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Abstract

Magnetic Resonance Imaging (MRI) is performed on fetus, to study cerebral development. However,
the image is aected by child’s and mother’s motion. Ultra-fast MRI sequences allow to reduce artefact in
slices, but motion still occurs between them. We propose a method based on orthogonal slices intersection
to correct motion as well as a new solution for outliers removal.
Key Words : Fetal Brain, Registration, Magnetic Resonance Imaging

1 Introduction

Magnetic resonance imaging (MRI) has been used to study the developing fetal brain since the 1980s. However,
the motion (of the mother and the fetus) has always been a real challenge, limiting the exploratory power of the
acquired images. In the context of antenatal imaging, the full image of the brain is actually a stack of 2D slices.
Those acquisitions are generally made along the three axes of space in order to provide the radiologist with a
3D ”vision” of the brain. The acquisition time of a slice is generally suciently short (less than 1 second) to
”freeze” the motion. As a result, the subject’s motion induces mainly geometric distortion artifacts, i.e. the
stack of 2D slices does not directly reect the 3D geometry of the brain. Thus, it is necessary to estimate the
motion retrospectively in order to reconstruct a 3D image of the fetal brain [1].

The main methods of reconstruction of fetal data, called SVR for ”slice-to-volume registration”, are based
on two steps: estimation of the relative motion followed by fusion of the data [2–4]. In case of antenatal imaging,
the registration problem is of the 2D-3D type, i.e. we have to estimate the motion between slices and a reference
volume. This reference volume is also the image that we want to reconstruct and is therefore unknown. From
a rst estimation of the reference volume, the alignment of each slices is estimated by minimizing a criterion
of alignment between the current slice and the reference volume. The latter is then recalculated from the set
of transformations estimated for each slice. The quality of the reconstructed volume depends strongly on the
quality of the registration of the slices. This process is repeated in an iterative way until convergence of the
algorithm. In order to make these approaches more robust to the subject’s motion, deep learning methods have
been developed [5, 6]. However, methods based on iterative reconstuction remain insuciently robust for the
analysis of large databases of images acquired in clinical routine. Thus, it is necessary to detect misaligned slices
in order not to include them in the reconstruction step [7,8] or to reduce their inuence in the reconstruction [9].

To solve this problem, one solution is to completely separate motion correction of the slices from the re-
construction step by using the intersection of the orthogonal slices and imposing their correspondence to the
3D intersections [10]. This approach allows for solving independently the problem of correcting the motion of
the slices and reconstruction of a 3D volume. In this paper, we develop a method for estimating the motion
of slices associated with a detection of misregistered slices using a machine learning approach. The proposed
method is called ROSI, for “Registration based on Orthogonal Slices Intersection”. The evaluation conducted
on synthetic and real data shows the interest of the proposed approach compared to SVR methods.

2 Materials and Methods

2.1 Motion estimation

We consider three images, namely I1, I2, and I3 (the algorithm can be extended to accommodate more images
if available). Each image is composed of a stack of slices, with each slice having a unique identier denoted as
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k. Moreover, f(k) represents the index (i.e., 1, 2, or 3) of the image from which slice k originates. Additionally,
brain masks have been automatically segmented in the images [11], associating each k with a corresponding
mask denoted as mk. It is worth noting that the intensities of each image I1, I2, and I3 have been normalized
using z-score normalization. To this end, the mean and standard deviation of each image have been computed
based solely on the brain mask.

Slices associated with I1, I2, and I3 will be considered aligned when their intensities coincide along their
intersections. This is achieved by estimating, for each slice k, a rigid transformation (in homogeneous coordi-
nates) denoted as Mk, which aligns all slices into a common reference system. This transformation can be
formally dened as follows:

Mk = T (ck)M(Θk, tk)T (−ck)Rf(k)Rk,2t3d (1)

In (1), Rk,2t3d represents a rigid transformation that converts the 2-D coordinates of slice k into the 3-D
voxel coordinates of the image If(k). Next, Rf(k) converts the voxel coordinates into the world reference system
(in millimeters). The matrix to be estimated is denoted as M(Θk, tk). There are 6 parameters to estimate: 3
for rotation (Θk) and 3 for translation (tk). To rotate around the point with coordinates ck, the process involves
rst performing a translation of −ck (denoted as T (−ck)), then applying M(Θk, tk), and nally performing the
inverse translation. Note that ck is equal to Rf(k)Rk,2t3d(xk), where xk represents the 2-D coordinates of the
centroid of the mask associated with slice k.

The registration criterion used to align images is based on the principle, as described in [10], that well-
registered slices should exhibit identical intensity proles along their intersection (see Fig. 1).

(a) (b)

(c) (d)

Figure 1: Visualisation of the intersection between two orthogonal slices and their corresponding proles. Two
misregistered slices (a) have distinct proles along their intersection (b) whereas two well-registered slices (c)
display similar proles (d).

