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Abstract—Modern scientific workflows require hybrid infras-
tructures combining numerous decentralized resources on the
IoT/Edge interconnected to Cloud/HPC systems (aka the Com-
puting Continuum) to enable their optimized execution. Under-
standing and optimizing the performance of such complex Edge-
to-Cloud workflows is challenging. Capturing the provenance of
key performance indicators, with their related data and processes,
may assist in understanding and optimizing workflow executions.
However, the capture overhead can be prohibitive, particularly in
resource-constrained devices, such as the ones on the IoT/Edge.

To address this challenge, based on a performance analysis of
existing systems, we propose ProvLight, a tool to enable efficient
provenance capture on the IoT/Edge. We leverage simplified
data models, data compression and grouping, and lightweight
transmission protocols to reduce overheads. We further integrate
ProvLight into the E2Clab framework to enable workflow prove-
nance capture across the Edge-to-Cloud Continuum. This inte-
gration makes E2Clab a promising platform for the performance
optimization of applications through reproducible experiments.

We validate ProvLight at a large scale with synthetic work-
loads on 64 real-life IoT/Edge devices in the FIT IoT LAB testbed.
Evaluations show that ProvLight outperforms state-of-the-art
systems like ProvLake and DfAnalyzer in resource-constrained
devices. ProvLight is 26—37x faster to capture and transmit
provenance data; uses 5—7x less CPU; 2x less memory; transmits
2x less data; and consumes 2—2.5x less energy. ProvLight [1] and
E2Clab [2] are available as open-source tools.

Index Terms—Provenance, Lineage, Workflows, Edge, IoT,
Computing Continuum.

I. INTRODUCTION

Data processing and Artificial Intelligence (AI) workflows
can no longer rely on traditional approaches (due to resource
usage, latency, and privacy constraints) [3] that send all data
to centralized and distant Cloud datacenters for processing
or AI model training [4]. Instead, they need to leverage
hybrid (decentralized) approaches that take advantage of the
numerous resources close to the data generation sites (i.e., on
the edge of the network) to promptly extract insights [5] and
satisfy the ultra-low latency requirements of applications.

This hybrid approach contributes to the emergence of the
Computing Continuum [6] (or the Edge-to-Cloud Continuum

or the Transcontinuum). It seamlessly combines resources
and services at the center of the network (e.g., in Cloud
datacenters), at its edge, and in-transit, along the data path.
Typically, data is first generated and preprocessed (e.g., model
training with local data) on IoT/Edge devices. Then, data is
transferred to (HPC-enabled) Clouds for Big Data analytics,
AI model training, and global simulations. For instance, in
Federated Learning (FL) model training, a central Cloud server
collects data (model updates) from multiple decentralized
Edge devices, then it generates a single accurate global in-
ference model.

Due to the complexity incurred by application deployments
on such highly distributed and heterogeneous Edge-to-Cloud
infrastructures, realizing the Computing Continuum vision in
practice is challenging. Deploying, analyzing, and reproducing
performance trade-offs and optimizing large-scale, real-life
applications on such infrastructures is difficult [3]. It requires
configuring a myriad of system-specific parameters (e.g., from
AI and Big Data systems) and reconciling many requirements
or constraints in terms of energy consumption, network ef-
ficiency, and hardware resource usage, to cite a few [7]. In
recent works, these challenges have been mainly explored by
systems like Pegasus [8], E2Clab [9], Delta [10].

The process of understanding, optimizing, and reproduc-
ing complex Edge-to-Cloud workflows may be assisted by
provenance data capture. ”Provenance data” refer to a record
trail that accounts for the origin of a piece of data together
with descriptions of the computational processes that assist in
explaining how and why it was generated [11]. Capturing
provenance data during workflow execution helps users in
tracking inputs, outputs, and processing history, allowing them
to steer workflows precisely [12].

For instance, considering a Federated Learning model train-
ing workflow executed on distributed devices on the Edge, the
captured data during model training helps answer questions
like: (i) What are the elapsed time and the training loss in
the latest epoch for each hyperparameter combination? [13],
[14] or (ii) Retrieve the hyperparameters which obtained the



3 best accuracy values for model m? [14], [15]. Answering
such queries helps to analyze hyperparameter values related to
the training stages and to adjust them for better-quality results.

A. Challenges and Novelty

Overhead in provenance systems is a critical problem that
must be assessed [16]. Many other contributions in provenance
systems evaluate the overhead, such as [17], [18]. Overhead
is even more critical in edge devices because of resource con-
straints and power consumption. For this reason, we decided
to focus on evaluating overhead in our work. In [19], leading
database researchers discussed the challenges of deploying
services considering disaggregation and high heterogeneity of
resources in hybrid cloud infrastructures. In [20], the authors
describe challenges related to capturing provenance on the
Edge-to-Cloud Continuum.

The main state-of-the-art provenance systems were designed
to run on Cloud/HPC infrastructures. We highlight that we
have not found in the literature reference systems tailored
for IoT/Edge devices. Therefore, this work refers to systems
well-known for their low provenance capture overhead in
Cloud/HPC, such as DfAnalyzer [18], ProvLake [17], and
PROV-IO [21]. We also include Komadu [22] in our analysis,
as it is also compared within the aforementioned works.

Enabling provenance data capture with low overhead in
resource-constrained IoT/Edge devices cannot be easily
achieved by existing provenance systems, calling for practical
solutions beyond the state-of-the-art. For instance, it requires
the design and development of novel capture approaches
focusing on the hardware limitations of IoT/Edge devices, as
proposed in this work.

B. Contributions

We make the following contributions:
1) The first research question we aim to answer is: How Do

the Existing Provenance Systems Perform in IoT/Edge
Devices? We address this research question by providing
an experimental evaluation of existing provenance sys-
tems along with a detailed discussion in Section III.

2) As our experiments concluded that the state-of-the-art
systems present high overheads to capture provenance
data in IoT/Edge devices, we propose a novel work-
flow provenance data capture approach tailored for
resource-limited IoT/Edge devices, that addresses the
limitations found in the state of the art (Section IV).
ProvLight is an open-source implementation of this
approach (available at [1]), following the W3C PROV-
DM recommendations.

