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ABSTRACT 

 

BACKGROUND 

Virus Yellows (VY), a disease caused by several aphid-borne viruses, is a major threat to the global 

sugar beet production. Following the ban of neonicotinoid-based seed treatments against aphids in 

Europe, increased efforts are needed to monitor and forecast aphid population spread during the sugar 

beet growing season. In particular, predicting aphid flight seasonal activity could allow anticipation of 

the timing and intensity of crop colonisation and contribute to the proper implementation of 

management methods. Forecasts should be made early enough to assess risk, but can be updated as 

the season progresses to refine management. Based on a long-term suction-trap dataset gathered 

between 1978 to 2014, we built and evaluated a set of models to predict the flight activity features of 

the main VY vector, Myzus persicae, at any location in the French sugar beet production area (circa 

4.105 ha). Flight onset dates, length of flight period and cumulative abundance of flying aphids were 

predicted using climatic and land-use predictors as well as geographical position. 

RESULTS 

Our predictions outperformed current models published in the literature. The importance of the 

predictor variables varied according to the predicted flight feature but winter and early spring 

temperature always played a major role.  Forecasts based on temperature were made more accurate 

by adding predictors related to aphid winter reservoirs. In addition, updating the model parameters to 

take advantage of new weather data acquired during the season improved the flight forecast.  

CONCLUSION 

Our models can be used as a tool for the mitigation in sugar beet crops. 
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1. INTRODUCTION 

Virus Yellows (VY) is one of the major economic threats to sugar beet production worldwide, and can 

lead to substantial yield losses 1,2. The disease is caused by aphid-borne viruses, with the green peach 

aphid Myzus persicae being the most efficient vector 1,3. Disease management has mainly focused on 

vector control with aphicides. In Europe, over the last three decades, neonicotinoids (NNIs) and in 

particular their use in seed coatings have been very effective in controlling aphids and preventing VY 

outbreaks3. However, the adverse effects of these insecticides on non-target organisms have been well 

documented for bees4 and other invertebrates and vertebrates 4,5. Their deleterious effects on 

pollinators led the European Union to ban the use of NNIs on outdoor crops, including sugar beet, in 

2018. Following this ban, a resurgence of the disease is underway in various European countries6,7. This 

is the case in France, the world’s second largest sugar beet producer8, as shown by the aphid and 

yellows observation data collected on untreated sugar beet crops over the last 3 years 9–11). To counter 

the risk of collapse of the French sugar beet industry, the use of NNIs-coated seeds has been 

reauthorized on a derogation basis for the 2021 and 2022 growing seasons12. Following a decision of 

the European Court of Justice13, these emergency exceptions can no longer be implemented. There is 

therefore an urgent need to develop effective new tools, such as risk prediction models, to monitor 

and control the disease and its main vector. 

The susceptibility of sugar beets to VY-carrying aphids decreases as the plant develops14 with early and 

heavy infestations of this spring crop resulting in higher viral infection rates and yield losses15,16. Thus, 

the timing and intensity of crop colonisation by winged aphids are key parameters for disease 

development. Accurate forecasting of seasonal aphid flight activity is thus a key step in anticipating VY 

risks. Depending on populations, M. persicae overwinter on peach trees as eggs or on winter crops or 

wild plants as parthenogenetic females17. Winged migrants originating from these reservoirs colonise 

crops (sugar beet but also many other crops18) in spring. During spring and summer, aphid populations 

reproduce continuously and spread in and among crops. Finally, aphids migrate back to their winter 
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hosts in autumn17. The phenology of aphid flights thus follows seasonal patterns that can be described 

by their onset dates, duration and cumulative abundance of the aerial aphid pool19,20. Predicting these 

flight features allows summarising aphid flight activity in order to forecast VY prevalence: indeed, it 

has been shown that M. persicae flight onset dates and abundance are tightly linked to VY incidence 

at a regional scale in the UK21,22. 

In order to deploy disease mitigation strategies, predictions of aphid flight activity should be made 

sufficiently early, using relevant predictors. The role of winter temperature is known to modulate flight 

onset dates, duration and abundance20,22–24, likely through its effects on the survival and development 

rates of source populations24. Land use may also significantly determine aphid flight activity25. The 

number of flying migratory M. persicae is, for instance, positively correlated with the surrounding area 

planted with rapeseed, which is thought to be a major winter reservoir for this pest23. Aphid flight 

phenology is also related to geographic location20,23,24. Thus, different sources of information must be 

combined to accurately anticipate seasonal aphid activity at a time when measures can still be taken 

to reduce aphid infestation or VY transmission to beets.  

Ideally, the accuracy of the forecasting system should improve as the season progresses (e.g. 

integrating new weather data) to support farmers' operational choices in real time. Early information 

could guide the choice of variety to be sown, as resistant or tolerant varieties should soon be available2. 

In the French beet production area (Fig. 1), this decision is usually made by mid-February. Later, the 

modulation of the sowing date and the choice of installing a companion plant (made in early March in 

France), two methods likely to limit colonisation by aphids, can be implemented26,27. Finally, aphid 

flight forecasts could help in deciding on the use of curative measures (e.g. insecticides, biocontrol 

products)27,28 after beets have emerged and during their period of highest susceptibility to VY. In 

France, this usually occurs in mid-April in the main beet production area. 