The criterion is calculated as follows. Firstly, let us consider two slices from distinct images, denoted as
k and k′. Assuming the intersection between these slices exists, it takes the form of a line. The equation of
this line is determined in the reference system using the transformations Mk and Mk′ . By applying the inverse
transformations, we can derive the equations of the corresponding line in slice k and slice k′. The two lines are
sampled regularly (every millimeter) so that each point sampled in the slice k has its ”corresponding point” in
the slice k′ and vice versa. In the following, it is assumed that point v in slice k corresponds to point v′ in slice
k′, i.e., Mk(v) = Mk′(v′). Moreover, we ensure that the points v (resp. v′) sample all structures of interest that
are on the segment of the slice k (resp. k′) (thanks to mk and mk′). Consequently, if the slices are misaligned, it
is possible that v (or v′) may not fall within the support of slice k (or slice k′). To address this issue, we assume
that the slices have a value of zero outside their respective supports. Finally, for a pair (k, k′), we compute:

S2(k, k′) =


v

(sk(v)− sk′(v′))2 mk(v)=1 or m
k′ (v′)=1 (2)

N(k, k′) =


v

mk(v)=1 or m
k′ (v′)=1, (3)
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where E =



1 if E occurs
0 otherwise

, sk(v) (resp. sk′(v′)) represents the intensity of slice k (resp. k′) at pixel v

(resp. v′), and where mk(v) (resp. mk′(v)) represents the value of the mask k (resp. k′) at pixel v (resp. v′).
The mask value is 1 for structures of interest, 0 otherwise. Finally, the criterion to be optimized is the following:



k,k′ ; k>k′ S2(k, k′)


k,k′ ; k>k′ N(k, k′).
(4)

The motion between slices is not rigid in maternal tissues. Since the criterion is computed on the union
of masks, the presence of maternal motion around the brain can impact the registration accuracy. Therefore,
similar to [10], the intensity of voxels outside the mask is reduced to get closer to zero (this is not shown in Eq.
2 and 3).

2.2 Implementation

The criterion is optimized using an alternating block optimization method, where parameters associated with
slice k (Θk and tk) are updated while parameters associated with other slices remain unchanged. It is worth
noting that the computation of the criterion in (4) can benet from the fact for each update that most parameters
remain constant for each update. Finally, the parameter optimization for a slice is performed using the Nelder-
Mead method.

Algorithm 1 provides a detailed description of the proposed optimization scheme. In summary, this is an
iterative optimization process where parameters for each slice are optimized until their changes fall below a
certain threshold T (referred to as ”local convergence”). The algorithm repeats this process until all slices
achieve local convergence within a single application of the Nelder-Mead method.

Algorithm 1 Alternating block optimization procedure

Input : A = {1, . . . , n}, n the number of slices.
Output: Θk and tk for each slice k.

while global convergence has not been achieved do

Set B to A
while B is not empty do

for each slice k in B do

Update: (Θold
k , toldk ) → (Θnew

k , tnewk ) with Nelder Mead method
x = ||(Θold

k , toldk )− (Θnew
k , tnewk )||2

if x < T then ▷ local convergence is achieved for slice k
remove k from B

else

global convergence is not achieved
end if

end for

end while

end while

Three hyperparameters may inuence the results : the initial simplex size (ds), the nal simplex size (fs)
and the threshold T . Initially, we choose, ds = 4, fs = 0.25 and T = 25. We conducted experiments using
dierent values for ds, fs, and T , and observed that their choice does not signicantly impact the nal result
across a wide range of values.

2.3 Rejection of misregistered slices

Inaccurate estimation of slice motion can result in errors in volume reconstruction. To address this issue, we
propose a new strategy for detecting misregistered slices. Unlike existing methods in the literature [8, 10],
which rely on a single feature threshold, we use a classication algorithm (random forest) based on ve dierent
features.

Using the notation of (4), we compute the mean squared deviation (MSD) associated with each slice k as
follows:



k′ S2(k, k′)


k′ N(k, k′)
. (5)
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However, the presence of noise in the data acts as a nuisance variable. For instance, even if the slice is
well-aligned, signicant noise can result in a high MSD. Consequently, we normalize the MSD as follows:
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i=1,i̸=f(k)

1

σ2
f(k) + σ2

i



k′;f(k′)=i S
2(k, k′)



k′;f(k′)=i N(k, k′)
, (6)

where σf(k) (resp. σi) represents the standard deviation of the noise that corrupts image If(k) (resp. Ii).
The standard deviation σf(k) (resp. σi) is estimated using the strategy proposed in [12] on the structures of
interest dened by the related mask.

