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Abstract—Integrated sensing and communication (ISAC) is
envisioned to be one of the pillars of 6G. However, 6G is also
expected to be severely affected by hardware impairments. Under
such impairments, standard model-based approaches might fail
if they do not capture the underlying reality. To this end, data-
driven methods are an alternative to deal with cases where
imperfections cannot be easily modeled. In this paper, we
propose a model-driven learning architecture for joint single-
target multi-input multi-output (MIMO) sensing and multi-input
single-output (MISO) communication. We compare it with a
standard neural network approach under complexity constraints.
Results show that under hardware impairments, both learning
methods yield better results than the model-based standard
baseline. If complexity constraints are further introduced, model-
driven learning outperforms the neural-network-based approach.
Model-driven learning also shows better generalization perfor-
mance for new unseen testing scenarios.

Index Terms—Auto-encoder, integrated sensing and communi-
cation, joint radar and communications, model-driven machine
learning.

I. INTRODUCTION

Integrated sensing and communication (ISAC) has in the
past few years become one of the key enabling technologies
within the vision for 6G [1]–[3]. In this 6G context, ISAC
not only provides a means to reuse communication infras-
tructure for sensing purposes (either with dedicated or joint
waveforms), it also provides a way to optimize the operation
of the communication system itself, in the form of blockage
prediction, radio mapping, and proactive resource allocation.

ISAC can be broadly categorized as radar-centric and
communication-centric. In radar-centric design, the aim is to
provide communication capabilities on top of existing radar
sensing infrastructure, as e.g., in [4], [5]. Generally, radar-
centric designs exhibit poor communication performance,
driven largely by hardware and cost constraints. On the
other hand, communication-centric ISAC relies on modifying
communication waveforms and signal processing to enable
high-resolution sensing. At a cost of a potential reduction
in data rate, flexible sensing performance is attained, due to
the high degree of freedom provided in communication signal
optimization, including power allocation, beamforming design,
and scheduling [6], [7].

This work was supported, in part, by a grant from the Chalmers AI
Research Center Consortium (CHAIR), by the European Commission through
the H2020 project Hexa-X (Grant Agreement no. 101015956) and by the
MSCA-IF grant 888913 (OTFS-RADCOM). The work of C. Häger was also
supported by the Swedish Research Council under grant no. 2020-04718.
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Fig. 1: Considered ISAC scenario with an ISAC transmitter, co-located sens-
ing/radar receiver, and a remote communication receiver. The learned transmit
beams provide a flexible trade-off between sensing and communication.

Within communication-centric ISAC, both the problem of
signal design and that of signal processing have been tra-
ditionally treated under the umbrella of model-based signal
processing. Model-based methods have important benefits,
such as performance guarantees, explainability, and predictable
computational complexity. However, they suffer from perfor-
mance degradation under model mismatch and can be hard
to derive when models are complicated. These issues have
been addressed via data-driven designs, relying on machine
learning (ML) to solve the design problem or the signal
processing problem (or both). Among ML-based ISAC works,
we mention [8]–[15]. In [8], the potential of ML in ISAC is
discussed. A extensive survey on ML in ISAC is provided
in [9], though with an emphasis on sensing. In [10], ML
is used in sensing to learn the model order. In [11], a
two-level multi-task artificial neural network is proposed to
replace the ISAC receiver, which is shown to mitigate the
imperfections and non-linearities of THz systems. In [12],
ML-aided beamforming in ISAC is tackled, where a neural
network learns the mapping from received signal to angle (see
also [16]). A vehicular beamforming scenario is considered
in [13], [14], where ML is applied to learn beamformers.
Finally, in our previous work [15], we developed an end-to-
end approach for the ISAC problem, applying an autoencoder
(AE) [17] to account for hardware impairments. These ML-
based approaches to ISAC can operate under model mismatch
and in general require little knowledge about the problem,
other than the loss function. The drawbacks of this class of
methods lies in the lack of performance guarantees, limited
interpretability, and often high training complexity.

