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I. INTRODUCTION

In the late 1970, Y. Kuramoto and G. Sivashinsky introduced, independently, the scalar nonlinear partial differential equation (PDE) given by [START_REF] Kuramoto | Diffusion-induced chaos in reaction systems[END_REF], [START_REF] Sivashinsky | On flame propagation under conditions of stoichiometry[END_REF] Σ :

∂ t u + u∂ x u + λ 1 ∂ 2 x u + ∂ 4 x u = 0 x ∈ [0, 1], (1) 
where λ 1 ∈ R is known as the destabilizing coefficient.

The KS equation Σ is used to model phase turbulence in reaction-diffusion systems [START_REF] Kuramoto | Diffusion-induced chaos in reaction systems[END_REF] and thermo-diffusive instabilities in laminar flame fronts [START_REF] Sivashinsky | On flame propagation under conditions of stoichiometry[END_REF]. It is also used nowadays to model the fluctuations of fluid films on inclined supports [START_REF] Benny | Long waves in liquid film[END_REF], [START_REF] Lin | Finite amplitude side-band stability of a viscous fluid[END_REF], plasma instabilities [START_REF] Laquey | Nonlinear saturation of the trapped-ion mode[END_REF], and surface erosion [START_REF] Lauritsen | Noisy Kuramoto-Sivashinsky equation for an erosion model[END_REF].

Boundary stabilization of the trivial solution {u = 0} to Σ, in a suitable norm, has attracted some attention within the control community since [START_REF] Liu | Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation[END_REF], where boundary feedback controllers are designed for specific values of λ 1 . In particular, when λ 1 is unknown, adaptive boundary feedback laws are proposed in [START_REF] Kobayashi | Adaptive stabilization of the Kuramoto-Sivashinsky equation[END_REF]. In [START_REF] Coron | Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation[END_REF], an integral transformation is proposed to achieve exponential stabilization with arbitrary specified decay rate, provided that the initial condition is sufficiently small, and λ 1 avoids a set of critical values. In [START_REF] Cao | Boundary control of the Kuramoto-Sivashinsky equation with an exteral excitation[END_REF], under the assumption that λ 1 is smaller than 1, boundary feedback laws are designed in the presence of external perturbations. In [START_REF] Lhachemi | Local output feedback stabilization of a nonlinear Kuramoto-Sivashinsky equation[END_REF], boundary controllers are designed to achieve local output feedback stabilization, the output being the right Neumann trace ∂ x u(t, 1), local stabilization is achieved despite the value of λ 1 . The aforementioned boundary controllers, either assume λ 1 to be sufficiently small or the initial conditions to be sufficiently close to the origin, in which cases, only boundary measurements are required for the control design. This being said, the boundary stabilization problem, regardless of the value of λ 1 and the range of the initial condition, has not been addressed in existing literature, when the knowledge of u on the entire spatial domain [0, 1] is not available.

In earlier physics literature, however, the problem is studied under some sophisticated and realistic sensing scenarios. For example, in [START_REF] Tasev | Synchronization of Kuramoto-Sivashinsky equations using spatially local coupling[END_REF], multiple sensors situated at periodically separated spatial points are used. Each sensor measures an average of the state u over a given spatial interval. Furthermore, a boundary controller is designed at the location of each sensor. Another sensing scenario, applied to the Gray-Scott equation, is presented in [START_REF] Kocarev | Synchronizing spatiotemporal chaos of partial differential equations[END_REF], where the equation is controlled via time-periodic resets of the state, at periodically separated spatial points. Those results are validated via simulations only. Inspired by the aforementioned physics literature, in intermittent sensing scenarios, we identify state variables (or their derivatives) that are measured only on specific spatial sub-domains during specific intervals of time. For example, the KS equation considered in [START_REF] Maghenem | Boundary control of the Kuramoto-Sivashinsky equation under intermittent data availability[END_REF], such that, for some Y ∈ (0, 1), the state u is measured over the spatial domain [0, Y ] only during certain time intervals, and that u over the spatial domain [Y, 1] is available only during the remaining time intervals. As a result, boundary controls are imposed at x = 0, x = Y , and x = 1 to globally stabilize the trivial solution, under the assumption that λ 1 is known, but without constraining its value.