In our study, we aimed at predicting the seasonal migration of M. persicae at any location in the French 

sugar beet production area. We predicted three different features summarizing seasonal aphid flight 

activity (flight onset date, cumulative abundance, flight duration), and for three key periods where 
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strategic decisions can be made by beet growers to mitigate the effects of VY (choice of the variety, 

sowing date and implementation of curative treatments). Model development and parameter 

estimation were based on aerial aphid activity data collected by a French network of suction traps29  

that operated for more than 30 years. We built and compared the performance of several regression 

models including different sources of information (climate data collected over various time windows, 

land-use data and geographical position). We assessed the relative importance of each factor in 

predicting aphid flights and identified the best models. We verified the improved predictive power of 

our models compared to the regression model described by Qi et al. (2004)22, updated in Dewar & Qi 

(2021)6, adapted here to French data and based on winter temperature only. With this analysis, we 

contribute to the development of forecasting tools for the epidemiological surveillance of virus yellows 

at different times of the beet growing season. 

 

2. MATERIAL AND METHODS 

 

2.1 Study area 

The study focused on the French sugar beet production area, which covers approximately 400 000 ha 

cultivated annually8 in five administrative regions concentrated in the North and East of France (Fig. 

1). The landscape in this area is dominated by arable crops, although permanent grasslands are well 

represented in the west (Normandy region). The climate, temperate oceanic according to Köppen 

classification (Cfb class30, average annual temperature: 10.6 ± 0.8 °C, average annual rainfall: 738 ± 110 

mm), varies both longitudinally and latitudinally and is characterised by rather mild winters compared 

to the rest of France (Fig. 1). During winter (November to March), the most contrasting sites differ by 

a maximum of 3.1°C for the average temperature and 76.8 mm for the average cumulative rainfall. 

 

< Figure 1 > 
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2.2 Aphid data 

 

2.2.1 The Agraphid network 

Aphid data used are from the Agraphid trap network29 that was part of the former European networks 

Euraphid31 and EXAMINE32. This historical network of 20 suction traps located in France, Belgium and 

Switzerland (Fig. 1) was launched in 1977 and has been capturing aphids and other insects since then. 

However, the number of traps in operation has varied over time and only one trap is still in permanent 

operation in 2022, located in western France (Fig. 1), outside the sugar beet production area. These 

12.2m suction traps33 were designed to catch representative samples of the aerial aphid population 

from a wide area (about 80 to 100 km around33,34). Individuals of more than 200 aphid species were 

counted and identified daily during the period of operation of each trap.  

Of the 20 traps included in the network, 8 were located in the French sugar beet production area. We 

also considered the two Belgian traps to belong to this zone because of their proximity. These 10 traps 

operated for varying lengths of time over a 36-year period (1978 to 2014, Fig. 1), for a total of 156 trap-

years. These data were used for model fitting and validation (Fig. 1, see §2.4.2). Aphid flight data from 

the 10 remaining traps outside the region of interest (181 trap-years) were also used to test model 

performances in environmental conditions that are different from those in which they were trained 

(Fig. 1, see §2.4.2). This was done as a way to evaluate their potential transferability outside of the 

area of interest. 

 

2.2.2 Features of seasonal flight activity  

For each trap-year, we extracted daily counts of winged M. persicae from the Agraphid data, and 

calculated the features summarising seasonal flight activity in spring and summer as follows:  

- The onset of the flight period was estimated by the date of first capture (D1c) or the date 

of fifth capture (D5c). While D1c has been used in similar studies (see e.g.6,22), D5c is more 

 15264998, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ps.7653 by Inrae - D

ipso, W
iley O

nline L
ibrary on [09/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 
 

robust to winter by-catch25. Both variables were expressed as the year number of days 

since January 1 (excluding February 29th for leap years, as the database is coded as such). 

- The cumulative abundance of flying aphids (Ab) was calculated as the sum of trap catches 

between January 1 and June 30. This period has been shown to be optimal for predicting 

beet yellows in England21 and has been retained here for comparison with previous 

studies6,22. While flights can occur up to the end of August in the French sugar beet 

production area17, extending the period over which daily abundances are summed did not 

change the results significantly (results not shown here). 

- The total duration of spring and summer flights (Fd) was estimated following Bell et al. 

(2015)20, by computing the number of days between the 5th and 95th percentiles of total 

aphid captures between weeks 10 (early March; no aphid was captured before this week 

in the area of interest) to 35 (late August; latest potential end of summer flight17). 

We kept only reliable data and discarded all those that seemed doubtful (e.g. due to a mechanical 

problem with the trapping system - see Appendix S1 for details about data exclusion). Where 

necessary, we imputed missing daily abundance values by rolling averages over the previous 7 days 

and the following 7 days. Because of some variation in the timing of trap malfunctioning events, this 

led to slight differences in the number of available trap-years among the variables calculated, but these 

were always greater than 292 and 126 for all traps and for those located in the sugar beet area, 

respectively (Table S1.4 in Appendix S1). 

 

2.3 Environmental data 

 

2.3.1 Meteorological data 

The SAFRAN analysis system35,36 developed by the French national meteorological service Météo-

France provides time series of different near-surface meteorological variables on an 8km grid across 
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France and part of the neighbouring countries (including Belgium) by spatial interpolation. Daily mean 

temperature and cumulative rainfall were extracted from SAFRAN for each 8km x 8km cell containing 

a suction trap for the whole period of interest (1978-2014). These data were used to compute various 

meteorological variables, detailed in section 2.4.2. 

