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Abstract. Convolutional Neural Networks (CNNs) have enabled major advances
in image classification through convolution and pooling. In particular, image
pooling transforms a connected discrete lattice into a reduced lattice with the
same connectivity and allows reduction functions to consider all pixels in an
image. However, there is no pooling that satisfies these properties for graphs. In
fact, traditional graph pooling methods suffer from at least one of the following
drawbacks: Graph disconnection or overconnection, low decimation ratio, and
deletion of large parts of graphs. In this paper, we present three pooling methods
based on the notion of maximal independent sets that avoid these pitfalls. Our
experimental results confirm the relevance of maximal independent set constraints
for graph pooling.

Keywords: Graph Neural Networks · Graph Pooling · Graph Classification ·
Maximal Independent Set · Edge Selection

1 Introduction

Convolutional Neural Networks (CNNs) achieved major advances in computer vision
by learning abstract representations of images thought convolution and pooling. A
convolution is a linear filter applied to each pixel of an image which combines its value
with the one of its surrounding. The resulting value is usually transformed via a non
linear function. The pooling step reduces the size of an image by grouping a connected
set of pixels, usually a small squared window, in a single pixel whose value is computed
from the ones of window’s pixel. Graph Neural Networks (GNNs) take their inspiration
from CNNs and aim at transferring advances performed on images to graphs. However,
most of CNNs use images with a fixed structure (shape). While using GNN both the
structure of a graph and its content varies from one graph to another. Convolution and
pooling operations must thus be adapted for graphs.

A GNN may be defined as a sequence of simple graphs (G(0), . . . ,G(m)) where
each G(l) = (V(l), E(l)) is produced by layer l from G(l−1). Sets V(l) and E(l) denote
respectively the set of vertices and the set of edges of the graph. Given nl = |V(l)|, the
graph G(l) may be alternatively defined as G(l) = (A(l),X(l)) where A(l) ∈ Rnl×nl
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is the weighted adjacency matrix of G(l) while X(l) ∈ Rnl×fl encodes the nodes’
attributes of G(l) whose dimension is denoted by fl. Each line u of X(l) encodes the
feature of the vertex u and is denoted by x

(l)
u .

The final graph G(m) of a GNN is usually followed by a Multi-Layer Perceptron
(MLP) applied on each vertex for a node prediction task or by a global pooling followed
by a MLP for a global graph classification task.

Graph convolution. This operation is mainly realized by a message passing mechanism
and allows to learn a new representation for each node by combining the information of
the mentioned node and its neighborhood. The neighborhood information is obtained
by aggregating all the adjacent nodes information. Therefore, the message passing
mechanism can be expressed as follows [8]:

x(l+1)
u = UPDATE(l)(x(l)u , AGGREGATE(l)({x(l)

v ,∀v ∈ N (u)})) (1)

where N (u) is the neighborhood of u and UPDATE, AGGREGATE correspond to
differentiable functions.

Let us note that convolution operations should be permutation equivariant, i.e. for
any permutation matrix P ∈ {0, 1}nl×nl defined at level l, if f denotes the convolution
defined at this layer we must have: f(PX(l)) = Pf(X(l)). Note that this last equation,
together with equation 1, hides the matrix A(l) which nevertheless plays a key role in
the definition of the AGGREGATE function by defining the neighborhood of each
node.

Global pooling. For graph level tasks, a fixed size vector needs to be sent to the MLP.
However, due to the variable sizes of graphs within a dataset, global pooling must
aggregate the whole graph information into a fixed size vector. This operation can
be performed by basic operators like sum, mean or maximum. Let note us that more
complex aggregation strategies [19] also exist. To insure that two isomorphic graphs
have the same representation, global pooling must be invariant to permutations, i.e. for
any permutation matrix P , defined at layer l we must have g(PX(l)) = g(X(l)) where
g denotes the global pooling operation.

