N
N

N

HAL

open science

An Alternative Pareto-based Approach to
Multi-objective Neural Architecture Search

Meyssa Zouambi, Clarisse Dhaenens, Julie Jacques

» To cite this version:

Meyssa Zouambi, Clarisse Dhaenens, Julie Jacques. An Alternative Pareto-based Approach to Multi-
objective Neural Architecture Search. ITEEE 2023 Congress on Evolutionary Computation, Jul 2023,

Chicago, United States. hal-04161411

HAL Id: hal-04161411
https://hal.science/hal-04161411
Submitted on 7 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04161411
https://hal.archives-ouvertes.fr

An Alternative Pareto-based Approach to
Multi-objective Neural Architecture Search

1% Meyssa Zouambi
Univ. Lille, CNRS, Centrale Lille
UMR 9189 CRIStAL, F-59000
Lille, France
meyssa.zouambi @univ-lille.fr

Abstract—Neural architecture search (NAS) is a field that
automates the architecture design of neural networks. NAS can
be modeled as an optimization problem. It describes a space
of possible architectures and looks for the most performing
one. NAS, however, is not limited to finding the most task-
accurate neural network. It can consider other objectives during
the search to meet different demands and requirements (model
size, latency, energy consumption, etc.). Several methods were
proposed for multi-objective NAS. Most of them are either based
on the scalarization of objectives, or use a Pareto-based approach.
Methods based on scalarization require preference weighting
between objectives and can suffer from suboptimality, while the
Pareto-based methods found in NAS usually require complex
operators and many parameters to tune. The goal of our work
is to offer an alternative Pareto-based method that solves the
above issues. In this paper, we first present a formulation of the
NAS problem as a multi-objective optimization (MO) problem.
We then design a dominance-based multi-objective local search
(DMLS) to solve it. Unlike other NAS methods, our work uses a
simple encoding, few parameters, and does not require preference
weighting of objectives. To assess its performance, we evaluate
this algorithm on a specialized multi-objective NAS benchmark to
optimize both accuracy and network complexity. We compare it
to state-of-the-art MO methods of this benchmark. Results show
that our method finds significantly more Pareto optimal solutions
than NGSA-II and overpasses single-objective local search for
the same evaluation budget. We conclude that DMLS provides a
more practical MO approach for NAS while providing superior
performances.

Index Terms—Neural architecture search, Multi-objective local
search, Multi-objective NAS.

I. INTRODUCTION

Designing the architecture of a neural network is arguably
one of the most crucial steps in developing deep learning mod-
els. Different tasks and datasets require tailored architectures
to obtain good performances. For this reason, researchers and
machine learning engineers spend considerable time trying
different architecture configurations for their models. This step
is conducted by trial and error and was done manually for
decades. Neural architecture search (NAS) solves the time-
consuming task of architecture design. It has drawn notable
attention in recent years for its ability to produce state-of-the-
art models.

979-8-3503-1458-8/23/$31.00 ©2023 European Union

2" Clarisse Dhaenens
Univ. Lille, CNRS, Centrale Lille
UMR 9189 CRIStAL, F-59000
Lille, France
clarisse.dhaenens @univ-lille.fr

37 Julie Jacques
Univ. Lille, CNRS, Centrale Lille
UMR 9189 CRIStAL, F-59000
Lille, France
julie.jacques @univ-lille.fr

NAS is also not limited to finding the neural network
with the best predictive performance. It can take into account
other considerations as well, such as complexity, inference
time, energy consumption, etc. Multi-objective NAS includes
approaches that optimize more than one objective simultane-
ously. Several methods have been proposed in this context,
including Pareto methods that are largely population-based [5]
[9] [3], or methods using a scalarization of objectives [1] [20]
[6]. Population-based methods are complex to implement for
NAS and require a lot of parameter tuning. On the other hand,
the scalarization of objectives is considered sub-optimal for
multi-objective optimization according to [2].