 

2.3.2 Land-use data 

Data on land areas covered by forest, grassland and crops come from the French37–39 and Belgian40 

national censuses. They were extracted at the NUTS-3 scale for France (“departments”) and at the 

NUTS-2 scale for Belgium (“provinces”). These administrative areas are of similar size, ranging from 

2284 to 8169 km² in our study area. From these data, we calculated several variables identified as 

potential predictors of M. persicae flight activity in literature23,24): the semi-natural land area 

(SN_area), which is the sum of the areas covered by forest or permanent grassland, the total crop area 

(Crop_area), which is the sum of the areas covered by arable land (including temporary crops, 

temporary meadows and fallows) or perennial crops, and the area occupied by rapeseed crops 

(RSC_area), a suspected winter reservoir for M. persicae23. It should be noted that rapeseed crops were 

also included in Crop_area where they accounted for 4% ± 0.03 (SD) of the total area during the study 

period, but with weak correlation between rapeseed crop area and total crop area (r = 0.17). For some 

years in France, where rapeseed area was missing in the national Agreste37–39 census, data provided 

by the French Institute of Oilseeds and Protein Crops, Terres Inovia, were used instead. To homogenise 

the estimates between traps, the land-use variables (semi-natural land, crops and rapeseed) were 

calculated within an 80 km radius of the trap, by averaging the values for each department/province, 

weighted by its relative area in the buffer zone. This radius value was set to the size of the area for 

which aphids captured by a suction trap are considered representative33. In the absence of information 

on land use (Germany, Luxembourg, Spain), the missing part was excluded and the land-use variables 

were calculated on the remaining area. This exclusion procedure concerned 5 traps; in the worst case, 

35% of the circle area was excluded (westernmost trap). 
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2.4 Modelling 

 

2.4.1 Overview 

Models were fitted to predict flight features (response variables) at each trap-year on trap data 

pertaining to the sugar beet production area (Fig. 1, Table S1.3). For each response variable, 3 

alternative models were fitted (detailed in the next section), which combined different sets of local 

predictors including meteorological, land-use and geographical variables. Each model was then fitted 

in 3 different versions, in which the meteorological predictors were computed over optimal time 

windows determined over 3 different periods. These periods ended on average dates on which VY 

disease management decisions can be made. Although these strategic deadlines can vary from one 

region to another, they are relatively homogeneous in the French sugar beet production area (French 

Sugar Beet Technical Institute, ITB, pers. comm.). The first deadline was mid-February (set to the 14th), 

the deadline for farmers to choose their beet varieties. The second one was early March (set to the 

5th), the deadline for farmers to adjust the sowing dates and/or decide to sow a companion crop. The 

third deadline was mid-April (set to the 15th), when the first leaves appear in the field. This is when 

sugar beets become susceptible to yellows viruses and farmers may decide to apply curative 

treatments.  

 

2.4.2 Model fitting and model performance 

We fitted separate linear models to predict the start of the flight period (D1c or D5c), its duration (Fd) 

and the log-transformed cumulative abundance of flying aphids (log + 0.01 – the transformed variable 

was named logAb). For each flight feature (response variable) and each prediction date (February 14, 

March 5 and April 15), the following models were fitted (Table 1): 
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Model M1: model by Qi et al. (2004) applied to the French context 

M1 was based on the approach developed by Qi et al.22 for England and re-used by Dewar and Qi 

(2021)6. Following these authors, the flight features obtained from the Agraphid dataset were 

predicted from the daily mean temperature averaged over the period January 1 to February 14.  

Model M2: prediction from thermal accumulation over a critical period (optimized winter time window) 

M2 is similar to the M1 model, but considers all possible time windows over which to calculate the 

degree-day accumulation. For each response variable, we fitted all possible regressions with the sum 

of degree-days above 0°C calculated over any time window between 1 November and each prediction 

date (deadline) detailed above. Time windows of all possible lengths (including one day length) were 

considered, resulting in more than 13000 models for each response variable. Additionally, we also 

tested a 4°C threshold as an alternative to the 0°C threshold, as it is the developmental threshold for 

M. persicae estimated by Whalon & Smilowitz (1977)41 . However, using this threshold reduced model 

predictive accuracy (results not shown). Model performance was assessed using cross-validation (see 

below) and the time window that minimized the root mean squared error of prediction (RMSEp, see 

below) was selected, hereafter named “critical period”42. 

Model M3: prediction from meteorological variables, land-use variables and geographical position 

The M3 model included meteorological variables (temperature and rainfall), land-use variables and 

geographical coordinates as predictors (Table 1), selected following a review of literature20,22,23,25,43–45. 

Again, the models were fitted with all possible time windows to calculate meteorological variables. 

However, for the sake of computational time, the same window was used for temperature (cumulative 

degree-days) and mean rainfall. For each response and prediction date, the best model was selected 

according to the RMSEp criterion following cross-validation. 