A third way, in between model-based and ML-based ISAC
is provided by so-called model-driven ML (MD-ML) [18].
This recent approach proved particularly relevant for commu-
nication systems [19], [20], due to the abundance of models
characterizing them, as opposed to other domains of data pro-
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cessing such as image, sound or natural language. In MD-ML,
existing designs, algorithms, functional decompositions or pro-
tocols are used and reformulated as structured neural networks.
An early example is the principle of deep unfolding [21], [22],
in which the iterations of an iterative method are interpreted as
the layers of a neural network (see [23] for a survey of deep
unfolding applied to communication systems). As an added
benefit, the neural network can be initialized from the model-
based counterpart, thus starting from a already reasonably well
performing point instead of at random. Especially relevant for
ISAC are models linking sent or received signal at antenna
arrays to directions of propagation. For instance, in [24], the
steering vector models are taken as an initialization and made
flexible by learning with a neural network of varying depth
unfolding the matching pursuit algorithm [25]. The approach
was then optimized and extended to the frequency response
vector model (which has the same mathematical form) in [26].

In this paper, we apply MD-ML for end-to-end ISAC.
Although MD-ML has been investigated in communication
scenarios [19], [20], [23], [24], [26], there is no research
on MD-ML for sensing. Our main contribution is to apply
MD-ML to single-target sensing and extend this approach to
obtain performance trade-offs between sensing and a MISO
communication link. As MD-ML end-to-end learning, we
optimize a model-based matrix of steering vectors to account
for hardware impairments. However, unlike [24], we propose
an architecture with parameter sharing to perform 2 tasks
simultaneously: (i) precoder designing at the transmitter and
(ii) target angle-of-arrival (AoA) estimation at the receiver.
A comparison between (i) MD-ML, (ii) neural-network-based
learning and (iii) the best-known baseline is made under
hardware impairments and complexity constraints.

II. SYSTEM MODEL

In this section, we describe the considered ISAC scenario,
which is depicted in Fig. 1.

A. Sensing Model

We consider a monostatic radar with a uniform linear
array (ULA) of K antenna elements. At each transmission,
the transmitter sends a complex signal x ∈ CK , subject to
E[‖x‖2] ≤ Etx. A single target in the environment might
reflect the signal back to the transmitter. The probability that
the target is present is drawn from a Bernoulli distribution
t ∼ Bern(1/2). If a target is present (t = 1), the received
signal at the ULA is

yr = αarx(θ)a>tx (θ)x+ n, (1)

where we assume a Swerling-1 model of the target, such
that α ∼ CN (0, σ2

r), with σ2
r representing the loss of power

due to path loss and the target’s radar cross section. The
steering vector is [atx(θ)]k = [arx(θ)]k = exp(−2π(k −
(K − 1)/2)d sin(θ)/λ), with d = λ/2 and λ the wavelength.
The AoA (or angle-of-departure (AoD)) of the target θ,
is uniformly distributed as θ ∼ U [θmin, θmax]. The prior
knowledge {θmin, θmax} is assumed to be available, with

−π/2 ≤ θmin ≤ θmax ≤ π/2. Regardless of the target
presence, complex Gaussian noise n ∼ CN (0, N0IK) is
added at the receiver side.

The goal of the co-located receiver is to maximize the
detection probability of the target, subject to some false alarm
probability, and to estimate θ in the case of target detection,
based on yr.

B. Communication Model
We consider the same transmitter of K antenna elements.

The transmitter maps a message m ∈ M from a set of
possible messages M into a complex symbol s(m) ∈ C.
The symbol s(m) is precoded by v ∈ CK to steer the
ULA energy towards the receiver direction. The output signal
is x(m) = vs(m), again subject to E[‖x‖2] ≤ Etx. The
receiver has a single antenna element, which yields a MISO
communication link. The communication receiver is always
present, and the received signal follows the model

yc = βa>tx (ϑ)x(m) + n, (2)

where a Rayleigh channel is considered, with β ∼ CN (0, σ2
c )

and n ∼ CN (0, N0), and the communication receiver is
randomly located in a certain AoD range ϑ ∼ U [ϑmin, ϑmax],
with prior knowledge of {ϑmin, ϑmax} and −π/2 ≤ ϑmin ≤
ϑmax ≤ π/2. We also assume that the receiver has access to
the channel state information (CSI) κ = βa>tx (ϑ)v through a
pilot sequence transmission.

The goal of the remote receiver is to retrieve the transmitted
message based on the observation yc.

C. Integrated Sensing and Communication
The purpose of ISAC is to combine the sensing and commu-

nication transmitters into a joint transmitter that can be opti-
mized to allocate energy between the target and the communi-
cation receiver direction. The transmitter considers the joint a
priori angular information Θ = {θmin, θmax, ϑmin, ϑmax}. The
receivers and the transmitter can be jointly optimized to obtain
a desired trade-off between the communication and sensing
performance.