The goal of our work is to provide an alternative Pareto-
based approach that solves the above issues. We design a
dominance-based multi-objective local search (DMLS) for
NAS. Our method is easy to implement, is not based on
the scalarization of objectives, and does not require many
parameters. It extends the local search (LS) approach that has
proved its effectiveness in single objective NAS [19]. It can
naturally exploit techniques based on local considerations that
speed up the global search time, such as weight inheritance
[16] or network morphism [18]. DMLS has also already been
successfully applied in a machine learning context in [8].

The rest of the paper is organized as follows: Section II
gives background knowledge about neural architecture search,
its formulation in a multi-objective optimization context, and
an introduction to the dominance-based multi-objective local
search. Section III describes the proposed approach, explains
the different parts used for DMLS (solution encoding, neigh-
borhood, and evaluation function), and defines its process.
Section IV describes the evaluation protocol to compare
the proposed DMLS approach with NSGA-II and LS on a
specialized multi-objective benchmark for NAS and discusses
the results. Section V concludes this work and gives future
research directions.

II. BACKGROUND

A. Neural Architecture Search

Deep learning models power most modern applications
nowadays. Their predictive performances rely on both data
and neural network design. When designing neural networks,
several choices have to be made, ranging from the number of

Conv3x3
Avg Pooling

Input

Convsx5
Avg Pooling

Classification layer

Fig. 1: Example of a simple CNN architecture for image classification. ConvNxXN represents a convolutional operation with
kernel size N. Each operation results in a set of feature maps. The last layer uses the resulting feature maps for classification

layers to the type of operations used at each layer. The num-
ber of architecture parameters grows exponentially with the
complexity of the network. This can leave machine learning
engineers with many potential models that perform differently
based on their structure and configuration.

Figure 1 shows an example of a simple convolutional
neural network (CNN) where many architectural parameters
need to be defined. For example, the type of operation of
each layer (e.g., Convolution, Pooling), the kernel size of the
convolutional operations (e.g., 3x3, 5x5), the type of pooling
functions (e.g., Max Pooling, Average Pooling), etc.

There is no clear procedure on how to choose the best
parameters. Architecture design is a trial-and-error process that
is both time and resource-consuming.

The goal of neural architecture search is to automatically
find the architectures that maximize the model performance
from a large set of possible architecture configurations. This
set of possible architectures defines the NAS search space,
and can contain a very large number of architectures. To
efficiently explore it, NAS utilizes search strategies. The
most popular ones include gradient-based approaches [11],
evolutionary algorithms [12], and reinforcement learning [7].

B. Multi-objective Neural Architecture Search

Neural architecture search has been recently applied to
find architectures that fulfill several criteria. It optimizes the
predictive performance and other objectives as well. This trend
meets the current demands of models that can now run on
different platforms and for more demanding tasks. Examples
of these objectives are latency, energy consumption, size, etc.
Following the notation found in [13], the multi-objective NAS
problem can be formulated as follows:

Minimize F(a) = (f1 (a;w*(a)),..., fr (a;w*(a)),
fk+1(a>7 HE) fm(a’)T

Subject to w*(a) € argmin L(w;a), a € Q,, w € Ny,

a represents a candidate architecture from the search space
Q,, and w(a) its associated weights. The weights are obtained
after training the architecture on the training set using the loss
function £(w;a).

F : ©Q — R™ are the m objectives to minimize during the
architecture search. These objectives can either depend on both
the architecture and its weights (f; to fx), for example, the
accuracy. Or they can depend on the design of the architecture
only (fx+1 to fin), such as the number of parameters or the
latency.

To solve this multi-objective optimization problem, two
types of approaches have been used in the literature. The first
type is based on the scalarization of objectives. It creates a
weighted function of f; to obtain a single objective optimiza-
tion problem. Many notable works in multi-objective NAS use
this approach. In [1], authors use a reinforcement learning
algorithm to search for the optimal network architecture for
both predictive performance and latency. The reinforcement
agent constructs the network based on a reward signal defined
by a weighted sum of the two objectives.

Authors in [20] use a differentiable NAS framework to
search for architectures that optimize the same objectives.
Their loss function is a weighted product of cross-entropy
(prediction metric) and latency.