3) An integration of ProvLight within the E2Clab auto-
matic deployment and performance optimization frame-
work. This enables provenance data capture across the
Computing Continuum for hybrid workflows deployed
on both IoT/Edge and Cloud/HPC infrastructures. To
the best of our knowledge, this enhanced version of
E2Clab is the first framework to support the end-to-
end provenance data capture of complex workflows

Fig. 1: PROV-DM: The W3C PROV Data Model [28].

executed on the Edge-to-Cloud Continuum (Section V).
This integration with E2Clab is an open-source tool avail-
able at [2]. We highlight that, ProvLight may be easily
integrated into other deployment and performance
optimization systems/frameworks.

4) A large-scale experimental validation of ProvLight with
synthetic workloads on 64 real-life IoT devices (from the
FIT IoT LAB [23] testbed) and Cloud resources (from
the Grid’5000 [24] testbed). Experimental evaluations
show that ProvLight outperforms (i.e., lower capture
overhead) DfAnalyzer and ProvLake systems in terms of
capture time, CPU and memory usage, network usage,
and power consumption (Section VI).

II. BACKGROUND

This work focuses on provenance systems leveraging the
user-defined capture approach [25], [26]. This approach
allows users to define what to capture by workflow script
instrumentation through capture libraries. We highlight that
script instrumentation (e.g., adding logging calls) is a common
practice in distributed systems, particularly to assist debug-
ging. In provenance capture, many other approaches rely on
script instrumentation [17], [26], [27]. A good practice to
promote data interoperability is that such libraries should
follow provenance specifications like the PROV-DM recom-
mendation, as an example. Finally, the provenance capture
of Edge-to-Cloud workflows is a new topic that requires
automatic deployment tools like E2Clab.

A. PROV-DM: The PROV Data Model

PROV [29] is a specification to interchange provenance
information. PROV-DM [28] is the data model for the W3C
provenance family of specifications. It aims to promote data
interoperability from provenance management systems. Prove-
nance systems such as DfAnalyzer [18], ProvLake [17],
PROV-IO [21], Komadu [22], among many others, follow the
PROV-DM model.

Figure 1 illustrates the core elements of PROV-DM and their
relationships. PROV-DM provides an abstract representation
of provenance data derivations. Briefly described, the core
elements are: (i) Agent: refers to tools invoked on behalf



of users (e.g., software); (ii) Activity: refers to tasks (e.g.,
processing steps); and (i) Entity: refers to data objects (e.g.,
files, input parameters, etc.). Our capture approach also follows
the PROV-DM recommendation.

B. Capturing Provenance for Edge-to-Cloud Workflows

1) Edge-to-Cloud Computing Continuum: Edge infras-
tructures refer to computing and storage resources located
where the data originated. They consist of numerous smart
devices sensing ”what” is happening in the environment
and generating potentially huge data streams at potentially
high rates [3]. The Edge computing paradigm aims to push
intelligence to those devices and extract value from data in
real-time to improve response times while preserving privacy
and security (critical data is analyzed locally).

Cloud infrastructures provide virtually ”unlimited” comput-
ing and storage resources used essentially for backup and
data analytics for global insight extraction in centralized data
centers. Data is first ingested at high rates through dedicated
systems (e.g., Apache Kafka [30]) and analyzed by Big Data
processing frameworks (e.g., Spark [31]). They perform stream
and batch analytics on vast historical data, AI model training,
and complex simulations. The goal is to help understand
”why” the phenomena sensed at the Edge are happening.

2) Federated Learning Training Use Case: To illustrate
an Edge-to-Cloud application workflow, we refer to Federated
Learning model training. Federated Learning [32] is a col-
laborative machine learning paradigm that trains a centralized
model on decentralized and private data.

The Federated Learning architecture is composed of a
central server (typically deployed on the Cloud) and various
devices (deployed on the Edge). Edge devices first download
a global model from the cloud server and train it for several
epochs with their local data. After multiple rounds of model
updates, the results are sent to the cloud server for global
model aggregation. This training loop continues until the
global model achieves the desired accuracy [33].

Capturing provenance data of Federated Learning model
training at runtime helps scientists to track model training
inputs (e.g., hyperparameters), outputs (e.g., accuracy), and
processing history (e.g., training epochs). In this context,
captured data from each training epoch may refer to the hy-
perparameters (input data) followed by the respective accuracy
obtained from the training (output data). The goal is to allow
users to answer queries like the ones presented in Section I).
Analyzing hyperparameters along the model training allows
for adapting the training data and fine-tuning the model.
Provenance data traces also help in the interpretation and
reproducibility of the training results [14], [34].

C. E2Clab: Reproducible Edge-to-Cloud Experiments

E2Clab [35] is an open-source framework (available at [2])
that allows researchers to reproduce the application behavior
in a controlled environment to understand and to optimize
performance [9]. It sits on top of EnOSlib [36] and implements
a rigorous methodology (illustrated in Figure 2) for designing
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Fig. 2: E2Clab experiment methodology [35].

experiments with real-world workloads on the Edge-to-Cloud
Computing Continuum. Section V details how we extend
E2Clab to enable provenance data capture of Edge-to-Cloud
workflows. Figure 4 illustrates the extended architecture.

High-level features provided by E2Clab are (i) reproducible
experiments; (ii) mapping application parts (executed on Edge,
Fog, and Cloud/HPC) and physical testbeds; (iii) experiment
variation and transparent scaling of scenarios; (iv) defin-
ing Edge-to-Cloud network constraints; (v) automatic experi-
ment deployment, execution, and monitoring (e.g., on various
testbeds like Grid’5000 [24], Chameleon [37], and FIT IoT
LAB [23]); (vi) workflow optimization.