 

For model selection, a 10-fold cross-validation procedure, repeated 3 times46 was applied. Two metrics 

were calculated on held-out samples: the root mean squared error of prediction, RMSEp, and the 

normalized root mean squared error of prediction, NRMSEp. NRMSEp is a standardized metrics that 
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allows for comparison of model prediction performance for different response variables independently 

of their scale. It was calculated by dividing RMSEp by its interquartile range (i.e. the difference between 

25th and 75th percentile47). The models exhibiting the minimal RMSEp were selected and fitted on the 

full dataset and the RMSE of the final models was calculated. In models M3, the relative importance of 

predictors was assessed using model coefficients standardised by partial standard deviation48,49. In 

addition, to examine the spatial variation in performance, we calculated the RMSE for each trap used 

to fit the models. To assess model performance when increasing distance from the French sugar beet 

production area, we also predicted flight features for traps located outside the sugar beet production 

area (Table S1.3c) and computed the RMSEp for each of these traps.  

All analyses were carried out using the R version 4.2.1 programming environment50, using the tidyverse 

package version 1.3.251 for data curation, the caret package version 6.0-9352 for cross-validations and 

the MuMIn package version 1.47.153 for the calculation of partial standardized coefficients. The 

management and analysis of spatial data were conducted the sf package (version 1.0-8)54 and the 

rmapshaper package (version 0.4.6)55. Data visualisation was done thanks to ggplot2 (3.4.2)56, cowplot 

(1.1.1)57, ggpubr (0.4.0)58, RColorBrewer (1.1-3)59, ggh4x (0.2.2)60, scales (1.2.1)61, ggsn (0.5.0)62 and 

ggnewscale (0.4.8)63 packages. 

 

3. RESULTS 

 

3.1 Model comparison 

Table 2 displays the root mean squared error of prediction (RMSEp) values obtained for the 3 

alternative models (M1 to M3), and the 4 flight features (the two flight onset dates proxies D1c and 

D5c, flight duration Fd and log-cumulative abundance log_Ab), at the 3 selected prediction dates. 

RMSEp values showed that M2 and M3 models almost always outperformed the M1 model (Table 2), 

except for the log-cumulative abundance prediction on the first prediction date. Models containing 
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meteorological, land-use and geographical covariates (M3) always outperformed the models including 

temperature predictors only (M1 and M2, Table 2).  

Predictions also tended to improve with delaying prediction dates for all response variables (Table 2), 

although the performance improvement was inferior to the one brought by the choice of a better 

model (e.g. M3 over M2, Table 2). In the most accurate models (M3), using the later prediction date 

allowed reducing RMSEp by 1.7 days for D5c, 1.8 days for Fd and 0.2 for logAb (corresponding to an 

approximate 20% reduction in abundance estimation error). 

< Table 2 > 

Examination of the normalized root mean squared error of prediction (NRMSEp) criterion (Table 3) 

showed that the logarithm of the cumulative abundance (logAb) was the flight feature for which 

predictions were the least accurate, followed by flight duration (Fd) and flight onset proxies (D1c and 

D5c). Prediction accuracy for the date of 5th capture (D5c) was substantially higher than for the date of 

1st capture (D1c), decreasing the NRMSEp by 31-39% across prediction dates. 

< Table 3 > 

In subsequent analyses, D5c was retained as the sole proxy of flight onset. The relationships between 

observed D5c, logAb and Fd and their predictions using the best models are shown in Fig. 2 (a, b, c).  

Predictions were overall linearly related to observations and matched their range for all response 

variables, with homogeneous accuracy across traps. However, a few log-cumulative abundance 

predictions departed from the expected y = x relationship for observations corresponding to no aphids 

being captured on a given trap-year (resulting in logAb = log (0 + 0.01) = -4.6, Fig. 2c). Note that the 

linear relationship between predicted and observed abundance on the logarithmic scale implied that 

when predicted logAb were back-transformed to actual abundances, errors tended to increase for 

higher abundance values (Fig. 2d). 
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For D5c and across all prediction dates, prediction errors (expressed as the difference between the 

observed and predicted values) ranged from -45 (45 days too early) to 40 (40 days too late, Fig. 2a). 

On average, respectively for the best model at each prediction date, predictions deviated from 

observed D5c by approximately 11, 12, and 13 days (Mean Absolute Error or MAE) in the Agraphid 

dataset. Note that these MAE values are lower than RMSE values displayed in Fig. 2a because the latter 

gives more weight to larger errors. For flight duration (Fd), predictions ranged from 52 days too short 

to 76 days too long (Fig. 2b). On average, they deviated from the observations by approximately 15 to 

16 days. Back-transformed logAb predictions matched the range of observed cumulative abundance 

(Ab) values (from 0 to more than 2000 aphids annually caught in a trap, Fig. 2d). On average, these 

predictions mis-estimated the actual values by a factor of 3.2 (indicating that, on average, the 

estimated annual aphid abundance was 3.2 times either too low or too high) to 3.7, depending on the 

prediction date. However, misestimation of aphid abundance could be as high as a factor of 100. In 

some cases, these misestimations resulted in large discrepancies in terms of absolute numbers. For 

example, in one instance, the back-transformed cumulative abundance of aphids was predicted as 

2126 instead of 286, and in another case, the predicted abundance was 2226 instead of 219. 