The work in [6] also proposes a differentiable NAS method
in which the search space is composed of densely connected
blocks with different widths and spatial resolutions. Here, the
loss function is defined as the weighted sum instead of the
weighted product.

Techniques based on the scalarization of objectives suffer
from two main issues. First, they require using weights that
defines the importance of each objective before the search.
This needs prior knowledge and experiments. Second, they use
an aggregation of objectives which is considered suboptimal
[2].

The second type of approach used in the literature is multi-
objective optimization using a Pareto-front. This approach
does not require defining a trade-off between predictive per-
formance and other objectives a-priori. Since, typically, there
is no feasible solution that minimizes all objective functions
at once, this approach chooses a set of solutions that are
not dominated by one another. In a minimization problem,
a solution «a is said to dominate another solution b if Vi €
{1,(.)..,m},fi (Cl) < fi (b) and i € {1,...,m},fi (a) <
fi(b

The Pareto-front contains all solutions that are not domi-

— —

o

=

. =

[o]

g 3

S o
- - z % =
> c E= =
Q S = = c
c 8 [0) | ()
= i) — o
= 8 = S

o S

» c

o)

@)

[

X1 X2 X3 X4 X5 Xe X7 Xg

— — —
(@) (@)}

£ £

5 S

[e] @]

i % 5 | |5

0 To] = =

© © 2 | 2 =

= = o, | 9, 2 =
— — ©o | © o

X X (@) o
S =

C [e

(] @]

o o
| — | — —

X9 X10 X11 X12 X13 X14

Fig. 2: Solution encoding for MacroNASBenchmark. Blue cells are the operations that are chosen for each architecture. Red
cells are pre-fixed operations that are common in all architectures (best seen in color).

nated by any other solution of the search space.

Works using this approach for NAS include population-
based methods like NSGA-II or other variations. In [5],
authors propose a population-based method that renders, at
each generation, a set of architectures generated using local
transformation. They use Lamarckian inheritance [15] to per-
mit faster architecture evaluation. Their work, however, uses
complex operators which makes it difficult to adapt to other
tasks.

In [14], authors propose a genetic algorithm based on
NSGA-II to improve both classification performance and the
number of floating-point operations during the architecture
search. They initialize their population from hand-crafted
architectures and explore new ones using crossovers and
mutations.

Authors in [22] use the cuckoo search algorithm and in-
corporate the fast non-dominated sorting approach for opti-
mizing classification accuracy, inference latency, number of
parameters, and number of floating-point operations. New
architectures are constructed via Lévy flight mutations.

Population-based methods generally require a considerable
amount of parameter-tuning for their design (operators, size of
the population, etc.). They are slower to converge compared to
non-population-based methods but explore more of the search
space, which could lead to better solutions.

C. Dominance-based Multi-objective Local Search

In a mono-objective context, local search methods are
known to provide good-quality solutions for many hard com-
binatorial optimization problems. They start from an initial
solution, selected at random or using another heuristic, and
then generate neighbors of this solution by applying a neigh-
borhood function N. This function creates adjacent solutions
by applying small transformations to the current solution.
These neighbors are explored (and evaluated) following one of
the available exploration strategies. For example, in the first-
improve strategy, the first evaluated neighbor that has a better
quality is selected and replaces the current solution. After

this update, the process is repeated with this new solution.
The search stops when no neighbor is better than the current
solution, so there is no possibility to improve it (the heuristic
reaches a local optimum).

This method has proven its effectiveness for the NAS
problem in a mono-objective context [19]. Unlike most of
its search strategies, LS is easy to implement and does not
require complex encoding or parameter tuning, which makes
it easily applicable to newer NAS tasks. Local search also
has the advantage of naturally exploiting certain methods that
speed up the search time of the NAS process. Such as weight
inheritance [16] or network morphism [18], which reduce the
training time for architecture evaluation.

Dominance-based multi-objective local search (DMLS) is
an adaptation of the single-objective local search for multi-
objective optimization problems [10]. Unlike classical LS,
instead of manipulating one solution, DMLS maintains a set
of solutions in an archive. This archive contains elements
that are non-dominated by one another. Meaning that if we
compare two solutions from this archive, none of them is
superior. The archive is progressively improved by exploring
the neighborhood of the solutions it contains. When it meets a
neighbor that is non-dominated by the elements of the archive,
it is added to the set. When solutions from the archive become
dominated during the exploration of the neighborhood, they
are removed automatically.

