N

N

Are alternatives to backpropagation useful for training
Binary Neural Networks? An experimental study in
image classification
Ben Crulis, Barthelemy Serres, Cyril de Runz, Gilles Venturini

» To cite this version:

Ben Crulis, Barthelemy Serres, Cyril de Runz, Gilles Venturini. Are alternatives to backpropagation
useful for training Binary Neural Networks? An experimental study in image classification. SAC
’23: 38th ACM/SIGAPP Symposium on Applied Computing, 2023, Tallinn, Estonia. pp.1171-1178,
10.1145/3555776.3577674 . hal-04161529

HAL Id: hal-04161529
https://hal.science/hal-04161529
Submitted on 13 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04161529
https://hal.archives-ouvertes.fr

Are alternatives to backpropagation useful for training Binary
Neural Networks? An experimental study in image classification

Ben Crulis
University of Tours
ben.crulis@etu.univ-tours.fr

Cyril de Runz
University of Tours
cyril.derunz@univ-tours.fr

ABSTRACT

Current artificial neural networks are trained with parameters en-
coded as floating point numbers that occupy lots of memory space at
inference time. Due to the increase in size of deep learning models,
it is becoming very difficult to consider training and using artifi-
cial neural networks on edge devices such as smartphones. Binary
neural networks promise to reduce the size of deep neural network
models as well as increasing inference speed while decreasing en-
ergy consumption and so allow the deployment of more powerful
models on edge devices. However, binary neural networks are still
proven to be difficult to train using the backpropagation based gradi-
ent descent scheme. We propose to adapt to binary neural networks
two training algorithms considered as promising alternatives to
backpropagation but for continuous neural networks. We provide
experimental comparative results for image classification includ-
ing the backpropagation baseline on the MNIST, Fashion MNIST
and CIFAR-10 datasets in both continuous and binary settings. The
results demonstrate that binary neural networks can not only be
trained using alternative algorithms to backpropagation but can
also be shown to lead better performance and a higher tolerance to
the presence or absence of batch normalization layers.

CCS CONCEPTS

« Computing methodologies — Neural networks;

KEYWORDS
Binary neural networks, backpropagation, DFA, DRTP

ACM Reference Format:

Ben Crulis, Barthelemy Serres, Cyril de Runz, and Gilles Venturini. 2023. Are
alternatives to backpropagation useful for training Binary Neural Networks?
An experimental study in image classification. In The 38th ACM/SIGAPP
Symposium on Applied Computing (SAC °23), March 27 — March 31, 2023,
Tallinn, Estonia. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3555776.3577674

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC’23, March 27 — March 31, 2023, Tallinn, Estonia

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-9517-5/23/03...$15.00
https://doi.org/10.1145/3555776.3577674

Barthelemy Serres
University of Tours
barthelemy.serres@univ-tours.fr

Gilles Venturini
University of Tours
gilles.venturini@univ-tours.fr

1 INTRODUCTION

Artificial Neural Networks (ANN) are known for their good per-
formance and wide ranges of tasks, albeit at great costs at training
and inference times. Nowadays, the research focuses on scaling
up ANN as their scaling curves predict performance gains when
adding more parameters to the models, and generally make models
cumbersome and slower. Unfortunately, this practice make deploy-
ing these bigger models on edge devices such as smartphones harder
due to limited storage and memory space.

Yet, deploying models on smartphones directly has several bene-
fits, such as reducing the amount of possibly insecure communica-
tions as well as reducing dependencies to cloud computing and to
a permanent internet connection. The size reduction is particularly
important in order to bring larger models such as large language
models and large vision models on resource constrained devices
and increase the number of deep learning models that can be stored
and used at the same time on the device. The perspective of having
more efficient training algorithms for deep learning enables the
possibility of training and re-training models directly on the user’s
device, which enables more possibilities of personalization and user
centered deep learning.

Binary Neural Networks (BNN) were proposed to make models
smaller as well as improving their inference speed by leveraging
low level binary operations. BNNs are thus a natural choice for
deployment of models on portable devices, for instance on smart-
phones by benefiting from their eventual Graphical Processing
Units[11] or on specialized hardware such as Field-Programmable
Gate Array[31].

Binary neural networks have been used for voice recognition[24],
pedestrian detection [22], stereo (depth) estimation[5], human activ-
ity recognition[7] and face mask wear and positioning correction[9].

Unfortunately, BNNs are much more difficult to train and some-
times suffer from degraded performance compared to their contin-
uous counterparts. The main modern method to train BNNs was
introduced in [13]. They achieve training by slightly altering the
backpropagation (BP) and gradient descent (GD) scheme to allow
gradients to flow through binarization steps. Due to the various
estimation and quantization errors present in this method, training
BNN:Ss is still difficult and lead to lower performance compared to
their full-precision counterparts.

However, recent advances in alternative training algorithms
to backpropagation that match BP performance in full-precision
network let us consider using them for training BNNs as well. To

https://doi.org/10.1145/3555776.3577674
https://doi.org/10.1145/3555776.3577674
https://doi.org/10.1145/3555776.3577674

SAC’23, March 27 - March 31, 2023, Tallinn, Estonia

the best of our knowledge, trying alternatives to BP for training
BNNs was not attempted before.

