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We show that the following operation,

is well defined on the weak closure of the space of functions that are smooth over a compact of R 2 . We establish that a subset of this weak closure has the structure of a Fréchet space D on distributions. Invertible elements of D form a dense subset of it and a Fréchet-Lie group for the operation ⋆. This product generalizes the convolution, Volterra compositions of first and second type and Schwartz's bracket.

Introduction

Laurent Schwartz introduced the theory of distributions in a landmark book on the subject defining them as linear forms acting on functions spaces [START_REF] Schwartz | Théorie Des Distributions. Hermann, Paris, nouvelle édition, entièrement corrigée[END_REF]. This prehistory of this theory finds its roots in the works of Heaviside [START_REF] Heaviside | On operators in physical mathematics, part i[END_REF][START_REF] Heaviside | On operators in physical mathematics, part ii[END_REF], Volterra [START_REF] Volterra | Teoria delle potenze, dei logaritmi e delle funzioni di composizione[END_REF][START_REF] Volterra | Leçons sur la composition et les fonctions permutables[END_REF] and others [START_REF] Pérès | Sur les fonctions permutables de première espèce de M. Volterra[END_REF][START_REF] Pérès | Sur les transformations qui conservent la composition[END_REF][START_REF] Pérès | Sur certaines transformations fonctionnelles et leur application à la théorie des fonctions permutables[END_REF][START_REF] Mikusiński | Sur la méthode de généralisation de M. Laurent Schwartz et sur la convergence faible[END_REF][START_REF] Mikusiński | Sur les fondements du calcul opératoire[END_REF] in the decades prior to Schwartz breakthrough. Within the same time frame, Mikusiński developed an alternative sequence-based approach to distributions, relying on weak convergence to define distributions as limits of sequences of integral operators acting on functions [START_REF] Mikusiński | Sur la méthode de généralisation de M. Laurent Schwartz et sur la convergence faible[END_REF]. A major advantage of this approach is that its methodology can be applied to define a composition on more general spaces than function spaces. Mikusiński's approach therefore offers a possible route to defining a product on distributions, a problem first raised by Schwartz who noted that such a product could not be meaningfully defined without violating at least one or more intuitive assumptions about what this product should be [START_REF] Schwartz | Sur l'impossibilité de la multiplication des distributions[END_REF]. These include that the constant function 1 should be the unit element, that the product must correspond to the classical product between functions and that the set on which the product is defined should include the set of continuous real function of a real variable as linear subspace.

Several tools have been proposed to solve or bypass these issues, including Colombeau algebras [START_REF] Gratus | Colombeau algebra: A pedagogical introduction[END_REF], tensor products and convolution of distributions. We note that special Colombeau algebras can be seen as an extension of the sequential approach to distributions given by Mikusiński [START_REF] Nigsch | Full and special Colombeau algebras[END_REF]. Algebraic structures on operators acting on spaces have been developed by Mikusiński himself [START_REF] Mikusiński | Sur les fondements du calcul opératoire[END_REF] and generalized since then [START_REF] Flegg | Mikusinski's operational calculus[END_REF] and, while an important earlier theory on the subject emerged from the study of integral equations by Fredholm giving rise to the modern concept of Fredholm operator [START_REF] Murphy | C*-Algebras and Operator Theory[END_REF].

Coming back to Mikusiński foundational work we show that a compositional product between distributions of two variables exists, that it reduces to the convolution in certain cases, to the Volterra composition in others, induces the ordinary product between smooth functions of one variable, the Schwatz's bracket and appears as a continuous version of the matrix product between infinite triangular matrices.

Restrictions of this product to piecewise smooth functions have been rediscovered and used in physics a number of times [START_REF] Ouellet | Supersymmetric generalized power functions[END_REF][START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF]. In none of these cases was the product's mathematical well definiteness verified nor its properties investigated thoroughly. Because of these works, applications of this product are already in existence: it is used in path sum methods to solve coupled systems of differential equations given by Hamiltonians, notably from spin systems of NMR in chemistry [START_REF] Giscard | General solutions for quantum dynamical systems driven by time-varying hamiltonians: applications to nmr[END_REF][START_REF] Giscard | Exact solutions for the time-evolution of quantum spin systems under arbitrary waveforms using algebraic graph theory[END_REF]. In turn, interest in the numerical simulation of such systems led to ⋆-product based Lanczos methods [START_REF] Giscard | A Lanczos-like method for non-autonomous linear ordinary differential equations[END_REF][START_REF] Cipolla | A Lanczos-type procedure for tensors[END_REF][START_REF] Giscard | Lanczos-Like algorithm for the time-ordered exponential: The * -inverse problem[END_REF], numerical approximations of ⋆-products [START_REF] Pozza | The *-product approach for linear ODEs: a numerical study of the scalar case[END_REF][START_REF] Pozza | A new matrix equation expression for the solution of non-autonomous linear systems of ODEs[END_REF][START_REF] Pozza | A new matrix equation expression for the solution of non-autonomous linear systems of ODEs[END_REF][START_REF] Pozza | A new closed-form expression for the solution of ODEs in a ring of distributions and its connection with the matrix algebra[END_REF], and the first rigorous investigations of the product and ⋆-inverses [START_REF] Giscard | Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method[END_REF][START_REF] Giscard | Lanczos-Like algorithm for the time-ordered exponential: The * -inverse problem[END_REF], ultimately leading to the present work. In this context, we further investigate the topological and algebraic structures associated with this product. In particular, a Fréchet space on distributions and its link with the Fréchet space of smooth functions, in line with the work of Schwartz [START_REF] Schwartz | Théorie Des Distributions. Hermann, Paris, nouvelle édition, entièrement corrigée[END_REF]; and a Lie group structure, as had been done for the convolution product in linear algebraic groups [START_REF] Jantzen | Representations of Algebraic Groups. Mathematical surveys and monographs[END_REF].

This article is organized as follows: in Section 2, we show that the ⋆-product is well defined on the weak closure of the space of functions that are smooth over a compact of R 2 in the sense of Mikusiński. We then relate it to existing products. In Section 3, we show that the ⋆-product induces a Fréchet Lie group on a certain set of distributions.