In this paper, we generalize the approach proposed in [START_REF] Maghenem | Boundary control of the Kuramoto-Sivashinsky equation under intermittent data availability[END_REF] to the case where λ 1 is unknown. In particular, under the sensing scenario proposed in the aforementioned reference, we design active boundary controllers at x = 0 and x = 1, while maintaining a zero boundary condition at x = Y . The proposed feedback law "adaptively" compensates the effect of the unknown parameter λ 1 , which can be any bounded function of time. As a result, we are able to guarantee GES of the origin {u = 0} in the L 2 norm.

The rest of the paper is organised as follows. The problem formulation is in Section II. Some preliminaries and key intermediate results are in Section III. The main result is in Section IV. Finally, numerical simulations are provided in Section V.

Notation. x f . We denote the time derivative of a function V either by d dt V or V . We may denote the derivative of a function of a scalar variable g by g ′ , and its second derivative by g ′′ . For a function of two variables f (t, x), f (x) denotes the function

t → f (t, x). For x ∈ R, sgn(x) = 1 if x > 0, = 0 if x = 0 and = -1 if x < 0.

II. PROBLEM FORMULATION

Consider the KS equation Σ under the following sensing scenario.

A. Intermittent Sensing

Following [START_REF] Maghenem | Boundary control of the Kuramoto-Sivashinsky equation under intermittent data availability[END_REF], we let Y ∈ (0, 1) and we assume that u([0, Y ]) is measured during certain intervals of time, and that u([Y, 1]) is measured during the remaining ones. More precisely, we assume that there exists a sequence of time instants {t i } ∞ i=1 , with t 1 = 0 and t i+1 > t i , such that

• u([0, Y ]) is available a.e. in I 1 := ∞ k=1 [t 2k-1 , t 2k ). • u([Y, 1]) is available a.e. in I 2 := ∞ k=1 [t 2k , t 2k+1 ).
Associated to this intermittent sensing, we consider the following dwell-time condition.

Condition 1: There exist four constants T 1 , T 2 , T 1 , T 2 > 0 such that, for each k ∈ {1, 2, ...}, we have

T 1 ≤ t 2k -t 2k-1 ≤ T 1 and T 2 ≤ t 2k+1 -t 2k ≤ T 2 .

•

B. Boundary Control Locations

We propose to control Σ at three different locations: at x = 0, x = Y , and x = 1. We, therefore, assimilate Σ to a system of two KS equations, interconnected by a boundary constraint at x = Y , given by

Σ 2 : ∂ t w + w∂ x w + λ 1 ∂ 2 x w + ∂ 4 x w = 0, x ∈ [0, Y ], ∂ t v + v∂ x v + λ 1 ∂ 2 x v + ∂ 4 x v = 0, x ∈ [Y, 1].
The boundary conditions imposed, for almost all t ≥ 0, are

w(Y ) = v(Y ) = ∂ x w(Y ) = ∂ x v(Y ) = 0, ∂ x w(0) = ∂ x v(1) = 0, w(0) = u 1 , v(1) = u 2 .
(

) 2 
where u 1 and u 2 are control inputs to be designed.

Remark 1: The boundary conditions w(Y ) = v(Y ) and ∂ x w(Y ) = ∂ x v(Y ) mean that, for almost all t ≥ 0, any function, whose restriction to [0, Y ] is w and whose restriction to [Y, 1] is v, is continuously differentiable at x = Y .
Remark 2: Under the boundary conditions in (2), we say that the control at x = Y is passive (since the boundary conditions at this location are set to zero), and that the control actions at x = 0 and at x = 1 are active.

Before stating our control goals, we first specify the concept of solutions to Σ by, first, specifying the solutions to Σ 2 .

Definition 1 (Solution to Σ 2 ): Given an initial condition

(w o , v o ) ∈ H 4 (0, Y )×H 4 (Y, 1), a corresponding solution to Σ 2 is any pair (w, v) ∈ L 2 ([T, T +1]; H 4 (0, Y ))×L 2 ([T, T + 1]; H 4 (Y, 1)) for all T ≥ 0 such that: 1) w(t = 0) = w o and v(t = 0) = v o a.e. in space;
2) the boundary conditions ( 2) are satisfied a.e. in time;

3) the pair (w, v) admit weak time derivatives; 4) the equations of Σ 2 are satisfied a.e. in space and time. Now, we specify the concept of solutions to Σ. Definition 2 (Solution to Σ): 

A function u : R ≥0 × [0, 1] → R is said to be a solution to Σ if there exists a solution (w, v) to Σ 2 such that for a.e. t ∈ R ≥0 , u(t, x) = w(t, x) a.e. in [0, Y ] and u(t, x) = v(t, x) a.e. in [Y, 1].