In this paper, we propose to compare the training performance
of the backpropagation algorithm with two other alternatives for
training binary neural networks in the context of image classifi-
cation. We also examine the qualitative differences between the
algorithms and architecture choices. The main contributions of the
paper are:

(1) Proposing adaptations to promising backpropagation alter-
natives for training BNNs.

(2) Showing the importance of the batch normalization layer in
the different training algorithms

(3) Providing extensive tests on MNIST, Fashion MNIST and
CIFAR-10 to show the viability of alternative algorithms for
training BNNs.

We also provide the source code of all experiments at https://github.
com/BenCrulis/binary_nn.

The rest of the paper is structured as follows: First, in Section 2
we present several alternatives to the backpropagation algorithm
that allow to train neural networks with similar performances.
Then in Section 3 we introduce the chosen method of binarization
compatible with all training algorithms. In Section 4, we detail the
experiments and results on three image classification tasks. Before
summing up the paper in the conclusion, we discuss the results and
their implications in Section 5.

2 BACKGROUND

In this section, we present the classical way of training Binary
Neural Networks as well as some approaches that may replace the
backpropagation mechanism.

2.1 Binary Neural Networks

This subsection introduces the main characteristic of BNNs. For
more details about BNNS, please refer to recent surveys on BNNs [25,
27, 30].

Contrary to classical ANNs with real-valued parameters, every
single parameter of a binary neural network is coded on a single
bit, which can be seen as an extreme form of quantization of the
continuous weights. A bit representing a single weight can encode
one element among a pair of values, usually —1 and 1 for binary
neural networks as it allows to replace the floating point multipli-
cation by a logical XNOR operation. The immediate consequence
is that binary neural networks are much smaller than their contin-
uous counterparts, one can expect a reduction in size of a factor 32
compared to a network using 32 bits floating point weights. Pro-
vided the activation function used in the hidden layers also output
binary values, the following computation of the next binary layer
can be optimised with efficient binary operation and also provide
inference speedups.

Training binary neural networks using gradient descent. Training
a multilayer binary neural network by searching naively for a valid
set of binary weights is a combinatorial problem that does not
scale well to models beyond a few tens of parameters due to the
non-linear binary optimization nature of the problem. Training
neural network models with only three nodes and linear threshold

Ben C. et al

functions is NP-Complete in a worst case sense [4]. For this reason,
in order to train deep BNNs the usual method consists in training
a continuously parametrized model as a support for the binarized
model. The classical backpropagation algorithm is modified so that
we can compute a non-zero gradient of the parameters with respect
to the loss when traversing binary activation layers. This is the
role of the so called Straight-Through Estimator (STE) [12] which
turns the unusable derivative of the sign function into a useful
approximation, usually an identity function.

The deep neural network is then trained in a classical manner,
with a few modifications as proposed in [13]. In the forward pass,
the model parameters are binarized using a threshold function,
which turns the continuous parameters into binary values, in our
case we use the sign function that outputs —1 or 1. These binary
weights are used to compute the predicted values and the loss.
During this forward pass, the data can also pass through binary
activation layer such as the sign function yet again.

In the backward pass, the chosen STE is used at the binarization
steps to compute a gradient that will be used to update the real
valued parameters of the model. In the classical backpropagation
scheme, the transposed matrices of the binarized weights are used
to propagate the error to the previous layer. It should be mentioned
that the computed gradient in the backward pass is not binary in
general.

When deploying the model, the continuous parameters can be
used to compute the final binary weights using the sign function and
discarded, reducing the model size for both storage and inference.

The activation function of a BNN can be any differentiable func-
tion (tanh, ELU, ReLU....), or any non-differentiable function (step
functions, for instance) as long as an appropriate estimator of the
gradient is provided. However, only the activation functions out-
putting binary vectors, e.g. sign function, leads to space reductions.
This also conducts to obtain inference speed gains if the following
layer is binary, thanks to the possibility of rewriting the floating
point multiply and accumulation operations into efficient low level
binary operations. The former point is particularly important in
convolutional neural networks since the activation buffers usually
take much more space than the kernels used to compute them,
so a reduction in the activation storage requirements can be very
beneficial at inference time.

The difficulty of training BNNs comes from the approximations
that are made to enable training of the parameters using gradients.
The STE being one of these approximation used in the binary activa-
tion layers, in a normal backpropagation pass, the error signal will
flow through several of these estimators. We can conjecture travers-
ing several of these estimator increase the level of approximation
of the teaching signal to the point it starts to hurt the learning
performance of the model.

Batch normalization. In the original paper [13] introducing the
method for training binary neural network we consider, a shift-
based batch normalization layer is used to approximate the original
batch normalization layer [14]. This approximation is used in order
to avoid some multiplication operations. As we are not interested in
measuring the wall clock performance of the low level operations,
in this work we only test the original non-approximated batch

https://github.com/BenCrulis/binary_nn
https://github.com/BenCrulis/binary_nn

Are alternative to backprop better for training BNNs?

normalization layer. We will nonetheless note that in both the non-
approximated and approximated batch norm layers, the output of
the layer is a vector of real numbers, implying a change of datatype
and thus a possible greater storage cost for intermediate variables.
The batch normalization layer is placed before the activation layer
and is supposed to accelerate training as well as reducing the impact
of the weight scale [13].