⋆-product on distributions

Context and definitions

In their works on integral equations and permutable functions, Volterra [START_REF] Volterra | Teoria delle potenze, dei logaritmi e delle funzioni di composizione[END_REF] and Volterra and Pérès [START_REF] Volterra | Leçons sur la composition et les fonctions permutables[END_REF] defined a product between two smooth functions f and g, now called Volterra composition of the first kind, as follows:

f ⋆ V g (x, y) := x y f (x, τ )g(τ, y)dτ. (1) 
This product emerges naturally from the Picard iteration solution to Volterra integral equations [START_REF] Picard | Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires[END_REF] and is frequently rediscovered from there, see e.g. [START_REF] Ouellet | Supersymmetric generalized power functions[END_REF], while a partial extension to distributions first appeared in a mathematical-physics context [START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF][START_REF] Giscard | Lanczos-Like algorithm for the time-ordered exponential: The * -inverse problem[END_REF]. Working in the 1910s and 1920s, before the advent of distribution and Dirac seminal works, Volterra and Pérès noted that defined as in Eq. ( 1), the product lacks a unit element and suffers from subsequent issues regarding inversion and more [START_REF] Volterra | Leçons sur la composition et les fonctions permutables[END_REF]. Upon inspection of Eq. ( 1) it is intuitive to remedy the problem by proposing the Dirac delta distribution as unit for the Volterra composition. In order to formalize this observation, we are forced to consider the more general product:

Definition 1 (⋆ I -product). Let I ⊂ R be compact and

(f ⋆ I g) (x, y) := I f (x, τ )g(τ, y)dτ, (2) 
where and f and g might be more general objects than smooth functions to be made precise later.

In particular we note that for f (x, y) = f (x, y)Θ(x -y) and g(x, y) = g(x, y)Θ(x -y) with Θ(.) the Heaviside Theta function under the convention Θ(0) = 1 and f and g smooth functions over I 2 , then provided [y, x] ⊂ I,

(f ⋆ I g) (x, y) = x y f (x, τ )g(τ, y)dτ Θ(x -y) = ( f ⋆ V g)(x, y) Θ(x -y), (3) 
that is, we recover the Volterra composition of the smooth functions f and g. The first task is to identify the objects on which the ⋆ I -product is well defined.

2.2

The ⋆-product is well defined Definition 2. Let I be a compact subspace of R. We write C ∞ (I 2 ) for the set of smooth functions on an open neighborhood of I 2 ;

The main result of this section is:

Theorem 1. The ⋆ I -product is well defined on the weak closure (see Def. 5 below)

C ∞ (I 2 ) of C ∞ (I 2 ), that is for any f, g ∈ C ∞ (I 2 ), f ⋆ I g exists and is in C ∞ (I 2 ). Furthermore the ⋆ I -product is associative over C ∞ (I 2 ).
We can be more precise as to which objects C ∞ (I 2 ) includes. Define:

Definition 3. Let D be the set of distributions d of the form d(x, y) = d(x, y)Θ(x -y) + +∞ i=0 di (x, y)δ (i) (x -y),
where d, di ∈ C ∞ (I 2 ) are complex valued functions defined on I 2 and δ (i) (x -y) is the ith Dirac delta derivative in the sense of distributions evaluated in x -y.

Corollary 2.1. We have D ⊂ C ∞ (I 2 ) and for x, y, ∈ I 2 , δ(x -y) is the unit of the ⋆ I product.

Theorem 1 together with the above corollary imply a convenient result for D, namely Corollary 2.2. The ⋆ R -product is a well defined associative product on D, that is for any d, e ∈ D,

(d ⋆ R e)(x, y) := ∞ -∞ d(x, τ )e(τ, y)dτ, is a distribution of D.
To prove the theorem and its corollaries we have to delve back into the sequential approach to distributions, showing first that the ⋆ I -product is well behaved (in ways made precise below) on C ∞ (I 2 ) × C ∞ (I 2 ) and second, that it can be exchanged with limits in products of sequences of elements of C ∞ (I 2 ). In doing so we broadly follow and adapt the strategy designed by Mikusiński in [START_REF] Mikusiński | Sur la méthode de généralisation de M. Laurent Schwartz et sur la convergence faible[END_REF] to define certain operations on distributions.

Proof. We begin with the necessary definitions. Definition 4. Let F be a set and let • be a composition law defined on it. The set F is total with respect to • if f • φ = g • φ for all φ ∈ F implies f = g for any f and g ∈ F .

Definition 5. Let F be a set equipped with a notion of convergence, and let • be an internal composition law for F . The weak limit f of a sequence (f n ) of elements of F , is defined as the set of all sequences of (f ′ n ) of elements of F for which

∀φ ∈ F, lim f n • φ = lim f ′ n • φ,
the limits being taken with respect to notion of convergence on F , i.e. assuming lim f n • φ ∈ F . We define the composition of a weak limit with an element φ ∈ F by f • φ := lim f n • φ, then by construction f • φ ∈ F and we write lim f n = f . Definition 6. Let F be a space equipped with a notion of weak convergence and let • be an internal composition law for F . Let (f n ) and (g n ) be two sequences of elements of F . The internal composition is said to be regular on the weak closure F of F if it satisfies the following conditions:

1) If sequences (f n ) and (g n ) are weakly convergent, then so is the sequence

(f n • g n ) n .
2) If there exist weakly convergent sequences

(f ′ n ) and (g ′ n ) in F with lim f n = lim f ′ n = f and lim g n = lim g ′ n = g, then lim (f n • g n ) = lim (f ′ n • g ′ n ).
The conditions set forth by these definitions, if verified, permit the extension of the composition law to the weak closure:

Theorem 2 (Mikusiński [START_REF] Mikusiński | Sur la méthode de généralisation de M. Laurent Schwartz et sur la convergence faible[END_REF]). Let F be a set and • an internal composition law for F . If • is a regular operation then it is well defined on F so extends on it. In addition if • is associative on F , so is it on its weak closure F .

Our strategy for the ⋆ I -product of Definition 2 is thus to establish that:

i) It is an internal composition law on C ∞ (I 2 ).
ii) The set C ∞ (I 2 ) is total relatively to ⋆ I .

iii) The ⋆ I -product is a regular operation on C ∞ (I 2 ).

While to identify elements of the weak closure C ∞ (I 2 ) we will prove that: iv) ∀f ∈ {Θ, δ (i) } i∈N there exists a weakly convergent sequence (f n ) such that :

a) ∀φ ∈ C ∞ (I 2 ), lim f n ⋆ φ = f ⋆ φ. b) f ⋆ φ ∈ C ∞ (I 2 ). Remark. Let φ ∈ C ∞ c (R 2 ) then, in general, Θ ⋆ φ / ∈ C ∞ c (R 2 )
. This shows that we cannot use the usual space F = C ∞ c (R 2 ) in Mikusiński's approach. For this reason we adopt F = C ∞ (I 2 ), a wider space since for any compact interval

I ⊂ R, C ∞ c (R) ⊂ C ∞ (I 2 ).
We begin by considering the action of the ⋆ I -product on the space C ∞ (I 2 ):

   C ∞ (I 2 ) × C ∞ (I 2 ) → C ∞ (I 2 ), (f, φ) → I f (x, τ )φ(τ, y)dτ.
This map is well defined:

Lemma 2.1. The ⋆ I -product defines an internal composition law on C ∞ (I 2 ).

Proof. Let f and φ be in C ∞ (I 2 ), we show that f ⋆ I φ is in C ∞ (I 2 ) as well. Let x and y be two real numbers fixed.

