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ABSTRACT

We design algorithms for Robust Principal Component Anal-

ysis (RPCA) which consists in decomposing a matrix into the

sum of a low rank matrix and a sparse matrix. We propose

a deep unrolled algorithm based on an accelerated alternating

projection algorithm which aims to solve RPCA in its non-

convex form. The proposed procedure combines benefits of

deep neural networks and the interpretability of the original

algorithm and it automatically learns hyperparameters. We

demonstrate the unrolled algorithm’s effectiveness on syn-

thetic datasets and also on a face modeling problem, where

it leads to both better numerical and visual performances.

Index Terms— RPCA, Sparsity, low-rank, unrolled algo-

rithm, hyperparameters.

1. INTRODUCTION

Robust Principal Component Analysis (RPCA) is the task of

recovering a low rank matrix L⋆ ∈ R
d1×d2 and a sparse ma-

trix S⋆ ∈ R
d1×d2 from their linear combination [1]

M⋆ = L⋆ + S⋆. (1)

Finding an exact solution to the RPCA problem is challeng-

ing due to its combinatorial nature. Yet, RPCA has received

considerable attention due to its importance in many fields.

These include applications from latent semantic indexing [2]

to image processing [3], to learning graphical models with

latent variables [4], and to collaborative filtering [5].

The art of conventional RPCA: Some authors [6], [7] con-

sidered a convex relaxation of RPCA, where the low rank

matrix is obtained throughout the minimization of the nu-

clear norm and the sparse matrix via an ℓ1-norm penalization.

Such optimization problems can be solved by proximal gradi-

ent methods. However, such approaches are computationally

expensive due to the proximal mapping of the nuclear norm,

which involves a full singular value decomposition (SVD) of

a d1 × d2 matrix, amounting to at least O(d1d2 min(d1, d2))

This work was supported by the National Research Foundation, Prime
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flops per iteration. In contrast, alternating algorithms have

been proposed to solve the original nonconvex formulation of

RPCA involving the ℓ0 pseudo-norm and the rank function

(Section 2.1). These include the alternating projections (Alt-

Proj) method [8], its accelerated version (AccAltProj) [9], and

a block-based method based on the CUR decomposition [10].

Although faster and more closely related to model (1) com-

pared to methods based on convex relaxations, their perfor-

mance heavily rely on good initializations.

Learning-based strategies in RPCA: Deep neural net-

works (DNNs) have experienced a surge in popularity over

the past decades, often attaining groundbreaking performance

in various applications. In signal processing, incorporating

deep learning approaches has become prominent because of

their ability to automatically learn salient information from

of real world data. However, DNNs are known to suffer from

two shortcomings. Firstly, their black-box nature (i.e., the

lack of interpretability) hinders our understanding of why

certain predictions are derived, which is crucial in detect-

ing limitations. Secondly, they are susceptible to overfitting

to the training data since they often have a large number of

parameters compared to the amount of available training data.

To overcome these limitations, a technique known as deep

unrolling (also known as deep unfolding) has been extensively

explored [11] and has emerged as a promising approach in

various signal processing problems. While the model param-

eters are fixed in the classical algorithms, the unrolled net-

work replaces them with learnable parameters that can be op-

timised through end-to-end training using backpropagation.

Therefore, a trained unrolled network can be viewed as a

parameter-optimised algorithm, sharing both the benefits of

conventional DNNs and interpretability of the original algo-

rithm. Furthermore, as classical algorithms often have signif-

icantly fewer parameters than DNNs, unrolled networks can

potentially mitigate the overfitting problem when there is in-

sufficient data or when the training dataset is of low quality.

Existing unrolling strategies in the context of RPCA are

currently limited to algorithms based on convex relaxations.

These include CORONA [12], refRPCA [13], and other sim-

ilar works [14], [15], [16], [17]. However, they inherit from
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the previously mentioned drawbacks of such convex relax-

ations. To the best of our knowledge, there does not exist

unrolled versions of the alternating projections algorithm in

RPCA, despite that being the state-of-the-art. Indeed, such

an unrolled algorithm be beneficial in terms of having ap-

pealing computational properties and the closeness to model

in (1) of nonconvex RPCA approaches, while mitigating ex-

isting shortcomings (sensitivity to the initialization and inc-

ognizance of hyperparameters).