 

< Figure 2 > 

 

3.2 Relative importance of predictors 

The relative importance of the predictor variables and the direction of the association with the 

response variables (i.e. flight features) were estimated using their partial standardised coefficients for 

each of the best models selected and each prediction date (Fig. 3). Cumulative temperature during the 

critical period (T_crit) had the strongest influence on all flight features. Mild winter temperatures 

consistently led to early flight onset dates (lower D5c), longer flight durations (higher Fd) and more 

abundant aerial aphid populations (higher logAb). Conversely, increased rainfall (R_crit) was 
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associated to later, shorter and less abundant flights in most models, but the effects of rainfall were 

overall weaker than those of temperature. Land use predictors measured at 80km around the traps 

also influenced flight features. Increasing the area of semi-natural land (SN_area) was associated with 

earlier flights, while increasing the area sown to rapeseed crops (RSC_area) led to earlier, more 

abundant and moderately shorter flights. Finally, geographical position influenced response variables. 

Aphid numbers decreased from south to north (increased Latitude) and from west to east (increased 

Longitude). Flights also tended to be later and longer in the East (increased Longitude and LonSq). The 

product of latitude and longitude (LatLon) was retained in most models and was overall positively 

associated with log-cumulative abundance (logAb), negatively with flight duration (Fd) and had 

contrasting effects on flight onset date (D5c) depending on the prediction date. 

< Figure 3 > 

 

3.3 Meteorological critical windows 

The critical periods over which temperature accumulation and mean rainfall were calculated in the 

best models were overall consistent across flight features (Fig. 4; see Fig. S2.1 in Appendix S2 for critical 

periods for all models). For the two first prediction dates (February 14 and March 5), the critical period 

started in early January (D5c, Fd) or late December (logAb) and ended on the prediction date or a few 

days earlier. When predictions were made on the last prediction date (April 15), the critical period 

started in mid-November (D5c, Fd) or late December (logAb) and ended two to three weeks before the 

April 15 deadline. In other words, weather conditions between late March and mid-April did not appear 

to influence the flight features of Myzus persicae observed later in the beet area. 

< Figure 4 > 
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3.4 Spatial variation in prediction performance and assessment of model performance 

outside the sugar beet production area 

For all response variables and prediction dates, the prediction errors (RMSE) were rather homogenous 

among the traps located in the sugar beet production area. In contrast, prediction accuracy tended to 

decrease for traps located outside of the sugar beet production area, which were not used to build 

models (Fig. 5). Moreover, prediction errors increased with distance to the South or West. The higher 

RMSEp for the traps located outside the production area reached 5, 2.3 and 6.3 times the mean RMSE 

inside the production area, respectively for the flight onset date (D5c, most westerly trap), flight 

duration (Fd, most southern trap) and log-cumulative abundance (logAb, most south-westerly trap, 

Fig. 5). Using less performant models, M1 and M2, allowed decreasing error in log-cumulative 

abundance estimation for traps not pertaining to the production area, with RMSE values similar to the 

ones obtained in the traps used to build the models (Fig. S3.1 in Appendix S3). This was not the case 

for D5c and Fd, however (Fig. S3.1). 

< Figure 5 > 

4. DISCUSSION 

 

Using the French historical database of suction trap catches, we were able to accurately predict the 

seasonal flight activity features of M. persicae (flight onset date, duration, and log-cumulative 

abundance) from simple linear models based on one or a few predictors. Meteorological and land-use 

predictors, as well as geographical position, allowed capturing a significant part of the variation of the 

three response variables. There are few references on the performance of aphid flight prediction 

models but ours reached levels comparable to those proposed by Bourhis et al. (2021)64. Their neural 

network approach resulted in a RMSEp of 20.0 days for the prediction of aphid flight onset dates 

(various species including M. persicae), while we obtained values ranging from 14.3 to 23.2 days, 
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depending on the proxy used for flight onset date, the prediction date and the predictors selected. 

Comparison of models including various response variables, predictors and prediction dates allowed 

us to identify possible sources of improvement in aphid flight modelling and its magnitude.  

First, we showed that for a given set of predictors, prediction accuracy varied with the flight feature 

considered. Using meteorological and land-use predictors, flight onset variables were more accurately 

predicted than flight duration or log-cumulative abundance. Abundance was the least accurately 

predicted feature of aphid flight, sometimes leading to notable discrepancies between the observed 

and predicted values. This seems to confirm the conclusions of Bell et al. (2023)65, who recently found 

a low to moderate intrinsic predictability of M. persicae aerial numbers using suction-trap data in 

England. They suggested that the difficulty in predicting yearly aerial aphid numbers could be due to 

the multiplicity of factors acting on flying individuals, rendering annual time series highly stochastic65. 

Besides, we showed that for a given flight feature, the choice of the proxy influences the quality of the 

prediction. Indeed, the date of 5th capture (D5c) was systematically better predicted than the date of 

1st capture (D1c). This could be due to incidental captures of single aphids before the formation of the 

migratory pool, leading to D5c being a more robust indicator of the flight onset than D1c25. This should 

be particularly relevant in warmer regions were flying aphids are occasionally observed in winter. In 

our analysis, predicting D5c rather than D1c led to a reduction in prediction errors by about 5 days, 

which shows the operational importance of the choice of the response variables used as proxies. 

