess predic-
tive capabilities in a fatigue context but accelerating tools
are necessary to apply the framework on industrial cases
[22]. Indeed, in the considered model, damage evolution
is a multi-scale phenomenon, both in space and time.
First, it affects the structure on multiple timescales. On
the one hand, a component’s lifetime can consist of as
many as 107 cycles. However, understanding the changes
operating at the scale of a single cycle is crucial and in-
fluences the behavior at the macroscale (i.e., the compo-
nent’s total lifetime). But, calculating every cycle in de-
tail can result in excessively long computing times. In this
context, we implemented an iterative cycle jump scheme

inspired by Loew’s work [37] to accelerate lifetime predic-
tions significantly. Secondly, the model affects multiple
scales of space. Indeed, in a framework of continuum
mechanics, fatigue introduces a discontinuity in a very
localized active process zone, and accurately capturing it
is essential to predict the propagation mechanisms. In
a finite element framework, this means that a very local
area (compared to typical structure dimensions) has to be
meshed very finely in order to reach convergence. How-
ever, as crack paths are unknown before-hand, large scale
phase-field simulations cannot be viable without adap-
tive mesh refinement (AMR), i.e., refinement of the mesh
during propagation, in the relevant zones. To this end,
a hierarchical adaptive mesh refinement process working
with the phase-field model was adopted.

Ultimately, to simultaneously consider the micro and
macro scales in space and time while increasing compu-
tational efficiency, we propose combining adaptive mesh
refinement and cycle jump techniques within a fatigue
fracture phase-field framework. In this way, multiple ef-
ficiency issues of the phase-field model are treated all at
once, enabling the use of the model on real-life fatigue
fracture applications. Additionally, the proposed cou-
pling aims at maintaining the versatility of the phase-
field model, allowing it to accurately capture complex
crack cases such as kinking, branching, coalescing, and
nucleation. Moreover, even with the use of the proposed
acceleration techniques, the solution’s accuracy must be
ensured.

The present paper has been structured as follows: the
fatigue fracture phase-field model used herein is briefly
introduced in Section 2. Then, the numerical implemen-
tation of the model, and the computation of a cycle is
detailed in Section 3. Next, the two accelerating tools
are introduced in Section 4 and Section 5 respectively.
Finally, Section 6 describes the numerical study of sev-
eral 2D geometries, in order to illustrate the accuracy,
robustness and efficiency of the new model.
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2. Phase-field fatigue model

2.1. Phase-field basics

Figure 2: The left image represents a cracked body with a discrete
fracture, while the right one depicts the same scenario with the
crack discontinuity regularized using the diffuse phase-field repre-
sentation.

Following the seminal work in Ref. [13], a functional
can be set to reframe Griffith’s energy balance into a vari-
ational form :

Π0
int(u,Γ) = E0(u)+W0(Γ) =

∫
Ω

ψ0 dV +

∫
Γ

Gc dS. (1)

This is the internal energy of a cracked body. For
instance, E0(u) is the mechanical component with ψ0 the
elastic energy density. W0 is expressed as Gc, the critical
fracture toughness of the material, integrated over the
crack area Γ to represent energy dissipation in fracture.

A phase-field parameter d is introduced to regularise
the crack surface, enabling a regularized formulation of
functional (1) is obtained following Ref. [8]:

Πint(u, d) = E(u, d) +W (d) (2a)

=

∫
Ω

g(d)ψ0 dV

+

∫
Ω

Gc.

(
d2

2lc
+
lc|∇d|2

2

)
dV. (2b)

This regularized formulation can be seen as the free
energy functional of the damage model. In such a setting,
the phase-field parameter d represents damage. It ranges
from 0 to 1, where 0 stands for the intact material while
1 stands for the fully broken one. It should be noted that
it is defined on the whole domain Ω.

Additionally, E(u, d), the mechanical term, is now af-
fected through d by a degradation function g(d). As a re-
sult, when damage increases, the mechanical response is
softened. A parabolic degradation function is used, and,
as in the following references [42, 46] a small parameter
k, is introduced to ensure the stability of the solution.

g(d) = (1− d)2 + k. (3)

Finally, W (d) still represents the energy of the crack,
i.e., Gc integrated over the fracture surface, here defined
as a surface functional. This functional approximates the
discrete crack topology, with a surface density function
smeared over the characteristic length lc as is illustrated
in Fig. 2. We can hence define the area of the crack as:

A(d) =W (d)/Gc =

∫
Ω

d2

2lc
+
lc|∇d|2

2
dV. (4)

It makes for a very reliable damage global quantifier,
and will therefore be used to evaluate precision in Sec-
tion 6. Here, the crack area regularization is the same as
in Ref. [42], and it is called the AT2 model. It enables
automatic bounding of d between 0 and 1. However, it
suffers from the lack of an elastic threshold. Indeed, any
amount of loading triggers damage. To circumvent these
limitations, multiple authors investigate other crack rep-
resentation functions such as the AT1 model [45] or linear
combinations of those functions [65].

The presented variational formulation is proved to Γ-
converge, meaning that the functional (2b) minima and
minimizers converge to the minima and minimizers of
functional (1) as lc approaches 0. In this sense, lc is
a regularization parameter of the linear elastic fracture
mechanics variational problem. On the contrary, from
a damage mechanics perspective, lc drives the width of
the diffused crack and is related to the tensile strength of
the material. As such, it is linked to a material related
property [62, 44, 33].

2.2. Crack growth in compression

Two mechanical energy E(u, d) formulations have been
implemented to reproduce different crack propagation phe-
nomenologies. Firstly, an isotropic formulation is used:

E(u, d) =

∫
Ω

g(d).ψ0 dV. (5)

This formulation means that a structure degrades sym-
metrically with respect to tensile/compressive loadings.
However, experimental observations support another phe-
nomenology: crack propagation is driven differently based
on the direction of the load with respect to crack direc-
tions. According to references [42, 6], the free energy
density ψ0 is thus decomposed into a positive part ψ+

due to tension, and a negative part ψ− due to compres-
sion, so as to reproduce this asymmetric behavior. This
decomposition can be expressed by rewriting the mechan-
ical energy term in functional (2b) as:

E(u, d) =

∫
Ω

g(d).ψ+
0 + ψ−

0 dV. (6)
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Only the tensile part ψ+
0 of the mechanical energy

is degraded and drives the crack propagation. Addition-
ally, in this fatigue extended formulation, it drives fatigue
degradation. This work uses a spectral decomposition of
the mechanical energy, and in this respect, it is the sign
of the principal strains that discriminates between tensile
and compressive terms. A detailed implementation of the
chosen spectral decomposition is developed in Molnár et
al. [45].

2.3. Fatigue effects

Fatigue damage originates from the accumulation of
mechanical energy. To enable crack propagation below
the monotonic threshold, Gc is degraded as a function of
this cumulated term. Indeed, as in linear elastic fracture
mechanics, Gc is a fracture threshold material parameter:
degrading this parameter thereby enables crack propa-
gation for loadings below the usual fracture threshold.
Fatigue effects are thus reproduced phenomenologically,
and we write:

GF = f(ᾱ) ·Gc , (7)

where f(ᾱ) is a fatigue degradation function, influ-

enced by the cumulated variable ᾱ ≡
∫ t

0
⟨α̇⟩+dt, with

⟨X⟩+ being the positive part ofX. As advised in Ref. [10],
we set α = g(d) ·ψ+

0 , which means that the active part of
elastic energy, degraded by g(d) is cumulated. The degra-
dation function is taken into account to stop the build-up
of energy in the damaged zone. Moreover, we underline
how this fatigue cumulated variable ᾱ is computed. Thus,
in a time discretized setting, at a given time-step n we
use quantities computed at n− 1 such that:

ᾱn = ᾱn−1 +

∫ n

n−1

⟨α̇⟩+ dt , (8a)

≃ ᾱn−1 + |αn − αn−1| · H(αn − αn−1) , (8b)

Here, H is the Heavyside function that disables cu-
mulative effects in unloading phases. This expression is
in line with the work of Ref. [10] for a mean load inde-
pendent model.

