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Abstract:  15 

Coastal marshes are submitted to huge management due to anthropogenic pressure and thus, it is 16 

essential to preserve their biodiversity, their ecological functions and the ecosystem services they can 17 

provide. This study investigates the diversity and abundance of planktonic communities (heterotrophic 18 

prokaryotes, heterotrophic protists, microphytoplankton and metazooplankton). The aim of this study is 19 

to provide a first quantitative inventory on the plankton communities present in two marshes and to 20 

construct the different typologies of planktonic food webs in these marches. Seasonal samplings (4) for 21 

environmental variables, nutrient concentrations and planktonic communities were conducted at 2-3 22 

stations on each marsh during a year. A total of five different types of planktonic food web were 23 

determined, three of them were found in both marshes. The saltmarsh phytoplanktonic communities 24 

were dominated by Cryptophyta, nanoflagellates and Cyanobacteria. The freshwater marsh was 25 

dominated by Cryptophyta in autumn and winter and by a diverse phytoplankton community in spring. 26 

Marine copepods (Calanoida and Harpacticoida) characterized the saltwater metazooplanktonic 27 

communities, Cladocerans and Rotifera the freshwater ones. Overall, the planktonic diversity was higher 28 

in the freshwater marsh (102 taxa) than in the saltwater marsh (54 taxa). 29 
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Phytoplankton blooms represented nutrient and CO2 uptake in both marshes and this reification function 30 

seemed most efficient in autumn in the saltmarsh. Considerable zooplankton communities represented 31 

a potential for nursery. Of the three management actions performed, only periodic water renewals might 32 

affect the seasonal dynamics of planktonic communities.  33 

 34 

Keywords: plankton, purification function, nursery function, salt- and freshwater marshes, food web 35 
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 38 

Highlights 39 

- Planktonic diversity differs highly between the salt- and freshwater marsh. 40 

- Similar planktonic ecological functions can be found in both marshes. 41 

- Seasonal variations might be affected by management operation. 42 

- Monitoring planktonic communities is essential to adapt coastal marsh management. 43 

 44 

1. Introduction 45 

Coastal marshes are habitats with high biological productivity, sustaining many ecological functions 46 

(Vernberg, 1993; Więski et al., 2010). According to their uses and management, these environments 47 

can provide several ecosystem services. Some of the most common services are directly linked to the 48 

supply of human food resources, such as salt production, shellfish farming (Guillou, 1997; Leloup et al., 49 

2008), and fisheries (Maltby, 1991). Moreover, coastal marshes can provide regulation services by 50 

forming a buffer zone against flooding of nearby inhabited areas (Sheng et al., 2022). They can also 51 

provide cultural services as recreational spaces for the human population (Ghermandi and Nunes, 2013) 52 

or provide refuge areas for migratory birds (Bradshaw et al., 2020). Overall, these different services are 53 

often valued by their economic value (Woodward and Wui, 2001), which drives the type of management 54 

applied to these environments. For example, in North America, dikes were constructed on some 55 

marshes to directly control flooding to favor the development of specific marsh grass for salt hay farming 56 

(Hinkle and Mitsch, 2005). 57 

The various ecological functions and ecosystem services provided depend to a high extent on the 58 

biodiversity present in coastal marshes. Halophyte vegetations and macrophytes provide shelter for 59 
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breeding and nesting for a wide diversity of animals from invertebrates to migratory birds (Pétillon et al., 60 

2014; Jerabek et al., 2017; Joyeux et al., 2017). In addition, coastal marshes constitute crucial nurseries 61 

for juveniles of mobile species (i.e., fish) that find requested trophic resources before migrating to a new 62 

habitat (Cattrijsse and Hampel, 2006). One of the main resources of fish juveniles using these habitats 63 

is metazooplankton (Stephenson, 1990; Kaneko et al., 2018; Talanda et al., 2022). 64 

Planktonic communities are one of the actors of many ecological functions (Harris, 2012; D'Alelio et al., 65 

2016; Hébert et al., 2016). For instance, in coastal marshes, they are known to take part in the water 66 

purification function by retaining suspended matter and nutrients and pollutants in the water column, 67 

thus preventing eutrophication (Azim et al., 2005; Verhoeven et al., 2006; Nyman, 2011). Bradley et al. 68 

(2010), showed that phytoplanktonic communities, especially picophytoplankton, were able to consume 69 

both organic and inorganic nitrogen sources. While many papers consider the importance of benthic 70 

communities on marsh ecology (Craft, 2000; Sullivan and Currin, 2002; Nordström et al., 2014), few 71 

studies focus on the planktonic communities and their ecological associated functions in coastal fresh 72 

and saltwater marshes (Quintana et al., 1998; Kobayashi et al., 2009). Even less consider the effect of 73 

management measures on plankton communities and associated functions and ecosystem services. 74 

David et al. (2020) studied the effect of human activities on phyto- and zooplankton diversity in 75 

specifically drained marshes; they demonstrated that water replenishment and urbanization have a 76 

strong effect on planktonic diversity and eutrophication. Koch and Gobler (2009) showed that draining 77 

in salt marshes directly affects water quality and can increase development of diatoms and 78 

dinoflagellates (i.e., bloom). The introduction of species such as fish stocking for recreational fisheries 79 

can reshape planktonic diversity (Reissig et al., 2006) and might also bring non-native planktonic 80 

species. These invasive species might take over on native species if they are suited to the environmental 81 

conditions in the marshes (Dexter et al., 2020). The aim of this study is to provide a first quantitative 82 

inventory on the plankton communities present in the Fiers d’Ars and Tadon marsh, located on the west 83 

coast of France, and to construct the different typologies of planktonic food webs in these marches. Both 84 

marches being submitted to management practices, some considerations are formulated concerning 85 

the potential impact of these on the plankton community composition, abundance and associated 86 

ecological functions, especially the water purification function and nursery function.  87 