Hierarchical pooling. Summing up a complex graph into a fixed size vector leads
necessarily to an important loss of information. The basic idea to attenuate this loss
consists in gradually decreasing the size of the input graph thanks to pooling steps
inserted between convolution layers. The resulting smaller final graph induces a reduced
loss of information in the final global pooling step. This type of method is called a
hierarchical pooling [12,18]. The hierarchical pooling step, as the convolution operation
should be permutation equivariant in order to keep information localised on desired
nodes. Conversely, global pooling must be permutation invariant since it computes a
graph level representation. Let note that, similar to CNNs, the reduced graph leads to
a reduction of parameters in the next convolution. However, this reduction is mitigated
by the learned part of hierarchical pooling. Moreover, let us consider a line graph with
a signal optimally sampled on its vertices. As shown by [2], most of GNN correspond
to a low pass filter. Applying a GNN on this line graph, hence decreases the maximal
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frequency of our signal on vertices producing an over sampling according to the Nyquist
theorem. More details on optimal sampling on graphs may be found in [1,15].

Given a graph G(l) = (A(l),X(l)) defined at layer l and its reduced version G(l+1) =
(A(l+1),X(l+1)) defined at level l+1, the connection between G(l) and G(l+1) is usually
insured by the reduction matrix S(l) ∈ Rnl×nl+1 where nl and nl+1 denote respectively
the sizes of G(l) and G(l+1). If S(l) is a binary matrix, each column of S(l) encodes the
vertices of G(l) which are merged into a single vertex at layer l + 1. If S(l) is real, each
line of S(l) encodes the distribution of each vertex of G(l) over the vertices of G(l+1).
In both cases, we require S(l) to be line-stochastic.

Given G(l) = (A(l),X(l)) and S(l), the feature matrix X(l+1) of G(l+1) is defined
as follows:

X(l+1) = S(l)⊤X(l) (2)

This last equation defines the attribute of each surviving vertex vi as a weighted sum of
the attributes of the vertices vj of G(l) such that S(l)

ji ̸= 0.
The adjacency matrix of G(l+1) is defines by:

A(l+1) = S(l)⊤A(l)S(l) (3)

Let us suppose that S(l) is a binary matrix. Each entry (i, j) of A(l+1) defined by
equation 3 is equal to

∑nl

r,s A
(l)
r,sS

(l)
r,iS

(l)
s,j . Hence two surviving vertices i and j are

adjacent in G(l+1) if it exists at least two adjacent non surviving vertices r and s such
that r is merged onto i (S(l)

r,i = 1) and s onto j(S(l)
s,j = 1).

Pooling methods There are two main families of pooling methods. The first family,
called Top-k methods [7,12], is based on a selection of relevant vertices based on a
learned criteria. The second family is based on node’s clustering methods as in DiffPool [18].

Top-k methods such as gPool [7] learn a score attached to each vertex by computing
the scalar product between the vertex’s attributes and one or several learned vectors.
Alternatively, a GNN can be used to compute a relevance vector for each vertex as
in SagPool [12]. Next, a fixed ratio pooling is used to select the k vertices with a
highest score. Unselected vertices are dropped. In this case, two surviving vertices in the
reduced graph will be adjacent only if they were adjacent before the reduction. This last
point may result in the creation of disconnected reduced graphs. This disconnection may
be avoided by increasing the density of the graph, using power 2 or 3 of its adjacency
matrix or by using the Kron’s reduction [3] instead of equation 3. Nevertheless, let
us note that simply discarding all non surviving vertices leads to an important loss
of information. We proposed in a previous contribution [14], a top-k pooling method
called MIVSPool which avoids such drawbacks by using a maximal independent vertex
set and graph contraction operations.

