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Member, IEEE and Jocelyn Chanussot, Fellow Member, IEEE

Abstract—This paper introduces a new sparse unmixing tech-
nique using archetypal analysis (SUnAA). First, we design a
new model based on archetypal analysis. We assume that the
endmembers of interest are a convex combination of endmembers
provided by a spectral library and that the number of end-
members of interest is known. Then, we propose a minimization
problem. Unlike most conventional sparse unmixing methods,
here the minimization problem is non-convex. We minimize the
optimization objective iteratively using an active set algorithm.
Our method is robust to the initialization and only requires
the number of endmembers of interest. SUnAA is evaluated
using two simulated datasets for which results confirm its better
performance over other conventional and advanced techniques
in terms of signal-to-reconstruction error. SUnAA is also applied
to Cuprite dataset and the results are compared visually with the
available geological map provided for this dataset. The qualitative
assessment demonstrates the successful estimation of the minerals
abundances and significantly improves the detection of dominant
minerals compared to the conventional regression-based sparse
unmixing methods. The Python implementation of SUnAA can
be found at: https://github.com/BehnoodRasti/SUnAA.

Index Terms—Hyperspectral imaging, sparse unmixing, semi-
supervised unmixing, archetypal analysis, active set algorithm.

I. INTRODUCTION

PECTRAL unmixing estimates the abundances of pure

spectra of materials called endmembers. Depending on the
prior knowledge available about endmembers, the unmixing
problem can be divided into three main categories: (1) Super-
vised Unmixing, (2) Blind Unmixing and (3) Semi-supervised
or Sparse Unmixing. In supervised unmixing, abundances are
estimated by relying on known endmembers whereas blind
unmixing estimates both the endmembers and the abundances
simultaneously. Semi-supervised unmixing relies on a library
of endmembers that ideally contains the endmembers present
in the scene and is often formulated as a sparse regression
problem, thus it is known as sparse unmixing. Abundances
can typically be estimated by enforcing sparsity-promoting
penalties. J. M. Bioucas-Dias originally proposed this idea in
[1] where sparse unmixing by variable splitting and augmented
Lagrangian (SUnSAL), and the constrained SUnSAL (C-
SUnSAL) were introduced. Both SUnSAL and C-SUnSAL use
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the ¢; penalty to promote sparsity on the abundances. SUnSAL
assumes the ¢5 norm for the fidelity term augmented to the
¢, while C-SUnSAL assumes the {5 norm as a constraint to
minimize ¢;. SUnSAL solves the minimization problems using
the alternating direction method of multipliers (ADMM) [2].

SUnSAL was later improved in [3] by adding the total varia-
tion (TV) penalty (SUnSAL-TV) to the minimization problem
in order to incorporate spatial information. We should note
that SUnSAL-TV does not hold the abundances sum-to-one
constraint (ASC) due to the conflict with the ¢; penalty. Col-
laborative sparse [4] unmixing enforces the sum of /5 norms
on the abundances to promote sparsity. Double reweighted
sparse unmixing [S] and spectral-spatial weighted sparse un-
mixing (S?WSU) [6] exploit the weighted ¢; norm to promote
sparsity. The former also uses the TV penalty to capture spatial
information. Multiscale sparse unmixing algorithm (MUA) [7]]
captures spatial correlations by performing sparse regression
on segmented pixels using either a binary partition tree (BPT),
the simple linear iterative clustering (SLIC), or the K-means
algorithm. In [8], SLIC was chosen for the segmentation,
and sparse unmixing was performed using superpixel-based
graph Laplacian regularization. A library pruning-based sparse
unmixing called multiple signal classification collaborative
sparse unmixing (MUSIC-CSR) was proposed in [9]. The
library was pruned using an orthogonal projection where
HySime [10] was used to obtain the subspace bases to reduce
the noise effect. Then collaborative sparse regression was used
for abundance estimation.