DMLS has already been successfully applied in machine
learning contexts [8]. Since it is a variation to LS that is
already state-of-the-art for many NAS benchmarks [19], it is
a good candidate for the multi-objective NAS problem.

III. PROPOSED APPROACH

Considering the importance of multi-objective neural net-
work design, we expanded the use of local search to multi-
objective NAS. While previous work has explored the use
of LS in this context [3], their method is based on the
scalarization of objectives. Our approach, on the other hand,

uses a Pareto approach with dominance-based multi-objective
local search to perform multi-objective resolution.

Evaluating the quality of a neural architecture is very costly.
It requires training the architecture on a training set and
assessing its performance on a validation set. Depending on the
task, architecture, and hardware used, this step can take several
hours for a single evaluation. To simplify experimentation,
various benchmarks have been proposed in the literature
[4], [17], [21]. They provide pre-computed metrics for all
possible architectures for their given task and pre-defined
search space. Our work uses the MacroNASBenchmark [3], a
benchmark designed specifically for evaluating multi-objective
NAS methods. It includes a search space of over 200,000
unique architectures, along with their predictive performance
on image classification for two popular datasets: CIFAR10
and CIFAR100. In addition, each architecture is assigned a
metric for complexity. Our proposed approach can nonetheless
be adapted for other search spaces, datasets, or metrics by
following the same encoding and procedures.

In the following, we explain the different components of
the DMLS for NAS and give a detailed description of our
proposed approach.

A. Solution Encoding

In the context of NAS, a solution a defines an architecture
of a neural network. The encoding used in our method is a
list of values. This list contains the different parameters chosen
that uniquely define an architecture in the search space.

For the MacroNASBenchmark [3], each solution consists
of 14 unrepeated cells (1 to x14). Each cell z; can take one
of three options (Identity; 3_3x3: MBConv' with expansion
rate 3 and kernel size 3; 6_5x5: MBConv with expansion
rate 6 and kernel size 5). Figure 2 shows an example of a
solution from this search space. On top, is the representation
of the architecture, and on the bottom, is the corresponding
encoding, where x; to x14 contains the values of each of the
corresponding cells.

B. Neighborhood Function

The neighborhood function N generates a neighborhood
N(a) that contains the architectures close to a. In our work,
we define the neighborhood of a solution as the set of solutions
that differs by exactly one cell from the current one. The set of
neighbors is obtained by selecting each cell and enumerating
all the possible values. For the used benchmark, there are 28
possible neighbors for each solution (2 other alternative values
for the 14 cells).

Figure 3 shows an example of a neighbor generation. On
top, there is the current solution, and on the bottom, its
neighbor. Generating one neighbor consists in choosing one
operation and changing it by another, for example here, 6_5x5
(MBConv with expansion rate 6 and kernel 5) is replaced with
an Identity operation.

Inverted Linear BottleNeck layer with Depth-Wise Separable Convolution

X1 X2 X3

6_5%5 }—» 6 5%5 }—ﬁ 3 3x3

Mutation

. _ X14
e

6_5x5

Generating a neighbor

7

656 | identty J o 333 | ..o ess | (D

X1 X2 X3 X14

Fig. 3: Neighbor generation with the neighborhood
function.

C. Solution Evaluation

To evaluate an architecture, we chose two objectives, one
representing the predictive performance of the model (to
maximize) and one for the model’s complexity (to minimize).
Optimizing the model’s complexity along with the predictive
performance is usually useful when we want a lightweight
model or a model that is easier to interpret. MacroNASBench-
mark provides for each architecture precomputed accuracies
(sum of well-classified images divided by the total number
of images) for two image classification datasets (CIFARI10
and CIFAR100). It also provides a metric for complexity (the
Million Multiply Accumulate Operations MMACs) that is used
as the second objective.