Clustering based methods learn explicitly or implicitly the matrix S(l) which encodes
the reduction of a set of vertices at level l into a single vertex at level l + 1. Methods
(eg. [18]) learning S(l) explicitly have to use a predetermined number of clusters.
This last point forbids the use of graphs of different sizes. Additionally, these methods
generally result in dense matrices S(l) which then induce dense adjacency matrices at
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Fig. 1: General architecture of our GNN. Each block is composed of a convolution layer
followed by a pooling layer. Features learned after each block are sent to the next block
and a Readout layer. The K vectors resulting from each Readout are concatenated to
have several levels of description of the graph and, finally, the concatenation is sent to
a Multi-Layer Perceptron.

level l + 1 (equation 3). As a consequence, graphs produced by these pooling methods
have a density close to 1 (i.e. a complete graph or an almost complete graph).

An alternative strategy consists in learning S(l) only implicitly. Graph pooling such
as the maximal matching method used in EdgePool [4] may be associated to this strategy.
A maximal matching of a graph G(l) = (V(l), E(l)) is a subset M of E(l), where no two
edges are incident to a same vertex, and every edge in E(l) \M is incident to one of the
two endpoints of an edge in M . EdgePool is based on a maximal weighted matching
technique, i.e. a maximal matching of maximal weight. The weight of each edge, called
its score, is learned using the attributes of its two end points. The selected edges are
then contracted to form a specific cluster. Note that the use of a maximal weighted
matching may result in some vertices not incident to any selected edges. These vertices
are left unchanged. The sequential algorithm [4] has been parallelized by Landolfi [11].
Unlike EdgePool, Landolfi [11] learns a score attached to each vertex and sort all
the vertices of the graph according to their score. The weight of each edge is then
defined from a combination of the rank of its incident nodes. The similarity between
two adjacent vertices is in this case not taken into account. Moreover, both EdgePool
and Landolfi [11] have a decimation ratio lower than 50%, which suggests the need for
more pooling steps or a poor abstraction in the final graph of the GNN.

In this paper, we propose an unified family of graph pooling methods which maintains
a decimation ratio of approximately 50%, while simultaneously preserving both the
structure of the original graph and its attribute information. We achieve this by using a
Maximal Independent Set (MIS) [9] to select surviving edges that are evenly distributed
throughout the graph, and by assigning non-surviving elements to those that do survive.
As a result, we avoid any subsampling or oversampling issues that may arise (see
Figure 2). The source code of the paper is available on the CodeGNN ANR Project
Git repository: https://scm.univ-tours.fr/projetspublics/lifat/codegnn.
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Similarity 
Function

Pooling 
method

1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

Graph 
G(l) Matrix S

X(l+1) = S’T X(l) 
A(l+1) = ST A(l) S

Graph 
G(l+1)

Fig. 2: General proposition of our three graph poolings. Each edge is associated to a
similarity score (Section 2). Based on this similarity, a MIS on edge is computed from
which a reduction matrix S is derived. Applying S to both feature and structure leads
to a reduced graph G(l+1).

2 Maximal Independent Sets and Graph Poolings

2.1 Maximal Independent Set (MIS) and Meer’s algorithm

Definition. Let X be a finite set and N a neighborhood function defined on X such
that the neighborhood of each element includes the element itself. A subset J of X is
a Maximal Independent Set (MIS) if the two following equations are fulfilled:

∀(x, y) ∈ J 2 : x /∈ N (y) (4)
∀x ∈ X − J ,∃y ∈ J : x ∈ N (y) (5)

The elements of J are called the surviving elements or survivors. Equations (4)
and (5) respectively states that two surviving elements can’t be neighbors and each non-
surviving element has to be in the neighborhood of at least one element of J . These
two equations can be interpreted as a subsampling operation where Equation (4) is a
condition preventing the oversampling (two adjacent vertices cannot be selected) while
Equation (5) prevents subsampling: Any non-surviving element is at a distance 1 from
a surviving one.