Contributions: We propose an unrolled version of the

Accelerated Alternating Projections algorithm [9]. The pro-

posed procedure also incorporates the Minimax Concave

Penalty (MCP), an alternative to hard thresholding owning

numerous interesting properties and more suitable than the

ℓ1-norm relaxation [18]. The overall proposed procedure

performs excellently on benchmark synthetic datasets and

real-world (face) datasets, exceeding the performances on the

state-of-the-art (unrolled) approaches.

Outline: The paper is organised as follows. Preliminar-

ies on RPCA algorithms and deep unrolling are presented in

Section 2. The proposed method is then described in Sec-

tion 3 and numerical experiments are conducted in Section 4.

Finally, concluding remarks are presented in Section 5.

2. PRELIMARIES

2.1. Algorithms for RPCA

RPCA may be formulated as the following non-convex opti-

mization problem

argmin
L,S∈Rd1×d2

‖M⋆ − L− S‖F,

subject to rank(L) ≤ r and ‖S‖0 ≤ |Ω|, (2)

where ‖ · ‖F is the Frobenius norm, r ≥ rank(L⋆) upper

bounds the rank of the low rank matrix L⋆, and k ≥ |Ω| upper

bounds the cardinally of the support of the sparse matrix S⋆.

Netrapalli et al. [8] proposed to solve (2) using the alter-

nating projections (AltProj) method, which projects M⋆−Sk

onto the space of low rank matrices and M⋆−Lk onto the set

of sparse matrices in an alternating manner at each iteration k.

It enjoys a computational complexity of O(d1d2r2) per it-

eration. Building upon AltProj, Cai et al. [9] proposed an

accelerated version known as AccAltProj with an improved

complexity O(d1d2r). Later, Cai et al. [10] introduced the

Iterated Robust CUR (IRCUR), which is a variant of Alt-

Proj with a per-iteration complexity of O(r2n logn), where

n = max(d1, d2). This is achieved by operating on submatri-

ces, hence avoiding expensive computations on full matrices.

However, it is widely acknowledged that CUR-based decom-

positions are less accurate than SVD-based ones.

We briefly describe AccAltProj in Alg. 1, before we move

on to the proposed unrolled model. Here,Mr denotes the set

of rank-r matrices, and Tk denotes the tangent space ofMr at

Lk. The i-th largest singular value of a matrix X is denoted as

Algorithm 1: Accelerated Alternating Projections

(AccAltProj)

Input: M⋆, r, ǫ, βinit, β, γ

1 ζ−1 ← βinit · σ
(M⋆)
1 ;

2 S−1 ← Tζ−1
(M⋆);

3 L0 ← Hr(M
⋆ − S−1);

4 ζ0 ← β · σ
(M⋆−S−1)
1 ;

5 S0 ← Tζ0(M
⋆ − L0);

6 k ← 0;

7 while ‖M⋆ − Lk − Sk‖F/‖M⋆‖F ≥ ǫ do

8 Pk+1 ← PTk
(M⋆ − Sk);

9 Lk+1 ← Hr(Pk+1);

10 ζk+1 ← β(σ
(Pk+1)
r+1 + γk+1σ

(Pk+1)
1 );

11 Sk+1 ← Tζk+1
(M⋆ − Lk+1);

12 k ← k + 1;

end

Output: Lk,Sk

σ
(X)
i . The operator Hr represents the truncated SVD opera-

tion at rank r and Tζ represents the hard-thresholding operator

(i.e., the proximity operator of ℓ0) with threshold ζ.

AccAltProj differs from AltProj by performing a tangent

space projection on Tk rather than directly projecting M⋆ −
Sk ontoMk. This is followed by projecting the intermediate

matrix ontoMr to obtain Lk+1 before projectingM⋆−Lk+1

back onto the set of sparse matrices. Cai et al. [9] derived the

projection operator onto Tk as:

PTk
(A) =

[

Uk Q1

]

[

U⊤
k AVk R⊤

2

R1 0

] [

V⊤
k

Q⊤
2

]

, (3)

where Uk, Vk contain the singular vectors from the truncated

SVD of Lk = UkΣkV
⊤
k , and (Q1,R1) and (Q2,R2) are the

factors from the QR decompositions of (I −VkV
⊤
k )(M

⋆ −
Sk)

⊤Uk and (I−UkU
⊤
k )(M

⋆ − Sk)Vk respectively.

