Adaptive Stabilization of the Kuramoto-Sivashinsky Equation Subject to Intermittent Sensing - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Adaptive Stabilization of the Kuramoto-Sivashinsky Equation Subject to Intermittent Sensing

Résumé

We study in this paper the one-dimensional Kuramoto-Sivashinsky equation (KS), subject to intermittent sensing. Namely, we measure the state on a sub-interval of the spatial domain during certain intervals of time, and we measure the state on the remaining sub-interval of space during the remaining intervals of time. As a result, we assign an active control at the boundaries of the spatial domain, and we set a zero boundary condition at the junction of the two spatial subintervals. Under the assumption that the destabilizing coefficient is unknown, we design adaptive boundary controllers that guarantee global exponential stability (GES) of the trivial solution in the L 2 norm. Numerical simulations are performed to illustrate our results.
Fichier principal
Vignette du fichier
23_ACC_BELHADJOUDJA.pdf (2.71 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04160890 , version 1 (12-07-2023)

Identifiants

Citer

Mohamed Camil Belhadjoudja, Mohamed Maghenem, Emmanuel Witrant, Christophe Prieur. Adaptive Stabilization of the Kuramoto-Sivashinsky Equation Subject to Intermittent Sensing. ACC 2023 - American Control Conference, May 2023, San Diego, United States. pp.1608-1613, ⟨10.23919/ACC55779.2023.10155853⟩. ⟨hal-04160890⟩
293 Consultations
143 Téléchargements

Altmetric

Partager

More