C. Control Objective

Our goal is to globally stabilize, in the L 2 norm, the trivial solution to Σ, under the proposed intermittent sensing scenario, while considering the situation described in the following assumption.

Assumption 1: The coefficient λ 1 is strictly positive, and both λ 1 and the constants (T 1 , T 2 , T 1 , T 2 ) in Condition 1 are unknown.

•

To address the latter two problems, when t ∈ I 1 , we design (u 1 , u 2 ) to stabilize the dynamics of w (defined on [0, Y ]), while maintaining an appropriate behavior for v (which evolves on [Y, 1]). The same reasoning applies when t ∈ I 2 , mutatis mutandis.

III. PRELIMINARIES

In this section, we introduce preliminary results that play a key role to prove our main results.

To start, we use Lions-Magenes Lemma (see for e.g. [START_REF] Showalter | Monotone operators in Banach space and nonlinear partial differential equations[END_REF], Page 106, Proposition 1.2) to conclude that, due to the used space of solutions and the structure of Σ, the maps 

t → Y 0 w(x) 2 dx and t → 1 Y v(x)
d dt Y 0 w(x) 2 dx = 2 Y 0 ∂ t w(x) w(x) dx, d dt 1 Y v(x) 2 dx = 2 1 Y ∂ t v(x) v(x) dx.
Next, we recall a key inequality that links the L 2 norm of a function with the L 2 norms of its first and second derivatives. This inequality has been introduced under different forms in [START_REF] Halperin | Integral inequalities connected with differential operators[END_REF], [START_REF] Müller | Über eine ungleichung zwischen den normen von f , f ′ und f ′′[END_REF], [START_REF] Nirenberg | Remarks on strongly elliptic partial differential equations[END_REF], [START_REF] Redheffer | Über eine beste ungleichung zwischen den normen von f , f ′ , f ′′[END_REF]. The finest version is recalled in the following lemma.

Lemma 1 ( [START_REF] Mitrinovic | Inequalities involving functions and their integrals and derivatives[END_REF], page 84, inequality 23.1):

Let b > a > 0 and f ∈ C 2 (a, b). Then, for each ϵ > 0, we have b a f ′ (x) 2 dx ≤ P ϵ + Q (b -a) 2 b a f (x) 2 dx + ϵ b a f ′′ (x) 2 dx. ( 3 
)
where P := 1 and Q := 12. Moreover, if P < 1 or Q < 12, then (3) cannot hold for all f ∈ C 2 (a, b) and for all ϵ > 0.

□

Using Lemma 1, we are able to prove the following result.

Lemma 2: Along each pair (w, v) solution to Σ 2 the Lyapunov function candidates V 1 (w) := 1 2 Y 0 w(x) 2 dx and V 2 (v) := 1 2 1 Y v(x) 2 dx verify, for a.a. t ≥ 0, V1 ≤ θ 1 V 1 - w(Y ) 3 -w(0) 3 3 -λ 1 w(Y )∂ x w(Y ) + λ 1 w(0)∂ x w(0) -w(Y )∂ 3 x w(Y ) + w(0)∂ 3 x w(0) + ∂ x w(Y )∂ 2 x w(Y ) -∂ x w(0)∂ 2 x w(0), V2 ≤ θ 2 V 2 - v(1) 3 -v(Y ) 3 3 λ 1 v(1)∂ x v(1) + λ 1 v(Y )∂ x v(Y ) -v(1)∂ 3 x v(1) + v(Y )∂ 3 x v(Y ) + ∂ x v(1)∂ 2 x v(1) -∂ x v(Y )∂ 2 x v(Y ),
where

θ 1 := 2λ 1 λ 1 + 12 Y 2 and θ 2 := 2λ 1 λ 1 + 12 (1-Y ) 2 . □
Using Lemma 2 and the boundary conditions in (2), we obtain the following differential inequalities for (V 1 , V 2 ) along the solutions to Σ 2 , which hold for a.e. t ≥ 0.