D. Solution archive

The solution archive contains a set of solutions that are non-
dominated by one another. In this case, the objectives used are
f1=1—accuracy and fo = MMACSs.

We initialize the archive with a trivial solution (containing
all Identity operations) which is the optimal solution for the
MMACs metric. We sample different solutions uniformly at
random from the search space. When meeting a solution that
is not dominated by other solutions from the archive, we add
it until we reach the desired initial size. Any solution that
becomes dominated is automatically removed.

The initial archive size is the only parameter that needs to
be tuned for this approach, the impact of its choice will be
studied in the experiment section. The maximum size of the
archive is set to infinity (unbounded).

E. Algorithm Process

Algorithm 1 gives the main steps of this method. First, it
starts by initializing an archive of size p with a set of solutions.
After that, it randomly picks one of the solutions to explore. A
solution is explored by modifying a single variable every time
and evaluating its resulting neighbor. Once it finds a neighbor
that is non-dominated by the current archive, it adds it to the
archive and removes any solution that will be dominated by it.
To speed up the search and explore more of the search space,
we mark the solution that was used to generate this neighbor
as visited and don’t use it again. The algorithm then repeats
this process for another random solution in the archive. If we
explore all the neighbors of a solution, it is also marked as
visited and is no longer picked. The algorithm converges when

["\x\

\

.

//

Pick a solution a
from archive

Init archive

Random sampling

Return archive as
Pareto-front

No

Yes

Mark a as visited

All archive is visited
or budget exceeded?

Evaluate neighbor u
from N(a)

No

Yes N(a) is all
evaluated?

No

Yes
Add u to archive

Non-dominated
solution found?

Remove all
dominated solutions

Fig. 4: The dominance-based multi-objective local search process applied for NAS.

there is no more unvisited solution in the archive. The resulting
archive is the approximation to the Pareto set of this method.
Figure 4 illustrates the process of this method.

IV. EXPERIMENTS
A. Experimental Protocol

To assess the performance of the proposed algorithm, we
run it for the CIFAR10 and CIFAR100 image classification
datasets provided by the MacroNASBenchmark [3]. We chose
this benchmark because it is specifically designed for evalu-
ating multi-objective NAS, as stated in their paper. CIFAR10
and CIFAR100 are also the two most popular datasets in NAS
benchmarks for this task [4], [17], [21].

We compare our work with two other methods previously
tested in [3]. Both of these use different approaches: a
population-based method with NSGA-II and a scalarization-
based approach using a customized local search’. The two
methods are described as state-of-the-art for this benchmark
[3].

We use accuracy and MMACs as the two objectives for
the architecture search. Both of them are provided by the
benchmark. We limit the number of evaluations to 6000
evaluated architectures (approx 3% of the size of the search
space). We fix this number because in a non-benchmark setting
evaluating architectures is very costly. If an algorithm stops
before the evaluation budget is reached, it restarts the search.

The benchmark provides the globally-optimal solutions
(Pareto optimal). It is the set of solutions that are non-
dominated by the whole search space. They are obtained by
exhaustive search and will be a point of comparison to the
approximate Pareto-front obtained by other methods.

The setup of each method is as follows:

o For the NSGA-II algorithm, it uses a 2-point crossover,

a single-variable mutation with probability p,, = 1/I,

2Two more algorithms are presented for this benchmark. Unfortunately, we
were not able to run them for comparison using the provided code.

Algorithm 1 Dominance-based Local Search for NAS
Input: €,: search space N: neighborhood function
mazBudget: max evaluations p: initial size of archive
Qutput: set of non-dominated solutions

Initialization: archive <— {} /fempty archive
while size(archive) < p and maxBudget not reached do
Randomly pick an architecture a € €2,
Evaluate(a)
if a is non-dominated by solutions in archive then
Add a to archive
Remove solutions dominated by a.
end if
end while
Randomly pick an unvisited solution a from archive
while max Budget not reached and not all archive solutions
are visited do
randomly pick u € N(a)
Evaluate(u)
if u is non-dominated by solutions in archive then
Add u to archive
Remove solutions dominated by w.
Mark a as visited
Randomly pick a new unvisited solution a from
archive
end if
if N(a) is all evaluated then
Mark a as visited
Randomly pick an unvisited solution a from archive
end if
end while
return archive