III. BASELINE APPROACH

The proposed learning approach is highly driven by the
structure of standard model-based methods. Here we provide
the derivation of the baseline, which is compared later with
end-to-end learning approaches in Section V.

A. Transmitter Benchmark
We design the benchmark for the transmit beamformer x in

(1) or (2) by resorting to the beampattern synthesis approach
in [27], [28]. To that end, we define a uniform angular grid
covering [−π/2, π/2] with Ngrid grid locations {θi}

Ngrid

i=1 . For
a given angular range θrange, which could correspond to the
direction of either the radar target or the communication
receiver, we denote by b ∈ CNgrid×1 the desired beampattern
over the defined angular grid, given by

[b]i =

{
K, if θi ∈ θrange

0, otherwise.
(3)



The problem of beampattern synthesis can then be formulated
as min

x

∥∥b−A>x∥∥2
2
, where A =

[
atx(θ1) . . . atx(θNgrid

)
]
∈

CK×Ngrid denotes the transmit steering matrix evaluated at the
grid locations. This least-squares (LS) problem has a simple
closed-form solution

x = (A∗A>)−1A∗b, (4)

which yields, after normalization according to the transmit
power constraints, a communication-optimal beam xc or a
radar-optimal beam xr.

For ISAC scenarios, a radar-communication trade-off beam
is needed to provide adjustable trade-offs between the two
functionalities. Using the approach from [29], we design the
ISAC trade-off beam as

v(ρ, ϕ) =
√
Etx

√
ρxr +

√
1− ρeϕxc

‖√ρxr +
√

1− ρeϕxc‖
, (5)

where ρ ∈ [0, 1] is the ISAC trade-off parameter and ϕ ∈
[0, 2π) is a phase ensuring coherency between multiple beams.
By sweeping over ρ, we explore the ISAC performance of the
baseline.

B. Radar Detection Benchmark

Since the radar detection problem in (1) involves random pa-
rameters α and θ, we derive the maximum a-posteriori (MAP)
ratio test (MAPRT) detector [30] as our detector benchmark,
which takes into account the prior information on α and θ. Let
H0 and H1 denote the absence and the presence of a target,
respectively, in (1). Then, the corresponding MAPRT is given
by [30]

L(yr) =
maxα,θ,x p(α, θ,x,H1 |yr)

p(H0 |yr)
H1

≷
H0

η̃ . (6)

Assuming p(H0) = p(H1) = 1/2, we find, after some
derivation, that the test simplifies to1 (see [15, App. A])∣∣aH

rx(θ̂)yr
∣∣2 H1

≷
H0

η , (7)

where η is a threshold determined based on a given false alarm
probability and

θ̂ = arg max
θ∈[θmin,θmax]

∣∣aH
rx(θ)yr

∣∣2 . (8)

C. Communication Receiver Benchmark

Given the CSI κ = βa>rx(θ)v, the received signal is
yc = κs(m) + n. Hence, symbol error rate (SER) is min-
imized by using maximum likelihood estimation (MLE) as
m̂(yc) = arg minm∈M ‖yc − κs(m)‖2.

IV. ISAC END-TO-END LEARNING

In the following, we first describe the architecture of neural-
network-based learning and the loss functions involved during
training for the ISAC scenario. Then, we specify how model-
driven learning is trained, and how the ISAC trade-offs are

1Although x is known to the radar receiver, taking it as unknown in the
MAPRT formulation (6) and plugging in its optimal value as a function of θ
simplify the detection test in [15, Eq. (16)] to a simple matched filter receiver
in (7). This facilitates both the benchmark implementation in (7) and the
model-driven receiver design in Sec. IV-B2.

TABLE I: Neural network architectures.

Network Input layer Hidden layers Output layer

Encoder fε |M| (K,K, 2K) 2 (linear)
Beamformer fµ 4 (N,N,N) 2K (linear)
Presence det. fρ 2K + 2 (N,N,N) 1 (sigmoid)

Angle est. fν 2K + 2 (N,N,N) 1 (tanh)
Comm. receiver fη 4 (K, 2K, 2K) |M| (softmax)

assessed with this approach. In Fig. 2 we represent how the
different components of the system are related for model-
driven learning.