V1 ≤ θ 1 V 1 + u 3 1 3 + u 1 ∂ 3 x w(0), V2 ≤ θ 2 V 2 - u 3 2 3 -u 2 ∂ 3 x v(1). (4) 
IV. MAIN RESULT For system Σ 2 , the differential inequalities in (4) become

V1 ≤ θ 1 V 1 + u 3 1 3 + u 1 ∂ 3 x w(0), V2 ≤ θ 2 V 2 - u 3 2 3 -u 2 ∂ 3 x v(1). (5) 
Next, we show how to design the control inputs (u 1 , u 2 ).

A. Control Design

Given two functions θ1 , θ2 : R ≥0 → R >0 to be designed,

• on I 1 , we let u 2 = 0 and we choose u 1 such that

u 3 1 + 3u 1 ∂ 3 x w(0) ≤ -3 θ1 V 1 . (6) 
• on I 2 , we let u 1 = 0 and we choose u 2 = 0 such that

-u 3 2 -3u 2 ∂ 3 x v(1) ≤ -3 θ2 V 2 . (7) 
In the following lemma, we propose an explicit design of the control laws u 1 and u 2 to satisfy ( 6) and [START_REF] Liu | Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation[END_REF], respectively.

Lemma 3: To satisfy (6), we set

u 1 := κ(V 1 , ∂ 3 x w(0), θ1 ), where κ(•) := -sgn(∂ 3 x w(0))V 1 3 1 if |∂ 3 x w(0)| ≥ l(V 1 , θ1 ), k(V 1 , θ1 )
otherwise.

where

l(V 1 , θ1 ) := (1/3)[1 + 3 θ]V 2 3
1 and k is bounded for bounded arguments, and satisfies

k(V 1 , θ1 ) 3 + 3|k(V 1 , θ1 )|l(V 1 , θ1 ) ≤ -3 θ1 V 1 . (8) 
To satisfy [START_REF] Liu | Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation[END_REF], we set

u 2 := -κ(V 2 , ∂ 3 x v(1), θ2 ). □ Proof: We distinguish between the two cases. If |∂ 3 x w(0)| ≥ l(V 1 , θ1 ), then u 3 1 3 + u 1 ∂ 3 x w(0) ≤ V 3 1 3 -V 1 l(V 1 , θ1 ) ≤ -θ1 V 1 .
Otherwise, we have

u 3 1 3 + u 1 ∂ 3 x w(0) ≤ k(V 1 , θ1 ) 3 3 + |k 1 (V 1 , θ1 )|l(V 1 , θ1 ) ≤ -θ1 V 1 .
The same reasoning applies for u 2 . Remark 4: To verify (8), we can choose

k(V 1 , θ1 ) := -3[3 θ1 + 1]V 1/3 1
. Remark 5: The choice of the control laws in Lemma 3 guarantees that u 1 = 0 (respectively, u 2 = 0) whenever V 1 = 0 (respectively, V 2 = 0). More importantly, the map κ is bounded in the second argument, even if this one is not guaranteed to remain bounded. As a result, we guarantee boundedness of (u 1 , u 2 ) in closed loop provided that (V 1 , V 2 ) and ( θ1 , θ2 ) are bounded. Now, we illustrate how to design the adaptation parameters θ1 and θ2 , which compensate the effect of the destabilizing terms θ 1 V 1 and θ 2 V 2 in (5). Roughly speaking, θ1 (respectively θ2 ) is dynamically defined, for a given σ > 0, as a strictly-increasing function until we notice an exponential decrease of V 1 (respectively V 2 ) at the rate σ > 0. In which case, we freeze the value of θ1 (respectively θ2 ). Note that θ1 (respectively θ2 ) will end up being bounded, since after θ1 (respectively θ2 ) exceeds θ 1 (respectively, θ 2 ), V 1 (respectively V 2 ), along solutions, will decrease exponentially at a rate in the range of θ1 -θ 1 (respectively, θ2 -θ 2 ). Strictly speaking, the behavior of ( θ1 , θ2 ) is governed by the following algorithm. Task 1. On each interval [t 2k-1 , t 2k ) ⊂ I 1 , we set θ2 = 0 and, if V 1 (t 2k-1 ) > V 1 (t 2k-3 )e -σ(t 2k-1 -t 2k-3 ) we set θ1 := ∆ 1 > 0, otherwise we set θ1 := 0. Task 2. On each interval [t 2k , t 2k+1 ) ⊂ I 2 , we set θ1 := 0 and, if V 2 (t 2k ) > V 2 (t 2k-2 )e -σ(t 2k -t 2k-2 ) we set θ2 := ∆ 2 > 0, otherwise we set θ2 := 0.