Since f ∈ C ∞ (I 2 ) and g ∈ C ∞ (I 2 ), ∥f ∥ ∞ = sup x∈R,y∈R |f (x, y)|
and ∥g∥ ∞ are finite and

|f (x, τ )g(τ, y)| ≤ ∥f ∥ ∞ × ∥g∥ ∞
Thus, by the theorem on the continuous dependency of an integral on a parameter we conclude that, for all y ∈ R, f ⋆ I φ is continuous as a function of x ∈ R. In the same way, we show that, for all x ∈ R, f ⋆ I φ is continuous as a function of y ∈ R. Thus f ⋆ I φ is continuous on R 2 and the ⋆ I -product is an internal composition law.

Lemma 2.2. The set C ∞ (I 2 ) is total with respect to the ⋆ I composition law.

Proof. By linearity of integration, it is sufficient to show that h⋆

I φ = 0 for all φ ∈ C ∞ (I 2 ) implies h = 0. Let h ∈ C ∞ (I 2 ) and (x, y) ∈ I 2 .
By assumption, we have

I h(x, τ )φ(τ, y)dτ = 0, ∀φ ∈ C ∞ (I 2 ). Choosing φ(x, y) = h(y, x) yields I h(x, τ )h(y, τ )dτ = 0,
Then, for y = x, this gives ∥h(x, •)∥ 2 = 0, for all x, where ∥ • ∥ refers to the norm associated to the Hermitian inner product on L 2 (R), and h(x, •) : y → h(x, y). Then, since ∥.∥ is a norm, h(x, y) = 0 for all y ∈ R. Furthermore, since x ∈ R is arbitrary, we conclude that h = 0.

From now on we shall denote the product simply by ⋆ to alleviate the notation.

Given that C ∞ (I 2 ) is endowed with the notion of uniform convergence, we have a corresponding notion of (uniform) weak convergence for its sequences in the sense of Definition 5. We denote C ∞ (I 2 ) the weak closure of C ∞ (I 2 ), that is the set of all weak limits of sequences of elements of C ∞ (I 2 ).

Lemma 2.3. The ⋆ I product is regular on C ∞ (I 2 ). Proof. Let f ∈ C ∞ (I 2 ), by ∥f ∥ ∞ we designate the essential supremum of f over I 2 .
Let (f n ) n and (g n ) n be two weakly convergent sequences with weak limits f and g, respectively. Then, by definition,

∀ϵ > 0, ∃N 0 ∈ N, ∀n ≥ N 0 , ∀φ ∈ C ∞ (I 2 ), ∥f n ⋆ φ -f ⋆ φ∥ ∞ < ϵ, ( 4a 
) ∀ϵ > 0, ∃N 1 ∈ N, ∀n ≥ N 1 , ∀φ ∈ C ∞ (I 2 ), ∥g n ⋆ φ -g ⋆ φ∥ ∞ < ϵ, (4b) 
and by construction g

⋆ φ ∈ C ∞ (I 2 ) so f ⋆ (g ⋆ φ) ∈ C ∞ (I 2
) is well defined. We now prove that f n ⋆ g n converges weakly. By Fubini's theorem, the ⋆-product is associative so, for all φ ∈ C ∞ (I 2 ),

∥(f n ⋆ g n ) ⋆ φ -f ⋆ (g ⋆ φ)∥ ∞ = ∥f n ⋆ (g n ⋆ φ) -f ⋆ (g ⋆ φ)∥ ∞ ,
while the triangle inequality gives

∥f n ⋆ (g n ⋆ φ) -f ⋆ (g ⋆ φ)∥ ∞ ≤ f n ⋆ (g n -g) ⋆ φ ∞ + ∥(f n -f ) ⋆ (g ⋆ φ)∥ ∞ .
Given that g ⋆ φ ∈ C ∞ (I 2 ), by assumption Eq. (4a) there exists

N 0 ∈ N such that for n ≥ N 0 , ∥(f n -f ) ⋆ (g ⋆ φ)∥ ∞ < ϵ for any ϵ > 0. Furthermore, f n ⋆ (g n -g) ⋆ φ (x, y) = I f n (x, τ ) (g n -g) ⋆ φ (τ, y)dτ,
and therefore

∥f n ⋆ (g n -g) ⋆ φ ∥ ∞ ≤ ∥(g n -g) ⋆ φ∥ ∞ I f n (x, τ )dτ .
By Eq. (4b), for any ϵ > 0 there exists

N 1 ∈ N such that for all n ≥ N 1 , ∥(g n -g)⋆φ∥ ∞ < ϵ. Finally, noting that I f n (x, τ )dτ = f n ⋆ 1, it comes I f n (x, τ )dτ ≤ |I| ∥f n ⋆ 1∥ ∞ ≤ |I| ∥f n ⋆ 1 -f ⋆ 1∥ ∞ + |I| ∥f ⋆ 1∥ ∞ .
Assumption Eq. (4a) guarantees the existence of

N 2 with n ≥ N 2 ⇒ ∥(f n -f ) ⋆ 1∥ ∞ < ϵ for any ϵ > 0. In addition, f ⋆ 1 ∈ C ∞ (I 2 ) and therefore ∥f ⋆ 1∥ ∞ < ∞.
Choosing the same ϵ > 0 in all of the above arguments for convenience, there exists

Ñ ≥ sup(N 0 , N 1 , N 2 ) such that n ≥ Ñ implies ∥(f n ⋆ g n ) ⋆ φ -f ⋆ (g ⋆ φ)∥ ∞ ≤ ϵ + ϵ ϵ |I| + |I|∥f ⋆ 1∥ ∞ --→ ϵ→0 0, which shows that sequence f n ⋆ g n converges weakly to h := f ⋆ g with h ⋆ φ = f ⋆ (g ⋆ φ) ∈ C ∞ (I 2 ) for all φ ∈ C ∞ (I 2 ) as noted earlier.
These results imply that both 1) and 2) of Definition 6 are satisfied: 1) is entailed by the weak convergence of f n ⋆ g n ; while 2) follows from its convergence to h. Indeed, let

(f n ) n , (f ′ n ) n , (g n ) n and (g ′ n ) n be sequences in C ∞ (I 2 ). Suppose that lim f n = lim f ′ n = f and lim g n = lim g ′ n = g.
We have already established that lim f n ⋆ g n = h and the same arguments lead to lim f ′ n ⋆ g ′ n = h as well, hence condition 2) is verified.

Since the ⋆-product is regular and associative on C ∞ (I 2 ), by Theorem 2 it extends to C ∞ (I 2 ). In particular for any f, g ∈ C ∞ (I 2 ), f ⋆ g is a well defined element of C ∞ (I 2 ), this set is total with respect to the ⋆-product and the latter is associative over it. This proves Theorem 1.

