
HAL Id: hal-04160858
https://hal.science/hal-04160858v2

Preprint submitted on 23 Oct 2023 (v2), last revised 8 Apr 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Definitional Functoriality for Dependent (Sub)Types
Théo Laurent, Meven Lennon-Bertrand, Kenji Maillard

To cite this version:
Théo Laurent, Meven Lennon-Bertrand, Kenji Maillard. Definitional Functoriality for Dependent
(Sub)Types. 2023. �hal-04160858v2�

https://hal.science/hal-04160858v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Definitional Functoriality for Dependent (Sub)Types

THÉO LAURENT, Inria, France
MEVEN LENNON-BERTRAND, University of Cambridge, United Kingdom
KENJI MAILLARD, Gallinette Project Team, Inria, France

Dependently-typed proof assistant rely crucially on definitional equality, which relates types and terms
that are automatically identified in the underlying type theory. This paper extends type theory with defi-
nitional functor laws, equations satisfied propositionally by a large class of container-like type constructors
𝐹:Type → Type, equipped with a map𝐹 : (𝐴 → 𝐵) → 𝐹 𝐴 → 𝐹 𝐵, such as lists or trees. Promoting these
equations to definitional ones strengthen the theory, enabling slicker proofs and more automation for func-
torial type constructors. This extension is used to modularly justify a structural form of coercive subtyping,
propagating subtyping through type formers in a map-like fashion. We show that the resulting notion of
coercive subtyping, thanks to the extra definitional equations, is equivalent to a natural and implicit form
of subsumptive subtyping. The key result of decidability of type-checking in a dependent type system with
functor laws for lists has been entirely mechanized in Coq.

CCS Concepts: • Theory of computation → Type theory.

Additional KeyWords and Phrases: Subtyping, Dependent type system, Bidirectional typing, Logical relation.

1 INTRODUCTION
Dependent type theory is the foundation of many proof assistants: Coq [The Coq Development
Team 2022], Lean [Moura and Ullrich 2021], Agda [Agda Development Team 2023], IdRis [Brady
2021], F⋆ [Swamy et al. 2016]. At its heart lies definitional equality, an equational theory that is
automatically decided by the implementation of these proof systems. The more expressive defini-
tional equality is, the less work is requested from users to identify objects. However, there is a
fundamental tension at play: making the equational theory too rich leads to both practical and
theoretical issues, the most prominent one being the undecidability of definitional equality. This
default plagues the otherwise appealing Extensional Type Theory (ETT) [Martin-Löf and Sambin
1984], a type theory which makes every provable equality definitional, thus making ETT rather
impractical as a basis for a proof assistant [Castellan et al. 2017]. As a result, to design usable proof
assistants we need to carve out a well-behaved equational theory, that strikes the right balance
between expressivity and decidability. In this paper, we show that we can maintain this subtle
balance while extending intensional type theory with map operations expliciting the functorial
character of type former, and satisfying definitional functor laws. We prove in particular that defi-
nitional equality and type-checking remain decidable in this extension, that we dub MLTTmap.

The map primitives introduced in MLTTmap have a computational behaviour reminiscent of
structural subtyping, which propagates existing subtyping structurally through type-formers, and
should satisfy reflexivity and transitivity laws similar to the functor laws. Guided by the design of
MLTTmap, we devise a second system, MLTTcoe, with explicit coercions witnessing structural sub-
typing. To gauge the expressivity of MLTTcoe, we relate it to a third system, MLTTsub, where sub-
typing is implicit, as users of a type system should expect. A simple translation |⋅| fromMLTTcoe to
MLTTsub erases coercions. We show that this erasure can be inverted, elaborating coercions back.
For this to be type preserving, it is crucial that MLTTcoe satisfies our new definitional equalities,
which allows us to reflect the equations implicitly satisfied in MLTTsub due to coercions being
transparent. Fig. 1 synthesizes the three theories that we introduce and their relationships. They

1

T. Laurent, M. Lennon-Bertrand, K. Maillard

MLTT

MLTTsub MLTTcoe MLTTmap
∼
| ⋅ | J⋅K

Fig. 1. Relation between MLTT, MLTTmap, MLTTcoe and MLTTsub

all extend Martin-Löf Type Theory (MLTT) [Martin-Löf and Sambin 1984].1 Let us now explore in
more details these three systems.