III. PROVENANCE SYSTEMS IN IOT/EDGE

In the literature, to the best of our knowledge, we have
not found provenance data capture tools tailored for IoT/Edge
devices. Capturing provenance data in such devices requires
using tools designed for Cloud/HPC resources. Therefore, in
this section, we assess their overhead for capturing data in
resource-limited computing resources.

A. Experimental Setup

a) Selected provenance systems.: Due to the limitations
of the PROV-IO and Komadu systems, shown in Table IV,
they were excluded from our performance analysis. We choose
ProvLake and DfAnalyzer because we have access to their
data capture components as open-source software. Since we
are limited to testing with the open-source version of these
systems, we cannot experiment with features that might de-
liver lower overhead but are not open-source. For instance,
ProvLake reports being able to use a different communication
protocol other than HTTP 1.1 for machine learning provenance
capture with low overhead in an HPC environment [14], but
this system version is not available as open-source.



TABLE I: Synthetic workload configurations.

Configurations to generate the synthetic workloads
Number of chained transformations 5

Number of tasks 100
Attributes per task 10 100

Task duration (s) 0.5 1 3.5 5

b) Performance metrics.: The main analyzed metric
is the capture time overhead, which refers to the relative
difference of the workflow execution time with and without
data capture. We repeat the experiment 10 times for each
provenance system and for each synthetic workload and report
the mean followed by the 95% confidence interval.

c) Overhead levels.: In the literature, the reference to
low overhead or negligible overhead, in terms of provenance
capture time in Cloud/HPC environments, differs between
application domains. For instance: <2% for blockchains [38];
6 4% for I/O-centric workflows [21]; 4% for AI model train-
ing [13]; 6 12% for security applications [39]; to cite a few.
Regarding provenance capture on resource-limited IoT/Edge
devices, prohibitive overhead levels may vary depending on
the application use case. For instance, in latency-sensitive
applications such as autonomous vehicles [40], real-time mon-
itoring in smart energy grids [41], and virtual and augmented
reality [42], to cite a few, a > 3% processing time overhead is
considered high (i.e., enough to exceed the acceptable latency
thresholds) as it can introduce delays that disrupt the real-
time nature of the application, leading to inaccuracies, missed
targets, or compromised safety.

d) Synthetic workload.: We use a synthetic workload to
evaluate the provenance capture overhead because doing it in
real workloads is much more complicated, costly, and may
not make sense for the real application. The reason is that we
cannot precisely control and isolate variables such as elapsed
time, number of tasks, and number of attributes. A similar
situation happens when scientists need to rely on simulations
instead of real phenomena to test and evaluate their hypothe-
ses. Unfortunately, there are no well-established benchmarks
in the community to evaluate overhead in provenance sys-
tems. Therefore, like related work [17], [18], we decided to
focus our analysis on synthetic workload configurations. Such
configurations are based on real-life workloads [43]–[45], and
we refined the configuration space of our workloads with
preliminary experiments on real-life edge devices.

Table I presents the 8 synthetic workload configurations
used to analyze the data capture overhead. We chose these
values to cover combinations of application characteristics.
The idea of these configurations is to mimic the characteristics
of the various real-life workloads that IoT/Edge devices
typically execute, such as AI model training (e.g., the
Federated Learning use case we presented earlier), image
pre-processing, and sensor data aggregation, among others.
Such workloads are composed of various tasks (number
of tasks), each one with a different number of attributes
(attributes per task) and with different processing times (task

duration).

We consider workloads with 5 chained transformations,
which is an approximate number of transformations in many
applications. In the Federated Learning application, for exam-
ple, one of the transformations is model training, which has
many epoch executions. We consider each epoch execution
as a task of the model training transformation and each
epoch has associated features (considered input attributes) and
performance metrics (considered output attributes) [14]. Other
transformations include data preparation and the evaluation
of the trained model. To generate our synthetic workload,
we consider 100 tasks. In the Federated Learning example,
it would represent a training with 100 epochs. For each task,
we represent applications that manipulate a few (about 10)
or more (about 100) attributes per task. Besides, to represent
various classes of applications, we also consider four different
task duration: shorter (e.g., 0.5 or 1 seconds) and longer (e.g.,
3.5 or 5 seconds).

We run preliminary experiments to refine the synthetic
workload configurations. We observe that there is no signifi-
cant impact on the capture overhead when varying the number
of tasks from 10, 50 to 100. In addition, since the data capture
and transmission is measured per task, mainly variations in
the number of attributes per task (amount of data transmitted)
and task duration (data capture frequency) impact the capture
time overhead (calculated as the relative difference).

e) Hardware.: Each workload configuration runs on a
single A8-M3 [46] IoT device (ARM Cortex-A8 micropro-
cessor, 600Mhz, 256MB; radio: 802.15.4, 2.4 GHz; power:
3.7V LiPo battery, 650 mAh) available at the FIT IoT LAB
testbed [23]. We instrument the synthetic workloads (code
available at [47]) with the capture libraries provided by
ProvLake and DfAnalyzer systems. The libraries transmit the
data to the provenance system running on a remote Cloud/HPC
server [48] (Intel Xeon Gold 5220, 2.20GHz, 18 cores; 96GB
RAM; Ethernet) available at the Grid’5000 [24] testbed.

B. Overhead Analysis

Table II presents the capture time overhead of ProvLake
and DfAnalyzer in IoT/Edge devices, and Table III shows the
analysis of a feature provided by ProvLake, which consists of
grouping the captured data, i.e., messages, before transmit-
ting them to the server, i.e., provenance system. In addition,
we analyze how low-bandwidth networks may impact such
data grouping strategy.

Results in Table II show that both systems present high
overhead (>39%) for tasks with a duration of 0.5 seconds.
For the remaining task duration, the overhead is still high
(>3%). Varying the number of attributes per task from 10
to 100 slightly increases the overhead.

Regarding Table III, we observe low overhead (<3%) when
grouping 50 messages for a task duration of 0.5 seconds, and
grouping from 20 messages for a task duration of 1 second,
for 1Gbit bandwidth. While for 25Kbit bandwidth, we observe
high overhead (>43%) for all workloads.