In this study, the term metazooplankton is used to cover meso- and microzooplankton. Management 88 

actions applied on the marshes were: (1) an annual drought, (2) the management of water inlet and 89 



4 
 

renewal in the marshes and (3) the introduction of non-native species. The potential effect of these 90 

actions was compared to seasonal changes as observed in the planktonic communities during the study 91 

period. 92 

Based on the collected data and the study of Masclaux et al., (2014), who quantified both abundances 93 

and flux between different planktonic compartments in a similar marsh also situated in Charente -94 

Maritime (France) and supported by literature references, we deduce the most likely trophic pathways 95 

present in the studied marshes.  96 

In short, microbial loops are found when both picophytoplankton and heterotrophic prokaryote 97 

abundances are high, (Legendre and Rassoulzadegan, 1995). Herbivorous food webs can be found 98 

when the temperature rises enough and nutrient concentration in the water column is sufficient to sustain 99 

phytoplankton blooms (Huppert et al., 2002; Masclaux et al., 2014; Trombetta et al., 2019). Multivorous 100 

food webs are likely when all planktonic communities are present and active in the water column 101 

(Masclaux et al., 2014). Biological winters reflect situations where abundance and activity of planktonic 102 

communities are low despite considerable concentrations of nutrients in the water column (Masclaux et 103 

al., 2014). More details on these characterizations are given in the discussion of the specific situations 104 

found in this study.  105 

 106 

2. Methods 107 

2.1. Study areas 108 

The two marshes are located in Charente-Maritime, on the west coast of France (Fig 1). This area 109 

contains several coastal marshes (salt and freshwater type) with variable uses and management types 110 

and is considered as one of the biggest wetland zones in France (almost 100 000 ha) (David et al., 111 

2020). 112 

The saltwater marsh (salinity between 22.9 and 37.6 throughout the year) studied is the Fier d’Ars 113 

marsh, located at the North of the Ré-Island. This area is protected by a dike and is a highly touristic 114 

site where traditional shellfish and salt farming activities are carried out (Fig 1a). The vegetation around 115 

the marsh is mainly composed of Halimione sp., Salsola soda and Tamarix sp.. A part of this marsh is 116 

included in a natural reserve managed by the “Ligue pour la Protection des Oiseaux” (LPO). Sampling 117 

stations were selected in two areas. The first station FA (N 46° 14’ 5.964”; W 1° 30’ 20.707”) is a 40 097 118 

m2 polyhaline basin with an average depth of 0.6 m located in the natural reserve. It is located about 0.1 119 
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km from the sea and connected to it by a channel. The management of this basin does not include 120 

dredging or cleaning and no species have been introduced in addition to the resident species in the 121 

marsh. The second station FB (N 46° 13’ 26.4”; W 1° 27’ 21.599”) is an 8 483 m2 polyhaline basin with 122 

an average depth of 0.75 m. It is located about 2 km from the sea and connected to it by a channel; 123 

when the tidal range reaches about 5.5 m, the water crossing the channels can enter the marshes. Thus, 124 

juvenile fish can enter the marsh. The management of this basin includes dredging once a year in March. 125 

As for FA, no species have been introduced in FB. The water inlets are regulated by a weir followed by 126 

a floodgate to control water renewals depending on the season and the tidal range. 127 

The freshwater marsh (salinity between 0.1 and 0.5 through the year) studied is the urban Tasdon marsh 128 

located between La Rochelle and Aytré (Fig 1b). The vegetation around the marsh is mainly composed 129 

of Arrhenatheretea elatioris. Sampling stations were selected in three distinct areas located between 130 

1.5 and 2.5 km from the sea. The first station TA (N 46° 8’ 56.4”; W 1° 7’ 26.4”) is a 72 000 m2 freshwater 131 

lake with a maximum depth of 1.35 m. The second station TB (N 46° 9’ 3.6”; W 1° 8’ 9.599”) is a 21 400 132 

m2 freshwater basin with a maximum depth of 0.8 m. The third station labelled as TC (N 46° 8’ 49.2”; W 133 

1° 8’ 13.2”) is a 23 700 m2 elongated freshwater basin with a maximum depth of 1 m. The management 134 

of these three stations does not include dredging nor cleaning. However, freshwater fish such as black-135 

bass and sunfish have been introduced in these areas (early 2019) and tend to develop faster than the 136 

native fishes present in the marsh, such as Carassius spp. and Gambusia spp.. Water inlets are coming 137 

from an adjacent river connected to the stations: TB and TC located further downstream than at TA. 138 

 139 

2.2. Sampling methods 140 

Four seasonal samplings, corresponding to a season cycle (winter, spring, summer, autumn) were 141 

conducted in 2019. All samplings were made in triplicate at each station at 0.5 m depth (sub-surface; 142 

measured with a measuring rod). Temperature, salinity, pH, and dissolved oxygen concentration were 143 

measured using a multiparametric probe (VWR™). A total of 5 L of water was sampled in polythene 144 

bottles (mid water column) for quantification of Suspended Particulate Matter (SPM: Suspended 145 