Multiple fatigue degradation functions have been put
forward in the literature, set as functions varying between
1 and 0, remaining constant before a threshold of cumu-
lated energy is reached, and being a strictly decreasing
function. Following Ref. [10] we used two fatigue degrada-
tion functions, starting with a one parameter asymptotic
degradation function, only driven by its threshold αT :

f(ᾱ) =

1 if ᾱ < αT ,(
2αT

ᾱ+αT

)2

if ᾱ > αT .
(9)

Then, a second degradation function, also introduced
in Ref. [10], was investigated as it is driven by two pa-
rameters, αT and κ, a logarithmic degradation function.

f(ᾱ) =


1 if ᾱ < αT ,(
1− κ log( ᾱ

αT
)
)2

if αT < ᾱ < αT 10
1/κ ,

0 if ᾱ > αT 10
1/κ.

(10)

More informations on the constrution and improve-
ment of those two fatigue degradation functions can be
found in Refs. [10, 19].

With the given model, when a cyclic loading is applied
to a structure, the first cycle triggers a very small damage
increment. However, no damage localization can occur
since the applied cyclic loading is very small compared to
the usual critical loading in brittle fracture. This is valid
until the cumulated variable reaches the specific threshold
αT , in which case, it triggers the degradation of GF and
enables crack propagation for very low cyclic loadings.
This crack propagation can be considered as unstable, but
it is confined to the zone where GF is degraded. This way,
tools derived from the variational approach for brittle
fracture are used to model fatigue crack propagation.

The physical interpretation of this local degradation
of the fracture toughness by the accumulation of elastic
energy is however not straightforward. This elastic en-
ergy accumulation could be representative of the micro-
structural effects leading to fatigue crack propagation.
The interested reader can learn more about this type of
phase-field fatigue model in Refs. [2, 10, 1]

2.4. Coupled problem statement

Let us now set a boundary value problem on domain
Ω, with the domain boundary ∂Ω = ∂Ωt∪∂Ωu. Here, ∂Ωt

is linked to Neumann boundary conditions, and ∂Ωu to
Dirichlet boundary conditions. We introduce the external
potential:

Πext(u) =

∫
Ω

b · udV +

∫
∂Ωt

t · udS , (11)

where b and t are the external volume and boundary
forces respectively. In a quasi-static setting we set the
Lagrangian of this coupled problem to:

L(u, d) = Πint(u, d)−Πext(u). (12)

To solve the coupled problem we study the variation
of the Lagrangian as:

δL = δΠint − δΠext = 0. (13)
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First, we derive the variation of internal energy:

δΠint =
∂Πint

∂ε
δε+

∂Πint

∂d
δd = 0 , (14a)

=

∫
Ω

(
g(d)

∂ψ+
0

δε
+
∂ψ−

0

∂ε

)
δε dV

+

∫
Ω

(
∂g(d)

∂d
ψ+
0 +

GF

lc
dδd

)
+ (GFlc∇d.∇δd) dV. (14b)

Note that small perturbations are assumed, such that
displacements are small and the strain tensor is linear:

ε =
1

2

(
∇u+∇uT

)
. The symmetric Cauchy stress tensor

appears in expression (14b) as:

σ = g(d)
∂ψ+

0

∂ε
+
∂ψ−

0

∂ε
. (15)

Next, we write the variation of the external potential
as:

δΠext =

∫
Ω

b · δu dV +

∫
∂Ωt

t · δu dS. (16)

Applying the divergence theorem to Eq.(13), where
we injected Eq.(14b) and Eq.(16), and factorizing out
δu, δd, yields the following strong form equation system
of the coupled mechanical and phase-field problem:

∇σ − b = 0 on Ω , (17a)

σ · n = t on ∂Ωt , (17b)

u = û on ∂Ωu , (17c)

GF

lc
d−GFlc∆d+ 2(1− d)ψ+

0

+∇f(ᾱ) · ∇d = 0 on Ω , (17d)

∇d · n = 0 on ∂Ωd. (17e)

Solving the presented system in a monolithic man-
ner can display convergence issues in the case of unstable
crack propagation. Consequently, Miehe et al. proposed
a staggered approach to solve this system for u and d [42].
This approach is very robust, even in cases of unstable
propagation. However, global convergence still needs to
be verified to ensure that the precision is independent of
the time step. Alternatively, a very fine time-step should
be applied [46]. In the present work, a staggered approach
was chosen for its robustness and ease of implementation.
A detailed explanation of this staggered implementation
is provided in Section 3.

2.5. Damage irreversibility

Staggered phase-field models, enable the use of a spe-
cific method to enforce irreversibility [42]. In this frame-
work, the authors replaced ψ+

0 in Eq.(17d) i.e., the me-
chanical contribution ”seen” by the phase-field problem,

with a history field H. This newly introduced field is
defined as the maximum value of ψ+

0 over the computed
time interval whose continuous and discretized expres-
sions are:

H(t) = max
τ∈[0:t]

(
ψ+
0 (τ)

)
(18a)

Hn+1 =

{
ψ+
0 (ε) if ψ+

0 (ε) > Hn ,

Hn otherwise,
(18b)

whereHn is the history-field computed at the previous
step. This formulation enables H to satisfy the Karush-
Kuhn-Tucker condition:

ψ0 −H ≤ 0, Ḣ ≥ 0, Ḣ(ψ0 −H) = 0 , (19)

in loading and unloading, signifying that the driving
force of fracture cannot decrease: a damaged zone will
not recover even in unloading scenarios. We can rewrite
the equation of the damage problem (17d), as:

GF

lc
d−GFlc∆d+2(1− d)H +∇f(ᾱ) · ∇d = 0. (20)

3. Staggered algorithm for the computation of one
cycle

The presented coupled problem was solved in a stag-
gered manner, following Refs.[8, 42]. In other words, two
sub-problems were set-up. First a mechanical problem
(17a), (17b), (17c) was solved, then a damage problem
(20), (17e). When minimizing the mechanical equations,
the damage was kept constant, whereas in the case of
the phase-field problem, the formerly determined elastic
energy is employed. In this section, we describe such
a fatigue phase-field staggered algorithm. Furthermore,
the corresponding finite element implementation of both
sub-problems is detailed in Appendix A.

It should be noted that all numerical strategies men-
tioned in this article were implemented on the finite el-
ement software Cast3M [11]. There have been multiple
usages of this software to study fracture mechanics such
as in Helfer et al. [25], Lu et al. [38], and Riad et al. [53]
where a phase-field model for brittle fracture was imple-
mented. Also, in Gibert et al. [17] an adaptive mesh
refinement strategy was applied in an eXtended Finite
Element Method (XFEM).

A full cycle is computed as follows: nmax time steps
per cycle are computed, and at each time step n, a global
convergence loop is set up where i indicates the iteration
index.

• First, a mechanical problem influenced by constant
damage is solved to find ui

n = un−1 +∆ui
n

• Then, fatigue cumulated energy is computed with
Eq.(8) giving ᾱi

n, and G
i
F
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• Finally, a damage problem influenced by the cur-
rent ᾱi

n and ui
n (through Hi

n) is solved for di
n

Global convergence is then verified through the con-
vergence of the dissipated energy expressed as W (d), de-
fined in Eq. (2b). We chose to normalize the criterion
by the current value of dissipated energy W i(d). The
convergence criterion can be written as:

W (d)i −W (d)i−1 < W (d)i · 10−6. (21)

This convergence check enables a precision that is in-
dependent of the number of used time steps per cycle, as
long as the extrema of the cyclic loading are captured.

The described iterative process is detailed in Algo-
rithm 1. It is very close to the staggered implementation
proposed in Miehe et al. [42]. However, global conver-
gence was checked, as originally proposed by Bourdin et
al. in [8]. Other schemes have been tested in the lit-
erature such as Ref. [38] where multiple staggered min-
imization schemes are put forward or such as Ref. [32],
where the uncoupled framework is solved using a BFGS
quasi-Newton approach.

4. Cycle jump schemes

Cycle by cycle simulation of high cycle fatigue crack
propagation is inefficient, because in an industrial set-
ting, lifetime predictions can be as much as 105 to 107

cycles. To speed up the computation time, we propose
incorporating cycle skipping techniques into the previ-
ously introduced framework.

Cycle skipping schemes rely on the idea of alternating
between computation of cycles, and extrapolation of the
time evolving quantities over ∆N cycles. Hence, the com-
putation of ∆N cycles can be avoided. Computing cycles
provide insight into the evolution of quantities through a
process referred to as ”control cycles”. Based on this
information, a specific extrapolation method must be se-
lected to maintain the accuracy of the solution.