A way to compute a MIS is the Meer’s algorithm [13] which only involves local
computations and is therefore parallelizable. This algorithm attaches a variable to each
element. Let us denote by J the current maximal independent set at an iteration of the
algorithm, and let us additionally consider the value vx attached to an element x. Then
x is added to J at current iteration if vx is maximal among the values of N (x)−N (J ),
where N (J ) denotes J and its neighbors. Meer’s algorithm provides thus a maximal
matching such that each of its element is a local maxima at a given step of the algorithm.
We can thus interpret the resulting set as a maximal weight independent set.

Assignment of non-surviving elements. After a MIS, X is split in two subsets: the
surviving elements contained in the set J and the non-surviving elements contained
in X −J . Simply considering J as a digest of X may correspond to an important loss
of information which simply discards X − J . In order to avoid such a loss we allow
each non surviving element contained in X −J to transfer its information to a survivor.
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Fig. 3: Schema of our proposed methods on a toy graph. Number on each edge
corresponds to its score s and the bold edges indicates the surviving ones. Each group
of vertices with the same color represent a cluster. Figures 3a and 3b are common steps
for MIES and MIESCut.

The possibility of such a transfer is insured thanks to equation 5 which states that each
non surviving element is adjacent to at least one survivor. We can thus associate to any
non surviving element xj a surviving neighbor denoted by σ(xj). At layer l, the global
assignment of non-surviving elements onto surviving ones is encoded by the reduction
matrix S(l) ∈ Rnl×nl+1 such that :

S
(l)
ii = 1 ∀xi ∈ J and S

(l)
jσ(j) = 1 ∀xj ∈ X − J (6)

with S
(l)
ij = 0 otherwise.

2.2 Maximal Independent Sets for Graph Pooling

Based on the work [9] defined within the image partitioning framework we introduce
in the following, three adaptations of these methods in order to define learnable pooling
steps. In the following sections, the adjacency matrix A(l+1) is obtained from A(l) and
a binary version of S(l) using equation 3.

Maximal Independent Edge Set. Most of pooling methods are based on a projection
score for each vertex. This strategy is based on the assumption that we can learn features
characterizing relevant vertices for a given classification task. However, even if this
hypothesis holds, two adjacent vertices may have similar scores and the choice of the
survivor is in this case arbitrary. An alternative strategy consists in merging similar
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nodes. Given a GNN with hierarchical pooling, the graph sequence corresponds to an
increasing abstraction from the initial graphs. Consequently, vertices encoded at each
layer of the GNN encode different types of information. Based on this observation, we
decided to learn a similarity measure between adjacent vertices at each layer. Inspired
by [16], we define the similarity at layer l between two adjacent vertices u and v as
s
(l)
uv = exp(−∥W(l).(xu − xv)∥) where xu and xv are the features of vertices u and v,
W(l) is a learnable matrix and ∥.∥ is the L2 norm.

Given the maximal weighted matching J (l) defined at level l, each vertex of G(l) is
incident to at most one edge of J (l). If u ∈ V(l) is not incident to J (l) its features are
just duplicated at the next layer. Otherwise, u is incident to one edge euv ∈ J (l) and
both u and v are contracted at the next layer. Since u and v are supposed to be similar
the attributes of the vertex encoding the contraction of u and v at the next layer must be
symmetrical according to u and v. To do so, we first define the attribute of euv as

xuv =
1

2
(x(l)

u + x(l)
v ) (7)

where xu and xv are the features of vertices u and v. The attribute of the merged vertex
is then defined as suvxuv .

An equivalent update of the attributes of the reduced graph may be obtained by
computing the matrix S(l) encoding the transformation from G(l) to G(l+1). This matrix
can be defined as S

(l)
ii = 1 if i is not incident to J (l), and by selecting arbitrary

one survivor among {u, v} if euv ∈ J (l). If u is selected we set S
(l)
uu = S

(l)
vu =

1
2suv . All remaining entries of S(l) are set to 0. Matrix X(l+1) can then be obtained
using equation 2. We call this method MIESPool and the main steps are presented in
Figures 3a to 3c.