Particulate Inorganic Matter (PIM) and Suspended Particulate Organic Matter (POM)), dissolved nutrient 146 

analysis (NO2, NO3, NH4, PO4, Si), chlorophyll a concentration and abundances of different planktonic 147 

compartments (see after). These samples were preserved from light in opaque black plastic bags. To 148 

estimate the abundance of heterotrophic prokaryotes and pico-nanophytoplankton, 1.5 mL of water was 149 
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directly transferred in cryotubes containing a mixture of glutaraldehyde (final concentration 0.2%) and 150 

poloxamer (final concentration 0.001%). These fixed samples were frozen in liquid nitrogen and then 151 

stored at -80°C in the lab. To study the diversity and abundance of microphytoplankton, 50 mL of water 152 

sample were directly fixed with alkaline lugol iodine (final concentration of 4%). For heterotrophic 153 

nanoflagellates (HNF), a 60 mL water sample was fixed with paraformaldehyde filtered at 0.22 µm (final 154 

concentration of 1%).  Metazoan microzooplankton was sampled by filtering 6 L of water through a 63 155 

µm mesh stainless-steel sieve and then fixed with buffered formaldehyde (final concentration 4%). 156 

Horizontal hauls were done at each station with a standard WP2 (200 µm mesh net) with an attached 157 

flow meter (Mechanical Flow Meter with back-run stop, Model 438 115) to sample mesozooplanktonic 158 

communities. The content of the net collector was fixed with buffered formaldehyde (final concentration 159 

4%). Since the maximum depth was 1.35 m (TA), the effect of planktonic vertical migration was 160 

considered as low (Gliwicz, 1986; Semyalo et al., 2009; Das et al., 2020). Horizontal hauls were then 161 

sufficient to sample planktonic communities in the water column; thus, no additional vertical hauls were 162 

done. Except for samples contained in cryotubes, all the samples were kept at 4°C in a cold-storage 163 

room until analysis. 164 

 165 

2.3. Sample analyses 166 

The concentration of nitrate (NO3), nitrite (NO2), ammonium (NH4), phosphate (PO4) and silicate (Si) 167 

was determined on filtered water (0.7 μm GF/F glass fiber membrane, Whatman) using a SEAL AA3 168 

autoanalyzer with the detection limit of: 0.02 μmol.L-1 (NO3), 0.003 μmol.L-1 (NO2), 0.06 μmol.L-1 (NH4), 169 

0.01 μmol.L-1 (PO4), 0.04 μmol.L-1
 (Si) according to the protocol of Aminot and Kérouel (2004). SPM 170 

were measured by weighing filters according to the protocol of Aminot and Kérouel (2004). PIM was 171 

also measured by weighing filters after acidification. POM was calculated as the difference between 172 

SPM and PIM weight. 173 

The concentration of chlorophyll a and phaeopigments was measured for each replicate for three size 174 

classes: microphytoplankton (> 20 μm), nanophytoplankton (between 3 and 20 μm) and 175 

picophytoplankton (< 3 μm). To do this, a triplicate filtration for each sampling was first performed on a 176 

20 μm nylon fiber membrane (Millipore). Then, a fraction of the resulting filtrate was filtered onto a 3 μm 177 

nucleopore membrane (Whatman) and the rest of the filtrate onto a 0.7 μm GF/F glass fiber membrane 178 

(Whatman). Chlorophyll a and phaeopigments (i.e., concentration of degraded chlorophyll pigment) 179 
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concentrations were quantified by fluorimetry according to the protocol of Lorenzen (1966). The 180 

proportion of active chlorophyll a was measured by calculating the ratio of concentration of 181 

phaeopigments to phaeopigment plus chlorophyll a initially measured. 182 

FlowCam analyses were conducted rapidly after field work at the laboratory on living microplanktonic 183 

organisms for each replicate using water from the polythene bottles. The abundance of microplanktonic 184 

groups (phytoplankton and heterotrophic protists) were determined by FlowCam analyses following the 185 

protocol of Buskey and Hyatt (2006). Microphytoplanktonic organisms (samples fixed with lugol) were 186 

identified at the highest taxonomic level possible and counted under an inverted microscope (IX70 187 

Olympus) coupled with a camera (DFC 450C Leica) (mainly at x400) according the Utermöhl protocol 188 

(1958). One sample for each station-season were processed. 189 

The abundance of heterotrophic prokaryotes, pico- and nanophytoplankton were determined by flow 190 

cytometry analyses performed with a FACS CantoII flow cytometer according to the method described 191 

in Marie et al. (1999). The abundance of HNF from 2 to 20 μm was assessed by counting cells by 192 

epifluorescence microscopy using the method of Bloem et al. (1986). Micro- and mesozooplanktonic 193 

organisms were identified and counted with binocular microscope observations using the protocol of 194 

Postel et al. (2000). Identification of micro- and mesozooplankton was performed to the species level 195 

whenever possible (genus or order if damaged). To achieve species level identification, crustaceans 196 

were dissected and observed with an optical microscope (x400) when necessary. All five copepodite 197 

stages were regrouped for each copepod order. Planktonic larvae were identified to order directly under 198 

a stereomicroscope (x120) without prior dissection. 199 

 200 

2.4. Statistical analyses 201 

All statistical analyses were conducted with R software (version 4.0.3.). First, heatmaps including 202 

dendrograms based on euclidean distances were done to evaluate phytoplanktonic and 203 

metazooplanktonic diversities on both marshes for each sampling station on the four seasons. In 204 

addition, the data set obtained in this study was analyzed using a Multiple Factor Analysis (MFA) (Pagès, 205 