2.2. Deep Unrolling

A tedious task in implementing iterative optimization algo-

rithms is to tune their hyperparameters (e.g., stepsize, regu-

larisation parameters). To circumvent this problem, unrolled

versions of standard algorithms [11] have recently been devel-

oped. In essence, algorithm unrolling or unfolding consists in

converting an iterative algorithm into a neural network. One

iteration of the iterative algorithm is being transformed to one

layer of the neural network. The benefits of this approach in-

clude neural network interpretability and automatic parameter

learning. Following this line of thought, we propose to unroll

the Accelerated Alternating Projections algorithm (Alg. 1).

3. PROPOSED UNROLLED AccAltProj

We adopt AccAltProj as our baseline model to unroll as it is

fast compared to most existing algorithms and is more robust



compared to IRCUR. We follow the idea from the Learned

Iterative Soft Thresholding Algorithm [19] to design a non-

linear feed-forward architecture with a fixed number of layers.

As β and γ are fixed heuristically in AccAltProj, we chose

to learn them in the unrolled network. The parameter β con-

trols the variance of matrix elements of recovered L̂ while γ
controls the rate of convergence [8]. They also play a key role

for the theoretical guarantee of AccAltProj. More precisely,

if properly chosen, the initial guesses S−1 and L0 generated

at Lines 1 to 5 of Alg. 1 fulfill the required condition for local

convergence of AccAltProj [9, Theorem 1]. Learning β and

γ automatically allows our model to be customisable to use

cases where datasets share similar properties for the underly-

ing low-rank and sparse components.

3.1. Using the Minimax Concave Penalty (MCP) instead

of the ℓ0 or ℓ1 norms

One challenge when developing an unrolled version of Ac-

cAltProj is that we are unable to directly use hard-thresholding

for the non-linear activation. This is because it is not sub-

differentiable, a property needed to deploy gradient-based

optimizers to learn the parameters β and γ [19].

LRPCA [18] tackled this problem by replacing the hard-

thresholding operator with the soft-thresholding operator in

their unrolled model. However, the soft-thresholding op-

erator is the proximal mapping of the ℓ1 norm while the

hard-thresholding operator is the proximal mapping of the

ℓ0 pseudo-norm. As such, vanilla soft-thresholding is not

suitable for our objective in (2).

Taking the best of both worlds, we consider in this work

the Minimax Concave Penalty (MCP) [20], defined as

MCP(x; ζ, υ) =

{

υζ2

2 , if |x| > υζ

ζ|x| − x2

2υ , if |x| ≤ υζ,
(4)

where ζ is the threshold, and υ > 1 is a parameter controlling

the concavity of the penalty. It has a close relationship to the

ℓ0 pseudo-norm, from both the statistical [20] and optimiza-

tion viewpoints [21], while being subdifferentiable.

Its proximal mapping P(x; ζ, υ) := proxMCP(x; ζ, υ) is

P(x; ζ, υ) = sign(x)min

{

υmax(|x| − ζ, 0)

υ − 1
, |x|

}

(5)

which corresponds to the “firm thresholding operator” [22], a

compromise between soft- and hard- thresholding. In the un-

rolled version of Alg. 1, we use P(·; ζ, υ) in place of the hard

thresholding operator Tζ . The penalty functions and their cor-

responding proximal mappings are shown in Fig. 1.

3.2. Unrolled AccAltProj

We consider an unrolled version of the Modified Accelerated

Alternating Projections and refer to it as the unrolled RPCA

algorithm. Each iteration is thus transformed in one layer as
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Fig. 1. Penalty functions and their proximal mappings.

shown in Fig. 2. We use this neural network to learn β and γ
while keeping υ fixed (υ = 1.05).

M⋆

Sk

Lk

−I +

PTk

Pk+1

Hr

−I

+ P(.; ζk+1, υ)

ζk+1

β γ

Sk+1

Lk+1

Fig. 2. One layer of the unrolled RPCA algorithm. Note that

ζk+1 is a function of (β, γ), defined in Line 10 of Alg. 1.

3.3. Training Criteria

While it is possible to use adaptive parameters (i.e., separate

βk, γk for each layer k), we choose to learn only a single

(β, γ) that is shared across the layers. In the unrolled model,

we initialise β = 1
2· 4

√
d1×d2

and γ = 0.7 since they are the

default values used in AccAltProj [9].