A common drawback of the sparse unmixing techniques
mentioned above is that the estimated fractional abundances
do not necessarily describe the aerial fraction of each pure
material on the ground due to the absence of ASC. Indeed,
the ¢; penalties cannot be applied to the abundances while
holding the ASC. This issue was addressed in sparse unmixing
using convolutional neural network (SUnCNN) [[L1]. In [11],
it was shown that the problem of selecting a suitable prior for
a sparse regression could be moved to the optimization on the
parameters of a deep encoder-decoder network while the ASC
can be enforced using a softmax layer. However, selecting suit-
able hyperparameters for deep networks is often challenging.
In [12], an asymmetric encoder-decoder architecture is used
for sparse unmixing. Instead of softmax, a sparse variation of
softmax is used to avoid the full support of softmax while
enforcing ASC.

In conventional sparse unmixing, the endmembers library is
fixed, and the abundances estimation is of interest. However,
even a pruned and well-selected spectral library cannot flaw-



lessly represent the endmembers of materials in a real-world
dataset. There are several factors, such as noise, atmospheric
effects, illumination variations, and the intrinsic variation of
materials which may affect the endmembers and induce scaling
factors for the endmembers present in the scene compared to
the ones from the library. To address this issue, we assume
that endmembers of interest can be modeled by a convex
combination of the library endmembers. This corresponds to
the formulation of archetypal analysis (AA) [13]]. Recently,
archetypal analysis has been successfully harnessed for blind
unmixing in [14]. In [15]], ¢; sparsity-constrained archetypal
analysis was proposed for blind unmixing where the sparsity
was enforced on the abundances. In this paper, we propose
solving sparse unmixing using archetypal analysis (SUnAA).
In the proposed model, an additional matrix is introduced,
which defines the contributions of the endmembers from the
library to the estimated spectra of endmembers present in
the scene. Here the ASC can be enforced but the resulting
proposed minimization is jointly non-convex. The optimization
problem is solved using an active set algorithm, leading to a
parameter-free technique, besides the number of endmembers
of interest that is required. The experimental results confirm
that SUnAA outperforms conventional and deep learning-
based sparse unmixing techniques in terms of signal-to-
reconstruction error (SRE) for two simulated datasets and
visually for the Cuprite dataset. The major contributions of this
paper are summarized as follows: 1) we propose a new model
based on archetypal analysis for sparse unmixing: we assume
that the unknown endmembers are a convex combination of the
library endmembers, 2) we propose a non-convex optimization
for sparse unmixing: unlike the conventional sparse unmixing
which is based on sparse regression and convex optimization,
we show that the proposed non-convex optimization leads to
accurate abundances estimation, and 3) we adopt a parameter-
free active set algorithm to minimize the proposed optimiza-
tion problem.

II. METHODOLOGY
A. Conventional Sparse Unmixing

In conventional sparse unmixing, the observed spectra are
modeled as a linear combination of the library endmembers:

Y =DX +N, 6]

where Y € RP*™ denotes the observed spectra over p
channels and N € RP*™ is the model error and noise. D €
RP*™ denotes the spectral library containing m endmembers.
X € R™*™ is the unknown, potentially redundant, fractional
abundances to estimate.

In sparse unmixing, the (redundant) fractional abun-
dances X are estimated by applying sparsity-enforcing penal-
ties/constraints in a sparse regression formulation such as:

. 3
arngm iHYfDXH%Jr/\ZHXina
=1
s.t. X >0,

17X =17
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where X = [x1,...,Xy]. The ¢, norm is often selected to be
a (weighted) sparsity promoting norm. For instance, SUnSAL
[16] solves problem (2) for ¢ = 1 using ADMM [2]]. However,
[3] suggests using SUnSAL without ASC due to the conflict
with 61.