2.2 Backpropagation and alternatives

Backpropagation. The Backpropagation algorithm (BP) is the
most common method for the end-to-end training of ANNs. BP
allows to decrease the error of a differentiable model by performing
Gradient Descent (GD) on the loss landscape induced by the differ-
entiable training loss objective. After a forward pass on a data batch
and the computation of the loss, a gradient of the parameters with
respect to the loss is computed in all layers using the chain rule,
in a step called the backward pass. This gradient is then used to
apply a small modification of the weights which slightly improves
the model performance on the training set. This training scheme is
illustrated in Fig. 1a.

Feedback Alignment. Feedback Alignment (FA) is an alternative
to backpropagation introduced in [18] with the explicit goal of
proposing a more biologically plausible learning mechanism for
training neural networks. FA demonstrate the surprising fact that,
under some conditions, backpropagating the error of the output
layer using the transpose matrix of each linear layer is not needed,
and that a constant random matrix is sufficient to provide a useful
learning signal to the upstream layers. By using random matri-
ces, one might have the intuition that no useful features could be
learned in the upstream layers. Yet, [18] shows that the weight
matrices adapt to the constant random matrices and in turn allows
the network to extract useful features in all layers.

Direct Feedback Alignment. In [21], the author goes a step further
and proposes Direct Feedback Alignment (DFA) a method that
improves on FA by propagating the output error signal directly to
each layer using constant random matrices. Contrary to FA where
the error signal goes through up to K — 1 layers, where K is the
number of layers in the network, in DFA the output error goes
through exactly 0 layer in reverse. As the error effectively skips all
downstream layers to train a particular layer, this method allows
the training of very deep networks (with more than 100 layers)
where BP would fail to converge. Although [21] suggests this is
due to the difference in the initialisation of parameters, it is also
explained if downstream layers are frozen, DFA cannot decrease
the error whereas BP can. This training scheme is illustrated in Fig.

1b.

Direct Random Target Propagation. All previous mentioned meth-
ods necessitated to compute the output loss of the model in order to
provide an error signal to train the layers. This effectively prevents
the model’s parameters to be updated until the forward pass is com-
pleted, this phenomenon is referred to as update locking. However
another algorithm called Direct Random Target Projection (DRTP)
was recently introduced to address this problem [10] and provide
a less costly and more biologically plausible learning algorithm
for deep neural networks. DRTP project the target labels directly

SAC’23, March 27 — March 31, 2023, Tallinn, Estonia

to each layer using constant random matrices in a way similar to
DFA and use the result as a learning signal to train each layer. By
design, DRTP allows each layer to be updated as soon as its input
activations are available, it is said to be update-unlocked. The pa-
rameters of models trained using DRTP can be updated while the
forward pass is not completed, which also saves memory as the
input buffers can be released once the layer parameters are updated.
This training scheme is illustrated in Fig. 1c.

Other candidate alternatives for training BNNs. Very different
types of training algorithms have been proposed to overcome limita-
tions of BP or to provide biologically plausible alternatives. Among
these alternatives, an interesting possibility is to use the Hilbert-
Schmidt Independence Criterion (HSIC) to create a local loss for
training each layer [19][23]. As these HSIC based losses only require
the output of the layers and the target labels to update the parame-
ters, these algorithms are thus very similar to DRTP. The Synthetic
Gradient method also allows training without gradient locking
[15]. Associated Learning proposes to train the layers to encode
the inputs and the labels to similar embedded representation [28].
Some approaches try to view synapses or neurons as Reinforcement
Learning agents that learn to predict the weight modifications that
will improve the loss [17][3]. Other methods manage to get notable
results by performing random modifications of the model parame-
ters and accepting or rejecting the modifications [20][1]. Kickback
shows that backpropagation can be decomposed into several local
optimizations that optimize the same global error signal [2]. [6]
proposes to enable online learning of deep networks by focusing on
learning the hidden representations that decrease the error. Finally,
an approach based on mixed-integer linear programming solvers
was experimented in [26].

Due to limited space in the paper, we leave these other algorithms
out of our experiments. In addition, these algorithms have a higher
training cost and thus they are less adapted to edge computing.

3 ALGORITHMS

In this section we describe the binarization scheme used in the
experiments.

Figure 1 summarises the differences between algorithms. BP is
the only algorithm tested where the error traverses the layers in
reverse, the other two algorithms directly send an error directly to
each layer in parallel. BP (a) and DFA (b) are the only algorithms
where the information learned in the downstream layers affect the
computation of the errors in the upstream layers, although only
indirectly in the case of DFA. DRTP (c) can directly train the layers
in the forward pass.

3.1 Binarization of the weights and activations

In order to make the algorithms compatible with weight binariza-
tion, we slightly modify the way the forward pass and backward
pass are computed. Firstly, we change the activation function of the
hidden layers to be a sign function with a Straight-Through Esti-
mator (STE), i.e. the derivative of the sign function is replaced with
another function that will provide a non-zero gradient to previous
layers. In the experiments we use two variants of the STE. Let dyj
be the incoming gradient at layer k and dz; the estimated output
gradient of the sign function. One of the STE variant is ignoring the

SAC’23, March 27 - March 31, 2023, Tallinn, Estonia

Equations a: BP
2k = Willk-1 CJ e
yk = f(Zk) ﬁo‘l/“ €
oYk © fr'(zx) y3(§%
I 7 oR T Ws TDV:‘L W3
Y2
W2 TD}/\ ¢ W;—
Y1
wih

x@000 ¥
9]