A. Neural-Network-Based End-to-End Learning

We use 5 feed-forward neural networks as depicted in
Table I. This AE architecture is based on our previous work
[15], with some modifications that are stated in the following.
On the transmitter side, the encoder fε : {0, 1}|M| → C
takes a one-hot encoded message m and outputs a complex
number interpreted as the symbol of a constellation. The
beamformer fµ : R4 → CK uses as input the prior information
Θ to yield a complex precoder v. The radar receiver is
divided into 2 networks: (i) for target detection, the network
fρ : CK+2 → [0, 1] concatenates the received signal yr
and the sensing angular information {θmin, θmax} as input,
to predict the probability of the target in the environment as
output; (ii) the angle estimator fν : CK+2 → [−π/2, π/2]
uses the same input as the presence detector, but it gives an
estimate of the target angle θ̂. The communication receiver
fη : C2 → [0, 1]|M| maps the concatenation of the received
signal yc and the CSI κ to a vector of probabilities m̂, where
the i-th element of m̂ represents the probability that the i-
th message was transmitted. For complex-valued inputs or
outputs, the concatenation of the real and imaginary parts is
utilized. In Table I, the dimensions correspond to the real-
valued concatenated vectors. The learnable parameters of each
network are represented by ε,µ,ρ,ν,η, respectively.

1) Loss Functions: We choose a suitable loss function
based on the task that needs to be solved.

• Target Detection. We use the binary cross-entropy (BCE)
loss. Let p̂ ∈ [0, 1] be the estimate of the probability that
the target is in the environment. The BCE loss is then

JTD = −E[t log(p̂) + (1− t) log(1− p̂)], (9)

• Angle Estimation. We use the mean squared error (MSE)
loss function between the estimated and true angles
according to Jangle = E[|θ̂ − θ|2]. Note that this loss
is meaningful only when t = 1 and the neural network
estimates that there is a target. We compute the MSE loss
in degrees.

• Communication Message Estimation. We treat this
problem as a multi-class classification problem, where
each of the classes corresponds to a transmitted message.
Hence, we resort to the categorical cross-entropy (CCE)
loss function. Let menc ∈ {0, 1}|M| be the one-hot
encoding of m and m̂ ∈ [0, 1]|M| a |M|-dimensional
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Fig. 2: Block diagram of the ISAC model-driven approach. The matrix A ∈ CK×Ngrid is optimized via end-to-end learning by only considering single-target
sensing. The communication encoder and receiver are implemented as in the baseline with no learnable parameters.

probability vector. Then, the CCE loss is

Jcomm = −E

|M|∑
j=1

menc
j log(m̂j)

 . (10)

2) Neural-network Based ISAC: To obtain a good ISAC
trade-off, we could train all 5 networks from Table I at the
same time. However, the scale of the detection and angle
estimation loss functions might differ in several orders of mag-
nitude. Then, we apply a 2-step learning procedure. Firstly, we
learn ε,µ,ρ,η based on target detection using the following
loss function

J TD
ISAC = ωrI{t = 1}JTD + (1− ωr)Jcomm, (11)

where ωr ∈ [0, 1] is a hyperparameter that allows for flexible
trade-offs between sensing and communication performance,
and I{·} is the indicator function. Secondly, we learn ν and
update ε,µ,η by training for angle estimation, using the joint
loss function

J angle
ISAC = ωrJangle + (1− ωr)Jcomm. (12)

B. Model-Driven end-to-end Learning
1) Trainable Model-Driven Transmitter: According to the

benchmark, the transmitter precoder is based on (4), which
involves the vector b and the matrix of steering vectors A.
The binary vector b is completely determined by the prior
angular information θrange. For joint training, θrange accounts
for the target and the communication receiver at the same
time. We let A ∈ CK×Ngrid be a matrix of complex trainable
parameters. In this way, the matrix A is able to adapt to
the hardware impairments in the transmitter ULA that are
described in Section V-C.