TABLE II: Capture overhead of ProvLake and DfAnalyzer.

overhead
level

low
6 3%

high
>3%

attributes
per task

Provenance
System

Capture Overhead (%)

10 ProvLake
56.9%
±0.08

29.9%
±0.29

8.56%
±0.01

6.02%
±0.01

10 DfAnalyzer
39.8%
±0.06

21.2%
±0.34

6.12%
±0.07

4.26%
±0.01

100 ProvLake
57.3%
±0.10

30.1%
±0.41

8.57%
±0.01

6.04%
±0.04

100 DfAnalyzer
40.5%
±0.20

21.3%
±0.06

6.12%
±0.01

4.31%
±0.01

task dur. (s) 0.5 1 3.5 5

TABLE III: ProvLake: impact of bandwidth and grouping
strategy on the capture overhead.

# of messages grouped Bandwidth 1Gbit Bandwidth 25Kbit

0
57.3%
±0.10

30.1%
±0.27

321%
±1.05

161%
±1.14

10
6.83%
±0.02

3.58%
±0.20

102.5%
±3.89

49.8%
±2.92

20
3.87%
±0.01

1.99%
±0.01

100.8%
±3.78

51.16%
±1.03

50
2.37%
±0.01

1.24%
±0.01

95.04%
±0.10

43.23%
±0.28

task duration (s) 0.5 1 0.5 1

C. Design-level Limitations of Existing Systems

Table IV presents the takeaways of our performance analysis
and exposes the main limitations of the existing provenance
systems. In summary, the evaluation shows that the existing
systems present high overheads (>3%) when capturing on
IoT/Edge devices.

ProvLake and DfAnalyzer rely on HTTP over TCP, instead
of IoT-based messaging and transmission protocols such as
MQTT [49], CoAP [50], AMQP [51], UDP [52], RPL [53],
to cite a few. In resource-constrained devices, they make a
relevant impact on performance, resource usage, and power
consumption, as explored by existing works [54]–[56].

The experiment results reinforce the need for capture ap-
proaches tailored to the constraints imposed by IoT devices.
In addition, simplified data models to represent the provenance
data help to reduce overheads.

IV. PROVLIGHT DESIGN

This section introduces ProvLight, a tool [1] for the efficient
provenance data capture of Edge-to-Cloud workflows. Prov-
Light is designed to capture provenance in IoT/Edge devices
with low overhead in terms of capture time, CPU and memory
usage, network usage, and power consumption.

Subsection IV-A presents the ProvLight provenance model.
Next, the architectural details are given in Subsection IV-B,
while Subsection IV-C describes its implementation.

TABLE IV: Limitations of existing provenance systems.

System Limitation

DfAnalyzer Presents high (>3%) capture overhead for all
synthetic workloads.

ProvLake

Presents high (>3%) overhead for all work-
loads. However, ProvLake allows grouping
captured data to reduce transmission fre-
quency, enabling lower overhead, but it still
suffers high overhead in low bandwidth net-
works.

PROV-IO

Does not send the captured data over the net-
work to another machine hosting the prove-
nance system. Instead, it periodically dumps
the in-memory provenance graph to disk.
This approach is not suitable for IoT/Edge
devices.

Komadu

Komadu does not follow a clear separation
between a client library and a backend prove-
nance server. Therefore, the capture and the
processing of the captured information run
in the same machine. This approach is not
suitable for capturing on IoT/Edge devices.

A. Data Exchange Model

ProvLight provenance data exchange model follows the
W3C PROV-DM [28] recommendation. The goal is to have
a data exchange schema (domain-agnostic PROV modeling)
for capturing data in the IoT/Edge and making sure these
captured data are compatible with W3C PROV-based workflow
provenance systems, such as ProvLake, DfAnalyzer, PROV-IO,
among many others. Table V describes ProvLight classes and
their relationships and maps them to PROV-DM core elements.

The main classes of our model are Workflow, Task, and
Data. These classes are derived from the Agent, Activity, and
Entity PROV-DM types, respectively. ProvLight classes aim
to provide a simplified abstraction allowing users to track
workflow (Workflow class), input and output parameters (Data
class), and processing history (Task class).

The Workflow class may be used to refer to the application
workflow (e.g., Federated Learning training). The Task class
refers to the tasks executed in the workflow (e.g., each epoch
or model update of the model training). Finally, the Data
class represents the input data attributes and values (e.g.,
hyperparameters of the learning algorithm) or the output
attributes (e.g., training time and loss of each epoch).

To represent PROV-DM relationships, we use the id at-
tribute of each class. We link the Task and Data classes
with the workflow they belong to (wasAssociatedWith and
wasAttributedTo, respectively). The links between a Task and
its respective Data inputs and the generated outputs are
represented by the used and wasGeneratedBy relationships,
respectively. The dependencies attribute in the Task class links
tasks (wasInformedBy) with dependencies (e.g., task B starts
after task A ends). Finally, the derivations attribute in the Data
class links (wasDerivedFrom) chained data (e.g., data DA was
used in task A to generate data DB).



TABLE V: The ProvLight provenance data exchange model follows PROV-DM.

PROV-DM
Type

ProvLight
Class

ProvLight
Class Attributes

ProvLight Attribute Description
and PROV-DM Relationships

ProvLight
Class Description

Agent Workflow id Workflow id. Refers to application workflows.

Activity Task

id
workflow
dependencies
data
time
status

Task id.
Links tasks with the workflow they belong to (wasAssociatedWith).
Dependencies between tasks (wasInformedBy).
Data used (used) and generated (wasGeneratedBy) by a task.
Task start and end time.
Task status: running or finished.

Represents the processing
steps of tasks (and their
dependencies) that compose
workflows.

Entity Data

id
workflow id
derivations
attributes

Data id.
Links data with the workflow they belong to (wasAttributedTo).
Links chained data (wasDerivedFrom).
Data attributes and values.

Represents data
derivations along
the workflow execution.
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Fig. 3: ProvLight Architecture.