6yk
ayk

— T
= Wi162k1

Ben C. et al

(5
n@00@<— | n <
wih W,
x@000 v x@000 VvV
B/e B{y"

Figure 1: Summary of the algorithms tested in the following experiments. The B, matrices are constant random matrices
initialised once before starting to train the model. Adapted from [10].

linear layer

Vi1

OVk-1

Y

i
gl

)

Wy

Yk

Legend
——>» forward path (inference)
«—— backward path
tanh(z) continuous

f@ {sign(z)
Yk Ol f = sign

k= {ayk ©f(z) else
(2): 6Wy = SWE

binary

1):06z

Figure 2: Summary of the chosen binarization scheme effective at each binary weight layer. Here a single layer of the model at

index k is represented with both the linear layer using the binary weights Wlf and the activation function f.

gradient of the sign function as if the activation was the identity
function, so in this case dzj = Sy. This is the non-saturating STE.
Another variant introduced in [13] is equivalent to propagating the
gradient through a hard tanh function (Htanh(x) = clip(x, -1, 1)),
in which case 0z = §yr © 1|, |<1- This STE is saturating as the
gradient is 0 when the neuron as reached saturation, that is when
|x| > 1, x being the neuron pre-activation.

In the experiments, we use the non-saturating STE for the bi-
narization of the weights when applicable and the saturating STE
for the activation function when using the sign function as the
activation function of the hidden layers.

Figure 2 shows the flow of the information in the forward and
backward pass when learning. The vector z. is the pre-activation
and yy is the activation at layer k. When in the forward pass, the
real valued weights are first binarized to get the binary weight
matrix Wlf using the sign function, and then used to compute the
pre-activations vector z; from y;_; in order to get y as follows:
yr = f (ka Yx—1)- This value is then used as input to the next layer
or as output of the network.

In the backward pass, the error dyj is sent through the STE
of the activation function if it is binary, or computed normally if
the activation function is tanh. This gives us the error dz; that is
itself used together with yi_; to compute the gradient of the real
valued weights §W,. by sending it through the non-saturating STE.
In the particular case of the BP algorithm, the error dz; is also used
to compute the output error of the previous layer of index k — 1
as follows: Syp_; = (W]f’)T(Szk. This means the error signal that
already went through a STE will go through another one upon
reaching the previous layer. The parameters at layer k thus receive
an error that went through K — k STEs, K being the total number
of layers in the model. The other algorithms all compute the error
Sy either from the loss error or directly from the target labels y*
and so receive an error that went through a constant number of
STEs, only once in our case.

4 EXPERIMENTS

In this section we present a test protocol to run a comparison
of the algorithms on three benchmark datasets and describe the
results. The goal of this experiment is not to reach state of the art

Are alternative to backprop better for training BNNs?

results on the datasets but to assess the qualitative and quantitative
differences between algorithms when training with binary weights
compared to their continuous versions. The code of the experiments
is available at https://github.com/BenCrulis/binary_nn.

These experiments aim to answer a few questions:

(1) What is the impact of the binarization of the neuron activa-
tions when training with the different algorithms?

(2) What is the impact of the binarization of the weights when
training with the different algorithms?

(3) What importance does the batch normalization layers have
in training?

(4) Which method(s) should be preferred and which ones should
be avoided when training models with both binary weights
and activations?

4.1 Protocol

We now propose to measure the relative difference performance of
the algorithms and their binary variants on the MNIST[8], Fashion
MNIST[29] datasets and CIFAR-10[16] datasets. These are 10-class
classification tasks with respectively 70000, 70000, 60000 tiny im-
ages of resolution 28 X 28, 28 X 28 and 32 X 32. Each dataset contains
10000 images reserved for test.

All layers and algorithms where re-implemented from scratch
in Numpy to ensure identical experimental conditions and imple-
mentation details. The fully connected layers have no bias term in
order to make the binary and continuous architectures as close as
possible. The loss function used is a L2 squared error and a batch
size of 128.

We run each training algorithm in their continuous and binarized
variants on the datasets and report the results. We also separate
experiments for each type of activation (tanh or sign) in order to
evaluate the impact of using a binary activation function in the
hidden layers. For the MNIST and Fashion MNIST datasets, we also
repeat the experiments without the batch normalization layers.

We first run a grid search on the learning rate and initialisa-
tion value hyperparameters to find the combinations leading to
the highest accuracy on MNIST in 100 epochs for each algorithm-
binarization-activation triplet. The possible values for the learning
rate are 1074, 1077 and 10~°. All models are trained from scratch
using random initial weights taken from a uniform distribution. For
the initialization parameter values of the uniform distribution, we
only search between two values, small (10~3) and large (0.1). The
hyperparameters found on MNIST are used for Fashion MNIST. For
CIFAR-10, we run another grid search on the same hyperparameter
set on the CIFAR-10 train set.

All common hyperparameters are reported in Table 1. The archi-
tecture row describes the number of output neurons at each hidden
layer and at the last layer. The retained architectures were chosen
arbitrarily with the goal of being deep because shallow networks
would pose no difficulty with binarization. The retained architec-
ture has a total of 1110800 trainable parameters (ignoring batch
normalization layers). As all tasks are classifications with 10 classes,
the last layer is a continuous (non-binarized) layer with 10 output
neurons and a tanh activation in all experiments. This last layer is
always trained at the same time as all other layers using a normal
gradient descent on the gradient of the loss at the last layer.