Functors and their laws. The notion of functor is pervasive both in mathematics [MacLane 1971]
and functional programming [Lipovača 2010], capturing the concept of a parametrized construc-
tion applying to objects and their transformations. In the setting of type theory, a type former
𝐹: dom(𝐹) → Type is a functor when it is equipped with an operation map𝐹 𝑓: 𝐹 𝐴 → 𝐹 𝐵
for any morphism 𝑓: hom𝐹 (𝐴, 𝐵) between two object 𝐴,𝐵 in the domain of 𝐹 . A functor should
also respect the specified categorical structure on dom(𝐹), preserving identities and compositions:

map𝐹 id𝐹 = id (id-eq)
(map𝐹 𝑓) ∘ (map𝐹 𝑔) = map𝐹 (𝑓 ∘𝐹 𝑔) (comp-eq)

These two equations are known as the functor laws. For many container-like functors, such as
𝐋𝐢𝐬𝐭 𝐴, lists of elements taken in a type 𝐴, a map function can be defined in vanilla type theory
such that these equations can be shown propositionally, e.g. by induction. Such propositional equa-
tions need however to be used explicitly while being careful that all identifications relying on them
are made coherently. This is not acceptable from a user perspective: such structural and naturally
occurring identifications should hold definitionally!

Example 1.1 (Representation change). Consider a dataset of pairs of a number and a boolean,
represented as a list of numbers. For compatibility purpose, we may need to embed these pairs
into a larger dataset using
glue (𝑟 : {𝑎: 𝐍; 𝑏: 𝐁}): {𝑥: 𝐁; 𝑦: 𝐍; 𝑧: 𝐍} ≝ {𝑥 ≔ 𝑟.𝑏; 𝑦 ≔ 𝑟.𝑎; 𝑧 ≔ if 𝑟.𝑏 then 𝑟.𝑎 else 42}.

Going from one dataset to the other amounts to map either glue or its left inverse glue_retr,
which forgets the extra field:

map𝐋𝐢𝐬𝐭 glue : 𝐋𝐢𝐬𝐭 {𝑎: 𝐍; 𝑏: 𝐁} → 𝐋𝐢𝐬𝐭 {𝑥: 𝐁; 𝑦: 𝐍; 𝑧: 𝐍},
map𝐋𝐢𝐬𝐭 glue_retr : 𝐋𝐢𝐬𝐭 {𝑥: 𝐁; 𝑦: 𝐍; 𝑧: 𝐍} → 𝐋𝐢𝐬𝐭 {𝑎: 𝐍; 𝑏: 𝐁}.

If the functor laws only hold propositionally, each consecutive simplification of back and forth
changes of representation needs to be explicitly lifted to lists, and applied. The uncontrolled ac-
cumulation of repetitive proof steps, even as simple as these, can quickly burden proof develop-
ment. In presence of definitional functor laws, instead, any sequence of representation changes
will reduce to a single map𝐋𝐢𝐬𝐭: the boilerplate of explicitly manipulating the functor laws is
handled automatically by the type theory. Moreover, observe that in this example the retraction
glue_retr ∘ glue ≅ id is definitional thanks to surjective pairing. Combined with definitional
functor laws, the following simplification step is discharged automatically by the type-checker:2

map𝐋𝐢𝐬𝐭 glue_retr (map𝐋𝐢𝐬𝐭 glue 𝑙) ≅ map𝐋𝐢𝐬𝐭 id 𝑙 ≅ 𝑙
1We provide a translation from MLTTcoe to MLTTmap J⋅K in Appendix C.3 and conjecture it is type-preserving, but do
not establish any formal result on the translation. None of the results we present rely on this translation.
2We formalize this example, showing that this conversion indeed holds in our system, in file Example_1_1.

2

 https://github.com/CoqHott/logrel-coq/tree/esop24-submission/theories/Example_1_1.v

Definitional Functoriality for Dependent (Sub)Types

Note that these equations are valid in any context, in particular under binders, whereas for
propositional identifications, rewriting under binders is only possible in presence of the additional
axiom of function extensionality.

Example 1.2 (Coherence of coercions). Proof assistants may provide the ability for users to declare
automatically-inserted functions acting as glue code (coercions in Coq, instance arguments in
Agda, has_coe typeclass in Lean).Workingwith natural (𝐍), integer (Z) and rational (Q) numbers,
we want every 𝐍 to be automatically coerced to an integer, and so declare a natToZ coercion.
Similarly, we can also declare a ZToQ coercion. If we write 0 (a 𝐍) where a Q is expected, this is
accepted, and 0 is silently transformed to ZToQ (natToZ 0).