Nevertheless, (4) involves a matrix inversion which could
yield numerical instability for not well-defined matrices A
during training. Therefore, we instead compute a matrix M ,
which is the result of solving the linear matrix equation
(A∗A>)M = A∗, so M can be expressed in terms of A
as

M(A) = (A∗A>)+A∗ , (13)

where + denotes the Moore-Penrose inverse. Then, the trans-
mitter signal is simply x = Mb, which is then normalized to

have energy Etx.
2) Trainable Model-Driven Sensing Receiver: The test

statistic in (7) to compute the probability of detection is based
on the angle estimation of the target. Hence, we imitate the
same kind of procedure during learning, i.e., we only train A
to yield a good angle estimate θ̂. Note that the same matrix
A is shared between transmitter and receiver. Moreover, the
angle estimation from the benchmark in (8) resorts to finding
the argument that maximizes the test statistic. This operation
is not differentiable, and we compute instead

g = softmax(|AHyr| � b), (14)

where we first compute the test statistic |AHyr| similarly to
the benchmark, but we restrict this metric to be within θrange by
means of the element-wise product with b. Ideally, g should be
close to 1 in the position corresponding to the true angle (recall
that in the ideal case, the columns of A represent steering
vectors at different angles). Hence, by computing g>θgrid, we
expect to obtain a close estimation of the true angle.

Regarding target detection, even though we do not train the
system for this task, we mimic (7) and perform detection based
on

max{|AHyr| � b}
H1

≷
H0

η̃, (15)

for some threshold η̃.
3) Model-based Communication Components: We use a

standard |M|-QAM encoder for the transmitter and the MLE
approach from Section III-C at the receiver, which is optimal
given the CSI. However, no parameters are trained for the
communication link.

4) Model-driven ISAC: We note that, in contrast to neural-
network-based learning, there is no need to directly train
for ISAC, since the communication encoder and receiver are
implemented following the baseline. Moreover, once we train
A for sensing purposes, the transmitter can be used to point
towards different directions (given different inputs). Hence,
we train A solely for single-target sensing. After that, to
evaluate the ISAC trade-offs, we create a joint precoder based
on (5), with ρ = ωr and ϕ = 0. In Fig. 2, it is depicted
how we use different inputs to create a radar precoder (vr)



and a communication precoder (vr), which are combined later
following (5) to yield the ISAC precoder v ∈ CK .

V. RESULTS

In this section, we compare the performance of (i) model-
driven learning, (ii) neural-network-based learning, and (iii)
the model-based baseline described in Section III.

A. Parameter Selection, Random Training, and Evaluation

On the transmitter side, we consider an ULA with K = 16
antenna elements, Etx = 1, and |M| = 4 possible mes-
sages, which corresponds to a quadrature phase shift keying
(QPSK) constellation in the baseline approach. The average
radar signal-to-noise ratio (SNR) is chosen as SNRr =
σ2
r/N0 = 0 dB and the average communication SNR as

SNRc = σ2
c/N0 = 20 dB.

For simplicity, we assume that the communication receiver
is located at a random position within a fixed angular sector
[ϑmin, ϑmax] = [30◦, 50◦]. However, in the sensing scenario,
we randomize the angular sector of the target as in [31].
We first draw the mean angle of the sector as θmean ∼
U [−60◦, 60◦] and the span as ∆ = U [10◦, 20◦]. The target
prior information is then {θmin, θmax} = {θmean−∆/2, θmean+
∆/2}. However, we show only results corresponding to a
testing interval of [θmin, θmax] = [−40◦,−20◦].

We use the Adam optimizer [32] for the learning
approaches, with a learning rate of 10−3 and a batch size of
10,000 samples. In model-driven learning, the matrix A is ini-
tialized as a perturbed version of the baseline steering matrix,
i.e., [A]m,l = exp(−π(m − (K − 1)/2) sin(θl)) + n, with
n ∼ N (0, 0.1). The values for the trade-off parameter are ωr ∈
{0, 10−6, 10−5, 10−4, 10−3, 10−2, 0.05, 0.1, 0.15, 0.4, 0.6, 0.8,
1}. For each ωr value, we retrain all neural networks from
scratch.

During the testing stage, we evaluate the performance of
each method by computing the probability of misdetection
Pmd = p(t̂ = 0|t = 1), the SER p(m̂ 6= m), and the sensing

angle root mean squared error (RMSE)
√
E[|θ̂ − θ|2] for a

given false alarm probability Pfa = p(t̂ = 1|t = 0) = 10−2.
The RMSE is calculated only when the target is present and
it has been detected by the receiver.

B. Results without Hardware Impairments

We first consider the case of ideal conditions in the ULA
array (d = λ/2), without complexity restrictions. We set
the number of hidden neurons in the neural networks of
the sensing AE as N = 1024, giving approximately 6.4
million real-valued trainable parameters. We also fixed a grid
of Ngrid = 500 discrete angles, resulting in 8000 complex-
valued trainable parameters for the model-driven learning
architecture. Further increasing the number of parameters did
not yield significant performance improvement. The number
of training iterations is set to 50,000.