SAC’23, March 27 — March 31, 2023, Tallinn, Estonia

Table 1: Common hyperparameters used in experiments

MNIST, Fashion MNIST, CIFAR10
architecture 700,500,300,200,10
batch size 128
number of epochs 100

Then for each algorithm we repeat the experiment 10 times with
the best set of hyperparameters. The experiments are duplicated
with both continuous and binary weights as well as with both the
continuous tanh activation function and the binary sign function.
This will let us assess the individual effect of the choice of binariza-
tion in both weights and activations regarding the performance of
the final model.

4.2 Results

In this section we present the results of the experiments in terms
of test accuracy on the three datasets.

Figure 3 reports the best accuracies obtained in the repeated
runs. The immediate observation is that the transition from contin-
uous to binary weights as well as the transition from continuous to
binary activation tend to cause a loss in accuracy whose magnitude
depends on the particular algorithm considered. Without batch
normalization, the sharpest drop observed is for BP which loses
about 30% accuracy when using the binary activation instead of
the continuous tanh activation function when also using binary
weights. The other algorithms are less affected by these changes,
the biggest cause of loss of performance appears to be the weight
binarization and not the use of a binary activation function. In
particular, DRTP seems to be heavily impacted by the change from
continuous to binary weights, both with and without batch nor-
malization. Despite being roughly equal in term of accuracy on the
train set (not shown here), DFA is slightly behind BP in general on
the test set, while being slightly above BP in the case of both binary
weights and activations, as confirmed by an ANOVA test yielding a
p-value of less than 0.03% on the equality of the two group means.

Similar observations can be made for the Fashion MNIST dataset
in Figure 4. The drops in accuracies appear to be slightly greater
and the differences between algorithms also become more visible.
Again, without batch normalization BP is outperformed by the other
algorithms in the binary weights case by a greater margin compared
to MNIST, but still dominates in the non-fully binarized cases. It
can also be noted that the performance ranking of the algorithms is
preserved from MNIST to Fashion MNIST. In particular, in the case
of both binary weights and activations, DFA is again a few points
ahead of BP, only slightly ahead with batch normalization and by a
great margin without it. This time the ANOVA test yields a p-value
of approximately 2.2 X 107>,

The experiments on CIFAR-10 summarized in Figure 5 are slightly
different regarding BP and DFA. BP is no longer the best algorithm
in the fully continuous version as it is well under DFA but still
slightly outperforms DRTP. Here again, DFA outperforms BP in the
fully binarized case by a large margin, with a p-value of 7.9 x 10713,

https://github.com/BenCrulis/binary_nn

SAC’23, March 27 - March 31, 2023, Tallinn, Estonia Ben C. et al

0.99 - —
0.98 - - I weight - activation
: - 3 continuous tanh
- e
0.97 2 L__ = . [continuous sign
—_— __ 0.98 A — binary tanh
0.96 = - ;_—_F_ [0 binary sign
¢ ——
Y —_ — -
5. 0.95 =3 0.97 U
g
g 0.94 4
©
0.934 0.96 A
= 3 I
0.92 4 g —
-
%3 —_
0.91 4 l © 0.95 - -
090, P2
- P 0.94
0.61 4 —‘7
>]
3 0.60 . 0.93 1
5 - continuous tanh
3 |) .
g 0.59 continuous sign T
binary tanh = =
0.58 1 1 binary sign 0.92 =
BP DFA DRTP BP DFA DRTP
algorithm algorithm
(a) without batch normalization layers (b) with batch normalization layers

Figure 3: Best test accuracy in 100 epochs on MNIST. Each box plot correspond to 10 independent executions with exactly the
same hyperparameters but using different seeds. The weight-activation boxes for each algorithm are presented in the same
order as in the legend.

0.90 - 0901 __ weight - activation
ES - - - T =) cont?nuous ténh
el il T [continuous sign
-+ —_ .
0588 1 Y 0891 = L T 0 binary tanh
. == ¢ 1= —|— I binary sign
== - L1
|]
0.86 0.88 ¢ L
> . —r
9
© ‘
I —
3 =¥
© 0.84 4
5. 0.87 1
3
s 2
0.82 4 2 - T
0.86 -4
0.80 4 s
s
0.85 A
e Pa
A e
0.67 4 ¢
g 0664 cont!nuous ténh 0.84 T
5% — continuous sign T
o] binary tanh
2 0.65 T ! 2 e
binary sign
0.64 . 0.83 1
BP DFA DRTP BP DFA DRTP
algorithm algorithm
(a) without batch normalization layers (b) with batch normalization layers

Figure 4: Best test accuracy in 100 epochs on Fashion MNIST. Each box plot correspond to 10 independent executions with
exactly the same hyperparameters but using different seeds. The weight-activation boxes for each algorithm are presented in
the same order as in the legend.

Are alternative to backprop better for training BNNs?

0541 weight - activation
continuous tanh
1 continuous sign
T [binary tanh
0.52 4 | [0 binary sign
L] ,
L a -
0.50 4 L
L i
- —
%} €1
e
>
o
9]
©
0.48 -
=L
¢ =
=
.
' ¢
0.46 - =
T
4+
T
1 E=
0.44
BP DFA DRTP
algorithm

Figure 5: Best test accuracy in 100 epochs on CIFAR-10 with
batch normalization. Each box plot correspond to 10 indepen-
dent executions with exactly the same hyperparameters but
using different seeds. The weight-activation boxes for each
algorithm are presented in the same order as in the legend.