B. SUnAA

Inspired by archetypal analysis [13], we propose a new
model formulation for sparse unmixing, provided that the
number of endmembers of interest, r, is known:

(B,A) = argmin [[Y — DBA|%, (3a)
LA

s.t. B >0, (3b)

17B =17, (3c)

A >0, (3d)

17A =17 (3e)

where B € R™*" corresponds to the contributions of the
endmembers from the library D and A € R"*" is the (low-
rank) abundance matrix. We should note that AA uses Y
instead of D in (3b). It is worth mentioning that D turns the
blind scenario into a semi-supervised scenario, which could
be more efficient in the highly mixed scenario without pure
pixels.

In (E]) we assume that the unknown endmembers of interest
are a convex combination of the library endmembers. This
is our primary assumption to compensate for the library
mismatch. In addition, we assume that the number of end-
members is known. Therefore, we enforce non-negativity and
sum-to-one constraints on B. Equivalently to abundance non-
negativity constraint (ANC [3d) and abundance sum-to-one
constraint (ASC , we call the constraints on B endmember
non-negativity constraint (ENC and endmember sum-to-
one constraint (ESC [Bd).

It is important to note that the minimization problem is
not jointly convex in (B, A). However it is convex with respect
to one of the variables when the other is fixed, hence @I) can be
solved by alternating between two steps inside a cyclic descent
scheme. First, the A-step when B is fixed. Second, the B-step,
by fixing A. In this paper, we adopt the algorithm proposed in
[L7]. Here, we explain briefly solutions to the sub-problems
proposed. A-step: Assuming B is fixed and E = DB, the
sub-problem corresponds to

A= argmin [|[Y —EA|2%.
A
s.t. A >0, )
17’A =17

@) is a smooth least-squares optimization problem with a
simplicial constraint. As noted by [17], generic quadratic
programming solvers could be used but significantly faster
convergence can be obtained by designing a dedicated algo-
rithm that can leverage the underlying sparsity of the solution.



Algorithm 1: SUnAA

Input: Y: Hyperspectral data, D: Endmember library, : Number of
engmembers, T: quber of iterationsA.

Output: A: Abundances, E: Endmembers, B: Endmembers
contributions.

Initialization: B(®) = (1,,17)/m and A(©) = (1,1T)/r

fort=1to T do

A-step:

E=DB

A = ActSet(Y,E)

B-step:

for j =1 to r do

Y = W(Y — DB,gA)al T + Dby o
b; = ActSet(Y, D)
end
end
E=DB

Following [17] we use an active set algorithm to solve (). B-
step: Assuming A is fixed, problem writes as follows:

B= arg min |Y—-DBAJZ%.
B

s.t. B >0, ®)
1’B =17

Solving (3) is not as straightforward as since it does not
correspond to the standard quadratic form. However, following
[L7], we consider solving separately for every column b
of B = [by,...,b,] by fixing all other variables in order to
obtain a quadratic program:

2

arg min ’ ——(Y —DBgqgA)a’" + Db, — Db;|| ,
b; [la7f3 F
s.t. bj > 07
17b; =1
(6)

where b o4 is the current value of b; before the update, and
a’ in R™" is the j-th row of A.

Note that the first and second terms are fixed, therefore the
same active set algorithm can be used to solve (6). The pseudo-
code for the algorithm used to solve (3) is given in Algo-
rithm E} As for initialization, we uniformly initialize matrices
Band A, ie. B® = (1,,17)/m and A® = (1,17)/r.

III. EXPERIMENTAL RESULTS

We compare SUnAA with seven sparse unmixing tech-
niques: SUnSAL [16], SUnSAL-S (SUnSAL with ASC and
without sparsity penalty, i.e. A = 0), SUnSAL-TV [3]], S?WSU
[6], MUA (using BPT segmentation) [7], MUSIC-CSR [9],
and SUnCNN [11] applied to two simulated datasets and
Cuprite. All the parameters are set as default for the competing
methods. The results are mean values over ten experiments.