This kind of technique was introduced in fatigue sim-
ulations in the very similar context of damage mechan-
ics. We reference multiple authors using those cycle jump
tools to accelerate fatigue simulations [12, 34, 48]. Fur-
thermore, similar tools were recently applied to phase-
field fracture [37, 58, 31]. The following section intro-
duces a cycle-skipping scheme, inspired by the work in
Ref. [37], adapted to the previously presented elastic fa-
tigue framework.

4.1. Iterative cycle jump scheme

The extrapolation scheme was chosen to be implicit,
meaning that we used information from one control cycle
at N , before the cycle jump, and information from one
control cycle at N +∆N , after the cycle jump. For this
specific elastic framework, we extrapolate only ᾱ, the cu-
mulated mechanical energy. This variable is ideal for the
method as it evolves in a regular manner with respect to
elapsed cycles, making a single control cycle representa-
tive of its general behavior. Additionally, ᾱ cannot be
computed back from the other fields as it depends on the
loading history. Finally, in the elastic framework, every
other field can be computed back from its value.

As stated in Ref. [37], we employed a trapezoidal ex-
trapolation scheme that is based on the change in the
current cycle (N) and the predicted cycle (N +∆N).

ᾱN+∆N = ᾱN +
∆N

2
( ˙̄αN + ˙̄αN+∆N ) , . (22)

With the quantities represented in Fig. 3, we can de-
fine the terms of this expression as follows:

˙̄αN = ᾱN+1 − ᾱN , (23)

˙̄αN+∆N = ᾱN+∆N+1 − ᾱN+∆N . (24)

A Newton-Raphson scheme was implemented to search
iteratively an extrapolated value of ᾱN+∆N that enforces
this trapezoidal extrapolation rule. Equation (22) gives
us the following cycle jump residual:

Rcj = ᾱN ·
(
1− ∆N

2

)
+ (ᾱN+∆N+1 + ᾱN+1) ·

(
∆N

2

)
− ᾱN+∆N ·

(
1 +

∆N

2

)
= 0 , (25)

and the next estimate of the Newton-Raphson scheme,
with iterations of index k, is given by:

ᾱk+1
N+∆N = ᾱk

N+∆N −
(
∂Rcj

∂ᾱ
|N+∆N

)−1

·Rcj . (26)

The residual operator from the Newton-Raphson scheme,
a tangent operator used in the iterative search, is ex-
pressed as follows:

∂Rcj

∂ᾱ
|N+∆N =

∂ᾱN+∆N+1

∂ᾱN+∆N
·
(
∆N

2

)
−
(
1 +

∆N

2

)
. (27)

As in Ref. [37], the only remaining unknown term is
∂ᾱN+∆N+1

∂ᾱN+∆N
, indicating the variation of the extrapolated
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Algorithm 1 Cycle computation algorithm

1: for n = 1, nmax do
Require: di−1 ← dn−1, ᾱ

i−1 ← ᾱn−1, H
i−1 ← Hn−1, note that ui−1 ← 0

2: while Global convergence is not achieved do
3: Mechanical problem: Computation of ui influenced by di−1 with iterative search (A.4)
4: Irreversibility: Computation of Hi (18b)
5: Fatigue : Computation of Gi

F influenced by ᾱi with Eq. (8b) and Eq. (7)
6: Damage problem: Computation of di influenced by ui, ᾱi and Hi

7: Global convergence check:
8: • Criterion on damage dissipation convergence Eq. (21)
9: if Convergence is checked then

10: Update dn ← di, ᾱn ← ᾱi, Hn ← Hi

11: Next time step n+ 1 quit
12: else
13: Update di−1 ← di

14: Restart computation of time step n
15: end if
16: end while
17: end for
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Figure 3: Illustration of the iterative cycle jump scheme with two graphs. We first represent the cyclic loading, with the computed cycles in
bold (upper figure) and then the evolution of ᾱ with respect to the elapsed cycle (lower figure). Two control cycles are initially computed,
after which iterative scheme is used to search for ᾱN+∆N , yielding a new control cycle.
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quantity at the end of a cycle with respect to the variation
of the Newton-Raphson estimate of the quantity at the
beginning of the cycle. Using Eq. (8b), we can express
the cumulated mechanical energy αN+1 at the end of a
cycle as:

ᾱN+1 = ᾱN +

∫ N+1

N

⟨α̇⟩+ dt. (28)

The influence of ᾱN on the evolution of α during a
cycle is neglected, as it is small compared to its cumu-
lated value, thus yielding a very simple expression for the

tangent operator (27)
∂ᾱN+∆N+1

∂ᾱN+∆N
= 1.

The full algorithm for this iterative cycle jump scheme
is presented in Algorithm 2. In the first step, there is
only information on the control cycle N . We start with
a simple extrapolation scheme to obtain a first estimate
at N +∆N :

ᾱN+∆N = ᾱN +∆N ˙̄αN . (29)

From this estimate, a control cycle at N+∆N is com-
puted giving an initial residue and starting the presented
Newton-Raphson iterative scheme. The iterative scheme
is stopped when the maximum value of Rcj on the whole
domain reaches a specific threshold. The user can then
decide at which precision the trapezoidal extrapolation
scheme is to be enforced. We chose this precision crite-
rion to be normalized by the initial value of ᾱ0

N . The
convergence criterion can be written as:

max[RCONV
cj ] < max[ᾱ0

N ] · 10−6. (30)

Algorithm 2 Cycle jump scheme

Require: ᾱN+1, ᾱN with (1)
1: Explicit prediction with Eq. (29) to estimate ᾱ0

N+∆N

2: Compute one cycle to obtain ᾱ0
N+∆N+1

3: Deduce residual R0
cj with Eq. (25)

4: ᾱk
N+∆N ← ᾱ0

N+∆N and Rk
cj ← R0

cj

5:

6: while Criterion (30) is not respected do
7: Find a new estimate ᾱk+1

N+∆N with Eq.(26)

8: Compute one cycle to obtain ᾱk+1
N+∆N+1

9: Deduce residual Rk+1
cj with Eq.(25)

10: end while
11:

12: Next computations initialized with
13: ᾱN+1 ← ᾱN+∆N+1 and ᾱN ← ᾱN+∆N

It is interesting to note that for most simulated cases
the initial step of fatigue crack propagation can be skipped

with a very large ∆N . Indeed, until the fatigue degrada-
tion function f(ᾱ) becomes activated, i.e., while ᾱ < αT ,
the evolution of ᾱ is linear. This is used in Ref. [58] to
accelerate the initial phase of the simulation.

Moreover, in Kristensen et al. [31], an explicit cycle
jump scheme, relying on a backward-Euler extrapolation
scheme, is used to accelerate significantly phase-field fa-
tigue computations. The comparison of these schemes is
out of the scope of this work (and is detailed in Ref. [37]),
but it could be interesting to see if this extrapolation
scheme is able to recover accurate results in the proposed
adaptive mesh refinement context. This explicit extrap-
olation scheme trades accuracy for efficiency, and hence
requires to use very small values of ∆N in order to min-
imize error [31]. It is not clear which scheme is more
efficient in a coupling context, at a given level of accu-
racy.

5. Mesh refinement strategy

Adaptive mesh refinement strategies are frequent in
crack propagation modeling with a finite element frame-
work because of the very local nature of the damage me-
chanics. Only a limited part of the structure under study
exhibits nonlinear behavior, with high gradient zones lo-
calized in that area. To capture the mechanisms driving
crack propagation, different levels of mesh refinement are
used: coarser elements far away from the damaged zone
and finer elements in the vicinity of the crack. This leads
to a significant increase in computational efficiency by al-
lowing us to optimize the number of degrees of freedom
while maintaining the accuracy of the numerical solution.
Furthermore, since the path of the cracks is often un-
known in advance, the ability to adapt the mesh during
crack propagation is a valuable technique for further re-
ducing computational effort. For instance, we can cite
multiple references that use mesh optimization methods
to model crack propagation, such as a combination of
XFEM and a localized multi-grid approach [52, 50], or
XFEM and adaptive mesh refinement [17].