Defining such relations aims to provide users with the data
processing history: Where did the data come from? How was
the data transformed? and Who acted upon it? For instance,
capturing provenance data of Federated Learning model train-
ing workflows may help users to interpret results. Tracking
model training at runtime and fine-tuning hyperparameters is
helpful, especially when the training process takes a long time.

B. Architecture

Figure 3 presents the ProvLight architecture. It follows a
client/server model where the server receives the captured
data from clients and then translates it and sends it to prove-
nance systems. We highlight that ProvLight may integrate
with existing provenance systems like DfAnalyzer, ProvLake,
and PROV-IO, among others (e.g., through their APIs and
ProvLight data translator), as a solution for capturing data
of workflows running on IoT/Edge devices, as illustrated in
Figure 3. Table VI summarizes how the ProvLight architecture
design differs from the systems analyzed in Section III.

TABLE VI: How does ProvLight differ from state-of-the-art
systems in terms of data capture?

ProvLight DfAnalyzer ProvLake
application layer

protocol
MQTT-SN

QoS 2: Exactly once
HTTP 1.1 HTTP 1.1

transport layer
protocol

UDP TCP TCP

Communication
model

Publish/
Subscribe

Request/
Response

Request/
Response

Server side MQTT-SN Broker
HTTP
Server

HTTP
Server

Client side
features

provenance data
representation &

payload compression &
grouping data captured

N/A
grouping data

captured

Provenance data
model

PROV-DM PROV-DM PROV-DM

Capture library
language

Python Python, C++ Python

This integration may be achieved by using:
1) Server: The ProvLight server is composed of a broker

and a provenance data translator. Both may be parallelized
to scale the data capture for scenarios with various IoT/Edge
devices. We describe the main roles of each one.

(i) Broker: refers to an MQTT-SN broker (MQTT for
Sensor Networks [57]). During workflow execution, clients
subscribe to the broker and then start to transmit the captured
data. Next, this data is forwarded to the provenance data
translator, which is subscribed to the broker.

(ii) Provenance Data Translator: translates the captured
data to the respective format used by the provenance system.
The provenance data translator may be extended, by users, to
translate to a particular data model of a provenance system.
After translating, it sends the data to the provenance system
service (e.g., typically available at an ip:port). It allows
seamless integration with existing systems.

2) Client: The ProvLight client aims to efficiently cap-
ture provenance data on resource-limited devices. ProvLight
provides a client library that follows the W3C PROV-DM
provenance model (as presented in Table V). This library



1 from p r o v l i g h t i m p o r t Workflow , Task , Data
2 a t t r i b u t e s = 100
3 c h a i n e d t r a n s f o r m a t i o n s = 5
4 n u m b e r o f t a s k s = 100
5 # A p p l i c a t i o n Workflow
6 workflow = Workflow ( 1 )
7 workflow . b e g i n ( )
8 # Tasks and d a t a d e r i v a t i o n s
9 d a t a i d = 0

10 p r e v i o u s t a s k = [ ]
11 i n d a t a = { ’ i n ’ : [1 f o r i n r a n g e ( a t t r i b u t e s ) ]}
12 o u t d a t a = { ’ o u t ’ : [2 f o r i n r a n g e ( a t t r i b u t e s ) ]}
13 f o r t r a n s f i d i n r a n g e ( c h a i n e d t r a n s f o r m a t i o n s ) :
14 f o r t a s k i d i n r a n g e ( i n t ( n u m b e r o f t a s k s /

c h a i n e d t r a n s f o r m a t i o n s ) ) :
15 d a t a i d += 1
16 t a s k = Task ( t r a n s f i d − t a s k i d , workflow , t r a n s f i d ,

d e p e n d e n c i e s = p r e v i o u s t a s k )
17 d a t a i n = Data ( i n { d a t a i d } , workf low . id , i n d a t a )
18 t a s k . b e g i n ( [ d a t a i n ] )
19 #### ADD YOUR TASK HERE ####
20 d a t a o u t = Data ( ou t { d a t a i d } , workf low . id , o u t d a t a )
21 t a s k . end ( [ d a t a o u t ] )
22 p r e v i o u s t a s k = [ t a s k . i d ]
23 workflow . end ( )

Listing 1: ProvLight: user-defined provenance capture.

allows users to instrument their workflow code to decide what
data to capture. A client is configured to transmit, at runtime,
the captured data to the remote broker (e.g., ip:port). This
allows users to track workflow execution at runtime (e.g.,
started and finished tasks, input and output data, etc.) through
provenance systems supporting data ingestion at runtime.

C. Implementation

1) Server: The Broker is implemented based on the Eclipse
RSMB server [58] (Really Small Message Broker). RSMB
builds on top of Mosquitto [59] and implements the MQTT-
SN protocol.

The Provenance Data Translator is a Python service that
may be extended to translate captured data (from the ProvLight
data format) to a particular provenance system (e.g., DfAn-
alyzer, ProvLake, Komadu, etc.). In our repository [1], we
provide an implementation showing how to translate from the
ProvLight data format to DfAnalyzer. Such translation is pos-
sible since the aforementioned systems follow the W3C PROV-
DM provenance model. For the translator-to-broker communi-
cation, we use the MQTT-SN Python client library [60] based
on Eclipse RSMB. Finally, for the translator-to-provenance-
system communication, users are free to use any Python library
compatible with the provenance system (e.g., Requests [61]).

2) Client: The ProvLight client library is implemented in
Python and provides a series of features targeting resource-
limited IoT/Edge devices:

• provenance data representation: simplified classes for
provenance modeling that allow users to represent work-
flows, data derivations (e.g., input/output data from tasks)
and tasks (e.g., status, dependencies, data derivations);

• payload compression: compresses the bytes in captured
data before transmitting over the network; and

• data capture grouping: allow users to optionally group
data just from ended tasks, so users may still track at
workflow runtime the tasks that have already started.

As shown later in the evaluation section, grouping and
compressing captured data help reduce capture time overhead,
especially in IoT/Edge devices.