5 DISCUSSION

What is the impact of the binarization of the neuron activations
when training with the different algorithms? Overall, the impact of
using the sign function in place of the tanh function seems to be
responsible for a small decrease in accuracy for all the algorithms
considered and for both types of weights, continuous or binarized.
This probably should not be seen as surprising given the STE used
with the sign function was shown to be a very effective to train
binary neural networks in practice.

What is the impact of the binarization of the weights when train-
ing with the different algorithms? The binarization of the weights
appears to penalize the accuracy more strongly compared to the
binarization of the activations, especially on DRTP and BP when
the batch normalization layers are removed. This is most likely due
to the pre-activation values being too large in magnitude because
of the disappearance of small weights in the dense layers. These
pre-activation values saturates the neurons and cause the gradient
to vanish for most of the neurons, with both the STE and tanh deriv-
ative. BP seems to be particularly impacted, most likely due to the
gradient having to traverse multiple activation layers recursively,
perhaps inhibiting the ability of the model to form useful features
in the first layers.

What importance does the batch normalization layers have in
training? The batch normalization layers thus appear to have the
important role of preventing saturation of the neurons throughout
the model. Since BP requires the traversal of multiple layers, it
is strongly negatively affected in the fully binarized case since

SAC’23, March 27 — March 31, 2023, Tallinn, Estonia

saturation is more likely to happen, and the traversal of a STE
in a saturated units means the gradient is set to 0, providing no
feedback at all the to previous layers. The alternatives to BP are less
affected as their teaching signal only traverse a constant amount of
approximation no matter the depth of the model. This is coherent
with the ability of these types of algorithms to train very deep
networks, whereas BP usually fails because it requires a very small
initialization of the weights[21], which is impossible with binary
weights.

Which method(s) should be preferred and which ones should be
avoided when training models with both binary weights and acti-
vations? These experiments seems to show BP is very sensitive
to binarization in both weights and activations as well as to the
presence of batch normalization, whereas DFA shows a lesser degra-
dation of generalisation performance in its fully binarised version.
DRTP and DFA appear to be very little sensitive to the presence
of batch normalization whatever the level of binarization, which
may come as a surprise given the impact it appears to have on the
performance of the binary models trained with BP.

Overall, DFA seems to be the most promising algorithm for
training fully-binarised neural networks among the algorithms
tested. Contrary to the other algorithms, DFA is the only one that
both make the error traverse a constant amount of STEs and use
the information learned in the downstream layers in the previous
iteration to compute the error. This combination of qualitative
properties might explain its good performance in the context of
binarization. DFA is also less affected by the choice of using batch
normalization or not compared to BP. This is of importance because
using batch normalization layers introduce learning parameters,
intermediate variables and additional operations slowing down
training and inference computations.

Since DRTP already provides a way to save memory by releasing
the memory for the buffers of previous layers, further memory
gains will have to be found elsewhere. The most obvious way to
further save memory when training would be to store only binary
weights and train on them directly instead of storing continuous
versions of the parameter and binarizing them in the forward pass.
This would effectively provide the same space gain at inference and
train time, along with probable computational benefits if the new
method can benefit from binary operations.

By design, the alternative algorithms already provide perfor-
mance benefits and memory cost reduction in the continuous case
with the full precision weights. Combined with the benefits of bi-
narization that further reduce the memory and energy costs, it is
now possible to consider enable the training of binary models at a
manageable cost directly on edge devices. This should enable the
update of deep neural networks models directly on user devices
with their own data without requiring communication of personal
data with external servers, increasing privacy.

6 CONCLUSION

Binary Neural Networks are more suited to use on edge devices
compared to full-precision networks because of their lower mem-
ory and computational costs as well as their lower energy usage.
The current approach to deal with BNN learning is to use back-
propagation with the STE. Nevertheless, several alternatives to

SAC’23, March 27 - March 31, 2023, Tallinn, Estonia

backpropagation, such as DFA and DRTP, were recently proposed
but not tested in the context of BNNs. These alternatives have lower
complexity and memory cost in comparison to backpropagation.
To the best of our knowledge, we are the first to study the impact
of the different learning schemes and their binarization in terms of
performance (accuracy).

With the notable exception that DFA outperforms BP in the fully
continuous case on the CIFAR-10 experiment, we showed that al-
ternatives to the backpropagation algorithm are in general behind
BP in the continuous case. However, it is possible to approach BP
performance and even outperform BP using the DFA algorithm
in the fully binarized case, that is when using both weights and
activations. Moreover, the alternative algorithms appears to be
less sensitive to the use of batch normalization compared to BP,
potentially allowing us to simplify the design and training of bi-
nary neural networks models. These results let us consider that the
backpropagation algorithm may not be the best training method
for binary neural networks with both binary weights and binary
activations. Compared to backpropagation, these alternative algo-
rithms are also themselves less costly in terms of memory and
computations by design, opening up possibility of training binary
neural networks directly on edge devices. In the future we will
exploit these ideas to train and deploy more efficient models on
edge devices, in particular, vision models on smartphones.