0.904

0.902
£ 0.900
:E.
0.898
—— DMLS
NSGA-II
06
0.896 LS

1000 2000 3000 4000 5000

Number of evaluations

6000

(a) Hypervolume (CIFAR10)

0.8

3

=0.6

£04

S

=

021 —— DMLS
/ NSGA-II

— 18
0.0

0 1000 2000 3000 4000 5000 6000

Number of evaluations

(a) % of Pareto optimal solutions found (CIFAR10)

tournament size of 2, and population size np,, = 100. As
suggested in [3] for this problem.

For the local search algorithm, a random scalarization
of the objectives is used in this single-objective search
algorithm. This compensates for having to choose weights
for each objective a-priori. An archive is maintained to
keep the non-dominated solutions from each iteration.
For our method (DMLS), the only parameter to choose
is the initial size of the archive. We run our tests for
multiple archive sizes ranging from 2 to 20 and compare
the results. All archive sizes seem to reach the same point
after a certain number of iterations. However, bigger sizes
of the archive tend to give the method a slower start
(part of this is explained by the time required to find
the expected number of initial solutions). We choose to

0.678

Pareto-Optimal points found

0.682

0.680

.676

0.674
—— DMLS
0.672 NSCA-II
— LS
0.670
0 1000 2000 3000 4000 5000 6000

0.8

3

'S

w

o

—

0.0

Number of evaluations

(b) Hypervolume (CIFAR100)

Fig. 5: Evolution of the hypervolume across the number of evaluated architectures for CIFAR10 and CIFAR 100. Results are
averaged for 30 runs for each algorithm.

—— DMLS
NSGA-IT
LS

0 1000 2000 3000 4000

Number of evaluations

5000 6000

(b) % of Pareto optimal solutions found (CIFAR100)

Fig. 6: Evolution of the percentage of Pareto optimal solutions found across the number of evaluated architectures for CIFAR10
and CIFAR 100. Results are averaged for 30 runs for each algorithm.

work with an archive size of 7 as it finds more Pareto
optimal solutions in the early stages of the search.
Following the protocol in [3], we also add the trivial
solution to the archive (or population) to each method
before starting the search. This solution contains all
identity cells and represents the lower bound for the
second objective.

For each method, all experiments are averaged over 30

runs. We compare the algorithm from several standpoints:
the hypervolume that should be maximized (we normalized
the objectives, turned them into a minimization problem, and
calculated the hypervolume with (1,1) as a reference point)
and the percentage of Pareto optimal solutions found.

We use the Mann-Whitney U rank test for assessing the

statistical significance of our results.

B. Results and Discussion

Evaluations DMLS NSGA-II LS
CIFAR10 500 90.16+0.08 89.84+0.14 90.10£0.05
1000 90.28+0.05 90.24+0.05 90.17+£0.03
3000 90.37+£0.039 90.33+0.04 90.24+0.03
6000 90.39+0.02 90.37+£0.03 90.29+0.03
CIFAR100 500 67.69+0.10 67.30+£0.22 67.66+0.05
1000 67.82+0.05 67.76+£0.08 67.73+£0.04
3000 67.94+0.03 67.89+0.04 67.81+£0.04
6000 67.98+0.01 67.93+£0.03 67.84+0.03

TABLE I: Table reporting the hypervolume (multiplied by
102 for better readability) for each method on CIFAR10 and
CIFAR100. The results at presented for 500, 1000, 3000, and
6000 evaluations. Values in bold are statistically better (Mann-
Whitney U rank test).

Table I reports the hypervolume of each method for CI-
FARI10 and CIFARI100 at different evaluation steps (500,
1000, 1500, 3000, and 6000). We notice the three approaches
showing very close values at each step, with DMLS seemingly
taking the lead. In the early stage of the search, at 500
evaluations, the NSGA-II seems to give a slightly lower
hypervolume than LS before quickly catching in the 1000
evaluations mark. Figures 5.a and 5.b show the quick evolution
of the hypervolume across the number of evaluations for
CIFARI10 and CIFARI100, respectively. Here we see that in
the first evaluations, LS briefly gives the highest hypervolume.
This can be explained by the time it takes to initialize the
archive of DMLS and the population for NSGA-II. But since
NSGA-II requires a larger population, it takes it more time to
surpass LS.