How to capture provenance data from the workflows?
Listing 1 illustrates an example of application code instru-
mentation with the ProvLight library highlighted in blue color.
Lines 6, 7, and 23 instantiate the workflow, start, and finalize
it, respectively. Line 16 instantiates a task, linking it to the
workflow, input data derivation, and dependent task. Lines 18
and 21 capture data from the initialization and finalization
of the task. Before starting a task, line 17 instantiates Data
and adds it as input data (line 18) to the task. Following the
same logic, line 20 instantiates and adds the output data from
the task. We highlight that the begin() and end() methods of
Workflow and Task transmit the captured data over the network
to the broker. Finally, line 19 is where the workflow task runs.

V. PROVENANCE CAPTURE OF EDGE-TO-CLOUD
WORKFLOWS

This section presents the integration of ProvLight as a
key system in the E2Clab [35] framework for reproducible
experimentation across the Edge-to-Cloud Continuum. This
integration allows users to capture end-to-end provenance data
of Edge-to-Cloud workflows. Figure 4 shows the extended
E2Clab architecture with the new components in the red color.

A. Provenance Manager

We design a new manager named Provenance Manager.
Figure 4 illustrates the integrated view of the two main
elements that compose the Provenance Manager:

(i) ProvLight: to efficiently capture provenance data of
workflows running on IoT devices. It also allows users to
capture provenance in Cloud/HPC environments. ProvLight
translates the captured data to the DfAnalyzer data model.

(ii) DfAnalyzer: to store and query provenance captured by
ProvLight during workflow runtime (e.g., compare provenance
of multiple workflow evaluations to understand how they im-
pact on performance). Furthermore, it allows users to visualize
dataflow specifications (i.e., data attributes of each dataset).

In addition to the characteristics of the provenance systems
analyzed in Table IV, and due to ProvLake being proprietary
within IBM, while DfAnalyzer is open source [62], in this
work we decide to use DfAnalyzer. As the data capture
component of DfAnalyzer presents high overhead, we just
use its data analysis and storage components. Finally, the
Provenance Manager could replace DfAnalyzer with other
provenance systems (e.g., PROV-IO, Komadu, etc.). It requires
extending ProvLight to translate the provenance data to the
data model of the provenance system and using their APIs.

B. Provenance Capture

Through the E2Clab framework, users may easily enable
provenance data capture across the Edge-to-Cloud continuum
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Fig. 4: Extended E2Clab: Provenance Data Manager.

through simple configuration files, as illustrated in Listing 2.
Listing 2 refers to the E2Clab layers services.yaml config-
uration file used to setup the experimental environment (e.g.,
testbeds, services that compose workflows, etc.). Lines 2 and 3
request resources from Grid’5000 and FIT IoT LAB testbeds,
respectively. Line 8 requests a single server (e.g., Federated
Learning server) on the Cloud layer; while line 11 requests
64 clients (e.g., to train the model with their local data) on
the Edge layer. Finally, line 4 setups the provenance data
capture (the ProvenanceManager service). After that, users
may instrument their application code to capture data, as
presented in Listing 1.

The ProvenanceManager service starts a Docker [63] con-
tainer with the DfAnalyzer provenance system and a ProvLight
container allowing clients to send their provenance data. Df-
Analyze exhibits at workflow runtime the captured data on its
Web interface. The ProvenanceManager service may be easily
plugged into other provenance systems by just using their
Docker images and extending the provenance data translator.

1 e n v i r o n m e n t :
2 g5k : c l u s t e r : g r o s
3 i o t l a b : c l u s t e r : g r e n o b l e
4 p r o v e n a n c e : ProvenanceManager
5 l a y e r s :
6 − name : c l o u d
7 s e r v i c e s :
8 − name : S e r v e r , e n v i r o n m e n t : g5k , q t d : 1
9 − name : edge

10 s e r v i c e s :
11 − name : C l i e n t , e n v i r o n m e n t : i o t l a b , a r c h : a8 , q t d : 64

Listing 2: E2Clab: provenance of Edge-to-Cloud workflows.
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Fig. 5: Experimental setup.

VI. EVALUATION

We aim to answer the following research questions: how
does ProvLight perform in IoT/Edge devices? while initially
targeting resource-constrained Edge devices, can ProvLight
be efficiently used also in the Cloud? We answer these ques-
tions in subsections A—D and E, respectively, by comparing
ProvLight against ProvLake and DfAnalyzer.

The main performance metric is the capture overhead in
terms of: (i) data capture time; (ii) CPU and memory usage;
(iii) network usage; and (iv) power consumption. The experi-
mental setup is the same as presented in Subsection III-A,
with synthetic workloads generated based on the Federated
Learning use case. The deployment is shown in Figure 5.
Results in Figure 6 are the mean of 10 runs with their 95%
confidence interval.

A. Capture Time Overhead

Table VII presents the capture time overhead comparison for
the 8 synthetic workloads. In summary, ProvLight presents
low capture overhead (<3%) for all workloads analyzed.
Regarding tasks with a duration of 3.5 seconds or more,
the capture overhead of ProvLight is below 0.5%. Varying
the number of attributes per task from 10 to 100 does not
significantly increase the capture time. We highlight that
ProvLight is about 37x and 26x faster than ProvLake and
DfAnalyzer, respectively.



TABLE VII: ProvLight: capture overhead in IoT/Edge devices.
Refer to Table II to compare with DfAnalyzer and ProvLake.

Attributes per task Capture Overhead (%)

10
1.45%
±0.01

1.02%
±0.01

0.31%
±0.01

0.23%
±0.01

100
1.54%
±0.01

1.11%
±0.01

0.37%
±0.01

0.29%
±0.01

task duration (s) 0.5 1 3.5 5

TABLE VIII: ProvLight: impact of bandwidth and grouping
strategy on the capture overhead. Refer to Table III to compare
with ProvLake.