Consider a set of input data {Mq
train}

Q
q=1 and the asso-

ciated sparse and low-rank decomposition that we denote by

{(Lq
train,S

q
train)}

Q
q=1. These can be obtained either via simu-

lations or through the application of classical RPCA iterative

algorithms on M
q
train. Then, following [12], we learn the two

parameters γ and β via

(γ̂, β̂) ∈ argmin
(γ,β)∈R2

Q
∑

q=1

L(Lq
train,L

q) + L(Sq
train,S

q) (6)

subject to (Lq,Sq) = N (γ, β;Mq
train)

whereN is defined by cascading layers as in Fig. 2 (unrolled

network). Finally, we set the loss L to be the relative error

L(X̃,X) = ‖X̃−X‖2F/‖X‖
2
F.

4. NUMERICAL EXPERIMENTS

To illustrate the effectiveness of the proposed approach, we

performed experiments on two settings: a fully controlled one



through synthetic simulations and a realistic one in the con-

text of face modelling. The code to reproduce the simulations

will be released.

4.1. Simulated/Sythetic Data

Problem setup: The synthetic data are generated as in [9],

i.e., let L⋆ = UV⊤, where U,V ∈ R
d×r contain elements

generated i.i.d. from the standard normal distribution. Simi-

larly, the components of S⋆ are sampled i.i.d. and uniformly

from the interval [−c·E(|[L⋆]ij |), c·E(|[L⋆]ij |)] where c > 0.

The positions of the non-zero elements are randomly sam-

pled without replacement. In the following, the matrix S⋆ is

said to be α-sparse if each of its rows and columns contain

at most αd non-zero elements. Finally, given a generated pair

(L⋆,S⋆), we generate an input-target training data matrix as

Mtrain = M⋆ = L⋆ + S⋆ and (Ltrain,Strain) is obtained via

IRCUR applied on Mtrain.

For this experiment, we fix the dimensions to d1 = d2 =
d = 250 and the rank to r = 2. We consider several simulated

data sets generated by varying the sparsity level (controlled by

α) and the amplitude (controlled by c) of the sparse compo-

nent S⋆. More precisely, we consider the following cases to

assess the performance of our unrolled network:

Case 1 Case 2 Case 3 Case 4

(α, c) (0.1, 1) (0.3, 1) (0.01, 1) (0.1, 10)

Table 1. Table showing different experimental settings.

For each case, we generate a total of 300 samples, and

split them into 180 training samples and 120 test samples.

The unrolled network is trained for a total of 8 epochs.

The metrics that we use to quantify the performances of

the unrolled model and its competitors are as follows:

ǫL(Lout) := ‖L
⋆ − Lout‖F, (7)

ǫS(Sout) := ‖S
⋆ − Sout‖F, (8)

ǫM(Lout,Sout) := ‖M
⋆ − Lout − Sout‖F/‖M

⋆‖F, (9)

ǫsupp(Sout) :=
1

d2
(1{[S⋆]ij=0,[Sout]ij 6=0}

+ 1{[S⋆]ij 6=0,[Sout]ij=0}), (10)

where Lout, Sout are placeholders for the outputs that could

be computed from IRCUR, AccAltProj, or the unrolled model

(after training). These four errors respectively quantify the

accuracies on 1) the estimation of L⋆, 2) the estimation of S⋆,

3) the overall matrix M⋆ and 4) support recovery of S⋆.

Results: In Fig. 3, we report the four errors described in

the four cases. We compare the performance of the proposed

approach with IRCUR [10] and AccAltProj [9] (which are not

unrolled algorithms).

We observe from Fig. 3 that the proposed unrolled algo-

rithm improves over its classical counterpart, which means

that the hyperparameters are learned well. The lowest er-

ror in M is always achieved by the IRCUR method and re-

mains small (order 10−8 versus 10−7) for the other methods.

This can be explained by the fact that the hyperparameters

are learnt so as to minimize the error on L and S. This is

confirmed by the results obtained individually on matrices L

and S for which the smallest error is always obtained by the

proposed unrolled method. Finally, as expected, the unrolled

algorithm using the ℓ1-norm instead of the MCP does not per-

form well.

Case 1 Case 2 Case 3 Case 4

γ 7.74×10
−1

7.71×10
−1

7.88×10
−1

7.40×10
−1

β 7.03×10
−2

7.71×10
−2

5.00×10
−2

4.58×10
−2

Table 2. Parameters learnt from the trained unrolled network

in the different experimental settings.