The very close hypervolume results suggest that the solu-
tions composing the approximate Pareto-front are spread in an
equivalent manner. For this reason, another metric should be
used to better compare these methods. Here we will use the
number of optimal Pareto points found for each of them.

Table II presents the percentage of Pareto optimal solutions
found for each method on CIFAR10 and CIFAR100. For this

Evaluations DMLS NSGA-II LS
CIFARI10 500 29.07+8.89 6.52+2.79 22.90+4.45
1000 51.27+6.29 34.39+7.31 27.94+5.37
3000 76.73+5.49 65.31+£5.49 39.07+3.08
6000 82.41+4.39 77.58+4.78 49.71+6.17
CIFARI100 500 25.49+6.67 7.45+2.83 22.2243.99
1000 43.92+7.93 33.07+6.49 27.90+5.22
3000 70.19+2.69 65.55+4.31 37.71£5.69
6000 77.58+3.74 72.41+£3.64 44.37+4.42

TABLE II: Table reporting the percentage of Pareto optimal
solutions found for each method on CIFAR10 and CIFAR100.
The results at presented for 500, 1000, 3000, and 6000 eval-
uations. Values in bold are statistically better (Mann-Whitney
U rank test)

metric, there is a more significant difference between each
method, and this is true for both datasets as well. When
the search budget is reached, DMLS finds statistically more
Pareto optimal solutions. In CIFARI10, for example, DMLS
ends the search with more than 82% of the Pareto optimal
solutions, followed by NSGA-II with 77.6% of solutions, and
lastly, LS with only 49.7% of optimal solutions. Similarly, for
CIFAR100, DMLS takes the lead with 77.6% Pareto optimal
solutions found at the end of the search, against 74.6% and
44.4% for NSGA-II and LS, respectively. It is clearly shown
in Figure 6 as well. Here we can see that DMLS performs
much better since the beginning of the search, even if it has
a lower hypervolume than LS, as seen previously.

To sum up, results show that even if DMLS is only
slightly higher in hypervolume than other methods, it can find
significantly more Pareto optimal solutions compared to them.
Which gives more architecture choices at the end of the search
for a limited evaluation budget. On top of that, it is easy to
implement and requires only one parameter to adjust (the size
of the archive). This method also has the potential to exploit
local properties to speed up network training (which is the
most time-consuming task), such as weight inheritance [16] or
network morphism [18]. This would further reduce the time
needed to search for architectures in a non-benchmark setting.

V. CONCLUSION AND FUTURE DIRECTIONS

The goal of this paper is to propose an alternative multi-
objective resolution method for NAS using dominance-based
multi-objective local search (solution encoding, neighborhood,
and evaluation function). Unlike other multi-objective NAS
strategies, it does not require defining weighted preferences
between objectives like scalarization methods, nor is it com-
plex to tune like other Pareto-front-based methods. It requires
only one parameter to choose (the initial archive size), which
makes it easily reusable for new tasks without much tuning.
Since it is based on local search, it has the potential to exploit
the local property-based evaluation strategies for NAS that
will speed up the global search time. The experiments on a
specialized MO benchmark show that our approach obtains
statistically better Hypervolume and finds significantly more
Pareto optimal solutions than NSGA-II and LS. In future
works, we will compare this method using datasets for other
types of tasks, such as natural language processing or image
segmentation. We will also study the effect of using it in
conjunction with the weight inheritance strategy to assess the
speed up it can obtain.

REFERENCES

[1] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neu-
ral architecture search on target task and hardware. arXiv preprint
arXiv:1812.00332, 2018.

[2] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan.
A fast and elitist multiobjective genetic algorithm: Nsga-ii. [EEE
transactions on evolutionary computation, 6(2):182-197, 2002.