2002), with FactoMineR and factoextra packages, to determine key variables guiding the seasonal 206 

dynamics of planktonic communities on both marshes. Quantitative variables were divided in three 207 

groups: a group including all abiotic parameters, a group including metazooplanktonic taxa and a group 208 

including phytoplanktonic taxa. The management actions, including annual drought, water inlet and 209 
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renewal and introduction of non-native species, were used as descriptive qualitative variables (A). Then, 210 

boxplots (package ggplot2) with associated Permanova and Fisher test (package vegan) were done to 211 

determine the different types of planktonic food web (FW) per group, as described by Masclaux et al. 212 

(2014). These analyses allow to compare, for each station-season couple, the concentration of nutrients 213 

(NO2, NO3, NH4), PIM, the proportion of active chlorophyll a and the concentration of chlorophyll a for 214 

the three size classes (larger than 20 µm, between 20 and 3 µm, less than 3 µm), and the abundance 215 

of micro- and mesozooplankton, ciliates, diatoms and heterotrophic prokaryotes.  216 

 217 

3. Results 218 

3.1. Diversity of microphytoplankton and metazooplankton 219 

A total of 54 taxa for the Fier d’Ars marsh and 102 taxa for the Tasdon marsh were determined for the 220 

microphytoplanktonic compartment. Taxa which were only present at one season for a single sampling 221 

station were removed to retain the most representative taxa of the total abundance corresponding to 222 

98% of the total abundance. Therefore, respectively 33 and 64 taxa for the Fier d’Ars marsh and the 223 

Tasdon marsh were kept to study relative abundances of microphytoplanktonic communities per 224 

season-station with a heatmap. For the Fier d’Ars marsh (Fig 2a), the dominant phytoplanktonic species 225 

was Teleaulax amphioxeia (Cryptophyta), which was most abundant in autumn at both FA and FB and 226 

in winter in FA. In summer, flagellates sp2 (not determined) were most abundant at FB whereas 227 

Planktolyngbya limnetica (Cyanobacteria) was the most abundant at FA for the same season. 228 

Considering the distribution of microphytoplankton communities between stations and by season 229 

(results of clustering on heatmap), three groups could be distinguished: a first group including FB station 230 

in spring and summer, a second group including both FA and FB in autumn and FA in winter, and finally 231 

a third group including FA in summer and spring and also FB in winter. 232 

For the Tasdon marsh (Fig 2b), the dominant phytoplanktonic species was Plagioselmis nannoplanctica 233 

(Cryptophyta) which was most abundant in autumn and winter at TA and in autumn at TB. In summer, 234 

microalgae of the genus Scenedesmus and Willea rectangularis (Chlorophyta) were most abundant at 235 

TA and TB while Lepocinclis acus (Euglenozoa), Haslea sp., Aulacoseira granulata (diatoms), and 236 

cyanobacteria of the genus Aphanocapsa were most abundant at TC. In spring, Dinobryon sp. 237 

(Chrysophyceae) and flagellates were the most present at TA while green algae of the genus 238 

Monoraphidium were dominant at TB. In the same season, Monoraphidium algae were also found with 239 
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a high abundance at TC with also Haslea sp., Cryptomonas curvata and flagellates sp6. Again 240 

considering, only the distribution of phytoplankton communities (results of clustering on heatmap), four 241 

groups could be distinguished: a first group including TA and TB in summer, a second group including 242 

TA and TC in spring and TC in summer, a third group including all stations in autumn, and TA and TB 243 

in winter, and a fourth group including TB in spring and TC in winter. 244 

For the metazooplanktonic compartment, 30 and 42 taxa were determined for the Fier d’Ars marsh and 245 

the Tasdon marsh, respectively. As for the phytoplanktonic compartment, relative abundances for each 246 

taxon were studied per season-station. For the Fier d’Ars marsh (Fig 2c), copepods were most abundant 247 

with the dominant genus Acartia at both FA and FB, especially in autumn. Copepod nauplii were 248 

dominant in spring at both FA and FB, as well as in summer at FB. A high abundance of Zoe larvae (i.e., 249 

larvae of crab) was also noticed in spring at FA. Considering the distribution of metazooplankton 250 

communities between stations and by season, two groups seemed to stand out: a group including both 251 

FA and FB in autumn and winter and FA in summer, and a group including both FA and FB in spring 252 

and FB in summer. 253 

For the Tasdon marsh (Fig 2d), Cladocerans were the most abundant, especially Bosmina longirostris 254 

with highest relative abundances observed in spring at TA and TB as well as in autumn at TA and TC. 255 

Cyclopoid copepodite abundances were also high in summer at TA and TB. Rotifers of the genus 256 