Remark. The ⋆-product is not commutative and we used only right ⋆-products in approaching elements of C ∞ (I 2 ) but by regularity left ⋆-products are defined just as well.

We turn to proving Corollary 2.1.

Proof. We follow arguments from theory of distributions. Let (d n ) n be a positive sequence of smooth compactly supported functions with supports

K n = I n × I n , I n ⊂ R compact, and 1a) ∀n ∈ N, +∞ -∞ d n (x, τ )dτ = 1, 1b) ∀n ∈ N, +∞ -∞ d n (τ, y)dτ = 1 2) The size of I n , denoted |I n |, is such that |I n | -→ n→+∞ 0.
Such a sequence exists: choose a sequence K n ⊂ R 2 of compact sets with |K n | → 0 as n → +∞. Then for any K n = I 2 n one can find a positive smooth function with support exactly K n , [START_REF] Krantz | A Primer of Real Analytic Functions[END_REF]Prop. 2.3.4.]. Dividing this function by the (non-zero) value of its integral over I n guarantees 1a) and 1b).

Consider any ⋆ I -product with I n ⊂ I for all n ≥ N ∈ N. Then for such n,

(d n ⋆ φ) -φ (x, y) ≤ In d n (x, τ ) |φ(τ, y) -φ(x, y)| dτ + In d n (x, τ )φ(x, y)dτ -φ(x, y) .
Since by assumption 1),

In d n (x, τ )dτ = +∞ -∞ d n (x, τ )dτ = 1, it follows that In d n (x, τ )φ(x, y)dτ - φ(x, y) = 0. Consequently, |((d n ⋆ φ) -φ) (x, y)| ≤ In d n (x, τ ) |φ(τ, y) -φ(x, y)| dτ ≤ ∥∂ x φ∥ ∞ In d n (x, τ )|x -τ |dτ (by the mean value inequality) ≤ ∥∂ x φ∥ ∞ × |I n | In d n (x, τ )dτ ≤ ∥∂ x φ∥ ∞ × |I n | -→ n→+∞ 0,
where ∂ x φ := ∂φ/∂x. As the upper bound here does not depend x nor y, the convergence to 0 is uniform so δ ∈ C ∞ (I 2 ) and δ ⋆ φ = φ for all φ ∈ C ∞ (I 2 ). By regularity of the ⋆-product this remains true for all φ ∈ C ∞ (I 2 ).

Remark. This proves that δ is the left neutral element for ⋆ I . Similarly, using 1b) we obtain that δ is also the right neutral element for ⋆ I .

With the same sequence (d n ) n defined above we have,

|(∂ y d n ⋆ φ) (x, y) -(-∂ y φ(x, y))| ≤ [d n (x, τ )φ(τ, y)] In + ∂ y φ(x, y) - In d n (x, τ )∂ τ φ(τ, y)dτ , ≤ ∂ y φ(x, y) - In d n (x, τ )∂ τ φ(τ, y)dτ .
Then, since ∂ τ φ(τ, y) ∈ C ∞ (I 2 ), the integral on the RHS converges uniformly to zero, that is the Dirac delta derivative is an element of C ∞ (I 2 ). By induction we obtain the same result for all its subsequent derivatives.

Let I = [a, b] with ∀n ∈ N, I n ⊂ I. Let x ∈ I and h n (x, y) := x a d n (τ, y)dτ . Then for all φ ∈ C ∞ (R) we have lim n→∞ ⟨∂ x h n , φ⟩ = ⟨δ, φ⟩ and h n ∈ C ∞ (R 2 ). Moreover, h n -→ n→+∞ Θ
weakly. Indeed, 1) If x ≤ y, there exists an integer N > 0 such that for all n > N ,

I n ∩ [a, x] = ∅.
Then h n (x, τ ) = 0.

2) If x ≥ y, there exists an integer N > 0 such that for all n > N ,

I n ∩ [a, x] = I n . Then h n (x, τ ) = In d n (τ, y)dτ = 1.
Consider any ⋆ I -product with We prove Corollary 2.2 regarding the ⋆ R -product, starting with its failure to be well defined on C ∞ (R 2 ).

I n ⊂ I for all n ≥ N ∈ N. Then ∀n ∈ N, h n ∈ C ∞ (I 2 ) and ∀φ ∈ C ∞ (I 2 ), since d n is positive, |h n ⋆ φ -Θ ⋆ φ| = x a (h n (x, τ ) -1)φ(τ, y)dτ + b x h n (x, τ )φ(τ, y)dτ
Proof. Suppose that the ⋆ R -product on R, defined by

f ⋆ R φ := ∞ -∞ f (x, τ )φ(τ, y)dτ, is a regular operation on C ∞ (R 2 ). Now consider (f n ) n any sequence of functions of C ∞ (R 2
) converging to the constant function equal to 1. Then, regularity of the ⋆ R product would imply that 1 ⋆ R 1 = +∞ -∞ 1 × 1 dτ is well defined. Since it is not, the ⋆ R product is irregular and cannot be properly defined on C ∞ (R 2 ) and more generally on any unbounded subdomain of Ω ⊂ R 2 .

It is however possible to use ⋆ R on the smaller set D ⊂ C ∞ (I 2 ). With the standard definition for the support of a distribution, maps τ → δ (i) (x -τ ), τ → δ (j) (τ -y) and τ → Θ(x -τ )Θ(τ -y) are compactly supported. Then, for any d, e ∈ D, one can always find compacts I ⊂ R including these supports and consequently d ⋆ R e = d ⋆ I e for any (x, y) ∈ R 2 .

Since the ⋆-product is associative, by linearity of the integral it is distributive with respect to the addition and by Corollary 2.1 it has an identity element 1 ⋆ ≡ δ(x -y), then:

Corollary 2.3. (D, ⋆) is an algebra over C with unit.

Inner and outer products, transpose

There are two natural injections of C ∞ (I) into C ∞ (I 2 ), which we call the left ψ l and right ψ r injections, with

ψ l : C ∞ (I) → C ∞ (I 2 ), ψ r : C ∞ (I) → C ∞ (I 2 ), f → ψ l (f )(x, y) = f (x), f → ψ r (f )(x, y) = f (y).
These injections imply the left ⋆-action of an element g ∈ C ∞ (I 2 ) on any f ∈ C ∞ (I) as its ⋆-action on ψ l (f ),

g ⋆ ψ l (f ) (x) = I g(x, τ )f (τ )dτ, (5a) 
ψ l (f ) ⋆ g (x, y) = f (x) I g(τ, y)dτ. (5b) 
Note that I g(τ, y)dτ ≡ 1 ⋆ g is well defined by construction of C ∞ (I 2 ). Similarly we have the right ⋆-action,

g ⋆ ψ r (f ) (x, y) = I g(x, τ )dτ f (y), (6a) 
ψ r (f ) ⋆ g (y) = I f (τ )g(τ, y)dτ, (6b) 
and finally for h ∈ C ∞ (I), f ∈ C ∞ (I),

ψ r (h) ⋆ ψ l ( f ) = I h(τ ) f (τ )dτ = ⟨h, f ⟩, (7a) 
ψ l (h) ⋆ ψ r ( f ) (x, y) = h(x) I 1dτ f (y) = |I|h(x) f (y). (7b) 
Eq. (7a) shows that the usual inner product on real-valued functions of C ∞ (I) is a ⋆product and so is the action of the linear functional h ∈ C ∞ (I) on a test function f ∈ C ∞ (I). Then, defining for h, f, ∈ C ∞ (I), ẽ ∈ C ∞ (I), (h ⊗ f ) ⋆ ψ l (ẽ) := h⟨f, ẽ⟩, it appears that Eqs. (5b, 6a, 7b) are outer products.