Although response variables differed in their predictability, refining the predictor set consistently 

improved their prediction. Depending on response variables, optimising the time window over which 

cumulative degree-days were computed, compared to the use of a fixed time window, reduced 

prediction error up to 20%. The gain in model performance obtained when optimising the time window 

increased when predicting later in the season, suggesting that newly acquired temperature data in late 

winter and early spring allowed bringing additional information on aerial aphid populations. In most 

models, the selected time window at least included the period from early-January to mid-February, 
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confirming the strong role of winter temperature in determining spring flight patterns23,24. This is likely 

due to the influence of temperature at this period of the year on the survival and development rates 

of overwintering parthenogenetic females24, and possibly on the hatching dates of overwintering 

eggs66. In later-predicting models, selected time windows consistently spanned until early April, 

probably reflecting the influence of early spring temperature on the production of winged individuals 

forming the aerial pool24. It is noteworthy that screening later than April 1st did not improve models, 

suggesting that temperature conditions are no longer an influential factor at this point. 

Added to winter and early spring temperature, other environmental predictors significantly improved 

the accuracy of the predictions. Accounting for land-use, rainfall and geographical position improved 

predictions, but their relative importance depended on the considered response variables. Land use 

mainly affected the abundance of the M. persicae aphid pool, as well as the timing of the flight onset. 

The area of rapeseed was positively associated with the numbers of M. persicae trapped, as previously 

found23. It also had a positive influence on flight earliness. Rapeseed,  is an overwintering host for M. 

persicae parthenogenetic populations in winter67 and has been increasingly grown in France and other 

European countries since the end of the twentieth century8. Our results suggest that rapeseed crops 

are a source of spring migration, allowing aphid populations to quickly produce large numbers of flying 

aphids in early spring. However, there has been no evidence of rapeseed being a host plant of beet 

yellows viruses until now. The role of this aphid reservoir in the epidemiology of the disease therefore 

remains uncertain. Similarly, the positive influence of semi-natural land area on flight earliness could 

reflect the role of forests or grasslands as winter reservoirs for aphids. However, the host range of M. 

persicae is very broad, including many wild plants55, and it is difficult to assess the refuge habitat role 

of uncultivated areas without knowing their composition. Rainfall also influenced aphid flight features, 

as in a previous study23, with more rain leading to later, shorter and less abundant flights. This could 

reflect direct negative effects of precipitation on the survival and development of initial populations68, 

or on the take-off of winged aphids69, but also indirect effects through the modulation of crop growth 

or planting dates70. To limit the computation time, we imposed the same critical period for rainfall and 
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temperature. Future research is needed to disentangle the effects on aphids of these two climatic 

factors, which may also act through complex interactions70. Finally, the influence of geographical 

position variables confirmed that aphid flight features have a strong spatial structure45,71,72. This 

persists even when considering weather and land use predictors and could be due either to the effects 

of other spatially structured predictors not taken into account here (e.g. climatic factors at higher 

temporal scales than yearly weather), or to biological processes operating on a large spatial scale such 

as dispersal71,72. The relationship between these geographical predictors and response variables are 

purely correlative, which likely explain why models performed poorly when predicting outside of the 

spatial area for which they were developed. However, prediction performance was homogeneous 

across the French sugar beet production area, preventing the need to build several regional models. 

Overall, this suggests that a similar approach could be used in other regions; however, the poor 

performance of our models when increasing the distance indicates that they should be fitted using 

local data. 

Finally, model performances improved over the season, encouraging a continuous in-season updating 

of meteorological information to predict aphid flight features. However, predictions made at the first 

deadline (February 14), corresponding to the time when farmers can choose the beet variety to sow, 

were almost as good as the predictions made at the last deadline (April 15). This suggests that accurate 

predictions of M. persicae flight activity can be produced as early as late winter to inform the Virus 

Yellows mitigation strategy, when many management actions can still be implemented26,27,73. In the 

near future, such predictions could be made even earlier by using seasonal weather forecasts, which 

already demonstrated their usefulness as a tool to predict pest population dynamics in other 

systems74. However, this strategy of risk prediction and mitigation assumes a strong correlation 

between aphid flight features and disease expression in the field because it ignores the viruliferous 

status of aphids21. Further research is needed to better understand the spatiotemporal dynamics of 

the different viruses involved in beet yellows and to integrate this knowledge into prediction models. 
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Despite the rather satisfactory accuracy of our models’ predictions, from an academic point of 

view, several considerations have to be made regarding their real-life application. First, errors are not 

negligible from an operational point of view: for instance, the error in flight onset prediction (D5c) was 

on average two weeks, which impedes the forecasting of a precise colonisation date at a particular 

geographical location. The same can be said for errors on flight abundance (on average a factor of e1.7 

= 5.5) and flight duration (20 days on average), which are even more complicated to directly translate 

in terms of economic risk (see also the last paragraph). However, our models could help anticipating 

whether flights will be particularly early, abundant or long in a given year: for instance, a two-week 

error is much lower than the range of possible variation from one year to another on a given site, which 

can be up to two months in our dataset. This is of great importance for risk assessment, as the 

susceptibility to Virus Yellows decreases during beet development14. In the same manner, our models 

can help to identify the patterns of geographical variation in aphid flight features across sugar beet 

production regions, as prediction errors were rather homogeneous across traps.  