REFERENCES

[1] G. Akshat and N. R. Prasad. 2022. Blind Descent: A Prequel to Gradient Descent.
Lecture Notes in Electrical Engineering 783 (2022), 473-479. https://doi.org/10.
1007/978-981-16-3690-5_41

David Balduzzi, Hastagiri Vanchinathan, and Joachim Buhmann. 2015. Kickback

cuts backprop’s red-tape: Biologically plausible credit assignment in neural net-

works. Proceedings of the National Conference on Artificial Intelligence 1 (2015),

485-491.

[3] AmanBhargava, Mohammad R. Rezaei, and Milad Lankarany. 2022. Gradient-Free
Neural Network Training via Synaptic-Level Reinforcement Learning. Applied-
Math 2 (2022), 185-195. Issue 2. https://doi.org/10.3390/appliedmath2020011

[4] Avrim L. Blum and Ronald L. Rivest. 1992. Training a 3-node neural network
is NP-complete. Neural Networks 5, 1 (1992), 117-127. https://doi.org/10.1016/
50893-6080(05)80010-3

[5] Gang Chen, Yehua Ling, Tao He, Haitao Meng, Shengyu He, Yu Zhang, and Kai

Huang. 2020. StereoEngine: An FPGA-Based Accelerator for Real-Time High-

Quality Stereo Estimation with Binary Neural Network. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 39 (2020), 4179-4190.

Issue 11. https://doi.org/10.1109/TCAD.2020.3012864

Anna Choromanska, Benjamin Cowen, Sadhana Kumaravel, Ronny Luss, Mattia

Rigotti, Irina Rish, Brian Kingsbury, Paolo DiAchille, Viatcheslav Gurev, Ravi

Tejwani, and Djallel Bouneffouf. 2019. Beyond backprop: Online alternating

minimization with auxiliary variables. 36th International Conference on Machine

Learning, ICML 2019 2019-June (2019), 2041-2050.

Francesco Daghero, Chen Xie, Daniele Jahier Pagliari, Alessio Burrello, Marco

Castellano, Luca Gandolfi, Andrea Calimera, Enrico Macli, and Massimo Poncino.

2021. Ultra-compact binary neural networks for human activity recognition

on RISC-V processors. In Proceedings of the 18th ACM International Conference

on Computing Frontiers, CF 2021. ACM, Virtual, 3-11. https://doi.org/10.1145/

3457388.3458656

Li Deng. 2012. The mnist database of handwritten digit images for machine

learning research. IEEE Signal Processing Magazine 29 (2012), 141-142. Issue 6.

Nael Fasfous, Manoj Rohit Vemparala, Alexander Frickenstein, Lukas Fricken-

stein, Mohamed Badawy, and Walter Stechele. 2021. BinaryCoP: Binary Neural

Network-based COVID-19 Face-Mask Wear and Positioning Predictor on Edge

Devices. In 2021 IEEE International Parallel and Distributed Processing Symposium

Workshops, IPDPSW 2021 - In conjunction with IEEE IPDPS 2021. IEEE, Portland,

OR, USA, 108-115. https://doi.org/10.1109/IPDPSW52791.2021.00024

[10] Charlotte Frenkel, Martin Lefebvre, and David Bol. 2021. Learning Without

Feedback: Fixed Random Learning Signals Allow for Feedforward Training of
Deep Neural Networks. Frontiers in Neuroscience 15 (2021), 1-13. Issue February.
https://doi.org/10.3389/fnins.2021.629892

[2

—

=
&

[7

[

= =

Ben C. et al

[11] Shengyu He, Haitao Meng, Zhaoheng Zhou, Yongjun Liu, Kai Huang, and Gang
Chen. 2021. An efficient GPU-accelerated inference engine for binary neural
network on mobile phones. Journal of Systems Architecture 117 (2021), 102156.
Issue March. https://doi.org/10.1016/j.sysarc.2021.102156

Geoffrey Hinton. 2012. Neural networks for machine learning coursera video
lectures.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized Neural Networks. In Advances in Neural In-
formation Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016,, Daniel D. Lee, Masashi Sugiyama, Ulrike von
Luxburg, Isabelle Guyon, and Roman Garnett (Eds.). Curran Associates, Inc.,
Barcelona, Spain, 4107-4115. https://proceedings.neurips.cc/paper/2016/hash/
d8330£857a17¢c53d217014ee776bfd50- Abstract.html

Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. 32nd International
Conference on Machine Learning, ICML 2015 1 (2015), 448—-456.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex
Graves, David Silver, and Koray Kavukcuoglu. 2017. Decoupled neural interfaces
using synthetic gradients. 34th International Conference on Machine Learning,
ICML 2017 4 (2017), 2558-2577.

[16] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.
Technical Report. University of Toronto, Canada.