In phase-field modeling different refinement levels should
also be used, as d varies between 0 and 1 very abruptly in
a local zone whose size is driven by lc. Multiple analyses
of the numerical errors related to space discretization of
the phase-field model can be found in the literature [43],
[9] and [45]. A fine mesh size in this zone is required
to capture the gradient of d in the damage problem, as
was analyzed in Ref. [43] where the author showed that
lc/2 > h in the damage zone suffices to recover analyt-
ical results. However when damage interacts with the
mechanical problem, it does so through the integration
points of the finite element mesh, creating a new source
of mesh dependent error, known as localization error, that
is well understood in the literature [45]. The localisation
error can be minimized by enforcing larger lc/h ratios, as
far as 8. In this context, adaptive mesh refinement tools
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have been implemented to make the method practical for
industrial applications, where using a high level of refine-
ment across the entire numerical sample would result in
an excessive computation time.

For this reason, mesh refinement tools have been de-
veloped early for phase-field simulations, as the diffuse
representation of cracks requires a very fine mesh to accu-
rately capture the steep gradient of damage in this area.
We cite the work of Heister et al. [24], who used adaptive
mesh refinement (AMR) on a phase-field model for brit-
tle fracture. Following this, similar damage-driven meth-
ods have been proposed [5], [66] and [29], where multiple
damage thresholds were defined to smooth out the mesh
transition. More recently, several energy-based criteria
specific to phase-field simulations have been highlighted
[27, 14]. Furthermore, sophisticated phase-field error es-
timators, in line with usual AMR estimators, have been
studied [64, 39]. However to the best of our knowledge,
AMR framework has yet to be applied in a fatigue frac-
ture phase-field context.

The following section describes the mesh refinement
tools that have been implemented to combine the cycle
jump scheme with adaptive mesh refinement in the con-
text of phase-field fatigue simulations. The refinement
method and projection operator are introduced, followed
by the specification of the refinement criterion that was
used during the mesh adaptivity process. Finally, we put
forward a propagation algorithm rendering it possible to
use AMR, and cycle jump simultaneously in the phase-
field framework.

5.1. Mesh refinement method

Following Ref. [17], we used hierarchical h refinement:
to obtain a given mesh size, coarser elements were subdi-
vided into 2D finer elements. In 2D, one square element
was divided into 22 = 4 elements, in 3D, it was divided
into 23 = 8 elements. An illustration of this type of re-
finement is provided in Fig. 4a. Furthermore, it should be
noted that this hierarchical refinement is non-conforming,
meaning that every new subdivided element adds a num-
ber of so-called ”hanging-nodes”, i.e., nodes that do not
respect the continuity of the finite element mesh. They
are illustrated in Fig. 4b. To enforce the compatibility
of these nodes with the rest of the mesh we set displace-
ment and damage to be linear combinations of the neigh-
boring nodes displacement and damage using Lagrange
multipliers. More details on the used operations can be
found in references [17] and [26]. The hierarchical, non-
conforming refinement approach presents numerous ben-
efits within the context of an adaptive mesh refinement
framework. Firstly, it makes it possible to keep a memory
of original coarse elements, and its different subdivided
parts, enabling easy implementation and data structure.
Moreover, this refinement technique simplifies the trans-
fer of fields when restricted to mesh refinement, as each
finer element is fully contained within a coarser one. In-
deed, as field transfers are supported by the finite element

shape functions, we find that the hierarchical refinement
method enables a trivial link between the shape functions
of coarse and fine elements.

In addition, the re-meshing process is designed to
enforce a smooth transition between coarse and refined
zones. In a hierarchical refinement setting, a coarse ele-
ment might be divided into n smaller elements while its
neighboring element remains coarse. This would intro-
duce strong mesh distortion and yield less precise results.
To ensure a smooth progression of subdivisions in neigh-
boring elements, we enforced a ”2-to-1” constraint: if a
fine element was divided into n·2D smaller elements, then
its neighboring elements would be divided into (n±1)·2D.
This results in only one ”hanging node” (a node on a finer
element that is not connected to a node on a coarser
element) at each refinement transition. Note that this
smoothing process yielded asymmetric patterns of refined
mesh even in the case of a seemingly symmetric dam-
age field (Fig. 5). Indeed, it was based on the selection
of elements bordering the located damaged zone. Such
an automatic selection means that any small asymme-
try of the damage field or initial mesh was magnified by
the smoothing process. Nevertheless, as will be shown
in Section 6, this versatile implementation means that it
can recover complex crack patterns without needing to
locate the crack tip.

5.2. Projection process

As the crack propagates, new successive meshes are
built to optimize the number of degrees of freedom in
real time. This means that for every new refinement step,
all quantities defined in the phase-field fatigue framework
have to be transferred or re-computed on each new suc-
cessive mesh pattern. We chose to transfer the following
fields: ᾱ, H, and d. The latter was a nodal field that
could be trivially interpolated on the newly refined mesh
nodes, while ᾱ and H were defined on integration points
and needed a specific projection operator. In the elas-
tic small displacement context we followed the work in
Ref. [51], where shape functions of the coarse elements
were used to interpolate integration points quantities.
Thus, we first transformed those fields into nodal equiv-
alents, and used the coarse element shape function to in-
terpolate the nodal components. Algorithm 3 illustrates
this procedure which is a built-in function of Cast3M.
The implementation was facilitated by the fact that re-
fined elements are always contained within a larger coarse
one.

The remaining fields were computed back from the in-
terpolated quantities. In the context of refinement, this
projection operator resulted in highly accurate outcomes.
However, if this approach were to be applied to coarsen-
ing operations, a more sophisticated projection strategy
would need to be developed. Coarsening meshes goes

9



(a) Visualization of the hierarchical refinement tool, with an initially coarse mesh and
associated element density (left) and the resulting successively subdivided refined mesh
(right)

A BCA B

(b) Illustration of the hierarchical h refine-
ment and resulting hanging node C.

Figure 4: Figures illustrating non-conforming hierarchical h refinement

Algorithm 3 Projection of integration point quantities a

1: Coarse mesh M l is refined into M l+1

2: Every new integration point of coordinate xl+1 is contained into a coarse element El, of shape function vector Nl

3: Nodal vector âl is constructed by solving
∫
Ej N

T
l Nlâ

l dV =
∫
El N

T
l a

l dV

4: al+1 is interpolated at xl+1 using âl and Nl: a
l+1(xl+1) = Nl(x

l+1)âl

beyond the scope of this work, as in phase-field formula-
tion, a fine discretization of the damaged zone has to be
enforced for the entire duration of the simulation.

After this projection step, ᾱ, H, and d did not unify
the balance equation. This max lead to numerical errors
that can be amplified ∆N times if a cycle jump procedure
is applied to the resulting imbalanced fields. To prevent
this, we computed an equilibrium step after each projec-
tion step, consisting in the computation of a cycle with-
out cumulating α, hence enforcing mechanical/damage
equilibrium without propagating the damage further. It
should be noted, that such a balancing step is common
when using the presented projection strategy, as is un-
derlined in Refs. [40, 17].

As irreversibility is enforced through the history-field
method introduced in Section 2.5, H is continuously com-
pared to computed mechanical energy to set irreversibil-
ity. However, such a local irreversibility check is impossi-
ble from one mesh to another as we cannot compare val-
ues on nodes/integration points that did not previously
exist. As such, every time a new mesh is built, and the
fields projected, we checked that W (d) did not decrease.
This verification was done on the global quantity W (d)
as we were unable to get local corrections on the history
field. In practice, no reversibility of the damage field was
observed in Section. 6.

5.3. Refinement criterion

Finally, it is necessary to establish a refinement crite-
rion that, given a particular crack topology, will allow for
the determination of a target mesh density that balances
the number of degrees of freedom with an appropriate
level of precision. In a finite element framework, one tra-
ditionally uses estimators relying on gradient quantities.
However, we employed a simpler approach, considering

damage as the critical field to describe. As a result, it
was imperative that the zone affected by damage was re-
fined to a very high degree. As stated, high lc/h ratios
had to be reached in the zone where damage localizes in
order to minimize the numerical error. Consequently, we
set the following refinement criterion: if d ≥ dAMR, then
h = hAMR, with the parameters:

1. dAMR: a threshold of damage that defines the bound-
ary of the damaged zone,

2. hAMR: a mesh size prescribed in this damaged zone.