Now, if we want the same mechanism to apply when we pass the list [0 :: 1 :: 2] to a function
expecting a 𝐋𝐢𝐬𝐭Q, we need to provide a way to propagate the coercions on lists. We can ex-
pect to solve this problem by declaring map𝐋𝐢𝐬𝐭 as a coercion, too: whenever there is a coercion
𝑓: 𝐴 → 𝐵, then map𝐋𝐢𝐬𝐭 𝑓 should be a coercion from 𝐋𝐢𝐬𝐭 𝐴 to 𝐋𝐢𝐬𝐭 𝐵. However, by doing so,
we would cause more trouble than we solve, as there would be two coercions from 𝐋𝐢𝐬𝐭 𝐍 to
𝐋𝐢𝐬𝐭Q, map𝐋𝐢𝐬𝐭(ZToQ ∘ natToZ) and (map𝐋𝐢𝐬𝐭 ZToQ) ∘ (map𝐋𝐢𝐬𝐭 natToZ). In the absence of def-
initional functor laws for map𝐋𝐢𝐬𝐭, these two are not definitionally equal. To add insult to in-
jury, coercions are by default not printed to the user, yielding puzzling error messages like “𝑙
and 𝑙 are not convertible” (!), because one is secretly map𝐋𝐢𝐬𝐭(ZToQ ∘ natToZ) 𝑙 while the other is
map𝐋𝐢𝐬𝐭 ZToQ (map𝐋𝐢𝐬𝐭 natToZ 𝑙). This makes map virtually unusable with coercions.

Structural subtyping. This last example suggests a connection with subtyping. Subtyping equips
the collection of type with a subtyping order ≼ that allows to seamlessly transport terms from
a subtype to a supertype, i.e. from 𝐴 to 𝐴′ when 𝐴 ≼ 𝐴′. An important aspect of subtyping is
structural subtyping, i.e. how an existing subtyping notion extends structurally through other type
formers of the type theory. Typically, we want to have 𝐋𝐢𝐬𝐭 𝐴 ≼ 𝐋𝐢𝐬𝐭 𝐴′ whenever 𝐴 ≼ 𝐴′. In
the context of the F⋆ program verification platform that heavily uses refinement subtyping, the
inability to propagate subtyping on inductive datatypes such as lists has been a long-standing
issue that never got solved properly [Hrițcu 2014]. The absence of structural subtyping also has a
history of causing difficulties to Agda [Cockx 2020a; Escot, Poiret, et al. 2023].

Definitional equalities for subtyping. From interactive theorem prover users’ perspective, sub-
typing should be implicit, transparently providing the expected glue to smoothen the writing of
complex statements. From a meta-theoretical perspective, on the other hand, it is useful to explic-
itly represents all the necessary information of a typing derivation, including where subtyping
is used. The first approach is known as subsumptive subtyping, on the left, whereas the latter is
embodied by coercive subtyping, on the right:

Sub
Γ ⊢sub 𝑡 : 𝐴 Γ ⊢sub 𝐴 ≼ 𝐴′

Γ ⊢sub 𝑡 : 𝐴′ Coe
Γ ⊢coe 𝑡 : 𝐴 Γ ⊢coe 𝐴 ≼ 𝐴′

Γ ⊢coe coe𝐴,𝐴′ 𝑡 : 𝐴′

We want to present subsumptive subtyping to users, but ground the system on the better-behaved
coercive subtyping. Informally, an application of Sub in the subsumptive type theory MLTTsub
should correspond to an application of Coe in the coercive type theory MLTTcoe. However, given
a derivation 𝒟 of Γ ⊢sub 𝑡 : 𝐴 we can apply Sub together with a reflexivity proof Γ ⊢sub 𝐴 ≼ 𝐴
to yield a new derivation 𝒟′ with the same conclusion Γ ⊢sub 𝑡 : 𝐴. 𝒟 and 𝒟′ respectively give
terms Γ ⊢coe 𝑡′ : 𝐴 and Γ ⊢coe coe𝐴,𝐴 𝑡′ : 𝐴 in MLTTcoe. Since 𝑡′ and coe𝐴,𝐴 𝑡′ both correspond to
the same MLTTsub term 𝑡, they need to be equated if we want both type theories to be equivalent.
Similarly, transitivity of subtyping implies that coercions should compose definitionally, that is
Γ ⊢coe coe𝐵,𝐶(coe𝐴,𝐵 𝑡′) ≅ coe𝐴,𝐶 𝑡′ : 𝐶 should always hold in MLTTcoe.