Additionally, we calculate a Dice index for each slice k to assess the alignment of the masks. The Dice index
is dened as 2i/s where:

i =


k′

M(k, k′), s =


k′

P (k, k′) +Q(k, k′), (7)

where
M(k, k′) =



v

mk(v)=1 and m
k′ (v′)=1

, (8)

and where
P (k, k′) =



v

mk(v)=1, Q(k, k′) =


v

m
k′ (v′)=1. (9)

Note that P (k, k′) is a function of k′ and Q(k, k′) a function of k because both k and k′ are necessary to
compute the intersection.

The volume of the mask can be considered as a confounding factor as it also inuences the dice index. For
example, if the registration is satisfactory, a larger mask volume for a slice k would result in a larger associated
Dice index.

We employed two dierent strategies to address the problem. First, we incorporated the confounding variable
(mask volume) into the features. Specically, we divided the mask volume of slice k by the mask volume of
the reference slice kmax, where kmax corresponds to the slice with the largest mask, subject to the constraint
f(k) = f(kmax). Finally, we introduced an additional feature that serves the same purpose as the Dice index
but is not inuenced by the mask volume. This index, referred to as Di, is calculated as follows:

(2i− s)

nk

, (10)

where nk represents the number of slices that intersect with k. Finally, we also consider the standard deviation
of the slice intensity as a feature.

3 Results

3.1 Data

Due to the lack of ground truth in fetal MRI, our algorithm was evaluated using synthetic data generated from
the DHCP [13] database. Synthetic data were created from a 3D image by simulating three orthogonal stacks of
slices (axial, sagittal, and coronal) with a thickness of 3 mm and a resolution of 0.5x0.5 mm. Data are generated
with three dierent levels of motion, expressed in degrees for rotations and in millimeters for translations: low
(Θk ∈ [−1, 1], tk ∈ [−1, 1]), medium (Θk ∈ [−3, 3], tk ∈ [−3, 3]), and large (Θk ∈ [−5, 5], tk ∈ [−5, 5]). As
described in [14], the point spread function (PSF) is set to a Gaussian function, with width equal to the slice
thickness. In total, we generate ve data sets (using dierent 3D images) for each level of motion. An example
of simulated data is given in Fig. 2.

In addition to synthetic data, MRI from 22 normal fetuses were included in this study (8 M, 5 F, 9 Unknown)
covering the 26th until the 36th week of gestation (mean=32.85, sigma=2). The retrospective use of MRI data
acquired in clinical routine at the hospital of La Timone was approved by the Institutional Review Board of
Aix-Marseille Université (ref 2022-04-14-003). All acquisitions were ultra fast spin echo (HASTE) sequences
acquired on two dierent Siemens scanners (Skyra (3T) n=10 (images) and SymphonyTim (1.5T) n=12 (images).
The absence of abnormal neuroradiological ndings was assessed for all subjects by an expert neuroradiologist
(N.G.). Fig. 3 displays real data acquired on a fetus in the axial orientation.
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low medium large

Figure 2: Example of simulated data depicting the acquisition in the axial orientation. The data is generated
with varying levels of motion and visualized in the sagittal view.

axial coronal sagittal

Figure 3: Example of real data acquired in the axial orientation, displayed in axial, coronal, and sagittal views.

3.2 Evaluation of Registration

The quality of the registration is assessed using the target registration error (TRE). We denote by Mk the
transformation applied to slice k, and by M̂k its estimated counterpart. Given two intersecting slices k and k′, we
can compute, as described in section 2.1, points v (from slice k) and v′ (from slice k′) such that Mk(v) = Mk′(v′).
We consider only points v and v′ that belong to the masks (mk(v) = mk′(v′) = 1). The target registration error
(TRE) is the distance in millimeters in the reference system between M̂k(v) and M̂k′(v′).

For a slice k, we compute an average distance dened by:

TREk =
1

♯{(k′, v′)}



k′



v′

||M̂k(v)− M̂k′(v′)|| (11)

When the slice is well aligned, TREk is small.
Results are compared with Nifty-MIC [8]. First, the quality and accuracy of the registration are evaluated

without rejecting potentially misregistered slices. Fig. 4 shows for both methods the average TRE per slice
(TREk) before and after registration for each level of motion simulated. After registration, the TREk values
obtained with ROSI are substantially lower compared to those obtained with NiftyMIC. For ROSI, the majority
of slices achieve a TREk below 1.5 mm after registration, regardless of the initial motion. However, it is worth
noting that a few slices still exhibit poor registration, with TREk values exceeding 1.5 mm.