It should be noted that elements for which d is under the
threshold dAMR may also be refined due to the ”2-to-1”
topological refinement transition.

At cycle N every element of the finite element mesh
where at least one nodal value of d exceeds dAMR, has
to be of size hAMR. Section 6 presents several values of
dAMR and hAMR having been tested in this context. For
a given crack, this mesh refinement criterion is illustrated
in Fig. 5. Here, we set dAMR = 0.1 and hAMR = lc/8. A
smooth transition between the coarse area and the refined
damage zone was achieved by refining successive layers of
elements along the damaged zone.

5.4. Algorithm for fatigue crack propagation

To ensure the accuracy of the solution, it is crucial to
evaluate the refinement criterion described in Section 5.3
at every computed step across the entire domain. As the
crack path is not known a-priori, we used an a-posteriori
verification of the criterion at the end of every computed
cycle. If the criterion was not respected, it meant that
during the cycle, the convergence of the coupled prob-
lem was achieved on a mesh that was not fine enough
to capture the damage field precisely. Consequently, the
mesh was further refined in the relevant zones, projec-
tion and balancing steps were carried out to recompute
the cycle on this new mesh. This process was repeated
until the criterion was respected at the end of the cycle.
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Figure 5: Illustration of the used refinement strategy on a given damage field

Since fatigue crack propagation occurs at a very slow rate
over the course of a cycle, it is expected that a limited
number of iterations will be necessary to attain a con-
verging mesh. In fact, with a cycle-by-cycle handling
of the lifetime prediction, an a-priori estimation can be
considered. However, in this work we showcase a cou-
pling between adaptive mesh refinement and cycle jump
schemes, introducing possible long jumps between two
computed cycles. In such cases, the damage zone can
propagate further than the refined zone during the cy-
cle jump procedure, rendering an a-posteriori criterion
check mandatory. This method of combining adaptive
mesh refinement with a phase-field model is similar to
the approaches outlined in references [24], [5] and [29], as
it involves using a damage criterion to drive a-posteriori
mesh refinement. However, as the method is used along
cycle jumps, we propose an AMR criterion check after
each jump.

It should be noted that for some numerical cases in
Section 6, a cycle-by-cycle approach was used. This meant
that step (4) of Algorithm 4 was not performed. In this
case, we verified the validity of the AMR criterion after
each computed cycles. The implementation of this algo-
rithm will be tested successively on both fixed pre-refined
meshes and on coarse meshes that have been refined using
AMR during propagation. This will allow for an individ-
ual investigation of the mesh refinement and cycle jump
schemes.

6. Numerical examples

This section incrementally introduces the adaptive mesh
refinement and cycle jump techniques through the exam-
ination of well-known benchmark cases. Several 2D ge-
ometries are presented to investigate the proposed cou-
pling in terms of precision and efficiency. Additionally,
different crack propagation mechanisms are reproduced
to showcase the method’s flexibility.

Unless otherwise specified, the presented numerical
models do not use the spectral split introduced in Eq.(6),
and employ the asymptotic degradation function (9) and
2D plane strain conditions. Two measures of crack length
were considered. One was calculated by searching for the

Algorithm 4 Cycle jump crack propagation with AMR

1: for N = 1, Nmax do
2: while Refinement criterion is not respected do
3: Computation at cycle N : Alg. 1
4: Cycle jump scheme to N +∆N : Alg. 2
5: Check refinement criterion at N +∆N
6: if Remeshing is needed then
7: Remeshing operations
8: Projection of the fields at N : Alg. 3
9: Balancing step at N

10: Restart step (3) at N
11: else
12: Go to next computation step N+∆N quit
13: end if
14: end while
15: end for

maximum extent of the damaged zone with d ≥ 0.95,
and the second, with a measure of crack area, defined in
Eq.(4). The former approach was used when only one
crack propagates in mode I, i.e., the first 3 samples.

In a majority of the numerical examples presented, a
crack was initialized with a ”double-node” configuration,
signifying that a finite element mesh includes a discrete
geometric representation of the crack. Conversely, on the
coalescing crack examples, initial cracks were set by en-
forcing a Dirichlet condition d̂ = 1 on the relevant nodes.
The examination of how the choice of the crack initializa-
tion method impacts the structural response is not within
the scope of this work. However, for those who are in-
terested, reference [30] explores and compares multiple
damage initialization methods, while reference [33] inves-
tigates the effect of different phase-field formulations and
initialization approaches.

6.1. Single edge notched tensile test

In order to validate the proposed phase-field fatigue
implementation, we compared results on the single edge
notched tensile test [10, 32]. Geometry, boundary condi-
tions and initial crack position are shown in Fig. 6a. The
following material properties were used: E = 210 GPa,
ν = 0.3, lc = 4 ·10−3 mm, Gc = 2.7 N/mm, αT = Gc

12·lc =

5.625 ·107 N/m2. To study fatigue crack propagation, we
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Figure 6: Geometry, boundary conditions used for the single edge notched tensile test

employed a cyclic loading: a periodic displacement of am-
plitude ûmax = 2 · 10−3 mm and load ratio of −1. It
should be noted that the load ratio is defined as the ratio
of minimum and maximum loads in one cycle: ûmin/ûmax.

Cycle jump was not used. We compared the results on
a fixed mesh refined on the expected crack path prior to
the simulation against a mesh updated during crack prop-
agation using the adaptive mesh refinement tool. The
AMR tools were set up with dAMR = 0.1 and hAMR =
lc/8. The two cases are compared in Fig. 7d,e.

The comparison of the evolution of the crack length
with the literature is shown in Fig. 8. Our implementa-
tion was in good agreement with previous results [10, 32].
Additionally, using the proposed mesh refinement tool,
the computing time was divided by more than 3 as com-
pared to the case with an a-priori refined mesh. Some
insights into the absolute computing time of the imple-
mented framework on Cast3M is provided in Table 1.
Those computations were executed on 4 cores of a ma-
chine with an AMD EPYC 7281, 2.1 GHz CPU.

AMR Computing time Degrees of freedom
Yes 11h25 From 2000 to 20000
No 38h20 20000

Table 1: Absolute computing time on SEN

We studied the influence of both AMR criteria on the
relative error in the crack area between AMR and initially
refined meshes (PR). This relative error is defined as:

ErrorA(d) =
|APR(d)−AAMR(d)|

APR(d)
(31)

Fig. 9 illustrates the error convergence rate with re-
spect to dAMR and hAMR criteria. The plotted data in
Fig. 9b suggests that the hAMR criterion significantly im-
pacted the accuracy of computed results. However, Fig.

9a shows that the precision was less affected by the dAMR

criterion as opposed to the hAMR criterion. These results
were expected [42, 46], as a very fine mesh size relative to
the length scale was required in order to reach a decent
precision. On the other hand, strong refinement further
away from the damaged zone was less relevant in order
to precisely compute the crack propagation, as illustrated
by the low influence of dAMR for dAMR < 0.5.

6.2. Mode I crack opening in an infinite plane

Another usual benchmark of fracture mechanics was
then studied: mode I opening of a crack in a quasi-infinite
plane. The geometry and boundary conditions for this
next sample are illustrated in Fig. 10. Only a quarter
of the sample was modeled because of symmetry with a
refinement of h = lc/8 in the expected damage zone. We
used the following material properties: E = 210 GPa,
ν = 0.3, lc = 0.1 mm, Gc = 2.7 N/mm, αT = Gc

12·lc .
The first part of the study focused on the precision

and efficiency of the cycle jump scheme by itself, which is
why adaptive mesh refinement was not used in this exam-
ple. The fixed mesh was refined prior to the simulation
on the expected crack path. A cyclic stress is enforced on
its upper boundary with a loading ratio of 0 and a load
amplitude of ∆σ2 = 40 MPa. The resulting crack area
and cycles per computed time steps with varying ∆N are
compiled in Fig. 11. As observed in Ref. [37] the cycle
jump scheme was able to recover cycle-by-cycle results
independently of the number of extrapolated cycles ∆N .
However, it suffered from convergence issues if a large
∆N was used. Indeed, for larger numbers of jumped
cycles, many more implicit iterations are required. At
∆N values of 240 and 120, which correspond to approx-
imately 20% and 10% of the total lifetime respectively,
non-convergence issues were observed at 700 cycles and
1700 cycles, indicating an acceleration in the rate of fa-
tigue crack propagation. This finding highlights the po-
tential benefits of setting an adaptive value for ∆N using
a criterion such as the one described in Ref. [37]. In the
event that non-convergence was seen in the cycle jump
iteration scheme, we reset the computed time step by us-
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Figure 7: Visualization of the adaptive mesh refinement tools on the single edge notched specimen. a,b,c,d illustrate the adaptively refined
solution. a) Damage field on the half-specimen b) Damage field and adaptive mesh in the red zone at cycle N = 50 c) Damage field and
adaptive mesh in the red zone at cycle N = 100 d) Adaptively refined mesh at N=200 e) Fixed mesh refined prior to the simulation
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Figure 8: Length of the crack - comparison with fatigue phase-field
literature

ing a smaller ∆N value. The gains in computing time
are compiled in Table 2. The acceleration factor is here
defined as unaccelerated computing time T 0 over cycle
jump accelerated computing time T cj.