Asplanchna were the most abundant in winter at the three stations, and TC in spring. Nauplii of copepods 257 

were the most abundant in summer in TC and in autumn in TB. In addition, two exotic and tropical 258 

zooplankton species were found in Tasdon marsh: Keratella tropica and Brachionus falcatus. Looking 259 

at the distribution of mesozooplankton communities between stations and by season, three groups could 260 

be distinguished: a first group including the three stations in winter and TC in spring, a second group 261 

including TA in spring and autumn, TB in spring and TC in autumn, and finally a third group including 262 

the three stations in summer and TB in autumn gathering the juveniles’ forms of copepods (nauplii and 263 

copepodites). 264 

Comparing both planktonic communities, the heatmaps showed different station-season’s clustering 265 

according to the type of planktonic community studied. First, for both study areas, the number of groups 266 

resulting from clustering with the relative abundances of microphytoplankton or metazooplankton was 267 

different. For the Fier d’Ars data, the majority of station-seasons were grouped in the same way for 268 

phyto- and metazooplankton with the exception of FA in spring and winter. For the Tasdon data, more 269 
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differences were observed: whereas all three stations were grouped together for respectively summer 270 

and winter when looking at metazooplanktonic relative abundances, they were only all grouped together 271 

for autumn when looking at phytoplanktonic relative abundances. TA and TC in spring were grouped 272 

together with TC in summer when looking at phytoplanktonic relative abundances. In contrast, when 273 

looking at zooplankton relative abundances, TA and TB in spring were grouped together with TA and 274 

TC in autumn, and TC in spring was grouped with all three stations in winter. 275 

 276 

3.2. Spatio-temporal variations of planktonic communities 277 

For the Fier d’Ars marsh, the three axes of the MFA explained around 72% of the variance of data (Fig 278 

3). The abundance of heterotrophic prokaryotes (HPT), euglena (EUG), rotifera (RTF), 279 

metazooplanktonic larvae (LRV), copepoda (COP), other metazooplanktonic organisms (OTH) and 280 

pennate diatoms (DTMp) defined the first axis of the MFA with abiotic variables such as the water 281 

temperature (T.w) and salinity (Sal). It was noted that all these variables were in opposition with the 282 

dissolved oxygen concentration (O2). The abundance of cryptophyceae, cladocerans (CLA) and the four 283 

other metazooplanktonic groups which already defined the first axis (COP, OTH, LRV, RTF), euglena, 284 

as well as the concentration of particulate organic matter (POM) and dissolved silicate (SI), hydrogen 285 

potential (pH) and the proportion of active chlorophyll a for organisms between 3 and 20 µm defined the 286 

second axis. The third axis was explained by the abundance of naked ciliates (CILn) and the 287 

concentration of nitrate (NO3), nitrite (NO2), phosphate (PO4) and particulate inorganic matter (PIM). The 288 

importance of environmental parameters (especially temperature, salinity, and dissolved oxygen 289 

concentration) in the distribution of the data indicated a strong seasonal effect. This observation was 290 

confirmed by the representation of station-season individuals with ellipses of confidence via the MFA 291 

(Fig 4), where especially summer and winter seemed to stand out from the other seasons. Contrary to 292 

the seasonal effect, the three management operations included in the MFA as descriptive qualitative 293 

variables, were not well represented in the three axes of the MFA. 294 

For the Tasdon marsh, around 70% of the variance in the data was explained by the three axes of the 295 

MFA (Fig 5). The first axis was explained by the abundance of copepoda (COP), cladocera (CLA), 296 

metazooplanktonic larvae, heterotrophic prokaryotes, euglena, picoeukaryotes, nanoeukaryotes (NEC1 297 

and NEC2), pennate diatoms and cyanobacteria, as well as the concentration of particular organic 298 

matter, silicate. This group was in opposition with nitrates (NO3) and nitrites (NO2). Water temperature 299 
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also positively explained the first axis. The second axis was explained by the abundance of other 300 

metazooplanktonic organisms, centric and chain diatoms, as well as the proportion of total active 301 

chlorophyll a (total and for the three studied size classes), the concentration of particulate inorganic 302 

matter, dissolved O2, and negatively by salinity and pH. The third axis was mainly determined by the 303 

proportion of total active chlorophyll a (total and for the three studied size classes), the concentration of 304 

phosphate and negatively by the abundance of Rotifera. The abundance of photosynthetic communities 305 

on the three size classes was an important factor characterizing the station-month pairs. Furthermore, 306 

and similarly to the Fier d’Ars, the importance of environmental parameters (especially temperature and 307 

nutrients) in the data distribution indicated a strong seasonal effect. This seasonal effect was revealed 308 

by the representation of station-season individuals with ellipses of confidence via the MFA (Fig 6), where 309 

especially summer seemed to stand out from the other seasons. Water inlet and renewal was 310 

represented on the second axis. 311 

 312 

3.3. Planktonic food web typologies 313 

For the Fier d’Ars marsh, four different food web types were determined during the year of the survey 314 

(Fig 7). An herbivorous food web (noted FW1, see Fig 9), characterized by high abundances of 315 

phytoplanktonic communities and high proportion of active chlorophyll a, was observed in spring on both 316 

FA and FB. A multivorous food web (noted FW2, see Fig 9), characterized by high abundances of 317 

heterotrophic prokaryotes, micro- and mesozooplanktonic communities, and a medium abundance of 318 

phytoplanktonic communities, was observed in summer on both FA and FB. In the case of FA, this food 319 

web (FW2, see Fig 9) was developing in summer, with an increase in abundance of heterotrophic 320 

prokaryotes and phytoplanktonic communities compared to spring, although the abundance of 321 

metazooplanktonic communities did not yet increase. The third type of food web, defined as microbial 322 

loop (FW3, see Fig 9) was observed in autumn on FA, characterized by high concentrations of NH4, with 323 

average abundance of heterotrophic prokaryotes. The food web “biological winter” (noted FW4, see Fig 324 