Task 3. The initial conditions are non negative, i.e. θ1 (0) ≥ 0 and θ2 (0) ≥ 0, and, on the interval [t 1 , t 3 ], we set θ1 = θ1 (0) and θ2 = θ2 (0).

B. Closed-Loop Analysis

To analyse the resulting closed-loop system, we introduce the following Lemma.

Lemma 4: Consider the switched differential inequalities

           V1 ≤ (θ 1 -θ1 )V 1 V2 ≤ θ 2 V 2 a.e. in I 1 , V1 ≤ θ 1 V 1 V2 ≤ (θ 2 -θ2 )V 2 a.e. in I 2 . (9) 
where

(V 1 , V 2 ) ∈ R ≥0 × R ≥0 , θ 1 and θ 2 are positive con- stants, I 1 := ∪ ∞ k=1 [t 2k-1 , t 2k ), and 
I 2 := ∪ ∞ k=1 [t 2k , t 2k+1 ), with {t i } ∞
i=1 a sequence of time instants such that t 1 = 0 and t i+1 > t i , and θ1 , θ2 are defined, for some σ > 0, according to Task 1.-Task 3.. Furthermore, suppose that there exist positive constants T 1 , T 2 , T 1 , and T 2 such that Condition 1 holds. Then, there exists a positive constant κ such that, for each locally absolutely continuous solution (V 1 , V 2 ) to (9), we have that ( θ1 , θ2 ) is bounded, and

V 1 (t) + V 2 (t) ≤ κ(V 1 (0) + V 2 (0))e -σt ∀t ≥ 0. ( 10 
)
□ Proof: The proof follows in two steps. First, we prove that ( θ1 , θ2 ) are bounded by showing that they become constant after some finite time T > 0. The second step shows that the Lyapunov function candidate

W := V 1 + V 2 decays exponentially to zero.
To prove that ( θ1 , θ2 ) become constants after some finite time T > 0, we use contradiction. That is, we assume that there is no finite time T > 0 such that θ1 (t) = θ2 (t) = 0 for all t ≥ T . This means, according to Task 1.-Task 2. that there exists an infinite number of time intervals, each one having a length greater or equal than min{T 1 , T 2 }, on which, θ1 and θ2 are linearly increasing, and thus lim t→∞ θ1 (t) = lim t→∞ θ2 (t) = ∞.

Let θi := θ i -θi . It follows that there must exists k ′ ∈ N * such that, for all integers k ≥ k ′ , we have θ1 (t 2k-3 ) < 0, θ2 (t 2k-2 ) < 0, and

θ1 (t 2k-3 )T 1 + θ 1 T 1 ≤ -σ(T 1 + T 2 ), θ2 (t 2k-2 )T 2 + θ 2 T 2 ≤ -σ(T 1 + T 2 ). ( 11 
)
As a consequence of ( 11), for all k ≥ k ′ , we have

θ1 (t 2k-3 )[t 2k-2 -t 2k-3 ] + θ 1 [t 2k-1 -t 2k-2 ] ≤ -σ[t 2k-1 -t 2k-3 ], θ2 (t 2k-2 )[t 2k-1 -t 2k-2 ] + θ 2 [t 2k -t 2k-1 ] ≤ -σ[t 2k -t 2k-2 ]. (12) 
Using Grönwall-Bellman inequality, for all k ≥ 3, we obtain

V 1 (t 2k-1 ) ≤ V 1 (t 2k-3 )e t 2k-2 t 2k-3 θ1(t)dt+θ1[t2k-1-t2k-2] ≤ V 1 (t 2k-3 )e θ1(t2k-3)[t2k-2-t2k-3]+θ1[t2k-1-t2k-2] , V 2 (t 2k ) ≤ V 2 (t 2k-2 )e t 2k-1 t 2k-2 θ2(t)dt+θ2[t2k-t2k-1] ≤ V 2 (t 2k-2 )e θ2(t2k-2)[t2k-1-t2k-2]+θ2[t2k-t2k-1] .
(13) From ( 12)-( 13), we conclude that, for all k ≥ k ′ , we have

V 1 (t 2k-1 ) ≤ V 1 (t 2k-3 )e -σ[t 2k-1 -t 2k-3 ] , V 2 (t 2k ) ≤ V 2 (t 2k-2 )e -σ[t 2k -t 2k-2 ] .
By induction, the latter implies that θ1 is constant for all t ≥ t 2k ′ -1 and θ2 is constant for all t ≥ t 2k ′ , which yields to a contradiction.