Loading case ∆N Acceleration
factor (T 0/T cj)

∆σ2 30 4.12
∆σ2 60 4.83
∆σ2 120 4.56
∆σ2 240 4.01

Table 2: Efficiency improvements compared to cycle-by-cycle cal-
culation, on a fixed mesh

Loading case ∆N Acceleration
factor (T 0/T cj+R)

∆σ2 Cycle by cycle 2.34
∆σ2 30 7.79
∆σ2 60 11.69
∆σ2 120 8.44
∆σ2 240 6.98

Table 3: Computing gains with cycle jump and AMR tools com-
pared to cycle by cyle on a pre-refined mesh

The same process was carried out with adaptive mesh
refinement. Hereafter, dAMR = 0.1 and hAMR = lc/8
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Figure 10: Geometry of the sample

were used as the criteria of refinement. First, results
with AMR are compared to results without AMR, hence,
the same loading was initially applied. Multiple values of
∆N were tested and precise results were again recovered
almost independently of ∆N : the crack area and com-
puted cycles per propagation step are plotted in Fig. 12.
However, similar issues of slow convergence of the cycle
jump scheme were observed. Furthermore, convergence
was even slower and a computing gain threshold was seen
for lower values of ∆N . Indeed, with cycle jump, i mesh
refinement iterations signified that the cycle jump scheme
was restarted i times which could induce a large number
of computed cycles per propagation step as is illustrated
in Fig. 12b. In this context, an adaptive value of ∆N
seemed even more relevant to avoid such issues. Addi-
tionally, in the case of multiple mesh refinement itera-
tions, ᾱN+∆N can be projected and stored to be used
as a first estimate of the iterative scheme instead of the
explicit extrapolation (29). Such operations slightly re-
duced the number of iterations of the cycle jump scheme

for each further mesh refinement step. As before, gains in
computing time were compiled in Table 3, where the ac-
celeration factor was defined as unaccelerated computing
time T 0 over cycle jump and AMR accelerated computing
time T cj+R.

Successive images of the damage field and mesh dur-
ing propagation with AMR and cycle jumps, are provided
in Fig. 13. Every image corresponds to one propagation
step.

Finally, we wished to investigate the scalability of the
method in the case of larger fatigue lifetimes. Hence,
three other applied loadings were tested, ∆σ1 = 60 MPa
∆σ3 = 20 MPa, ∆σ4 = 10 MPa. Gains in computing
time for these three cases are compiled in Table 4. The
acceleration factor was here defined as the AMR cycle-by-
cycle computing time TAMR over AMR and cycle jump
accelerated computing time T cj+R.

The performed computations induced four different
crack propagation speeds, illustrated in Fig. 14a. As
demonstrated by Carrara et al. [10], the fatigue model
used in this study exhibited characteristics consistent with
the Paris law theory. This implies that a linear regime
dependent on material properties can be identified when
plotting the crack propagation speed (da/dN) against the
variation in stress intensity factor (∆K). Indeed, for the
four loading scenarios resulting in the crack growth plot-
ted in Fig. 14a, we followed the guidelines of ASTM re-
called in Carrara et al. [10], to identify the related crack
growth rate curves. We observed a load-independent lin-
ear regime, as can be seen in Fig. 14b., that we related
to a Paris regime.

6.3. Compact tension sample

In this section we follow the process of Gibert [16],
where a compact tension (CT) geometry is studied nu-
merically and experimentally. Subsequently, to examine
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Figure 11: Study of the influence of ∆N on a pre-refined mesh
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(b) Cycles computed per propagation step

Figure 12: Study of the influence of ∆N on an adaptively refined mesh
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Figure 13: Visualization of the adaptive mesh refinement coupled with cycle jump tools on the crack in an infinite plane.
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Figure 14: Observation of a linear regime independent of applied load
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Loading case ∆N Acceleration
factor (TAMR/T cj+R)

∆σ1 10 1.20
∆σ1 15 1.15
∆σ1 35 1.12
∆σ1 70 1.12

∆σ2 30 2.85
∆σ2 60 4.99
∆σ2 120 2.98
∆σ2 240 3.32

∆σ3 212 16.73
∆σ3 525 18.87
∆σ3 1050 14.61
∆σ3 2100 14.09

∆σ4 2500 113.35
∆σ4 5000 157.52
∆σ4 10000 136.13
∆σ4 20000 130.83

Table 4: Computing gains with cycle jump and AMR tools, com-
pared to cycle-by-cycle/AMR

the impact of mixed mode crack propagation, a hole was
punched in a CT geometry similar to the one used in
the previous analysis. Accordingly, in our work, the CT
geometry was used to calibrate the model. Then, the per-
forated geometry was employed to evaluate the predictive
ability of the model with this calibration.

As shown for the previous numerical sample, a Paris
regime can be associated to numerical parameters. Hence
it is possible to fit those parameters to specific mate-
rial coefficients for Paris’ law and reproduce experimental
data. Such a fit, in the context of numerical-experimental
comparison, was done in the following references [18], [37]
and [22]. As a matter of fact, in this last reference, the au-
thors underlined the high computational cost associated
with the calibration of Paris’ law, justifying the need for
accelerating methods such as cycle jump schemes.

Consequently, in this section we fit numerical param-
eters of the phase-field fatigue model to material coeffi-
cients obtained experimentally in Ref. [16] on a CT sam-
ple. Using these fitted parameters, the perforated CT
sample was then simulated under similar loading con-
ditions. Finally, the computed and experimental crack
paths were compared.

To enable flexibility of the numerical fit, we used Car-
rara’s logarithmic degradation function (10) which gave
us two degrees of freedom to influence the fatigue degra-
dation function: αT and κ. It should be noted that the
physical meaning of the brittle phase-field numerical pa-
rameters, i.e., Gc and lc, while actively debated in the
literature, remain out of the scope of the present work.
Indeed, the numerical fit was carried out by optimizing
the values of Gc, lc, αT and κ simultaneously.

Figure 15: Initial mesh and boundary conditions

The CT sample was first modeled to observe the in-
fluence of the given parameters on the Paris regime. The
geometry of the sample is shown in Fig. 19 (without the
hole) and the used mesh is given in Fig. 15. The thickness
of the experimental sample was 12.5 mm, and a 2 mm pre-
crack was created prior to the experimental study. The
material parameters used were: E = 210 GPa, ν = 0.3.
Using the process illustrated in Fig. 14b, three loading
scenarios were computed for the same geometry and the
crack growth rate curves were extracted. The material
coefficients related to Paris’ law were then deduced by
identifying the emerging linear regime. Denoting C and
m the Paris law coefficients in Fig. 1, we found similar
results to those of Seles et al. [58]: a correlation between
αT and C and a correlation between κ and m. Fig. 16
and Fig. 17 show plots of the linear regime computed
respectively for varying κ and varying αT .

The physical interpretation of the numerical parame-
ters was not a factor in the applied fit.The four coupled
unknowns, d, Gc, κ and αT where tuned in order to reach
a good correspondence between the fitted model and the
experimental results in Ref.[16]. In this process, we used
the link between Paris law coefficients and κ, αT to fine-
tune initial results.