Definition 7. Let g ∈ C ∞ (I 2 ) and f , h ∈ C ∞ (I). The transpose g T of g is defined through ⟨ h, g T ⋆ ψ l ( f )⟩ := ⟨g ⋆ ψ l ( h), f ⟩. Proposition 1. Let g ∈ C ∞ (I 2 ). Then g T (x, y) = g(y, x). Proof. Let f , h ∈ C ∞ (I), then ⟨g ⋆ ψ l ( h), f ⟩ = I I g(τ, σ) h(σ)dσ f (τ )dτ = I I g(τ, σ) f (τ )dτ h(σ)dσ, = ⟨ h, g T ⋆ ψ l ( f )⟩.
Remark. For g ∈ C ∞ (I), ψ l (g) = ψ r (g) T . The Hermitian conjugate g * of g is as usual g * := ḡT , where ḡ denotes the complex conjugate of g. The usual inner product between complex-valued functions h, f ∈ C ∞ (I) is recovered as ⟨ h, f ⟩ = ψ l ( h) * ⋆ψ l ( f ) and similarly for the action of a linear functional h ∈ C ∞ (I) on f ,

⟨h, f ⟩ = ψ l (h) * ⋆ ψ l ( f ).
In other terms linear functionals send functions to the base field by ⋆-action. There arises the question of whether two-dimensional distributions of C ∞ (I 2 ) also act as linear functionals on elements of C ∞ (I 2 ) in the manner of a ⋆-product ? The answer is both negative and positive. Negative because the action as linear functional of

h ∈ C ∞ (I 2 ) on f ∈ C ∞ (I 2 ) is ⟨h, f ⟩ = I 2 h(x, y) f (x, y)dxdy, (8) 
which is not a ⋆-product between elements of C ∞ (I 2 ). It is however induced by a higher dimensional ⋆-product defined between elements of C ∞ (I 4 ) just as the ⋆-product on C ∞ (I 2 ) induces the action of linear functionals in C ∞ (I),

h, f ∈ C ∞ (I 4 ), (h ⋆ f )(w, x, y, z) := I 2 h(w, x, τ, σ)f (σ, τ, y, z)dτ dσ.
This construction further extends to higher dimensions and will play a role when solving partial differential equations with ⋆-products.

Reductions to existing products and transforms

In addition to the inner product on C ∞ (I 2 ) and the action of linear functionals C ∞ (I 2 ) → C, the ⋆-product also induces a number of existing products, operations on functions as well as some integral transforms and their properties: Convolution. Consider two distributions d, e ∈ D, d(x, y) = d(x, y)Θ+ +∞ i=0 di (x, y)δ (i) and e(x, y) = ẽ(x, y)Θ + +∞ i=0 ẽi (x, y)δ (i) such that there exists functions D, Di , Ẽ, Ẽi ∈ C ∞ (I) with, for all x, y, ∈ I,

d(x, y) = D(x -y), di (x, y) = Di (x -y), ẽ(x, y) = Ẽ(x -y), ẽi (x, y) = Ẽi (x -y).
Then we may consistently define D(x -y) := d(x, y) and E(x -y) := e(x, y) and

(d ⋆ e)(x, y) = +∞ -∞ d(x, τ )e(τ, y)dτ, = +∞ -∞ D(x -τ )E(τ -y)dτ, = (D * E)(x + y).
In other terms a ⋆-product between two distributions of D is a convolution if and only if these distributions depend only on the difference between their two variables.

Volterra composition of the first kind. For two smooth functions f , g ∈ C ∞ (I 2 ), the Volterra composition of the first kind is defined as f ⋆ V g (x, y) := x y f (x, τ )g(τ, y)dτ, for x, y ∈ I. As noted earlier Eq. ( 3), a ⋆-product is a Volterra composition of the first kind if and only if the distributions multiplied are of the type f (x, y)Θ.

Volterra composition of the second kind. For two smooth functions f , g ∈ C ∞ ([0, 1] 2 ), the Volterra composition of the second kind is defined as

f ⋆ V II g (x, y) := 1 0 f (x, τ )g(τ, y)dτ.
This is a ⋆ I -product with I = [0, 1]. Mikusiński stated without proof that the Volterra composition of the second kind is a regular operation on the space of positive smooth functions over [0, 1] 2 [START_REF] Mikusiński | Sur la méthode de généralisation de M. Laurent Schwartz et sur la convergence faible[END_REF], now a consequence of Theorem 1.

Pointwise product. Let f , g ∈ C ∞ (I), their ordinary pointwise product is ( f .g)(x) = f (x)g(x). Now consider f, g ∈ D with f = f (x)δ and g = g(x)δ. Then

(f ⋆ g)(x, y) = ( f .g)(x) δ.
Matrix product. Let x, y ∈ I and {x i ∈ I} 0≤i≤N -1 with x 0 = x and x N -1 = y. For simplicity, suppose that the distance |x i+1 -x i | = ∆x = 1/N is the same for all 0 ≤ i ≤ N -2. This assumption is not necessary but alleviates the notation. For f ∈ C ∞ (I 2 ), we define a matrix F ∈ C N ×N with entries F i,j := f (x i , x j )Θ(x i -x j ).

For example the matrix H ∈ C N ×N constructed from Θ is the lower triangular matrix with 1 on and under the diagonal. Any matrix F defined this way is lower triangular owing to the Heaviside step function.

Constructing similarly another G ∈ C N ×N for g(x, y) = g(x, y)Θ(x -y), we observe that (F.G) i,j × ∆x =

x j ≤x k ≤x i f (x i , x k )g(x k , x j ) ∆x, then, lim ∆x→0 (F.G) 0,N -1 ∆x = x y f (x, τ )g(τ, y)dτ Θ(x -y) = (f ⋆ g)(x, y).
The above construction extends to all distributions of D and maintains their algebraic structure: set δ in correspondence with Id N /∆x, Id N being the identity matrix of size N ; δ ′ is then in correspondence with the matrix inverse H -1 /∆x (because of §3.1 below), δ ′′ with H -2 /∆x 2 and so on. This procedure provides a natural mean for numerical evaluations of ⋆-products via matrix-calculus. The accuracy of the resulting method is improved upon using other quadratures for integration (trapezoidal, Simpson etc.). An alternative approach consists of first expanding the smooth functions on a basis of Legendre polynomials and then multiply matrices of these coefficients to approximate ⋆-products [START_REF] Pozza | A new Legendre polynomial-based approach for non-autonomous linear ODEs[END_REF].