One other practical limitation of our modelling approach in an applied context is that it 

requires data that may not be available at the time prediction is needed. In particular, land-use data 

needed to run M3 model becomes available in national censuses only on n+1 year 

(https://agreste.agriculture.gouv.fr/agreste-web/methodon/S-SAA/methodon/), and may be difficult 

to estimate from satellite data – in particular rapeseed crop area, usually detected from its flowers 75 

that start blooming in April in Western Europe 76. If practitioners such as the industry or technical 

institutes aimed at using such a tool for prediction, they would have to obtain it another way, e.g. 

through surveys filled by farmers (in our region of interest, it is often the same farmers who grow 

rapeseed and beet, and there are enough of them to be representative of the whole region). If land-

use data is still missing, practitioners could try imputing them using data from previous years: for semi-

natural and crop land area, this should usually not vary a lot from one year to another (never more 

than 8% in our data), but this cannot be ensured for oilseed rape crop area depending on the economic 
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context (up to 96% inter-year variation in our data). Otherwise the second most performant model, 

only relying on meteorological predictors, should be used instead. 

Besides, despite our effort to rigorously measure model prediction performance, one should 

remain cautious about the accuracy of model predictions in a context of climate change. Indeed, our 

data was available only until 2014, but temperature and precipitation patterns are rapidly changing 

and will continue doing so in the next decades, leading to novel weather conditions that are not 

represented in our data. Insect populations exhibit complex and non-linear responses to climate 

changes, making them prone to shifts in their functioning that are very difficult to predict 77,78. This 

additional layer of uncertainty should be kept in mind when predicting in new situations.  

Finally, we need to improve our knowledge of the relationship between aphid flight features 

and colonisation rates in sugar beet fields. Indeed, it remains challenging to interpret predictions of 

aphid flight duration and abundance, along with their associated errors, from an operational 

standpoint. It is unclear how these predictions translate into agronomically relevant variables, such as 

aphid numbers within sugar beet fields, levels of Virus Yellows infestation, or the potential effects on 

yield. In a study on barley yellow dwarf disease, Fabre et al. (2010)79 estimated an aphid deposition 

rate from the comparisons between ground observations and counts of winged individuals in suction 

traps. This approach could be applied to Virus Yellows. Predictions from our regression models could 

then be used as inputs in process-based models such as Werker et al. (1998)21 to attain Virus Yellows 

level prediction in French sugar beet crops. 
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SUPPORTING INFORMATION 

 

Appendix S1 Criteria applied for data inclusion. 

Appendix S2 Critical periods for the calculation of meteorological windows for all selected models. 

Appendix S3 Spatial variation in predictions from all models. 
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FIGURE LEGENDS 

 

Figure 1 French sugar beet production area (in blue) and the Agraphid network. Circles correspond to 

traps considered as belonging to the French sugar beet production area and were used for both model 

fitting and model validation. Triangles correspond to traps used only for testing models in conditions 

different from those in the French sugar beet production area. Colour of a given trap and associated 

label corresponds to the average temperature (°C) from November 1 to March 30 at that location, 

between 1978 and 2022. The horizontal bar represents the years of operation of the trap (in black) 

between 1978 and 2022. 

 

Figure 2 Relationship between the flight features observed in each trap (x-axis) and their prediction 

from the best model predicting each of them (y-axis) at each prediction date (February 14, Mach 5, 

April 15). The flight features represented are, a the date of 5th capture (D5c, expressed as the day 

number of the year), b the number of days between the 5th and 95th percentiles of captures in spring 

and summer (Fd), c the log-cumulative abundance (+0.01) between January 1 and June 30 (logAb), and 

d the cumulative abundance (Ab) back-transformed from logAb. Observations are representative of 

aphid aerial samples on an 80km area. The colours of the dots correspond to the 10 traps used for 

model fitting. In each facet, the dashed red line corresponds to the identity line y = x. Root mean 

squared error of prediction (RMSEp) is measured via cross-validation, while root mean squared error 

(RMSE) is obtained after fitting the model on the full dataset. For Ab such metrics are not displayed as 

errors should be interpreted multiplicatively (see main text). 

 

Figure 3 Partial standardised coefficients associated with predictors for the best models at each 

prediction date and for each aphid flight feature: D5c (date of 5th capture), Fd (number of days between 
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the 5th and 95th percentile flight), logAb (log-cumulative abundance + 0.01) between January 1 and June 

30. Partial standardised coefficient can be interpreted as the change in y following a 1 standard 

deviation change in x, other predictors being held constant (Bring 1994, Cade 2015). The definition of 

predictors is reported in Table 2. 

 

Figure 4 Periods on which meteorological variables (sum of degree-days >0°C and mean rainfall) were 

calculated in best performing models (M3) at each prediction date and for each aphid flight feature: 

D5c = Date of 5th capture, Fd = number of days between the 5th and 95th percentile flight, logAb = log-

cumulative abundance (+0.01) between January 1 and June 30. Dashed lines correspond to the 3 

prediction dates: February 14 (choice of a sugar beet variety, in blue), March 5 (decisions on sugar beet 

sowing dates and sowing a companion plant, in green) and April 15 (curative measures, in red). 

 

Figure 5 Residual Mean Squared Error (RMSE) or Residual Mean Squared Error of prediction (RMSEp) 

obtained when predicting each trap from the Agraphid trapping network, respectively for the traps 

located inside (triangles) or outside (circles) the sugar beet production area. D5c = Date of 5th capture, 

Fd = number of days between the 5th and 95th percentile flight, logAb = log-cumulative abundance 

(+0.01) between January 1 and June 30. To allow meaningful comparison across response variables, 

the intensity of the colour gradient depends on how the RMSEp on the independent dataset departs 

from the RMSE on the training dataset. 
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Table 1 Predictive variables included in each model of aphid seasonal flight activity. 