Accordingly, we fit our model to the experimental re-
sults of Ref. [16], with lc = 0.1 mm, Gc = 80 N/mm,
αT = 109 N/m2 and κ = 0.8. With those fitted param-
eters, an applied loading of F̂max = 20 kN and a loading
ratio of 0.1, we reproduced the experimental results of
crack length with respect to the elapsed cycle in Fig. 18.

Finally, the fitted numerical parameters are applied to
the perforated CT model. The same loading of F̂max =
20 kN, and loading ratio 0.1 were emplowed. Following
Ref. [16], two hole diameters were tested on the CT ge-
ometry. The geometry of the sample with the hole is
presented in Fig. 19. The position and diameter of the
hole used in the analysis are summarized in Table 5. We
studied the influence of the hole diameter on the crack
path by running two simulations of the perforated CT.

In Geometry 1, the crack deviated slightly from its
usual path. In contrast, the crack was completely at-
tracted to the hole in Geometry 2, where a larger hole
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Figure 16: Influence of κ on identified Paris law
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Figure 17: Influence of αT on identified Paris law
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Figure 18: Length of the crack with the compact tension geometry

had been drilled. These experimental observations were
reproduced numerically with the previous fit. Fig. 20,
illustrates this numerical-experimental comparison. On
the left, we see the numerical results of the proposed
model superimposed with the experimentally obtained
cracks represented as black dashed lines. On the right,
we picked figures from Ref. [16]. The experimentally mea-
sured displacement field is shown superimposed with the
author’s numerical results in white. One can see that a
different initial crack height was recovered as the param-
eters of the hole given in Table 5, were slightly differ-
ent from the final experimental geometry, due to usage
of a low precision machining process [16]. Finally, im-
ages of the damage field on the adaptively refined meshes
are illustrated in Fig. 21. These numerical observations
showed that a given Paris law fit could be transferred to
another geometry with this model, and still yield relevant
results.

It should be noted that no precise prediction could be
made in this study. Firstly, as indicated in Ref. [16], plas-
tic effects played a significant role on the results obtained
for this material under the given loading conditions on
the CT sample. Additionally, in the current fitting pro-
cess, the choice of lc and Gc was arbitrary, although they
could typically be linked to fracture mechanics quantities
in case of brittle fracture. Ultimately, this study serves
as a proof of concept where the experimental results were
qualitatively reproduced through the use of AMR and cy-
cle jump acceleration in the numerical fit of the perforated
CT.

x1 y1 d1
Geometry 1 18 mm 7 mm 4 mm
Geometry 2 18 mm 7 mm 5.3 mm

Table 5: Geometric properties of the holes, from Ref. [16]
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Figure 19: Compact tension specimen geometry, with a hole (in
mm)

6.4. Crack branching

We wanted to show that the crack branching phe-
nomenon could be simulated by the present model and
guarantee accuracy with the AMR and cycle jump cou-
pling. Therefore, we introduced a case study inspired
by Molnár & Gravouil [46], where a notched bi-material
sample was used to display crack branching. Here, the bi-
material illustrated in Fig. 22 consisted of two fictive ma-
terials differentiated by their fatigue threshold αT . DUr-
ing cyclic loading, we anticipated crack propagation to
occur perpendicular to the load direction until the inter-
face between the upper and lower materials was reached.
Once this point was attained, crack branching was ob-
served due to the inability of damage to occur in the
much tougher upper material.

Other than αT , both materials had the same proper-
ties: E = 210 GPa, ν = 0.3, lc = 0.3 mm, Gc = 1 N/mm.
A cyclic loading of maximum amplitude 4 · 10−3 mm and
load ratio 0 was applied.

A pre-refined mesh was utilized for cycle-by-cycle time
discretization. It was refined on the expected crack path
and the bi-material interface with h < lc/2 in the refined
zone. Next, a model is employed with a pre-refined mesh
limited to a small zone around the initial crack tip. A
similar density of element hAMR < lc/2 was enforced,
and ∆N = 200 cycles was initially used.

Fig. 23 compares the crack areas for the two mod-
els as a function of elapsed cycles. In this scheme we
can observe the multiple crack propagation regimes that
the present geometry enabled. Indeed, from cycle 0 to
8500, tensile fatigue crack propagation was observed until
the crack reaches a critical length that triggered unstable
propagation. As previously demonstrated, the current
model could simulate both fatigue crack propagation and
unstable brittle fracture [10]. For this particular geome-
try, we demonstrated that our implementation could also

reproduce such cases, even with the aid of AMR and cycle
jump tools. It should however be noted that uneven dam-
aged zones were present on the unstable crack pattern in
Fig. 24, revealing issues in the present algorithm in the
case of unstable crack propagation. Still, these spurious
results seemed to have a minimal effect on precision as
shown in Fig. 23 where a small deviation was observed at
instability.

Finally, when the crack reached the interface of the
bi-material, it branched. At this interface, crack prop-
agation slowed down significantly and we could observe
the creation of two crack tips propagating in opposite
directions. The evolution of the mesh with AMR and
cycle jump tools is represented in Fig. 25. These nu-
merical experiments confirmed the ability of the model
when it comes to dealing with multiple crack tips and the
crack branching phenomenon, without additional treat-
ment. Furthermore, we observed that the accelerated
model ran 3.55 faster than the cycle-by-cycle fixed mesh
model.

6.5. ”En-passant” geometry

This section investigates the precision and gain in
efficiency of the method on a complex multi-crack sce-
nario. Inspired by references [46], [56] and [55], the
”en-passant” geometry was used to combine mixed mode
propagation and crack coalescence. Geometry and bound-
ary conditions are detailed in Fig. 26a. Contrary to all
other numerical samples, the initial crack was not pre-
scribed as double nodes, but as Dirichlet conditions d̂ = 1
on initially damaged nodes. Material properties were
Gc = 2.7 N/mm, lc = 5 · 10−3 mm, αT = 540 N/m2,
E = 210 GPa and ν = 0.3 . A cyclic loading was applied
to the upper edge of the amplitude ∆u = 5 · 10−4 mm
and the loading ratio was 0. We compared results ob-
tained on a fixed mesh refined prior to the simulation with
h < lc/2 in the refined zone, and ∆N = 500, to results
obtained with AMR such that dAMR = 0.1, hAMR < lc/2
and ∆N = 2000. The initial meshes are illustrated in
Fig. 26b.

The computed area of the crack is provided in Fig. 27,
and the damage fields on successive meshes are compiled
in Fig. 28. The crack area and pattern were very close
in both configurations. Moreover, the expected crack in-
teractions are recovered and were found to be similar:
the crack tips repelled each other before an attracting
phase. These observations were in line with the refer-
enced experimental and numerical simulations [46], [55].
It should be noted that the fully accelerated simulation
(AMR and cycle jump, with ∆N=2000) ran more than
twenty times faster than the semi-accelerated simulation
(No AMR and ∆N=500).

6.6. Crack nucleation

On this last numerical sample we wanted to show
that the current framework was able to recover cases of
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Figure 20: Comparison of crack paths with the numerical fitted model (left) and experimental-numerical results by Gibert [16] (right).
The first row corresponds to geometry 1 and the second row to geometry 2.

Figure 21: Meshes obtained with Algorithm 4 on geometry 1 (left column) and geometry 2 (right column).
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Figure 23: Area of the crack with and without acceleration tools

crack nucleation with no initial crack tip, notch or dam-
aged zone. Indeed, the ability to model fatigue crack nu-
cleation and growth in a single framework could bridge
the gap between usual complete fatigue life analysis and
fatigue crack propagation methods. In order to trig-
ger crack nucleation in a homogeneous unbroken struc-
ture we mirrored the following references [61, 47, 10, 54],
that investigated crack nucleation on a periodically per-
forated plate: the geometry and boundary conditions
are compiled in Fig. 29. The material properties were
E = 12 GPa, ν = 0.3, lc = 0.01 mm, Gc = 1.4 N/mm,
αT = 6.48 N/m2. A cyclic displacement was enforced on
the upper edge which compressed the structure, ûmax =
−2 · 10−3 mm with a load ratio of 0. On this sample the
spectral split introduced in Eq.(6) was used.

A mesh pre-refinement equivalent to h < lc/3 was
enforced around the holes. During computations, the fol-
lowing criteria were used hAMR < lc/6, dAMR = 0.1 and
∆N = 20. Fig. 30. shows an image of the damage field
after crack initiation. As was observed experimentally,
vertical crack patterns emerged in most holes. However,
spurious zones of damage were also seen perpendicular
to the applied loading and on a cross pattern centered
around the hole. These results were in line with Ref. [47]
(where a spectral split was also used, on a brittle fracture
case, i.e., with a monotonous loading).