3

T. Laurent, M. Lennon-Bertrand, K. Maillard

Functor laws meet structural subtyping. Z. Luo and Adams [2008] showed that the functorial
composition law comp-eq is enough to make structural coercive subtyping compose definition-
ally, because a structural coercion between lists coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐵 behaves exactly as the function
obtained by mapping coe𝐴,𝐵 on every element of the list. We further investigate this bridge be-
tween coercive subtyping and functoriality of type formers, in particular the identity functor law
id-eq needed to handle reflexivity of subtyping, and extend Z. Luo andAdams’s limited type system
to full-blown Martin-Löf Type Theory, with universes and large elimination. This understanding
leads to a modular design of subtyping: structural subtyping for a type former relies on a functorial
structure, and can be considered orthogonally to other type formers of the theory or to the base
subtyping. Moreover, definitional functor laws are sufficient to make structural coercive subtyping
for any type former flexible enough to interpret subsumptive subtyping.

Contributions. We make the following contributions:
• we design MLTTmap, an extension of Martin-Löf TypeTheory (MLTT) exhibiting the func-

torial nature of standard type formers (Π,Σ, 𝐋𝐢𝐬𝐭, 𝐖, 𝐈𝐝, +) and satisfying definitional
functor laws (Section 3);

• we mechanize the metatheory of a substantial fragment of MLTTmap in Coq, extending
a formalization of MLTT [Adjedj et al. 2023], proving it is normalizing and has decidable
type-checking (Section 4);

• we develop bidirectional presentations for MLTTsub and MLTTcoe, which extend MLTT
respectively with subsumptive and coercive subtyping;

• we leverage these presentations and the extra functorial equations satisfied by coe inMLTTcoe
to give back and forth, type-preserving translations between the two systems (Section 5).

The necessary technical background, notations and definitions for MLTT are introduced in Sec-
tion 2, while Section 6 details the related and future work. Detailed proofs and complete typing
rules are given in appendix.

2 TYPE THEORY AND ITS METATHEORY
Wework in the setting of dependent type theories à laMartin-Löf (MLTT) [Martin-Löf and Sambin
1984], an ideal abstraction of the type theories underlying existing proof assistants such as Agda,
Coq, F⋆ or Lean.The (declarative) typing rules describingMLTT use five categories of judgements,
characterizing the well-formed context, types and terms (Figure 2), and providing the equational
theory on types and terms (Figure 3). Two terms related by this equational theory are said to be
definitionally equal or convertible, to stress on the fact that these terms will be identified by proof
assistants implementing this theory, without any need for manual equational reasoning.

Variables and substitution. Throughout the paper, we use named variables (𝑥, 𝑦 …) for readability
purposes, but we think of them as de Bruijn indices, which is what we use in the Coq formalization.
In particular, we do not consider freshness conditions. A substitution 𝜎 consists of a list of terms,
and we write 𝑡[𝜎] for its parallel substitution in the term 𝑡. The substitution (id, 𝑢) replaces the
0th de Bruijn index by the term 𝑢, leaving all other variables intact. We will write 𝑡[(id, 𝑢)] simply
as 𝑡[𝑢], which would be written 𝑡[𝑥 ≔ 𝑢] in more verbose notation, if 𝑥 correspond to the 0th
de Bruijn index in 𝑡. Typing in all systems is extended pointwise to substitutions.

Negative types: dependent products and sums. Dependent function types Π𝑥: 𝐴.𝐵 are introduced
using a 𝜆-abstraction λ𝑥: 𝐴.𝑡 and eliminated with application 𝑡 𝑢. We use braces to indicate ar-
guments that will be left implicit, e.g. λ{𝑥: 𝐴}.𝑡 of type Π{𝑥: 𝐴}.𝐵. We also include dependent
(strong) sum types Σ𝑥: 𝐴.𝐵, introduced with pairs (𝑡, 𝑢)𝑥.𝐵 and eliminated through projections
𝜋1 𝑝 and 𝜋2 𝑝. Both of these come with an 𝜂-law beside their standard 𝛽-laws.