Benjamin James Lansdell, Prashanth Ravi Prakash, and Konrad Paul Kording.
2020. Learning to solve the credit assignment problem. In 8th International
Conference on Learning Representations, ICLR 2020. OpenReview.net, Addis Ababa,
Ethiopia, 1-19. https://openreview.net/forum?id=ByeUBANtvB

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman.
2016. Random synaptic feedback weights support error backpropagation for
deep learning. Nature Communications 7 (2016), 1-10. https://doi.org/10.1038/
ncomms13276

[19] Wan Duo Kurt Ma, J. P. Lewis, and W. Bastiaan Kleijn. 2020. The HSIC bottleneck:
Deep learning without back-propagation. In AAAI 2020 - 34th AAAI Conference
on Artificial Intelligence. AAAI Press, New York, New York, USA, 5085-5092.
https://doi.org/10.1609/aaai.v34i04.5950

Gregory Morse and Kenneth O. Stanley. 2016. Simple evolutionary optimiza-
tion can rival stochastic gradient descent in neural networks. In GECCO 2016 -
Proceedings of the 2016 Genetic and Evolutionary Computation Conference. ACM,
Denver, Colorado, USA, 477-484. https://doi.org/10.1145/2908812.2908916
Arild Nekland. 2016. Direct feedback alignment provides learning in deep neural
networks. In Advances in Neural Information Processing Systems, Nips. Curran
Associates Inc., Barcelona, Spain, 1045-1053.

Fernando Cladera Ojeda, Anthony Bisulco, Daniel Kepple, Volkan Isler, and
Daniel D Lee. 2020. On-Device Event Filtering with Binary Neural Networks for
Pedestrian Detection Using Neuromorphic Vision Sensors. In 2020 IEEE Inter-
national Conference on Image Processing (ICIP). IEEE, Abu Dhabi, United Arab
Emirates, 3084-3088. https://doi.org/10.1109/ICIP40778.2020.9191148

Roman Pogodin and Peter E. Latham. 2020. Kernelized information bottleneck
leads to biologically plausible 3-factor Hebbian learning in deep networks. In Ad-
vances in Neural Information Processing Systems, NeurIPS 2020. Curran Associates
Inc., Red Hook, NY, USA, 12. Issue NeurlPS.

Yan-min Qian and Xu Xiang. 2019. Binary neural networks for speech recognition.
Frontiers of Information Technology and Electronic Engineering 20 (2019), 701-715.
Issue 5. https://doi.org/10.1631/FITEE.1800469

Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu
Sebe. 2020. Binary neural networks: A survey. Pattern Recognition 105 (2020),
107281. https://doi.org/10.1016/j.patcog.2020.107281

Hasan Sildir and Erdal Aydin. 2022. A Mixed-Integer linear programming based
training and feature selection method for artificial neural networks using piece-
wise linear approximations. Chemical Engineering Science 249 (2022), 117273.
https://doi.org/10.1016/j.ces.2021.117273

Taylor Simons and Dah Jye Lee. 2019. A review of binarized neural networks.
Electronics 8 (2019), 661. Issue 6. https://doi.org/10.3390/electronics8060661
Dennis Y Wu, Dinan Lin, Vincent F Chen, and Hung hsuan Chen. 2022. Associated
Learning: an Alternative to End-to-End Backpropagation that Works on CNN,
RNN, and Transformer. In International Conference on Learning Representations.
OpenReview.net, virtual, 1-18.

Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. http://arxiv.
org/abs/1708.07747 cite arxiv:1708.07747Comment: Dataset is freely available
at https://github.com/zalandoresearch/fashion-mnist Benchmark is available at
http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/.

Wenyu Zhao, Teli Ma, Xuan Gong, Baochang Zhang, and David Doermann. 2020.
A Review of Recent Advances of Binary Neural Networks for Edge Computing.
IEEE Journal on Miniaturization for Air and Space Systems 2 (2020), 25-35. Issue
1. https://doi.org/10.1109/jmass.2020.3034205

Yuteng Zhou, Shrutika Redkar, and Xinming Huang. 2017. Deep learning binary
neural network on an FPGA. Midwest Symposium on Circuits and Systems 2017-
Augus (2017), 281-284. Issue 1. https://doi.org/10.1109/MWSCAS.2017.8052915

[12

[13

(14

[15

[17

=
&

[20

[21

~
&,

[23

[24

I
i

[26

[27

[28

[29

[30

[31

https://doi.org/10.1007/978-981-16-3690-5_41
https://doi.org/10.1007/978-981-16-3690-5_41
https://doi.org/10.3390/appliedmath2020011
https://doi.org/10.1016/S0893-6080(05)80010-3
https://doi.org/10.1016/S0893-6080(05)80010-3
https://doi.org/10.1109/TCAD.2020.3012864
https://doi.org/10.1145/3457388.3458656
https://doi.org/10.1145/3457388.3458656
https://doi.org/10.1109/IPDPSW52791.2021.00024
https://doi.org/10.3389/fnins.2021.629892
https://doi.org/10.1016/j.sysarc.2021.102156
https://proceedings.neurips.cc/paper/2016/hash/d8330f857a17c53d217014ee776bfd50-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/d8330f857a17c53d217014ee776bfd50-Abstract.html
https://openreview.net/forum?id=ByeUBANtvB
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1609/aaai.v34i04.5950
https://doi.org/10.1145/2908812.2908916
https://doi.org/10.1109/ICIP40778.2020.9191148
https://doi.org/10.1631/FITEE.1800469
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.1016/j.ces.2021.117273
https://doi.org/10.3390/electronics8060661
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://doi.org/10.1109/jmass.2020.3034205
https://doi.org/10.1109/MWSCAS.2017.8052915

	Abstract
	1 Introduction
	2 background
	2.1 Binary Neural Networks
	2.2 Backpropagation and alternatives

	3 Algorithms
	3.1 Binarization of the weights and activations

	4 Experiments
	4.1 Protocol
	4.2 Results

	5 Discussion
	6 Conclusion
	References