The relation between ⋆-product and matrix product allow for an intuitive understanding of what D equipped with ⋆ is: a 'continuum' version of the algebra of triangular matrices. Similarly the Fréchet Lie group of ⋆-invertible distributions of D, constructed in Section 3, is a 'continuum' version of the Borel subgroups formed by invertible triangular matrices. With this understanding, ⋆-products with elements of C ∞ (I) defined in §2.3 via ψ l and ψ r are the 'continuum' versions of the column vector -matrix (Eq. 6b) and matrix -line vector (Eq. 5a) products, scalar product (Eq. 7a) and outer products (Eqs. 5b, 6a, 7b).

Derivation, integration and exponentiation. For any f ∈ C ∞ (I 2 ), δ (n) ⋆ f and f ⋆ δ (n) are the nth derivatives with respect to the left and right variables of f , respectively. Furthermore, Θ ⋆ f and f ⋆ Θ are the left-variable and right-variable integrals of f , respectively; and more generally Θ ⋆n+1 ⋆ f is equal to (-1) n /n! times the left-variable nth moment of f while f ⋆ Θ ⋆n+1 is 1/n! times the right-variable nth moment of f . See also §3.1 below. It follows from these facts that for a smooth function of a single variable h ∈ C ∞ (I)

δ ′ ⋆ exp( h)Θ ⋆ δ -hΘ = δ,
that is, exponentiation of a smooth function of a single variable is equivalent to taking a ⋆-resolvent of this function. This observation generalizes in many a ways, see §3.1 for one way and here for another: if f is replaced by an object that does not commute with itself in the ⋆-sense (as would typically be the case for a matrix of smooth functions), then its ⋆-resolvent yields a time-ordered (also known as path-ordered) exponential [START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF].

Remark. Since C ∞ (I) ⊗2 ⊂ C ∞ (I 2
), the ⋆-product is also well defined on tensor products of distributions of one variable.

Fréchet-Lie group on distributions

In this section we show that the ⋆-product induces the existence of a Fréchet Lie group on a dense subset of D, then show this Fréchet Lie-group is a subgroup of the automorphism group on C ∞ (I 2 ). We begin with some multiplicative identities of D, then provide this set with a metric, present existence and density results concerning ⋆-inverses and conclude with the Fréchet-Lie group structure.

From now on, we omit the x -y arguments of the Heaviside Θ functions and Dirac deltas δ (i) whenever possible, in order to alleviate the equations.

⋆-Multiplicative identities

Since a ⋆-product f ⋆ g reduces to a convolution whenever both f and g depend only on the difference between their variables, we immediately obtain the following (well known) identities between some elements of D. Firstly,

Θ ⋆ δ ′ = δ,
which indicates that δ ′⋆-1 = Θ and equivalently Θ ⋆-1 = δ ′ = δ (1) since by Corollary 2.1, δ acts as the unit of the ⋆-product. As a consequence we may legitimately state Θ = δ (-1) and Definition 3 for d ∈ D is now

d(x, y) = +∞ i=-1 di (x, y)δ (i) , (9) 
where the sum starts at i = -1. Furthermore, we prove by Laplace transformation or directly by induction that, for n ∈ N\{0},

Θ ⋆n (x, y) = (x -y) n-1 (n -1)! Θ,
meaning that Θ ⋆n ∝ Θ. Equivalently, this shows that all negative ⋆-powers of δ ′ are included in D and the sum in Eq. ( 9) above could run over Z just as well without changing D. Conveniently, δ (j) = (δ ′ ) ⋆j , which thus holds for j ∈ Z, understanding that δ (-|j|) := (δ ′ ) ⋆-|j| = Θ ⋆|j| . We may therefore summarily write, for all i, j ∈ Z,

δ (i) ⋆ δ (j) = (δ ′ ) ⋆i ⋆ (δ ′ ) ⋆j = δ ⋆ i+j = δ (i+j) .
As stated earlier, these results follow from the reduction of the ⋆-product to convolutions * . There are more general ⋆ identities when this is not the case. To present some examples of these, let f ∈ C ∞ (I 2 ), and denote f (k,ℓ) (τ, ρ) the kth x-derivative and ℓth y-derivative of f evaluated at x = τ , y = ρ with the conventions that k = 0 or ℓ = 0 means no derivative is taken and k = -1 or ℓ = -1 denotes integration. By associativity of the ⋆-product, (δ

(k) ⋆ f ) ⋆ δ (ℓ) = δ (k) ⋆ ( f ⋆ δ (ℓ) ) = f (k,l
) is well defined. Schwartz's results [31, eqs. II,1; 5-7, p. 35] imply, for any i, j ≥ -1 that [START_REF] Giscard | Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method[END_REF],

δ (j) ⋆ f (x, y)δ (i) = f (j,0) (x, y)δ (i) + j k=1 f (j-k,0) (y, y)δ (i+k) , (10a) 
f (x, y)δ (i) ⋆ δ (j) = (-1) j f (0,j) (x, y)δ (i) + j k=1 (-1) j+k f (0,j-k) (x, x)δ (i+k) . (10b) 
Notice that the smooth function's partial derivatives are evaluated in (y, y) and (x, x) in the sums above, but not in the first term.

Finally, let us also present an example involving a ⋆-inverse that is not deducible from convolutions. Further explicit results on ⋆-inverses and ⋆-multiplications are presented in [START_REF] Giscard | Lanczos-Like algorithm for the time-ordered exponential: The * -inverse problem[END_REF], see also §3.3 below.

Remark. In general some care is required when representing elements of D and evaluating ⋆-products. For instance, consider f ∈ C ∞ (I 2 ) such that

∃k ∈ N : ∀j 1 , j 2 ∈ N, j 1 + j 2 ≤ k, f (j 1 ,j 2 ) (x, x) = 0.
Then f (x, y)δ (k) ≡ 0 D is null both as a linear functional C ∞ (I 2 ) → C whose action is defined by the bracket of Eq. ( 8) and as endomorphism of C ∞ (I 2 ), something which is not readily apparent from the notation alone. To further illustrate the notational difficulties consider calculating f (x, y)δ ′ ⋆ g(x, y)δ ′ . Relying on the ⋆-action of the leftmost δ ′ , Eq. (10a) yields f (x, y)δ ′ ⋆ g(x, y)δ ′ = (11) f (0,1) (x, x)g(x, y)δ ′ + f (x, x)g (1,0) (x, y)δ ′ + f (x, x)g(x, y)δ (2) .