A. Simulated Datasets

Two synthetic datacubes (DC1 and DC2) were used for
simulated experiments. For DC1, a synthetic library composed
of 240 spectral signatures selected from the USGS library
with a minimum pair-spectra angle of 4.44°is used. DC1 was
simulated using a linear mixing model with 5 endmembers

selected from the library and 75x75 pixels. The abundance
maps are composed of five rows of square regions uniformly
distributed over the spatial dimension. DC2 is a challenging
simulated dataset with no pure pixels and two mixed pixels
on the facet of the data simplex (more details in [L18]). It
contains 105x 105 pixels, simulated by the linear combination
of six endmembers from the USGS library. Two endmembers
show no absorption features throughout the wavelength and are
similar but scaled versions of each other, making the scenario
even more challenging.

For the quantitative evaluation, we use the SRE in dB

N X
X = X||r

(7N
Three levels of additive noise, i.e. 20, 30, and 40 dB are
considered in the simulated experiments.

Tables [[] and [l compare the results obtained by applying
different sparse unmixing techniques to DC1 and DC2, re-
spectively, in terms of SRE. For DC1, SUnAA outperforms
the other techniques for SNR=30 and 40 dB, and for SNR=20
dB gives the second-best results after MUA. SUnCNN shows
the second-best performance in terms of SRE. MUA shows
the best performance for low SNR, i.e. 20 dB. However, it
performs poorly for high SNRs. SUNSAL and SUnSAL-S
yield very low SREs. S2WSU, MUSIC-CSR and SUnSAL-
TV perform moderately, however, S?WSU provides better
performances for higher SNRs.

The results for DC2 show that SUnAA outperforms the
other techniques for all SNRs considerably. All the other
techniques give low SRE. This could be attributed to the
complexity of the dataset. Since the library may have several
scaled versions of one endmember, the conventional sparse
regression might not lead to a sparse solution. A remedy to
this problem is to prune the library by removing the spectra
with small spectral angle distances. However, in the case
of complex datasets such as DC2, the endmembers may be
removed from the library, which also leads to poor estimation.

Overall, comparing the SRE reveals that SUnAA outper-
forms the other techniques. SUnAA also show consistent
performances with respect to the noise level and datasets.
All the other methods fail for the complex dataset. For the
simple datasets, SUnCNN gives the second-best performance.
MUA outperforms the other techniques for very low SNR,
i.e. 20 dB, which could be attributed to the segmentation
applied before the sparse regression in MUA. However, this
might cause oversmoothing in the abundances. S?W performs
moderately and better than SUnSAL models. SUnSAL-TV
outperforms SUnSAL and SUnSAL-S due to the TV penalty,
which exploits spatial information.

Fig. [T] and [2] provide a visual comparison of the abun-
dance maps estimated for endmember 1 of DC1 and DC2,
respectively. As can be seen, both MUA and SUnSAL-TV
oversmooth the abundances, particularly for low-SNRs. MUA
also introduces artifacts, which is not desirable. This is due to
the segmentation step in MUA and the absence of parameter
selection for the TV regularizer in SUnSAL-TV.
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Fig. 2. The fractional abundance of endmember 1 of DC2. From top to bottom SNR= 20, 30, and 40 dB.

TABLE 1
SPARSE UNMIXING EXPERIMENTS APPLIED TO DC1 IN TERMS OF SRE.
THE BEST PERFORMANCES ARE SHOWN IN BOLD. THE SECOND BEST ARE
UNDERLINED.

SNR |SUnSAL|SUnSAL-S|SUnSAL-TV|S® WSU|MUA|MUSIC-CSR|SUnCNN|SUnAA

20 dB| 4.86 431 9.76 7.99 [13.19 6.07 11.15 | 11.52

30 dB| 8.94 8.47 14.39 15.52 |18.28 13.36 20.63 | 21.27

40 dB| 13.83 13.15 20.84 28.16 |21.12|  24.39 30.62 | 31.23
TABLE 11

SPARSE UNMIXING EXPERIMENTS APPLIED TO DC2 IN TERMS OF SRE.
THE BEST PERFORMANCES ARE SHOWN IN BOLD. THE SECOND BEST ARE
UNDERLINED.