9) was observed in autumn on FB and in winter on both FA and FB, and was characterized by low 325 

abundances of phyto- and zooplanktonic communities, lower abundances of heterotrophic prokaryotes 326 

than in the previous season (autumn for FA, summer for FB), as well as an increase of the concentration 327 

of NO2, NO3 and PIM. 328 
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For the Tasdon marsh, four different food web types were determined, three of which are identical to 329 

those identified at the Fier d’Ars marsh (Fig 8). As for FA and FB, the herbivorous food web FW1 was 330 

observed in spring on TA and TB, and also in winter on TC. The multivorous food web FW2 was 331 

observed in summer on all three stations (TA, TB, TC) and in spring on TC. However, this last station 332 

was more characterized by FW2 in summer than in spring because the abundances of micro- and 333 

mesozooplanktonic communities, phytoplanktonic organisms larger than 20 µm and smaller than 3 µm, 334 

diatoms and heterotrophic prokaryotes were higher in summer than in spring. The food web FW4 was 335 

observed at all three stations in autumn.  Another food web identified as “biological winter” (noted FW5, 336 

see Fig 9) was observed in winter on TA and TB. The main difference between this “biological winter” 337 

and FW4 was the higher concentration of NO2 and NO3 measured in winter compared to the 338 

concentration measured in autumn for these two stations. 339 

 340 

4. Discussion 341 

4.1. Diversity and trophic functions of microphytoplankton and metazooplankton 342 

Overall, the planktonic diversity was higher in the freshwater marsh of Tasdon (102 taxa) than in the 343 

saltwater marsh of the Fier d’Ars (54 taxa). The saltmarsh phytoplanktonic communities were dominated 344 

by Cryptophyta in autumn and winter, and by nanoflagellates and Cyanobacteria in summer.  Marine 345 

copepods (Calanoida and Harpacticoida) characterized the metazooplanktonic communities. The 346 

freshwater marsh (Tasdon) was also dominated by Cryptophyta in autumn and winter. However, in 347 

summer, Chlorophyta dominated at TA and TB while Euglenozoa, some diatoms and cyanobacteria 348 

dominated at TC. In spring, phytoplanktonic communities were dominated by Chrysophyceae, 349 

Chlorophyta and undetermined flagellates dominated the and metazooplanktonic communities by 350 

Cladocerans and Rotifera.  351 

These differences of planktonic taxa are consistent with planktonic diversity described in different 352 

habitats (salt or freshwater) in the literature (e.g., Walkusz et al., 2010; Badsi et al., 2012; Thakur et al., 353 

2013; Grujcic et al., 2018). Focusing on phytoplanktonic species, the data showed similarities in the taxa 354 

found in both salt- and freshwater marsh, such as, for example, the presence of Cryptophyta. However, 355 

high abundances of cyanobacteria and Euglenozoa were found in addition in the freshwater marsh in 356 

summer. This observation is often correlated with high turbidity (up to an average of 223.84 ± 13.41 µg 357 

L-1 of PIM at TC in summer) and can cause the seasonal succession of food webs in the marsh (Abrantes 358 
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et al., 2006). However, Ersanli and Gönülol (2006) concluded that such environmental conditions are 359 

an indicator of low water quality.  360 

It has been demonstrated in many aquatic ecosystems that a higher diversity might generate a better 361 

stability and resilience (e.g., Ives and Carpenter, 2007; Pennekamp et al., 2018). Although diversity can 362 

induce functional redundancy and hence not necessarily additional ecological functions, it can also 363 

induce more diversified ecological functions. Indeed, the more different species there are, the higher the 364 

probability of having species with different functional traits, and thus of having actors of different 365 

ecological functions. It is therefore important to keep a high planktonic diversity in these environments 366 

in order to maintain a maximum of ecological functions provided by these communities (Norlin et al., 367 

2006; Chaparro et al., 2019). In this study, the higher diversity of phytoplanktonic communities in the 368 

freshwater marsh might produce a higher primary production than in the saltwater marsh, which has 369 

lower phytoplanktonic diversity. Some protists (Euglenozoa, Cryptophyta, some of the ciliates) are 370 

mixotrophic and can change their trophic regime according to the environmental conditions (Esteban et 371 

al., 2010; Cordoba et al., 2021), thus their trophic functions are more difficult to determine. Nevertheless, 372 

these communities contribute, with the other autotrophic phytoplanktonic communities, to the fixation of 373 

atmospheric carbon through photosynthesis (Yan et al., 2021; Jia et al., 2022; Cohen, 2022). The 374 

resulting phytoplankton biomass, which might then be transferred along food web to higher trophic levels   375 

via the protists and mesozooplankton in these marshes and as such fuel the supply function (Atkinson 376 

et al., 1996).  377 

Focusing on the trophic diets of metazooplanktonic species identified in this study, there was a high 378 

proportion of omnivorous species in the Fier d’Ars marsh, such as Harpacticoid copepods, Acartia sp., 379 

Temora longicornis, Eurytemora pacifica, Evadne spp., Brachionus angularis (Rieper, 1982; Kleppel, 380 

1993; Berggreen et al., 1988). Different meroplanktonic larvae were also observed (Polychaeta, Zoe, 381 

Echinoderma, veligers), confirming the importance of omnivory in the Fier d’Ars marsh (McEdward, 382 

2020). Furthermore, detritivore species, such as Mytilina sp., Ostracoda and Amphipoda (Navarro-383 