Maximal Independent Edge Set with Cut (MIESCut). Graph reduction through maximal
weighted matching has two main drawbacks within the GNN framework. First, a maximal
matching may produce many vertices not adjacent to the set of selected edges. Such
vertices are just copied to the next level which induce a low decimation ratio (lower than
50%). Given that, the number of layers of a GNN is usually fixed, this last drawback
may produce a graph with an insufficient level of abstraction at the final layer of the
GNN. Secondly, only the score of the selected edges are used to compute the reduced
attributes. This last point reduces the number of scores used for the back-propagation
and hence the quality of the learned similarity measures.

As in the previous section, let us denote by J (l) the maximal weighted matching
defined at layer l. By definition of a maximal weighted matching, each vertex not
incident to J (l) is adjacent to at least one vertex which is incident to J (l). Following [9],
we increase the decimation ratio, by attaching isolated vertices to contracted ones. This
operation is performed by selecting for each isolated vertex u the edge euv such that
suv is maximal and v is incident to J (l).

This operation provides a spanning forest of G(l) composed of isolated edges, trees
of depth one (called stars) with one central vertex and paths of length 3. This last type
of tree corresponds to a sequence of 4 vertices with strong similarities between any
pair of adjacent vertices along the paths. However, merging all 4 vertices into a single
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one, suppose implicitly to apply twice an hypothesis on the transitivity of our similarity
measure: more precisely the fact that the two extremities of the paths are similar is
not explicitly encoded by our selection of edges. In order to avoid such assumption we
remove the central edge of such paths from the selection in order to obtain two isolated
edges (see Figures 3d to 3f).

Let us denote by J ′(l) the resulting set of selected edges which forms a spanning
forest of G(l) composed of isolated edges and stars. Concerning the definition of S(l),
we apply the same procedure than in the previous section for isolated edges. For stars,
we select the central vertex as the surviving vertex. Let us denote by u such a star’s
center. We then set S(l)

uu = 1
2 and S

(l)
vu = 1

2M suv for any v such that euv ∈ J ′(l)

where M is a normalizing factor defined as: M =
∑

v|euv∈J ′(l) suv . The computation
of the attributes of the reduced graph using equation 2 and matrix S(l) is equivalent to
compute for each star’s center u, the sum, weighted by the score, of the edges’ attributes
(equation 7) incident to u and belonging to J ′(l):

x(l+1)
u =

1∑
v|euv∈J ′l suv

∑
v|euv∈J ′l

suvx
(l)
uv (8)

Maximal Independent Directed Edge Set. The definition of a spanning forest composed
of isolated edges and stars is obtained in three steps by MIESCut: The definition of a
maximal weight matching, the attachment of isolated vertices and the cut of all paths
of length 3. Following [9], we propose to use the Maximal Independent Directed Edge
set (MIDES) reduction scheme which obtains the same type of spanning forest in a
single step. This reduction scheme is based on a decomposition of the edges euv of
the undirected graphs in two oriented edges eu→v and ev→u. The neighborhood of an
oriented edge N (eu→v) is defined as the union of the sets of edges leaving u, arriving
on u and leaving v. Given G(l) defined at layer l we formally have:

N (l)(eu→v) = {eu→v′ ∈ E(l)} ∪ {ev′→u ∈ E(l)} ∪ {ev→v′ ∈ E(l)} (9)

The main difference between the neighborhoods defined by equation 9 and the one
of MIES is that we do not include in the neighborhood edges arriving on v. This
asymmetry allows the creation of stars centered on v. The MIDES algorithm computes
a MIS on the edge set using the neighborhood defined by (9) (see Figures 3g to 3i).

At layer l, applying a MIDES on G(l) requires to define a score function on directed
edges. We propose to use suv = exp(−∥W.(xu − xv) + b∥) where the bias term b
allows to introduce an asymmetry so that suv ̸= svu if xu ̸= xv .

Let us denote by D(l) the set of directed edges produced by a MIDES on G(l) using
our scoring function. The set D(l) defines on G(l) a spanning forest composed of isolated
vertices, isolated edges and stars [9].