But we could equally well calculate this relying on the ⋆-action of the rightmost δ ′ . Then Eq. (10b) gives

f (x, y)δ ′ ⋆ g(x, y)δ ′ = (12) 
f (0,1) (x, y)g(y, y)δ ′ -f (x, y)g (1,0) (y, y)δ ′ + f (x, y)g(y, y)δ (2) .

In spite of appearances the two results are equal: their action as linear functionals C ∞ (I 2 ) → C are the same on any test function. This is because by [31, eqs. II,1; 5-7, p. 35] for any smooth function h and k ∈ N,

h(x)δ (k) = (-1) k h(y)δ (0,k) , (13a) 
h(y)δ (k) = h(x)δ (k,0) ,
so defining e.g. h(τ ) := f (0,1) (x, τ )g(τ, y) and so on, one turns Eq. ( 12) into Eq. ( 11).

D is a Fréchet space

The aim of this sub-section is to show that D is a metrizable space in the particular sense of Fréchet spaces. We begin by defining a sequence of seminorms (p k ) k on D inducing a metric d on D.

Let (K k ) k be a sequence of compact spaces such that:

1. ∀i ∈ N, K k ⊂ • K k+1 , where • K k+1 denotes the interior of the set K k+1 . 2. +∞ k=0 K k = R n , 3. For any K ⊂ R n compact, there exists k ∈ N such that K ⊂ K k .
Then C ∞ (R n ) is a Fréchet space when equipped with the sequence of seminorms

pk (f ) := sup |α|≤k sup x∈K k |∂ α f (x)| = sup |α|≤k ∥∂ α f ∥ ∞,K k ,
where α is a multi-index. We generalise this construction to D by associating an element of D with a sequence of smooth functions:

Proposition 2. Let d(x, y) = +∞ i=-1 di (x, y)δ (i) (x -y) ∈ D, (K k ) k a sequence of com- pacts of R 2 as defined above, α = (α 1 , α 2 ) ∈ N 2 a bi-index such that |α| = α 1 + α 2 and let ∂ α := ∂ α 1 ∂x α 1 ∂ α 2 ∂y α 2 . The sequence (p k ) k∈N∪{-1} of maps p k : D → R + defined by p k (d) := sup -1≤i≤k pk+1 (d i ) = sup -1≤i≤k sup |α|≤k+1 ∥∂ α di ∥ ∞,K k+1 ,
is an increasing sequence of seminorms and the map d :

D 2 → R + , defined for d, e ∈ D by d(d, e) := ∞ k=-1 1 2 k+1 p k (d -e) 1 + p k (d -e) , is a metric on D. Proof. Let k ∈ N ∪ {-1}. Since ∥ • ∥ ∞ is a norm on C ∞ (I 2 )
, every p k is a semi-norm on D. The sequence (p k ) k∈N∪{-1} is an increasing sequence by construction, so it is an increasing sequence of seminorms. Therefore d is a metric [START_REF] Bony | Cours d'analyse: théorie des distributions et analyse de Fourier[END_REF][START_REF] Zuily | Éléments d'analyse pour l'agrégation[END_REF].

Theorem 3. Relatively to d, D is a complete space and therefore a Fréchet space.

Proof. Let (d n ) ∈ D be a Cauchy sequence :

∀ϵ > 0, ∃n 0 ∈ N, ∀m, p ≥ n 0 , d(d m , d p ) < ϵ, that is, ∞ k=-1 1 2 k+1 sup -1≤i≤k sup |α|≤k+1 ∥∂ α d m,i -∂ α d p,i ∥ ∞,K k+1 1 + sup -1≤i≤k sup |α|≤k+1 ∥∂ α d m,i -∂ α d p,i ∥ ∞,K k+1 < ϵ.
In particular, for all -1 ≤ i ≤ k fixed,

sup |α|≤k+1 ∥∂ α d m,i -∂ α d p,i ∥ ∞,K k+1 ≤ sup -1≤i≤k sup |α|≤k+1 ∥∂ α d m,i -∂ α d p,i ∥ ∞,K k+1 . Since x → x x+1 is a strictly increasing function, sup |α|≤k+1 ∥∂ α d m,i -∂ α d p,i ∥ ∞,K k+1 1 + sup |α|≤k+1 ∥∂ α d m,i -∂ α d p,i ∥ ∞,K k+1 < sup -1≤i≤k sup |α|≤k+1 ∥∂ α d m,i -∂ α d p,i ∥ ∞,K k+1 1 + sup -1≤i≤k sup |α|≤k+1 ∥∂ α d m,i -∂ α d p,i ∥ ∞,K k+1 . Hence, ∞ k=-1 1 2 k+1 sup |α|≤k+1 ∥∂ α d m,i -∂ α d p,i ∥ ∞,K k+1 1 + sup |α|≤k ∥∂ α d m,i -∂ α d p,i ∥ ∞,K k+1 < ϵ.
We set

d(f m , f p ) := ∞ k=-1 1 2 k+1 sup |α|≤k+1 ∥∂ α fm,i -∂ α f p,i ∥ ∞,K k+1 1 + sup |α|≤k+1 ∂ α d m,i -∂ α d p,i ∥ ∞,K k+1 , := ∞ k=0 1 2 k pk (f m -f p ) 1 + pk (f m -f p ) . Since (C ∞ (I 2 ), d) is a complete metric space, there exists for all i ∈ N ∪ {-1} a function di ∈ C ∞ (I 2 ) such that d( dm,i , di ) -→ m→∞ 0.
Then, we define

d(x, y) := +∞ i=-1 di (x, y)δ (i) (x -y),
and it follows that, d(d m , d) -→ m→∞ 0.

3.3 Group structure on ⋆-invertible elements of D. Proof. The proof relies on earlier constructive results by Giscard and Pozza [START_REF] Giscard | Lanczos-Like algorithm for the time-ordered exponential: The * -inverse problem[END_REF] regarding the existence of ⋆-inverses of certain distributions of D. We begin by recalling the necessary definitions. Then a distribution d = +∞ i=-1 di (x, y)δ (i) ∈ D is said to be separable if and only if all of its smooth coefficients d(i) are separable as per Definition 8. Lemma 3.1 (Giscard, Pozza [START_REF] Giscard | Lanczos-Like algorithm for the time-ordered exponential: The * -inverse problem[END_REF]). Let e ∈ D be a distribution of the form e(x, y) = ẽ(x, y)Θ(x -y) with ẽ a smooth separable function that is not identically null over I 2 . Then e ⋆-1 (x, y) exists everywhere in I 2 except possibly on a finite set of isolated points.