We analyze now the Lyapunov function candidate W . For this purpose, we define the sequences of time instants

{T i } ∞ i=0 and {T ′ i } ∞ i=1
, such that T i := t 2i+1 and T ′ i := t 2i . In particular, we note that, for all i ∈ {0, 1, 2, ...}, we have

T 1 + T 2 ≤ T i+1 -T i ≤ T 1 + T 2 , T 1 + T 2 ≤ T ′ i+2 -T ′ i+1 ≤ T 1 + T 2 .
Let τ 1 ∈ {T i } ∞ i=0 be the smallest time instant from which θ1 is constant, and τ 2 ∈ {T ′ i } ∞ i=1 be the smallest time instant from which θ2 is constant. For all i ∈ {1, 2, ...}, such that

T i ≥ τ 1 and T ′ i ≥ τ 2 , we have V 1 (T i+1 ) ≤ V 1 (T i )e -σ(Ti+1-Ti) , V 2 (T ′ i+1 ) ≤ V 2 (T ′ i )e -σ(T ′ i+1 -T ′ i ) .
By induction, for all i ∈ {1, 2, ...} such that T i ≥ τ 1 and for all t ∈ [T i , T i+1 ], we have

V 1 (t) ≤ V 1 (T i )e θ1(T 1+T 2 ) ≤ V 1 (τ 1 )e θ1(T 1+T 2) e -σ(Ti-τ1) . (14) Similarly, for all i ∈ {1, 2, ...} such that T ′ i ≥ τ 2 and for all t ∈ [T ′ i , T ′ i+1 ], we have V 2 (t) ≤ V 2 (τ 2 )e θ2(T 1+T 2) e -σ(T ′ i -τ2) . (15) 
In ( 14) and ( 15), we, respectively, use the inequalities e -σ(Ti-τ1) ≤ e -σ(t-τ1) e σ(t-Ti) ≤ e -σ(t-τ1) e σ(T 1 +T 2)

e -σ(T ′ i -τ2) ≤ e -σ(t-τ2) e σ(T 1+T 2) .

We can, therefore, rewrite ( 14) and [START_REF] Showalter | Monotone operators in Banach space and nonlinear partial differential equations[END_REF], respectively, as

V 1 (t) ≤ V 1 (τ 1 )e (θ1+σ)(T 1+T 2 ) e -σ(t-τ1) ∀t ≥ τ 1 , V 2 (t) ≤ V 2 (τ 2 )e (θ2+σ)(T 1+T 2 ) e -σ(t-τ2) ∀t ≥ τ 2 . (16) 
Next, by observing that

V 1 (τ 1 ) ≤ V 1 (0)e θ1τ1 and V 2 (τ 2 ) ≤ V 2 (0)e θ2τ2 ,
we can re-express ( 16) as

V 1 (t) ≤ V 1 (0)e (θ1+σ)(T 1+T 2+τ1 ) e -σt ∀t ≥ τ 1 , V 2 (t) ≤ V 2 (0)e (θ2+σ)(T 1+T 2+τ2 ) e -σt ∀t ≥ τ 2 . (17) 
Moreover, we have that

V 1 (t) ≤ V 1 (0)e (θ1+σ)τ1 e -σt ∀t ≤ τ 1 , V 2 (t) ≤ V 2 (0)e (θ2+σ)τ2 e -σt ∀t ≤ τ 2 . (18) 
Finally, by denoting,

µ := max e (θ1+σ)(T 1+T 2+τ1 ) ; e (θ2+σ)(T 1+T 2+τ2) ,
and based on ( 17) and ( 18), we obtain W (t) ≤ µW (0)e -σt for all t ≥ 0. To complete the proof, we show that µ can be upper-bounded by a constant independent on

(V 1 (0), V 2 (0)).
This can be done by proving that the time instants (τ 1 , τ 2 ) are independent on (V 1 (0), V 2 (0)).