Fig. 3 shows the ISAC results for one particular testing
angular sector. No significant differences can be observed
between the learning approaches and the baseline. Indeed, for

0 0.2 0.4 0.6 0.8

10−3

10−2

10−1

100

Misdetection probability

SE
R

Baseline
NN learning
MD learning

0 2 4 6 8 10

10−3

10−2

10−1

100

RMSE [deg]

SE
R

Baseline
NN learning
MD learning

Fig. 3: Results without hardware impairments and without complexity restric-
tions. The target lies in the angular sector [θmin, θmax] = [−40◦,−20◦].
The communication receiver is randomly located in the angle interval
[θmin, θmax] = [30◦, 50◦]. The ISAC scenario has fixed testing parameters
Pfa = 10−2, SNRc = 20 dB, and SNRr = 0 dB.

this scenario the baseline transmitter and receiver algorithms
are either optimal (for communications) or close to optimal
(for radar sensing). Moreover, without complexity constraints
both learning approaches can be trained to perform similar to
the baseline.

C. Results under Hardware Impairments

We now consider hardware impairments, which consist of
perturbing the spacing between antenna elements in the trans-
mitter ULA as dk ∼i.i.d. N (λ/2, σ2

λ), with k = 0, . . . ,K − 2.
We assume σλ = λ/30. Fig. 4 shows the ISAC trade-off curves
for a single realization of dk. The main difference with respect
to Fig. 3 is that the performance of the baseline drops in terms
of angle estimation. This occurs naturally when the assumed
models differ from reality (the assumed steering vector differs
for hardware impairments). Conversely, when complexity is
not limited, both end-to-end learning approaches are able
to adapt to the impairments and show good performance,
although neural-network learning slightly outperforms model-
driven learning.

For complexity limitation, the number of hidden neurons
in the neural-network-based learning is reduced to N = 21,
and the grid points in A to Ngrid = 156. This makes the
number of trainable parameters of the sensing neural networks
(approximately 5,000 real-valued parameters) comparable to
the model-driven approach (approximately 2,500 complex-
valued parameters). Neural-network-based degrades both for
detection probability and angle estimation when the number of
parameters is reduced. However, model-driven learning shows
similar performance with respect to unlimited complexity. This
indicates that in cases where complexity is limited, model-
driven approaches perform better than neural-network-based
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Fig. 4: Results under hardware impairments. The target lies in the angular sec-
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has fixed testing parameters Pfa = 10−2, SNRc = 20 dB, and SNRr = 0 dB.

learning.

D. Generalization Results

We now assess the generalization performance of the
considered schemes via the testing scenario [θmin, θmax] =
[−20◦, 20◦] which is not included in the training dataset.
Fig. 5 depicts the results assuming no complexity restrictions.
We expected that the baseline would outperform learning
approaches since they are tested on new unseen data. However,
model-driven learning is the best approach, outperforming
neural-network learning for both target detection and angle
estimation. This implies that the model-driven approach does
not overfit to the training data, and it also captures the model
structure of the impaired steering vectors.

VI. CONCLUSIONS

In this work, we have developed a model-driven ML ap-
proach for ISAC and compared to both a neural-network-based
ML approach and a model-based baseline. Under hardware
imperfections in the transmitter ULA, both learning methods
outperform the model-based baseline since the assumed model
differs from reality. In addition, the model-driven learning
approach outperforms neural-network-based learning under
complexity constraints and shows better generalization behav-
ior for testing scenarios that are not seen during training. In
future works, complexity reduction can be carried out applying
pruning [33] techniques to the neural networks. In addition,
the sample complexity of the proposed approach could be
optimized, for example by introducing physically motivated
constraints on the weight matrix A, as in [26]. Moreover,
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Fig. 5: Results under hardware impairments with low complexity constraints.
The target lies in an angular sector [θmin, θmax] = [−20◦, 20◦] which is
not included in the training dataset. The communication receiver is randomly
located in the angle interval [θmin, θmax] = [30◦, 50◦]. The ISAC scenario
has fixed testing parameters Pfa = 10−2, SNRc = 20 dB, and SNRr = 0 dB.

the time complexity of training could potentially be reduced
using hard thresholding that produces sparse activations in the
network, as in [34].
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