From Table 2, we observe that the learned γ’s are simi-

lar across different settings, where they are all slightly larger

than their initialised value of 0.7. This suggests that the de-

fault value of γ = 0.7 suggested in [9] is a fairly good es-

timate. The slight increase may be because AccAltProj im-

plements an early stopping criterion, where stops once the

error
‖M⋆−Lk−Sk‖F

‖M⋆‖F
at iteration k < 50 is below the toler-

ance of 10−6. As such, for a larger fixed number of layers, a

larger γ would be needed so that the network converges more

slowly to the same point. Conversely, the learned γ would be

smaller if we reduced the number of layers for the unrolled

network. This means that learned γ is optimised for the given

fixed number of layers in the network. The learned β exhibits

much more variation across the different cases. In particu-

lar, they increased by about 2 times from before training in

Cases 1 and 2, and about 1.5 times in Cases 3 and 4. This ob-

servation is in line with the interpretation of β in [8], which

stated that a higher value of β results in L̂ that is more “spiky”

and Ŝ that is more heavily diffused. We can take Case 1 as

the baseline for the other cases to compare against. In Case 2

where α is greater than in Case 1, there would be more non-

zero values in S⋆, making it more diffused. In contrast, with

smaller α in Case 3, the few non-zero elements of S⋆ become

more prominent against the backdrop of the other zero-valued

elements, making it less diffused. In Case 4 where the magni-

tude of non-zero elements in S⋆ is 10 times of that in Case 1,

the non-zero values are more pronounced and hence S⋆ is less

diffused. As the learned β matches our expectation from the-

ory for each case, this demonstrates that our unrolled model

is indeed able to automatically fine-tune the parameter β to

the different settings, which is an advantage over the classical

AccAltProj.

4.2. Face Dataset

Problem setup: We now test the proposed unrolled model on

the Yale Face Database [23] for the application of face model-
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Fig. 3. Means and standard deviations of errors. The “Unrolled (st)” curve stands for unrolled algorithm with soft-thresholding.

ing. The Yale database consists of 11 grayscale facial images

each for a total of 15 subjects. The 11 images, each having a

dimension of 243×320, show the same individual with differ-

ent facial expressions, lighting conditions or accessories such

as spectacles on the face. The task is of face modeling is to

recover the occlusion-free image for facial recognition [3].

We vectorise the images of each subject, which are

then stacked to form a 77760 × 11 matrix M⋆. The static

occlusion-free image of the subject forms the low-rank com-

ponent of the matrix while the varied facial expressions, shad-

ows, and objects covering the face form the low-rank com-

ponent. Since all 11 images share one common underlying

occlusion-free facial image, we assume that rank(M⋆) = 1.

Subjects 1 to 7 and Subjects 8 to 15 are used for training

and testing respectively. Similar to the experiment on syn-

thetic datasets, we use IRCUR to obtain initial estimates and

train the unrolled network for 8 epochs.

Results: Visual results are displayed in Figs. 4 and 5 for

the low rank and sparse parts respectively. The methods en-

able the separation of the original images into expressionless

faces and expression details. While the images learned by

IRCUR are poor, the proposed unrolled strategy adaptively

learned hyperparameters (γ, β) that result in sharper edges.

Tests were performed on an Intel(R) Core(TM) i7-1185G7

@3.00GHz, with 32Go RAM. The total (7 subjects) training

time is 300s. Testing times (per subject on average) are as

follows: IRCUR: 8s, AccAltProj: 0.75s and unrolled proce-

dure: 4.375s, showing that the unrolled procedure has a good

accuracy-computation time tradeoff.

5. CONCLUSION

We proposed an unrolled algorithm to solve the RPCA prob-

lem in its nonconvex form. This results in an unrolled version

of the AccAltProj algorithm but incorporates the Minimax

Concave Penalty. The underlying learning strategy, which has

the advantage of learning hyperparameters γ and β automat-

ically, allows us to improve the state-of-the-art performances

on benchmark synthetic datasets used in existing works as

well as on real-world face datasets. In future work, we plan to

improve on the training criterion in Section 3.3 as well as the

automatic learning of more parameters such as the ones that

parametrize the MCP, i.e., ζ and υ in (4).
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