Note that, for each t ∈ [t 2k-1 , t 2k ] ⊂ I 1 , we have V1 (t) ≤ θ 1 -θ1 (t 2k-1 ) V 1 (t), and, for each [t 2k , t 2k+1 ], we have

V1 (t) ≤ θ 1 V 1 (t). Let V 1 be the locally absolutely continuous solution to the switched system    V 1 = θ 1 -θ1 (t 2k-1 ) V 1 for a.e. t ∈ I 1 , V 1 = θ 1 V 1 for a.e. t ∈ I 2 ,
starting from the initial condition V 1 (0) = V 1 (0), and θ1 designed as in Task 1. while using V 1 instead of V 1 , and θ1 (0) > 0. Let τ1 ∈ {t 2i+1 } ∞ i=0 be the smallest time instant, from which, θ1 is constant. From previous computations, we know that V 1 (t) ≤ e (θ1+σ)(T1 +T 2+τ1) V 1 (0)e -σt for all t ≥ 0. The time instant τ1 is independent on V 1 (0) since the rate of convergence V 1 depends only θ 1 -θ1 (t 2k+1 ), θ, and the intervals I 1 and I 2 . It also means that θ1 can be seen as a function of time only. Let us now note that the dynamical

map (V 1 , t) → θ 1 -θ1 (t 2k-1 ) V 1 if t ∈ I 1 θ 1 V 1 if t ∈ I 2 is locally Lipshitz, which means that, under the continuity of V 1 and V 1 , V 1 (t) ≤ V 1 (t) ≤ e (θ1+σ)(T 1+T 2+τ1 ) V 1 (0)e -σt
for all t ≥ 0. The same reasoning applies for V 2 , which concludes the proof.

We are now ready to state our main result. Theorem 1: Consider system Σ under the sensing scenario in Section II-A. Let Condition 1 and Assumption 1 hold. Under the boundary conditions in (2), we let (u 1 , u 2 ) := (κ(V 1 , ∂ 3

x w(0), θ1 ), 0) on I 1 and (u 1 , u 2 ) := (0, -κ(V 2 , ∂ 3

x v(1), θ2 )) on I 2 , where κ(•) is introduced in Lemma 3, and ( θ1 , θ2 ) are designed, for some σ > 0, according to Task 1.-Task 3.. Then, the set A := {(u, θ1 , θ2 ) : u = 0} is L 2 -GES. Namely, for each θ1 (0) and θ2 (0), there exists κ > 0 such that, for each solution u to Σ with initial condition u o , we have ||u(t)|| 2 ≤ κ||u o || 2 e -1 2 σt for all t ≥ 0. Moreover, u 1 and u 2 are bounded and converge to zero. □ Proof: When ( 6) and ( 7) are satisfied, we conclude that the Lyapunov functions (V 1 , V 2 ), along the solutions to Σ 2 , form a solution to (9). Hence, using Lemma 4, we conclude that the pair (V 1 , V 2 ) satisfies [START_REF] Cao | Boundary control of the Kuramoto-Sivashinsky equation with an exteral excitation[END_REF]. As a result, the set A is L 2 -GES. Concerning the boundedness of the control inputs, it is, due to the choice of κ in Lemma 3, a direct consequence of the boundedness of the Lyapunov function candidates V 1 and V 2 and of the adaptation parameters θ1 and θ2 . Similarly, the asymptotic convergence of (u 1 , u 2 ) to zero is a straightforward consequence of the convergence of (V 1 , V 2 ) to zero.

V. SIMULATIONS

The numerical scheme that we use to simulate Σ in closed loop is an adaptation of the mesh-free collocation method using radial basis functions (RBF)s; see [START_REF] Uddin | A mesh-free numerical method for solution of the family of Kuramoto-Sivashinsky equations[END_REF]. The first-and the third-order spatial derivatives that appear in the control laws are calculated using Euler forward and Euler backward schemes. The Lyapunov functions V 1 and V 2 are calculated via Riemannian sums. Furthermore, we use multiquaric RBFs, which depend on a shape parameter c ∈ R. To make sure that the simulation is depicting the actual behavior of Σ in closed-loop, we use the same shape parameter (namely, c = 0.4) when simulating both the closed-loop and the openloop systems. The control input is delayed with a single time step. The simulations are performed on Matlab ® R2022b 1 .