# of messages grouped Bandwidth 1Gbit Bandwidth 25Kbit

0
1.54%
±0.01

1.10%
±0.01

1.56%
±0.01

1.04%
±0.01

10
1.37%
±0.01

0.75%
±0.01

1.37%
±0.01

0.74%
±0.01

20
1.32%
±0.01

0.72%
±0.01

1.34%
±0.01

0.73%
±0.01

50
1.31%
±0.01

0.72%
±0.01

1.31%
±0.01

0.72%
±0.01

task duration (s) 0.5 1 0.5 1

Similarly to Table III, Table VIII zooms our analysis in
order to understand the impact of bandwidth variations and the
grouping strategy on the data capture time. Results show that,
differently from ProvLake, ProvLight presents low capture
time overhead in low-bandwidth scenarios for task dura-
tions of 0.5 and 1 second. We highlight that, especially in low-
bandwidth scenarios (25Kbit), the ProvLight grouping strategy
presents low overhead (<2%), while ProvLake presents high
overhead (>43%), see Table III.

Scalability analysis. Table IX presents the capture time
overhead of ProvLight when scaling the number of IoT/Edge
devices and considering 100 tasks of 0.5s each and 100
attributes per task. We scale the scenario with 8, 16, 32, and
64 devices capturing provenance data in parallel and sending
the data to the cloud server. As illustrated in Figure 5, each
client sends its data to its respective topic in the Broker
and we parallelized the number of translators accordingly.
Lastly, provenance systems (i.e., DfAnalyzer in our case) can
handle parallel requests and store the provenance data in a
database system (e.g., MonetDB [64] used in DfAnalyzer).
Results show that by scaling up to 64 devices, the capture
overhead is low (<3%) and does not significantly impact
the capture time. This is expected because devices (clients)
asynchronously publish their messages to their respective
topics in the MQTT-SN Broker. For 8 and 64 devices, the
capture time overhead is 1.54% and 1.57%, respectively.

B. CPU and Memory Overhead

Figures 6a and 6b present the CPU and memory overhead
for capturing provenance data with ProvLake, DfAnalyzer, and
ProvLight (from left to right). Regarding the CPU overhead,

TABLE IX: ProvLight scalability analysis.

System Capture Overhead (%)

ProvLight
1.54%
±0.01

1.54%
±0.01

1.56%
±0.01

1.57%
±0.02

# of devices 8 16 32 64

TABLE X: Capture overhead in Cloud servers.

System Capture Overhead (%)

ProvLake
1.71%
±0.03

0.92%
±0.01

0.34%
±0.01

0.26%
±0.01100

attributes
per task

DfAnalyzer
1.17%
±0.02

0.63%
±0.01

0.25%
±0.01

0.21%
±0.01

ProvLight
0.24%
±0.01

0.17%
±0.01

0.12%
±0.01

0.11%
±0.01

task duration (s) 0.5 1 3.5 5

ProvLight uses 7x and 5x less CPU than ProvLake and
DfAnalyzer, respectively. Capturing with ProvLight, the CPU
overhead is low (<3%), and CPU usage varies between 1.7%
and 2%. Regarding the memory overhead, ProvLight memory
usage is <4%. It uses about 2x less memory than ProvLake
and DfAnalyzer.

C. Network Usage Overhead

As presented in Figure 6c, ProvLight transmits about
2x less data than ProvLake and DfAnalyzer. ProvLight
network usage is around 3.7 KB/sec during data capture. The
application layer protocol used in ProvLight (e.g., MQTT-
SN), which compresses captured data before transmitting it,
especially for tasks with many attributes per task (e.g., 100
in this case), explains such difference (2x less data) when
compared to the other capture approaches.

D. Power Consumption Overhead

Finally, results in Figure 6d (error bar omitted because we
use the maximum power consumption for capturing prove-
nance data) show that ProvLight power consumption overhead
is 2.1x and 2.6x less than ProvLake and Dfanalyzer. We
highlight that ProvLight overhead is 2.58% (considered low,
<3%), against 5.46% (ProvLake) and 6.8% (DfAnalyzer).
The power consumption (in watts) for capturing and trans-
mitting the data is on average 1.43W, 1.47W, and 1.49W for
ProvLight, ProvLake, and DfAnalyzer, respectively.

E. Performance in Cloud Servers

We compare the capture time overhead of ProvLight against
ProvLake and DfAnalyzer in Cloud servers (i.e., data capture
on a server [48] available in Grid’5000). Experiment results
in Table X show that the three approaches present low capture
overhead (<3%) for all task durations. Similarly to IoT/Edge
devices, ProvLight also outperforms ProvLake and DfAnalyzer
in Cloud servers. ProvLight is 7x and 5x faster than ProvLake
and DfAnalyzer, respectively. ProvLight capture time overhead
is very low (<0.25%) for all task durations.
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Fig. 6: Provenance data capture overhead with respect to: CPU, memory, network usage, and power consumption.

VII. DISCUSSION

The integration of ProvLight as a key system within the
E2Clab framework exhibits a series of features that make
E2Clab a promising platform for future performance optimiza-
tion of applications on the Edge-to-Cloud Continuum through
efficient provenance capture and reproducible experiments.

A. ProvLight Design Choices Impact on Performance

As presented in Table VI, the combination of ProvLight
design choices on the server and client sides contributed to
the low capture overhead. The ProvLight client library keeps
the connection to the remote server open while capturing data
(i.e., when capturing data from different tasks, the connection
is reused). Additionally, the library is based on the publish/-
subscribe asynchronous communication model and it uses
MQTT-SN (application layer protocol) over UDP (transport
layer protocol) instead of HTTP over TCP. Despite TCP being
more reliable (e.g., uses acknowledgment messages for data
delivery), the ProvLight client sends data using QoS level
2, which guarantees that each message is received exactly
once by the recipient. Such design choices help to reduce
connection overheads while data transmission handshakes/ac-
knowledgments require less bandwidth.

Another important feature is that ProvLight compresses data
(using binary format) before transmitting. Through prelimi-
nary experiments, we analyzed the performance trade-offs of
compressing the data on the IoT/Edge devices to make sure
it is worth adding that feature. The time required to compress
data (e.g., tasks with 100 attributes) on the edge device is
negligible, around 0.001s on average.