The accuracy of the motion estimation can also be validated by assessing the quality of the reconstruction.
This is achieved by calculating the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM).
Note that we use the same reconstruction method as NiftyMIC. For each level of motion, the PSNR and SSIM
values are computed for the ve reconstructed images, and then averaged. Tab. 1 presents the mean PSNR
obtained for both methods. The mean PSNR obtained with ROSI is higher for all three levels of motion. As
motion increases, the PSNR decreases, but the decrease is less pronounced compared to what is observed with
NiftyMIC. The same trend is observed for the mean SSIM values (Tab. 2).

Table 1: mean PSNR (dB) obtained on 3-D reconstruction from simulated data. Standard deviation is given in
parenthesis.

Motion NiftyMIC ROSI
Low 30.32 (0.79) 33.37 (0.78)
Medium 25.08 (0.63) 32.25 (0.60)
Large 23.57 (0.29) 31.86 (0.69)

Finally, Fig. 5 presents 3D images reconstructed from the simulated data, in axial view. Our method
exhibits sharper and more precise contours compared to NiftyMIC, regardless of the level of motion.
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Figure 4: TREk (in millimeters) estimated before (on ordinate axis) and after (on abscisse axis) registration,
with ROSI (in black) and NiftyMIC (in grey)

Table 2: mean SSIM obtained on 3-D reconstruction from simulated data. Standard deviation is given in
parenthesis.

Motion NityMIC ROSI
Low 0.93 (0.01) 0.96 (0.01)
Medium 0.81 (0.04) 0.96 (0.01)
Large 0.75 (0.05) 0.95 (0.01)

low

medium

large

Original NiftyMIC ROSI

Figure 5: Example of 3D reconstruction obtained from simulated data with low motion (rst row), medium
motion (second row) and large motion (third row). Data were reconstructed with NiftyMIC (second column).
For ROSI (third column), motion between slices was corrected using ROSI and a 3D image was reconstructed
with the same approach as NiftyMIC.

3.3 Rejection of misregistered slices

To increase the number of misregistered slices, which is crucial for training, we expanded the range of simu-
lated motion. Specically, we set the motion range to Θk ∈ [−8.8] and Tk ∈ [−8.8]. Additionally, Gaussian
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random noise was introduced into data, with distinct standard deviations for each image I1, I2, and I3. Slices
with a TREk greater than 1.5 mm are classied as misregistered, and otherwise considered as well registered.
Approximately 10% of the slices were identied as misregistered. The classication algorithm was trained using
20 registration results and tested on an independent set of 10 results.

The performance of the proposed method is compared to state-of-the-art approaches, including the SLIM-
MER method [10] and NiftyMIC [8]. SLIMMER uses the mean squared deviation (MSD) feature and sets the
threshold to 1.25 times the median MSD value. NiftyMIC employs the normalized cross-correlation (NCC) as
a feature with a threshold of 0.8. Fig. 6 depicts the confusion matrix obtained with the dierent methods.
Additionally, we compare our results with a classier that uses only the features MSD, DICE, or DIFF .

(a) (b) (c)

Figure 6: Confusion matrix for the detection of misregistered slices obtained with ROSI (a), SLIMMER (b),
and NiftyMIC (c).

(a) (b) (c)

Figure 7: Confusion matrix for the detection of misregistered slices obtained with a classier that uses only one
feature: DICE (a), MSD (b), and DIFF (c).

Results demonstrate that the classier trained on all ve features outperforms other methods. As shown in
Figure 7, using a single feature leads to poor detection of misregistered slices.

3.4 Results on real data

The accuracy of the motion estimation is validated through an evaluation of the reconstruction quality. It is
important to note that as previously, we employ, the same reconstruction method as NiftyMIC for this purpose.

Tests conducted on real data have revealed that the results obtained with ROSI are generally comparable
to those obtained with NiftyMIC. Furthermore, it is worth noting that ROSI is capable of reconstructing some
data that NiftyMIC fails to reconstruct. Fig. 8 illustrates two examples of data that failed to be reconstructed
by NiftyMIC but was successfully reconstructed using ROSI. In panels (c) and (d), we observe holes in the
reconstruction obtained with NiftyMIC. However, these holes disappear when using the proposed method.

4 Conclusion

We have proposed a novel registration method specically designed for fetal MRI, along with a new approach
for rejecting poorly registered slices. Our method is based on the intersection of orthogonal slices, making
independent the registration step and the reconstruction one. In synthetic data evaluations, our method out-
performed state-of-the-art approaches. On real data, our method successfully registered data that state of the
art NiftyMIC method was unable to handle.
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a

b

c

d

axial sagittal coronal

Figure 8: Example of 3D reconstruction obtained on real data. (a) and (b) represent reconstructed data,
registered with NiftyMIC (a) and ROSI (b). The reconstruction failed with NiftyMIC but performs well with
ROSI. (c) and (d) represent reconstructed data, registered with NiftyMIC (c) and ROSI (d). The red boxes
highlight the parts of the images where the reconstruction is incorrect using NiftyMIC.
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