SNR |SUnSAL|SUnSAL-S|SUnSAL-TV|S® WSU|MUA|MUSIC-CSR|SUnCNN|SUnAA

20 dB| 3.04 1.41 2.49 2.76 |6.95 2.51 4.45 9.54
30 dB| 3.72 2.42 742 6.57 |6.90 4.43 5.08 10.76
40 dB| 5.96 3.74 6.76 743 |7.31 5.45 596 | 11.74

B. Cuprite dataset

We used a subset of 250x 191 pixels of the Cuprite dataset
for real-world experiments. The minerals in that region are
well-studied and are therefore suitable for evaluating the
abundance maps qualitatively. Fig. [3] (a) depicts the geological
ground reference for the dominant minerals. We use a library
D € R!3x498 'which is composed of 498 spectral pixels from
the USGS library. The water absorption and noisy bands were
removed, hence the final pixels are of dimension p = 188.

Fig. 3] (b) demonstrates the abundance maps estimated by
using different unmixing techniques applied to Cuprite. We
showed three dominant minerals in the scene, i.e. Chalcedony,
Alunite, and Kaolinite, corresponding to library endmembers
297, 420 and 465. For SUnAA, those abundances appear as
15, 13, and 11th. Note that we select » = 16.

Fig. 3] (b) shows that all conventional sparse unmixing tech-
niques and SUnCNN perform similarly. It can be observed that

SUnSAL-TV and MUA oversmooth the mineral abundances,
which could be attributed to the total variation penalty in
SUnSAL-TV and the segmentation-based framework in MUA,
which cannot preserve the textures. On the other hand, SUnAA
provides sharper maps. Compared to the geological map of
USGS (Fig.[3](a)), SUnAA considerably outperforms the other
techniques for the detection of Chalcedony and Alunite. In the
case of Kaolinite, all techniques perform similarly, however,
SUnAA shows slightly better performance compared to the
other techniques, particularly for the southern region.

The substantial improvements of SUnAA can be attributed
to the proposed model formulation leveraging archetypal anal-
ysis. Fig. ] depicts the estimated endmembers corresponding
to the three minerals (Chalcedony, Alunite, and Kaolinite).
Comparing the estimated endmembers with the corresponding
ones from the library, i.e. 297, 420 and 465, reveals that they
are scaled versions. In real-world applications, the captured
datasets are affected by noise, atmospheric effects, illumina-
tion variations, and the intrinsic variation of materials [19].
Therefore, expecting the measured endmembers from a library
to represent the materials in a real-world dataset is unrealistic.
On the other hand, using archetypal analysis, we can achieve
a linear combination of the endmembers from the dictionary
to better represent the endmembers present in the scene.

IV. CONCLUSION

We proposed a sparse unmixing technique using archetypal
analysis called SUnAA. SUnAA models the endmembers of
interest as a convex combination of endmembers from a
library. We proposed a nonconvex optimization to simultane-
ously estimate the endmembers contributions and abundances.
The proposed iterative algorithm is based on an active set
method and is parameter-free. We evaluated SUnAA on two
simulated and Cuprite datasets. The experimental results con-
firm that SUnAA leads to accurate abundances estimation and
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Fig. 3. Abundance maps of three dominant minerals estimated using different sparse unmixing techniques applied to the Cuprite dataset.

08

Reflectance
)
o
Reflectance

02 02 -
0 05 1 15 2 25 3 0o 05 1 15 2 25 3
Wavelength(:m) Wavelength(:m)

(a) Chalcedony (b) Alunite

Reflectance
o
=

Estimated Endmenber (SUnAA)
Library Endmemeber

0.5 1 15 2 25 3
Wavelength(xm)

(c) Kaolinite

Fig. 4. Endmembers of three dominant minerals estimated using SUnAA
applied to the Cuprite dataset compared with the ones from USGS library.

significantly outperforms the conventional sparse unmixing
techniques. Additionally, experiments on a real-world dataset
suggest that SUnAA can better detect existing minerals in a
given scene.
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