For an isolated vertex u we duplicate this vertex at the next layer and copy its
attributes. We thus set S(l)

uu = 1.
For an isolated directed edge eu→v ∈ D(l) we select v as a surviving vertex and

set S(l)
vv = suv

M and S
(l)
uv = svu

M where M = suv + svu. This setting corresponds to the
following update of the attributes: x(l+1)

v = (suv.x
(l)
v + svu.x

(l)
u )/(suv + svu). Let us
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note that since eu→v ∈ D(l) we have suv > svu. The previous formula put thus more
weight on the surviving vertex v. This update may be considered as a generalization of
equation 7 using the asymmetric scores suv and svu.

A star within the MIDES framework is defined by a set of edges ew→v of D(l)

arriving on the same vertex v. We then set v as survivor and generalize the update of
the attributes defined for isolated edges by setting S

(l)
vv = 1

N

∑
u|eu→v∈D(l)

suv

Mu
and

S
(l)
uv = 1

N
svu

Mu
for all u such that eu→v ∈ D(l) where Mu = suv + svu and N is the

number of such u. Such a definition of S(l) is equivalent to set the updated attribute of
v as the mean value of its incident selected edges:

x(l+1)
v =

1

N

∑
u|eu→v∈D(l)

suvx
(l)
v + svux

(l)
u

suv + svu
with N = |{u ∈ V(l)|eu→v ∈ D(l)|.

3 Experiments

Datasets. We evaluate our contribution to a bio-informatics and a social dataset called
respectively D&D [5] and REDDIT-BINARY [17] whose statistics are reported on
Table 1. The aim of D&D is to classify proteins as either enzyme or non-enzyme.
Nodes represent the amino acids and two nodes are connected by an edge if they are
less than 6 Ångström apart. REDDIT-BINARY is composed of graphs corresponding
to online discussions on Reddit. In each graph, nodes represent users, and there is an
edge between them if at least one of them respond to the other’s comment. A graph
is labeled according to whether it belongs to a question/answer-based community or a
discussion-based community.

Model Architecture and Training Procedure. Our model architecture is composed of
K blocks where each block consists of a GCN [10] convolution layer followed by a
pooling layer. The vector resulting of each pooling operation is then sent to the next
block (if it exists) and a Readout layer. A Readout layer concatenates the average and the
maximum of vertices’ features matrix X(l) and these K concatenations are themselves
concatenated and sent to a Multi-Layer Perceptron (MLP). The MLP is composed of
three fully connected layers and a dropout is applied between each of them. Finally,
a Softmax layer is used to determine the binary class of graphs. Note that no batch
normalization is applied (Figure 1).

To evaluate our model, we use the training procedure proposed by [6]. This procedure
performs an outer 10-fold cross-validation (CV) to split the dataset into ten training and

Dataset #Graphs #Classes Avg |V| Avg |E|
D&D [5] 1178 2 284± 272 715± 694
REDDIT-BINARY [17] 2000 2 430± 554 498± 623

Table 1: Statistics of datasets
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Methods D&D [5] REDDIT-BINARY [17]
Baseline 76.29± 2.33 87.07± 4.72
gPool [7] 75.61± 2.74 84.37± 7.82
SagPool [12] 76.15± 2.88 85.63± 6.26
EdgePool [4] 72.59± 3.59 87.25± 4.78
MIVSPool [14] 76.35± 2.09 88.73± 4.43
MIESPool 77.17± 2.33 88.08± 4.55
MIESCutPool 77.74± 2.85 86.47± 4.57
MIDESPool 76.52± 2.21 88.40± 4.74

Table 2: Average classification accuracies obtained by different pooling methods.
Highest and second highest accuracies are respectively in bold and blue. ± indicates
the 95% confidence interval of classification accuracy.

test sets. For each outer fold, another 10-fold CV (inner) is applied to the training set
to select the best hyperparameter configuration. Concerning hyperparameters, learning
rate is set to 10−3, weight decay to 10−4 and batch size to 512. Other hyperparameters
are tuned using a grid search to find the best configuration. Possible values for the
hidden layers sizes are {64, 128}, dropout ratio is chosen within {0.2, 0.5} and the
number of blocks K between 1 and 5. We use the Adam optimizer and maximal number
of epochs is set to 1000 with an early stopping strategy if the validation loss has not been
improved 100 epochs. For EdgePool, due to time constraints, we fixed the hidden layers
sizes at 128 and the dropout ratio at 0.5.