By contrast, experimental studies of such a geometry
on a quasi brittle material only showed vertical cracks
[61]. In fact, these spurious damaged zones were due to
the adopted spectral split, which, as observed in the lit-
erature, is not always well suited to discriminate between
compressive and tensile loadings [23], [60]. In Carrara
et al. [10], a so-called ”no tension” split [15], was used
to model quasi brittle materials. As opposed to the spec-
tral split, it enabled a good recovery of experimental data
on this specific geometry: vertical cracks were observed,
with no spurious damage in the compressive zones.

These results pointed at the fact that crack nucleation
and crack growth were indeed recovered by the proposed
algorithm, even in the presence of AMR and cycle jump
schemes. Moreover, this sample highlighted the deficien-
cies of the spectral split, as well as the need for a rele-
vant energy decomposition scheme to reproduce specific
experimental results.

7. Conclusion

This work aimed at accelerating computations of high-
cycle fatigue simulations with the most used fatigue ex-
tension of the phase-field model: a phenomenological ap-
proach based on Carrara et al. [10]. To achieve efficiency
gains, time discretization was first optimized through the
use of a cycle jump scheme that enabled extrapolation
of large chunks of cycles during propagation. An it-
erative approach based on Loew et al. [37] was imple-
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Figure 24: Damage field after 25000 cycles on base model (left), and accelerated model (right)

mented to skip cycles while keeping a predefined accu-
racy. Then, space discretization was optimized through
adaptive mesh refinement tools designed specifically for
this phase-field formulation. With this tool, a relevant
mesh was constructed during crack propagation to keep
a low number of degrees of freedom while recovering a
good approximation of the solution. Finally, a coupling
between all the introduced tools was proposed.

The new algorithm enabled significant computing gains
by skipping large numbers of cycles, while simultaneously
refining the mesh adaptively. The influence of the nu-
merical parameters on accuracy and efficiency was stud-
ied against multiple numerical benchmarks. Addition-
ally, several 2D geometries were simulated to illustrate
the flexibility of the implementation and its ability to
recover crack branching, kinking, coalescence and even
nucleation. For all these examples, expected crack paths
were recovered with the coupled accelerating tools, while
reaching an acceleration factor of up to 157 compared
to cycle-by-cycle simulations on the computed cases (see
Table 4). This factor is extremely case dependant, and a
general expression for the acceleration factor of AMR, cy-
cle jump and their coupling is hard to define. On the one
hand, AMR seems to enable an acceleration factor that
can reach half an order of magnitude, on the other hand,
as specified in Loew et al. [37], the cycle jump approach
enables larger computing gains as the total life increases.
We can hence expect larger gains for real-life application
of this acceleration approach. Finally, the Paris regime
emerging from the used fatigue extension was used to
fit the model on an experimental sample. Again, crack
paths were predicted quantitatively, and the algorithm

that was put forward enabled a significant acceleration
of the process.

However, the current implementation could be im-
proved further by adding an adaptive choice of ∆N in
order to optimize the number of computed cycles. Fur-
thermore, a 3D extension of this work is planned in order
to accelerate the 3D computations. It should be noted
that such an extension would not require additional nu-
merical treatment. Finally, the proposed coupling could
be used to investigate more complex fatigue phenomena,
such as plastic effects and mean load effects, which could
expand the applicability of the algorithm to realistic cases
of fatigue crack initiation and propagation. In fact, recent
works in Refs. [1, 19], done on phase-field fatigue mod-
eling, expand on the constitutive choices of the model in
order to add those fatigue effects in a unified framework.
Those extensions of the model would still allow the pre-
sented accelerating framework to reduce computing time,
and would hence be an interesting perspective for future
works.
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Figure 25: Damage field on successive meshes for the AMR and
cycle jump accelerated model
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Figure 28: Damage field on successive meshes for the AMR and cycle jump accelerated model
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Appendix A. Finite element discretization

The numerical solutions were found by writing the weak form of the mechanical problem (17a), (17b), (17c) and
damage problem (20), (17e) in a finite element method setting. We therefore introduce the shape functions N and
gradient B, associated with u and d respectively, and approximate these fields as vectors of discrete nodal values in
Voigt Notation:

u = Nu · u , ∇u = Bu · u , (A.1)

d = Nd · d , ∇d = Bd · d. (A.2)

Mechanical problem.

A damaged influenced mechanical problem is first solved iteratively, as the energy decomposition (6) introduces
non-linearity. We write the equilibrium (17a), (17b), (17c) in this discrete setting as:

Ru = Fint − Fext , (A.3a)

=

∫
Ω

BT
uσ dV −

∫
Ω

NT
ubdV +

∫
∂Ωt

NT
u t dS, (A.3b)

where σ is the damaged stress vector in Voigt notation. Finding the solution at time step n is achieved with
a Newton-Raphson algorithm implying iterations of index j. We gradually add corrections to the initial solution
un = un−1 +Σjδu

j
n: here we decompose the total correction ∆uj

n = Σjδu
j
n. Using these symbols, we express that at

each iteration j, a linearized form of equation (A.3) is solved:

Kj−1
u · δuj = −Rj−1

u . (A.4)

With a tangent matrix for the mechanical problem expressed as:

Kj−1
u =

∫
Ω

BT
uC

j−1Bu dV, (A.5)

where Cj−1 corresponds to a damaged material’s stiffness matrix whose computation is detailed in Ref. [45]. As C
is defined at the integration points of the finite element mesh, damage influences the material’s stiffness through these
supports. Consequently, at every mechanical computation step, nodal damage d is interpolated at the integration
points. Furthermore, the resulting damaged material’s stiffness matrix C is updated at each internal iterations j.

Phase-field damage problem.

In this weakly coupled finite element setting, the damage problem stays linear, with respect to d such that at each
time step n we solve:

Kd · dn =

∫
Ω

NT
d 2H dV , (A.6)

with a phase-field stiffness matrix at the time step n defined as:

Kd =

∫
Ω

NT
d

(
2H +

GF

lc

)
Nd +BT

d (GF · lc)Bd dV. (A.7)

Note that, as in the previous section, the coupling with the mechanical fields is done via quantities defined at the
integration points.
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Pañeda, E., 2022. A phase field model for hydrogen-assisted
fatigue. International Journal of Fatigue 154.

[19] Golahmar, A., Niordson, C.F., Mart́ınez-Pañeda, E., 2023. A
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[62] Tanné, E., Li, T., Bourdin, B., Marigo, J.J., Maurini, C., 2018.
Crack nucleation in variational phase-field models of brittle
fracture. Journal of the Mechanics and Physics of Solids 110,
80–99.

[63] Ulloa, J., Wambacq, J., Alessi, R., Degrande, G., François,
S., 2021. Phase-field modeling of fatigue coupled to cyclic
plasticity in an energetic formulation. Computer Methods in
Applied Mechanics and Engineering 373.

[64] Wick, T., 2016. Goal functional evaluations for phase-field
fracture using PU-based DWR mesh adaptivity. Computa-
tional Mechanics 57, 1017–1035.

[65] Wu, J.Y., Nguyen, V.P., 2018. A length scale insensitive phase-
field damage model for brittle fracture. Journal of the Mechan-
ics and Physics of Solids 119, 20–42.

[66] Zhou, S., Zhuang, X., 2018. Adaptive phase field simulation
of quasi-static crack propagation in rocks. Underground Space
3, 190–205.

27


	Introduction
	Phase-field fatigue model
	Phase-field basics
	Crack growth in compression
	Fatigue effects
	Coupled problem statement
	Damage irreversibility

	Staggered algorithm for the computation of one cycle
	Cycle jump schemes
	Iterative cycle jump scheme

	Mesh refinement strategy
	Mesh refinement method
	Projection process
	Refinement criterion
	Algorithm for fatigue crack propagation

	Numerical examples
	Single edge notched tensile test
	Mode I crack opening in an infinite plane
	Compact tension sample
	Crack branching
	"En-passant" geometry
	Crack nucleation

	Conclusion
	Finite element discretization