Our analysis considered low-bandwidth scenarios and also
the data grouping strategy, resulting in fewer and larger
messages to reduce the number of transmissions. We also
observe that the overhead of decompressing and translating
such data on the Cloud server is negligible, around 0.005s.

Data communication is key to performance efficiency in
IoT/Edge workloads, especially for low bandwidth networks.
ProvLight design choices such as simplified capture library
for provenance data exchange (see Table V), asynchronous
MQTT-SN over UDP, data grouping, and data compression,
explain the positive effects on performance and costs (e.g.,
lower overheads in terms of data capture time, and CPU,
memory, network usage, and energy consumption).

In summary, the lightweight asynchronous protocol (MQTT-
SN over UDP) has a major impact on the capture time
overhead, energy consumption, and CPU and network usage.
Our simplified data model has a major impact on memory
consumption, and it helps to reduce even more the capture
time overhead and CPU usage by 1.7% and 1.4%, respectively.

B. Impact of ProvLight on Real-life Use-Cases

To illustrate how real-life use cases could benefit from
ProvLight and its integration in the E2Clab framework, we
consider the training of Neural Networks presented in [15]
and [13]. In these articles, the authors use the storage and
query components of DfAnalyzer to store captured data during
model training executed on Cloud/HPC infrastructure and then
query the data. They demonstrate how provenance data may be
used to answer queries like the ones we presented in Section I.

Since modern AI workflows are being executed on hybrid
infrastructures, we may instantiate this use-case (Neural
Network training on the Cloud/HPC) to the context of hybrid
Edge-to-Cloud Federated Learning Neural Network training.
In this hybrid context, the model is now trained on various
resource-limited Edge devices. Thanks to the efficient capture
approach of ProvLight, users may still track the model training
by capturing provenance data. Without ProvLight, capturing
provenance data of this use-case on the IoT/Edge is pro-
hibitive due to the high overheads imposed by the existing
approaches, as presented in Section III.

Finally, thanks to the E2Clab framework, users may easily
set up the Federated Learning Neural Network training and
deploy it on distributed Edge devices (to train the model) and
on the Cloud server (to update the global model). Furthermore,
the E2Clab Provenance Manager allows users to store data
captured with ProvLight and query them using DfAnalyzer.
Therefore, through the E2Clab Provenance Manager, users
may answer the same queries mentioned earlier. We highlight
that this Neural Network use case is just one example from
various that could benefit from this work.

C. Integration with Existing Systems

ProvLight is designed to be easily integrated with existing
provenance systems (e.g., ProvLake, DfAnalyzer, PROV-IO,
among others) and workflow management systems and deploy-
ment frameworks (e.g., Pegasus, E2Clab, among others). Such



integration would enable these systems to capture provenance
data (with low capture overheads) in IoT/Edge devices.

As presented in Subsection IV-B, this is possible thanks
to the ProvLight provenance data translator. It translates
from the ProvLight data format to the data format of the
target system. This requires users to extend the ProvLight
translator. In this work, we demonstrate in Section V: (i)
the integration of ProvLight with the open-source DfAnalyzer
provenance system as a solution for provenance capture on
the IoT/Edge; and then (ii) we integrate this capture solution
within the E2Clab framework (the Provenance Manager) to
enable provenance capture of Edge-to-Cloud workflows.

D. Reproducibility and Artifact Availability

The experimental evaluations presented in this work follow
a rigorous methodology [35] to support reproducible Edge-
to-Cloud experiments on large-scale testbeds (e.g., Grid’5000
and FIT IoT LAB used in our experiments). This guided us
to systematically define the experimental environment (e.g.,
computing resources, services/systems, network, and applica-
tion execution) through well-structured configuration files. The
experiment artifacts and results are available at [47].

VIII. RELATED WORK

Tanaka et al. [8] extend the Pegasus [65] Workflow Manage-
ment System to support Edge-to-Cloud workflows. The paper
explores performance trade-offs in managing and executing
Edge-to-Cloud workloads. Pegasus provides provenance data
collection capabilities to capture performance metrics during
workflow execution. We highlight that Pegasus (and other
systems like Kepler [66], Taverna [67], etc.) explores the
predefined provenance capture approach. Pegasus automati-
cally logs provenance data about the local execution of the
application codes, such as launching them and capturing the
exit status and runtime information [68]. While ProvLight and
the systems we compared with (see Table IV) explore the user-
defined capture approach, i.e., the user defines what to capture
by workflow code instrumentation. Furthermore, unlike Prov-
Light, Pegasus does not explore IoT/Edge protocols to transfer
the captured data nor provides features like simplified data
models and compressing and grouping messages. This may
result in higher overheads compared to ProvLight, as presented
in Section III. Finally, the authors do not analyze the energy
consumption of their capture approach.

A provenance collection framework for the IoT/Edge de-
vices is proposed in [69]. The proposed framework follows
PROV-DM recommendations and provides provenance col-
lection capabilities for IoT/Edge devices. Unlike our work,
the authors do not validate their approach on real-life Edge
devices. Also, no performance evaluations are presented to
understand capture overheads.

Genoma, a distributed provenance-as-a-service system
across IoT/Edge devices and Cloud servers, is proposed
in [70]. Genoma transmits provenance data to the Cloud using
the MQTT protocol. Data is transmitted based on storage

availability on the Edge device and the frequency of data com-
munication. The authors do not evaluate the performance of
Genoma. Capture overheads regarding capture time, network
usage, energy consumption, and CPU and memory usage are
left for future work. In contrast, ProvLight is evaluated on all
the metrics mentioned above.

IX. CONCLUSION

The integration of ProvLight within E2Clab makes the latter,
to the best of our knowledge, the first framework to support the
end-to-end provenance capture of Edge-to-Cloud workflows
with low overheads across the Computing Continuum. Prov-
Light and E2Clab are available as open-source tools. In future
work, we will enable the provenance capture of workflows
developed in C/C++ (not only in Python) and secure the data
transmission from the Edge devices to the provenance system.
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