We compare, in Table 2, our methods to five state-of-art methods: Baseline (K
blocks of GCN [10]), gPool [7], SagPool [12], EdgePool [4] and MIVSPool [14],
our previous MIS method. First, we note that the baseline obtains quite good results
while not implementing any pooling strategy. It highlights the fact that defining a good
pooling operation is not trivial. State-of-the-art methods mostly fail at this task, certainly
due to the significant loss of information resulting from the hard selection of surviving
vertices using a top−k strategy. This hypothesis is confirmed by the better results
obtained by MIVSPool. Let us note also that for D& D, based on T-tests with a significance
level of 5%, the average accuracy of EdgePool is statistically lower than the ones of
MIS methods. Second, we can observe that the strategies combining edge selection
methods and MIS (MIESPool, MIESCutPool, MIDESPool) achieve either the highest
or the second highest performances. This empirical results tend to demonstrate that
the selection on edges may be most relevant, and that a MIS strategy improves the
effectiveness of the pooling over EdgePool. Finally, best results are obtained by different
MIS strategies, hence indicating that the right MIS strategy may be dataset dependant.
This hypothesis has to be tested using more extensive hyperparameters selection.

4 Conclusion

Graph poolings based on Maximal Independent Sets (MIS) allow, unlike state-of-art
methods, to maintain a fixed decimation ratio close to 50%, to preserve vertex information
and to avoid subsampling and oversampling. Results obtained by our three methods
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based on MIS confirm the interest of this approach but further investigations on other
datasets are needed to conclude on the effectiveness of our methods. The design of
alternative similarity scores also corresponds to a promising line of research.
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2. Balcilar, M., Guillaume, R., Héroux, P., Gaüzère, B., Adam, S., Honeine, P.: Analyzing the
expressive power of graph neural networks in a spectral perspective. In: Proceedings of the
International Conference on Learning Representations (ICLR) (2021)

3. Bianchi, F.M., Grattarola, D., Livi, L., Alippi, C.: Hierarchical representation learning in
graph neural networks with node decimation pooling. IEEE Trans. Neural Networks Learn.
Syst. 33(5), 2195–2207 (2022)

4. Diehl, F., Brunner, T., Le, M.T., Knoll, A.: Towards graph pooling by edge contraction. In:
ICML 2019 workshop on learning and reasoning with graph-structured data (2019)

5. Dobson, P.D., Doig, A.J.: Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology 330(4), 771–783 (2003)

6. Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neural networks
for graph classification. arXiv preprint arXiv:1912.09893 (2019)

7. Gao, H., Ji, S.: Graph u-nets. In: international conference on machine learning. pp. 2083–
2092. PMLR (2019)

8. Hamilton, W.L.: Graph representation learning. Synthesis Lectures on Artifical Intelligence
and Machine Learning 14(3), 1–159 (2020)

9. Haxhimusa, Y.: The structurally Optimal Dual Graph Pyramid and its application in image
partitioning, vol. 308. IOS Press (2007)

10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
In: International Conference on Learning Representations (ICLR) (2017)

11. Landolfi, F.: Revisiting edge pooling in graph neural networks. In: ESANN (2022)
12. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: International conference on

machine learning. pp. 3734–3743. PMLR (2019)
13. Meer, P.: Stochastic image pyramids. Computer Vision, Graphics, and Image Processing

45(3), 269–294 (1989)
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