For the obtained simulations, the initial time is t o = 0, the final time is t f = 8 × 10 -3 , and the time step is ∆t = 10 -7 . We select N + 1 uniformly distributed collocation points on the interval [0, Y ], with Y = 0.5, from x o = 0 to x N = Y , we select the same number of collocation points on [Y, 1], where N = 9, which yields to the spacediscretisation step ∆x ≈ 0.0556. We select the anti-diffusion parameter λ 1 = 4π 2 /0.25 + 50, for which, the linearized KS equation is unstable [START_REF] Liu | Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation[END_REF]. The initial condition u o is given by u o (x) = -3(cos(4πx) -1) for all x ∈ [0, 1]. The sequences of time intervals I 1 and I 2 are given by : I 1 = [0, 1) ∪ [2, 2.8) ∪ [3.9, 5) ∪ [5.5, 6.5) ∪ [7, 7.6) × 10 -3 and I 2 = [1, 2)∪[2.8, 3.9)∪[5, 5.5)∪[6.5, 7)∪[7.6, 8)×10 -3 . We set θ1 (0) = θ2 (0) = 0 and we choose a linear increment, i.e. on the time intervals where θ1,2 should be increasing, we take θ1,2 (n) = θ1,2 (n -1) + ∆, where ∆ = 0.01. Finally, the decay rate required is σ = 100.

The open-loop response, which is unstable, is shown in Figure 1. The convergence to zero happens in closed-loop as it can be seen in Figure 2. The inputs (u 1 , u 2 ) are discontinuous boundary controllers at x = 0 and x = 1, respectively; see Figure 3. Moreover, it is interesting to observe that the continuous phase of u 1 (i.e. when |∂ 3

x w(0)| < l(V 1 , θ1 )) happens only on [0, 1]. The Lyapunov function candidates (V 1 , V 2 ) and their sum W = V 1 + V 2 , along the closed-loop solutions, are illustrated in Figure 4. In this last figure, we can see the impact of the intermittent sensing as V 1 (resp. V 2 ) decays on I 1 (resp. I 2 ) and increases on I 2 (resp. I 1 ). We also observe the existence of a parameter-adaptation phase, since the decrease of V 1 is observed only starting from [2, 2.8).

VI. CONCLUSION

We studied stabilization of the origin for the nonlinear KS equation subject to intermittent sensing when the coefficient λ 1 is unknown. Adaptive boundary controllers are designed to achieve GES in the L 2 sense. In future work, we would like to obtain robustness results for the perturbed equation, under the proposed sensing scenario, by guaranteeing inputto-state stability (ISS). Furthermore, solving the same problem using active control at x = 0 and x = Y and null boundary conditions at x = 1, while guaranteeing input boundedness, is open, to the best of our knowledge. 

Remark 3 :

 3 According to Definition 1, the availability of w(t, [0, Y ]) for a.e. t ∈ I 1 implicitly suggests the availability of w k x (t, [0, Y ]), k ∈ {1, 2, 3}, for a.a. t ∈ I 1 . Similarly, the availability of v(t, [Y, 1]) for a.e. t ∈ I 2 implicitly suggests the availability of v k x (t, [Y, 1]), k ∈ {1, 2, 3}, for a.e. t ∈ I 2 .
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 1 Fig. 1: Open-loop response.

Fig. 2 :

 2 Fig. 2: Closed-loop response.
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 3 Fig.3: The control inputs.

Fig. 4 :

 4 Fig. 4: Lyapunov function candidates.

  For x ∈ R n , we define |x| := √ xx ⊤ , where x ⊤ is the transpose of x. Depending on the context, a.e. means either almost every or almost everywhere. Let X be a Banach space with a norm ||.|| X . Let p ∈ [1, ∞], we denote by L p ([a, b]; X), where a, b ∈ R, the space of measurable functions u : [a, b] → X, with finite p norm ||.|| p , where ||u|| p := := ess sup t∈[a,b] ||u(t)|| X . If X = R, then we write L p (a, b) instead of L p ([a, b]; R). For k ∈ N, we denote by H k (a, b) the Sobolev space of functions f ∈ L 2 (a, b), with weak derivatives, up to order k, in L 2 (a, b). For k ∈ N∪{∞}, we denote by C k (a, b) the space of k-times continuously differentiable functions on (a, b).Depending on the context, g(y) denotes either the function g evaluated at a given point y of its domain, or the function g itself. The partial derivative of f (t, x) with respect to t is denoted by ∂ t f . The k th partial derivative of f (t, x) with respect to x is denoted by ∂ k

	||u||		
		1	
	b a ||u(t)|| p X dt	p	if p < ∞, and

∞

  2 dx are locally absolutely continuous and that the Leibniz integral rule holds a.e. in time. This means that, for a.e. t ∈ R ≥0 , we have

The simulation code can be found at https://github.com/BelhadjoudjaMohamedCamil/Kuramoto-Sivashinsky23.git