Barranco et al., 2013; Galir Balki et al., 2017) were also present.  384 

For the Tasdon marsh, Asplanchna sp., Ceriodaphnia pulchella, Acanthocyclops trajani, Brachionus 385 

calyciflorus, Brachionus falcatus, Polyarthra major, Keratella tropica, Lecane bulla, described as 386 

omnivorous species (Amoros, 1984; Abrantes et al., 2009; Santos-medrano et al., 2016; Rahmati et al., 387 

2020), were present. Non-selective filter feeder species as Bosmina longirostris and Sida cristallina 388 
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(Amoros, 1984; Bleiwas and Stokes, 1985) were also present. Detritivore species (Amoros, 1984; 389 

Robertson, 1988) in the Tasdon marsh, were Disparalona rostrata and Alonella excisa.  390 

Since omnivorous and non-selective filter feeder species can feed indifferently on plant or animal 391 

organisms, they are more likely to find resources, which explains their high abundance in the marshes. 392 

High abundances of these metazooplanktonic communities can provide a significant food source for 393 

higher trophic level, and thus support the nursery function (Milstein et al., 2006; Rahmati et al., 2018; 394 

Didenko et al., 2020). Detritivore species feed on suspended detrital matter by filtration and are therefore 395 

actors of the purification function (Stanachkova et al., 2017). Overall, in both marshes, similar trophic 396 

functions were found, which means that similar types of planktonic food web probably exist in both of 397 

these marshes. 398 

 399 

4.2. Seasonal changes of planktonic communities 400 

On both marshes, a strong seasonal effect was observed in the planktonic communities. The 401 

environmental parameter most strongly associated with the variability of these communities was 402 

temperature, which explains the difference between the confidence ellipses of the stations in summer 403 

compared to other seasons (Fig 4 and 6). Phytoplankton blooms take up nutrients and as such purify 404 

the water. At FA station, the NO2 and NO3 concentrations were low in all the seasons except in winter, 405 

and in parallel, phytoplankton abundance or biomass of chlorophyll were high in spring and summer. 406 

Phytoplankton biomass provides resources for herbivorous (e.g., Paracartia grani for the Fier d’Ars 407 

marsh and Daphnia ambigua for the Tasdon marsh), omnivorous and non-selective filter-feeder 408 

zooplankton (Timms and Moss, 1984; Landry et Calbet, 2004), thus supporting the entire food web 409 

(Costalgo et al., 2020). In addition, for the Fier d’Ars marsh, there was a strong effect of nutrients (NO2, 410 

NO3, PO4) observed with the MFA analysis, possibly linked to the run-off. For the Tasdon marsh, the 411 

MFA analysis showed that phytoplanktonic communities were key actors with the strong correlation of 412 

the proportion of active chlorophyll a for all three size classes. Apart from TA which can receive 413 

freshwater from a connected river according to its seasonal flow, TB and TC are stagnant marshes, 414 

without water renewal. It is known that planktonic communities tend to develop better with higher 415 

abundances in lentic and stagnant environments than in lotic environments because their residence 416 

time in the environment is longer (Baker and Baker, 1979; Koslow et al., 2008). So here also, the 417 

considerable phytoplankton presence represents a purification function 418 
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 419 

 420 

4.3. Food web and ecological functions 421 

While the present study does not include flux measurements, the deduction of food web typologies made 422 

from biomass data is justified by the fact that solid theoretical basis exists for this approach (Volterra, 423 

1928; Tortajada, 2011; Barbier and Loreau, 2019). Also, several of the food web typologies reported in 424 

the marches studied, such as an herbivorous, microbial and mixed loop types have also been found 425 

experimentally in other coastal, SPM rich environments, such as brackish and freshwater estuarine 426 

reaches (Tackx et al., 2003; David et al., 2006; Van de Meersche et al., 2009; Masclaux et al. 2014; 427 

Kimmel et al., 2015; David et al., 2016). 428 

A total of five different types of food web were determined between the two marshes studied (Fig 9). 429 

The herbivorous food web (FW1) was defined by high abundances of phytoplanktonic communities and 430 

sufficiently high abundance of herbivorous zooplanktonic communities to regulate them by grazing 431 

(Dupuy et al., 2011; Chenillat et al., 2021). Landry et al. (1995) demonstrated that pigment analyses of 432 

zooplankton stomach contents showed a higher concentration of chlorophyll pigments in autumn and 433 

spring, and a higher grazing rate especially for microzooplankton. These results are consistent with 434 

those published by Masclaux et al. (2014) on the regulation of phytoplankton communities by 435 

zooplankton in the herbivorous food-web (FW1). In the Tasdon marsh, the high proportion of active 436 

chlorophyll a indicated a strong photosynthetic activity from autotrophic organisms during this period, 437 

thus a strong contribution to atmospheric carbon fixation in the water column (Copping and Lorenzen, 438 

1980). The data indicated two orders of magnitude higher nutrient concentrations in the Tasdon marsh 439 

(see Fig 7 and 8) than in the Fier d’Ars marsh. This could be explained by the fact that the Tasdon 440 

marsh, unlike the Fier d’Ars marsh, is located on an urbanized watershed, and therefore receives more 441 

nutrients by leaching during rainfall (Rudy et al., 1994). Thus, the intake of nutrients might have a higher 442 

effect on the saltwater marsh studied since their concentrations of NO3 and NO2 were initially lower. The 443 

efficiency of the purification function in both marshes might be equivalent, since the concentrations of 444 