Variable name Variable description Data source Models 

TJF14 Mean daily temperature from January 1st 

to February 14th 

SAFRAN M1 

T_crit Cumulative degree-days (base 

temperature = 0°C, no upper threshold) 

over the critical time window 

SAFRAN M2, M3, M4 

R_crit Mean of daily rainfall over the critical 

time window 

SAFRAN M3, M4 

Latitude Trap latitude  M3, M4 

Longitude Trap longitude  M3, M4 

LatSq Trap latitude squared  M3, M4 

LonSq Trap longitude squared  M3, M4 

LatLon Trap latitude * trap longitude  M3, M4 

RSC_area Rapeseed crop area (in ha) around a trap 

(80km radius) 

Agreste, Statbel, 

Terres Inovia 

M3, M4 

Crop_area Crop area (arable land + permanent 

crops, in ha) around a trap (80km radius) 

Agreste, Statbel M3, M4 
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SN_area Semi-natural land area (forest + 

permanent grasslands, in ha) around a 

trap (80km radius) 

Agreste, Statbel M3, M4 

 

 

Table 2 Root mean squared error of prediction (RMSEp) values (mean ± SEM) for each model, each 

response variable (flight feature) and each prediction date. Values in bold correspond to the model(s) 

with the best predictive capacities at each prediction date, for each flight feature. D1c = Date of first 

capture, D5c = Date of fifth capture, Fd = number of days between the 5th and 95th percentiles of 

captures of captures in spring and summer, logAb = log(cumulative abundance from January 1 to June 

30 + 0.01). RMSEp unit is the same as the response (note that D1c and D5c are expressed as day of the 

year numbers). 

Response variable Prediction date M1 M2 M3 

D1c February 14 23.2 (± 0.1) 22.8 (± 0.9) 21.1 (± 0.9) 

D1c March 5 23.2 (± 0.1) 21.2 (± 0.7) 19.7 (± 0.8) 

D1c April 15 23.2 (± 0.1) 20 (± 0.7) 18.9 (± 0.7) 

D5c February 14 19.9 (± 0.1) 19.1 (± 0.7) 16 (± 0.6) 

D5c March 5 19.9 (± 0.1) 17.6 (± 0.5) 14.9 (± 0.6) 

D5c April 15 19.9 (± 0.1) 16.7 (± 0.5) 14.3 (± 0.6) 

Fd February 14 22.8 (± 0.1) 22 (± 0.6) 20.2 (± 0.6) 

Fd March 5 22.8 (± 0.1) 21.4 (± 0.6) 19.5 (± 0.6) 

Fd April 15 22.8 (± 0.1) 20.8 (± 0.6) 19.4 (± 0.6) 

logAb February 14 2.3 (± 0) 2.3 (± 0.1) 1.9 (± 0.1) 

logAb March 5 2.3 (± 0) 2.2 (± 0.1) 1.8 (± 0.1) 

logAb April 15 2.3 (± 0) 2.1 (± 0.1) 1.7 (± 0.1) 
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Table 3 Normalized root mean squared error of prediction (NRMSEp) values (mean ± SEM) for each 

model, each response variable (flight feature) and each prediction date. Values in bold correspond to 

the model(s) with the best predictive capacities at each prediction date, for each flight feature. D1c = 

Date of first capture, D5c = Date of fifth capture, Fd = number of days between the 5th and 95th  

percentiles of captures in spring and summer, logAb = log(cumulative abundance from January 1 to 

June 30 + 0.01). 

Response variable Prediction date M1 M2 M3 

D1c February 14 0.65 (±0.01) 0.64 (±0.04) 0.6 (±0.04) 

D1c March 5 0.65 (±0.01) 0.6 (±0.03) 0.56 (±0.04) 

D1c April 15 0.65 (±0.01) 0.56 (±0.03) 0.53 (±0.03) 

D5c February 14 0.45 (±0) 0.44 (±0.02) 0.37 (±0.02) 

D5c March 5 0.45 (±0) 0.4 (±0.01) 0.34 (±0.01) 

D5c April 15 0.45 (±0) 0.38 (±0.01) 0.33 (±0.01) 

Fd February 14 0.64 (±0) 0.62 (±0.02) 0.57 (±0.02) 

Fd March 5 0.64 (±0) 0.6 (±0.02) 0.55 (±0.02) 

Fd April 15 0.64 (±0) 0.59 (±0.02) 0.55 (±0.02) 

logAb February 14 0.83 (±0.01) 0.83 (±0.05) 0.69 (±0.05) 

logAb March 5 0.83 (±0.01) 0.81 (±0.04) 0.66 (±0.05) 

logAb April 15 0.83 (±0.01) 0.76 (±0.04) 0.61 (±0.04) 
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Predicting the seasonal flight activity of Myzus persicae, the main aphid vector 

of Virus Yellows in sugar beet 

LUQUET Martin*, POGGI Sylvain, BUCHARD Christelle, PLANTEGENEST Manuel, TRICAULT Yann 

 

We built regression models to forecast the main characteristics of aphid flight. Predictions are 
updated at strategic moments for the mitigation of aphid-borne virus yellows in sugar beet crops. 
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