Furthermore a generic, explicit (although involved), formula for the ⋆-inverses of such a distribution is presented in [START_REF] Giscard | Lanczos-Like algorithm for the time-ordered exponential: The * -inverse problem[END_REF]. This lemma is sufficient to guarantee the ⋆invertibility of more general distributions. Indeed consider a distribution d ∈ D such that ∃k ∈ N ∪ {-1} : j > k ⇒ dj = 0. Then for any k ′ ≥ k, e := d ⋆ Θ ⋆k ′ +1 is proportional to Θ. If e is separable then by Lemma 3.1 it is invertible and, from there, so is d. It turns out that d separable implies that e is and therefore: Theorem 5 (Giscard, Pozza [START_REF] Giscard | Lanczos-Like algorithm for the time-ordered exponential: The * -inverse problem[END_REF]). Let d ∈ D (k) be a separable distribution. Then the ⋆-inverse of d exists and can be expressed as d ⋆-1 (x, y) = Θ ⋆(k+1) ⋆ e ⋆-1 (x, y), where e(x, y) = ẽ(x, y)Θ(x -y) is separable and invertible by Lemma 3.1. Furthermore, d ⋆-1 is a separable distribution.

Observe that a separable smooth function is an element of C ∞ (I) ⊗ C ∞ (I) but this set is dense in C ∞ (I 2 ) by the Stone-Weierstrass theorem since I is compact. Then, by linearity, for any k ∈ N ∪ {-1} the set of separable distributions of order k is a dense subset of D (k) . From there, the set of separable distributions of finite order is dense in the set of distributions of finite order. We conclude noting that for any d ∈ D, the sequence (d| k ) k converges to d with respect to d as k → ∞ so the set of distribution of finite order is dense in D. The results so far lead to: Secondly, suppose that at least one of m, p ̸ = -1, we suppose wlog that m ̸ = -1. Let k ∈ N ∪ {-1} be a fixed integer, K k+1 the corresponding compact as defined earlier; d(x, y) := dp (x, y)δ (p) (x -y) and e(x, y) := ẽm (x, y)δ (m) (x -y), m ∈ N, p ∈ N ∪ {-1}. For (x, y) ∈ K 2 k+1 we have, 

  σ, τ )dσ -1 φ(τ, y)dτ + σ, τ )dσ -1 |φ(τ, y)| dτ + b x x a d n (σ, τ )dσ |φ(τ, y)| dτ. Now ∀x, y ∈ I, thanks to Lebesgue's dominated convergence theorem, we have lim σ, τ )dσ -1 |φ(τ, y)|dτ = σ, τ )dσ -1 |φ(τ, y)|dτ σ, τ )dσ |φ(τ, y)|dτ = σ, τ )dσ |φ(τ, y)|dτ = 0. This shows that ∥h n ⋆ φ -Θ ⋆ φ∥ ∞ -→ n→+∞ 0. Hence the Heaviside theta distribution is an element of C ∞ (I 2 ). With the results concerning δ and its derivatives and multplying point-wise by functions of C ∞ (I 2 ) as needed establishes that D ⊂ C ∞ (I 2 ).

1 =

 1 For ã, b ∈ C ∞ (I) smooth functions of a single variable, δ -ã(x) b(y)Θ ⋆δ + ã(x) b(y) exp x y ã(τ ) b(τ )dτ Θ, which we verify directly by ⋆ multiplying the RHS with δ -ã(x) b(y)Θ.

Theorem 4 .

 4 The set Inv(D) of ⋆-invertible distributions of D is a dense subset of D.

Definition 8 .

 8 A smooth function f (x, y) ∈ C ∞ (I 2) is said to be separable of finite order s ∈ N if and only if there exist ordinary smooth functions ãi and bi with f (x, y) = s i=1 ãi (x) bi (y).

Theorem 6 .

 6 Inv(D) ⊆ Aut(C ∞ (I 2 , C))Proof. The ⋆-product induces a group action of group (Inv(D), ⋆) on (C ∞ (I 2 ), +), which in particular satisfies∀d ∈ Inv(D), ∀φ, ψ ∈ C ∞ (I 2 ), d ⋆ (φ + ψ) = d ⋆ φ + d ⋆ ψ.Consequently, for all d ∈ Inv(D) the map φ → d ⋆ φ is an automorphism of C ∞ (I 2 ) and Inv(D) ⊆ Aut(C ∞ (I 2 , C)).

Theorem 7 .

 7 (Inv(D), ⋆) is a Fréchet Lie-group.Proof. Since D is a Fréchet space, it is sufficient (similarly to Banach-Lie groups[START_REF] Bonsall | Complete Normed Algebras[END_REF]) to show that∀ d, e ∈ D, ∀ k ∈ N ∪ {-1}, p k (d ⋆ e) ≤ c k p k (d) p k (e),with c k ∈ R + finite for k finite. As the ⋆-product is linear and thanks to the triangular inequality, we just need to show this for d = dp δ (p) and e = ẽm δ (m) with m, p ∈ N ∪ {-1}. Firstly, we consider the particular case p = m = -1. Recall that δ (-1) ≡ Θ.Let k ∈ N ∪ {-1}, we consider (x, y) ∈ K 2 k . Let d(x, y) = d-1 (x, y)Θ(x -y) and e(x, y) = ẽ-1 (x, y)Θ(x -y).We have,(d ⋆ e)(x, y) = x y d-1 (x, τ )ẽ -1 (τ, y)dτ Θ(x -y).Then, for α= (α 1 , α 2 ) ∈ N 2 , |α| = k + 1, x, τ )ẽ -1 (τ, y)dτ = y) dτ.So, by upper bounding each derivative of d by p k (d) and similarly for e, leads top k (d ⋆ e) = sup |α|≤k+1 ∂ α x y d-1 (x, τ )ẽ -1 (τ, y)dτ ∞,K k+1 , ≤(3 max(α 1 ,α 2 ) + |K k+1 |)p k (d)p k (e), ≤ (3 k+1 + |K k+1 |)p k (d)p k (e).

∂

  τ )δ (p) (x -τ )ẽ m (τ, y)δ (m) (τ -y)dτ, = (-1) m ∂ (0,m) dp (x, y)ẽ m (y, y)δ (p) (x -y) , m-j) dp (x, y)ẽ m (y, y) δ (p+j) (x -y).Then,p k (d ⋆ e) = sup -1≤p+j≤k sup |α|≤k+1 ∂ α (-1) m m j ∂ (0,m-j) dp (x, y)ẽ m (y, y) ∞,K k+1.Observe that we consider p + m ≤ k as otherwise p k (d ⋆ e) = 0 trivially. Then m ≤ k -p and since p ∈ N ∪ {-1}, we get m ≤ k + 1. Consequently,p k (d ⋆ e) ≤ sup (α 1 ,α 2 +m-j) dp (x,y)ẽ m (y, y) j p k (d)p k (e), ≤ 3 k+1 p k (d)p k (e).
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