NO3 and NO2 tended to decrease significantly between seasons in FA, TA, TB and TC. The difference 445 

in the initial concentrations of nutrients in this case is important to consider. Since the decrease of NO3 446 

and NO2 concentrations between winter and spring, was significant (p-value = 0.009) at FA but not at 447 

FB the water purification function might be more efficient at FA than at FB. It is however clear that more 448 
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information is needed on nutrient and organic matter inputs to be able to fully assess the importance of 449 

purification activities by plankton and prokaryote communities.  450 

The multivorous food web (FW2) was defined by high abundances of heterotrophic prokaryotes and 451 

protists, phyto- and metazooplanktonic communities as well as high turbidity linked to a high 452 

concentration of particulate organic matter resulting from bacterial degradation and mineralization 453 

processes (Kirchman, 1994; Jia et al., 2017), and a low concentration of nutrients (Masclaux et al., 454 

2014). This food web appeared directly after the herbivorous food web: the increase of the abundance 455 

of phytoplankton during the previous period induced the increase of available prey for zooplankton which 456 

can thus grow in the habitat (Chenillat et al., 2021). A multivorous food web can be qualified as weak or 457 

strong depending on the abundances of all planktonic compartments (Masclaux et al., 2014). Therefore, 458 

there was a weak multivorous food web in spring at TC compared to all three stations of Tasdon marsh 459 

in summer because HPT and mesozooplanktonic abundances were not as high. Moreover, at FA in 460 

summer, the multivorous food web identified was beginning because the abundance of micro- and 461 

mesozooplankton were just starting to increase compared to their higher abundance in spring. Overall, 462 

these high planktonic abundances represented a large pool of resources and food for planktivorous 463 

species and thus might indicate a substantial nursery function if they are simultaneously present in these 464 

habitats, the case in both marshes during summer, and at TC in spring.  465 

The microbial loop (FW3) was identified only in autumn at FA and defined by high concentration of NH4, 466 

which is a product of particulate matter recycling in the water column, low concentrations of NO2 and 467 

NO3, and high abundances of heterotrophic prokaryotes (Legendre and Rassoulzadegan, 1995; 468 

Almuktar et al., 2018). Since the concentrations of nitrite and nitrate were low despite the nutrient input 469 

coming from water inlet, the purification function was well shown at FA. The first type of “biological 470 

winter” (FW4) was defined by low phytoplanktonic, metazooplanktonic and heterotrophic prokaryote 471 

abundances. The second type of “biological winter” (FW5) was similar as FW4 except for the higher 472 

concentration of nitrite and nitrate, which may be linked to inlets of water bringing nutrients in the 473 

freshwater marsh (Nalubega, 1999). FW5 might correspond to a late state of biological winter close to 474 

transition with an herbivorous food web when the temperature increases with phenology (Trombetta et 475 

al., 2019). 476 

The herbivorous and multivorous food webs were found in both marshes, as well as the first type of 477 

“biological winter” FW4. The microbial loop was only noted in the Fier d’Ars marsh, whereas the second 478 
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type of “biological winter” FW5 was only revealed in the Tasdon marsh. According to the statistical 479 

analyses, the effect of nutrient concentrations in the water column seemed to have a stronger impact in 480 

the saltmarsh than in the freshwater marsh. Again, knowing that the intake of nutrients by water inlets 481 

might be more important at Fier d’Ars than Tasdon; sampling the water directly in the channel leading 482 

to the marshes and measuring nutrients concentrations during each the season would be necessary to 483 

solidify this statement.  484 

It is highly likely that a season is composed of a succession of different food webs; unfortunately, with 485 

only one sampling per season, it is possible that we missed some situations. The second type of 486 

“biological winter” might have been identified in the saltmarsh if the sampling had been done later in 487 

winter, closer to the beginning of spring. It should be noted that the presence and dynamics of some 488 

phyto- and zooplanktonic species seem to be directly linked to the season, which correlates with other 489 

published studies (Ogbuagu and Ayoade, 2012; Ratnam et al., 2022), therefore the efficiency of their 490 

associated ecological functions might be affected as well. 491 

Overall, the seasonal succession of food web types seemed to follow the patterns generally described 492 

in the literature (Legendre and Rassoulzadegan, 1995; Masclaux et al., 2014).  493 

The results of the MFA indicated that, during the year studied, the three management operations studied 494 

did not impact planktonic communities more than the natural seasonal effect. Angeler and Moreno, 2007 495 

also state that planktonic communities are resilient this type of one-time and infrequently repeated 496 

methods applied on coastal marshes. It would be interesting to study whether similar results are found 497 

if these same methods are used at higher frequencies, to assess the limit of resilience of planktonic 498 

communities. Also, the potential combined effects of different management operations, such as the three 499 

actions studied here and sediment resuspension caused by landscapes modelling, should be studied 500 

over consecutive years to determine how resilient the communities involved in these ecological 501 

functions. 502 

 503 

5. Conclusion 504 

On the whole, this study showed that, although planktonic communities composition, abundance and 505 

diversity are substantially different, similar planktonic food web types can be found on salt and 506 

freshwater coastal marshes. This one-year survey, with a sampling each season, provides a basis of 507 

information on the composition and abundance of the planktonic communities in the Fier d’Ars and 508 
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Tasdon marshes and allows to deduce their most likely trophic pathways and associated ecological 509 

functions. Integration into the context of the interdisciplinary project PAMPAS will allow more detailed 510 

analysis of the role of planktonic communities within the total marsh ecosystems.  511 
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