[3] Tom Den Ottelander, Arkadiy Dushatskiy, Marco Virgolin, and Peter AN
Bosman. Local search is a remarkably strong baseline for neural
architecture search. In Evolutionary Multi-Criterion Optimization: 11th
International Conference, EMO 2021, Shenzhen, China, March 28-31,
2021, Proceedings 11, pages 465-479. Springer, 2021.

[4

[5

[ty

[6

=

[7

—

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of re-
producible neural architecture search. arXiv preprint arXiv:2001.00326,
2020.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-
objective neural architecture search via lamarckian evolution. arXiv
preprint arXiv:1804.09081, 2018.

Jiemin Fang, Yuzhu Sun, Qian Zhang, Yuan Li, Wenyu Liu, and
Xinggang Wang. Densely connected search space for more flexible
neural architecture search. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10628—10637, 2020.
Yesmina Jaafra, Jean Luc Laurent, Aline Deruyver, and Mohamed Saber
Naceur. Reinforcement learning for neural architecture search: A review.
Image and Vision Computing, pages 57-66, 2019.

Julie Jacques, Julien Taillard, David Delerue, Clarisse Dhaenens, and
Laetitia Jourdan. Conception of a dominance-based multi-objective
local search in the context of classification rule mining in large and
imbalanced data sets. Applied Soft Computing, 34:705-720, 2015.
Ye-Hoon Kim, Bhargava Reddy, Sojung Yun, and Chanwon Seo. Nemo:
Neuro-evolution with multiobjective optimization of deep neural net-
work for speed and accuracy. In ICML 2017 AutoML Workshop, pages
1-8, 2017.

Arnaud Liefooghe, Jérémie Humeau, Salma Mesmoudi, Laetitia Jour-
dan, and El-Ghazali Talbi. On dominance-based multiobjective local
search: design, implementation and experimental analysis on scheduling
and traveling salesman problems. Journal of Heuristics, 18(2):317-352,
2012.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055, 2018.

Yugiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and
Kay Chen Tan. A survey on evolutionary neural architecture search.
IEEE Transactions on Neural Networks and Learning Systems, 2021.
Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf,
and Vishnu Naresh Boddeti. Nsganetv2: Evolutionary multi-objective
surrogate-assisted neural architecture search. In European Conference
on Computer Vision, pages 35-51. Springer, 2020.

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy
Deb, Erik Goodman, and Wolfgang Banzhaf. Nsga-net: neural architec-
ture search using multi-objective genetic algorithm. In Proceedings of
the genetic and evolutionary computation conference, pages 419-427,
2019.

Jonas Prellberg and Oliver Kramer. Lamarckian evolution of convolu-
tional neural networks. In Parallel Problem Solving from Nature—PPSN
XV: 15th International Conference, Coimbra, Portugal, September 8—12,
2018, Proceedings, Part Il 15, pages 424-435. Springer, 2018.
Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yu-
taka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Kurakin. Large-
scale evolution of image classifiers. In International Conference on
Machine Learning, pages 2902-2911. PMLR, 2017.

Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keu-
per, and Frank Hutter. Nas-bench-301 and the case for surrogate bench-
marks for neural architecture search. arXiv preprint arXiv:2008.09777,
2020.

Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. Network
morphism. In International Conference on Machine Learning, pages
564-572. PMLR, 2016.

Colin White, Sam Nolen, and Yash Savani. Exploring the loss landscape
in neural architecture search. arXiv:2005.02960, 2020.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun,
Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt
Keutzer. Fbnet: Hardware-aware efficient convnet design via differ-
entiable neural architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10734—
10742, 2019.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Mur-
phy, and Frank Hutter. Nas-bench-101: Towards reproducible neural
architecture search. In International Conference on Machine Learning,
pages 7105-7114. PMLR, 2019.

Nan Zhang, Jianzong Wang, Jian Yang, Xiaoyang Qu, and Jing Xiao.
Multi-objective cuckoo algorithm for mobile devices network architec-
ture search. In Artificial Neural Networks and Machine Learning—
ICANN 2020: 29th International Conference on Artificial Neural Net-
works, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part
I 29, pages 312-324. Springer, 2020.