4

Definitional Functoriality for Dependent (Sub)Types

Γ ⊢ 𝑇 Type 𝑇 is well-formed under context Γ
Γ ⊢ 𝑡 : 𝑇 Term 𝑡 has type 𝑇 under context Γ

VaR
⊢ Γ (𝑥: 𝐴) ∈ Γ

Γ ⊢ 𝑥 : 𝐴 SoRt
⊢ Γ

Γ ⊢ Type𝑖 :Type𝑖+1
El

Γ ⊢ 𝐴 :Type𝑖
Γ ⊢ 𝐴

Fun

Γ ⊢ 𝐴 :Type𝑖
Γ, 𝑥: 𝐴 ⊢ 𝐵 :Type𝑖

Γ ⊢ Π𝑥: 𝐴.𝐵 :Type𝑖
Abs

Γ ⊢ 𝐴
Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵

Γ ⊢ λ𝑥: 𝐴.𝑡 :Π𝑥: 𝐴.𝐵 App

Γ ⊢ 𝑡 :Π𝑥: 𝐴.𝐵
Γ ⊢ 𝑢 : 𝐴

Γ ⊢ 𝑡 𝑢 : 𝐵[𝑢]

List
Γ ⊢ 𝐴 :Type𝑖

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 :Type𝑖
Nil

Γ ⊢ 𝐴
Γ ⊢ 𝜀𝐴 : 𝐋𝐢𝐬𝐭 𝐴 Cons

Γ ⊢ 𝐴
Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑙 : 𝐋𝐢𝐬𝐭 𝐴

Γ ⊢ 𝑎 ::A 𝑙 : 𝐋𝐢𝐬𝐭 𝐴

ListInd

Γ ⊢ 𝐴 Γ ⊢ 𝑠 : 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑙: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃 Γ ⊢ 𝑏𝜀 : 𝑃 [𝜀𝐴] Γ, 𝑎: 𝐴, 𝑙: 𝐋𝐢𝐬𝐭 𝐴, ℎ: 𝑃 [𝑙] ⊢ 𝑏:: : 𝑃 [𝑎 ::A 𝑙]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑙.𝑃 ; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::) : 𝑃 [𝑠]

Conv
Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝐴 ≅ 𝐵

Γ ⊢ 𝑡 : 𝐵

Fig. 2. Declarative typing for MLTT (Complete rules: Appendix B.1)

Universes of types. Rule SoRt introduce a countable hierarchy of universes Type𝑖, which are
types for types. Any inhabitant of a universe is a well-formed type by El and, in order to make
the presentation compact, we do not repeat rules applying both for universes and types, implicitly
assuming that a rule given for terms of some universe Type𝑖 has a counterpart as a type judgement
whenever it makes sense. Appendix B provides the full set of rules for reference. For instance, in
addition to Fun, we have a type-level equivalent

FunTy
Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵

Γ ⊢ Π𝑥: 𝐴.𝐵
Positive types: inductive types and families. As we wish to study the functorial status of type

formers, parametrized inductive types are our main focus. Our running example is the type of
lists 𝐋𝐢𝐬𝐭 𝐴, parametrized by a single type 𝐴, and inhabited by the empty list 𝜀𝐴 and the consing
ℎ𝑑 ::A 𝑡𝑙 of a head ℎ𝑑 : 𝐴 onto a tail 𝑡𝑙 : 𝐋𝐢𝐬𝐭 𝐴. List are eliminated using the dependent eliminator
ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑙.𝑃 ; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::), which performs recursion on the scrutinee 𝑠, returning a value in
𝑃 [𝑠], using the two branches 𝑏𝜀 and 𝑏:: corresponding to the two constructors :: and 𝜀. 𝑏:: binds three
variables corresponding to the head 𝑎, tail 𝑙 and induction hypothesis ℎ on the tail. More generally
recursive datatypes are often encoded in MLTT via 𝐖 𝑥: 𝐴.𝐵, the type of well-founded trees with
nodes labelled by 𝑎 : 𝐴 of arity 𝐵 𝑎. Finally, Martin-Löf identity types 𝐈𝐝 𝐴 𝑥 𝑦 represents equali-
ties between two elements 𝑥, 𝑦: 𝐴 and is introduced with the reflexivity proof refl𝐴,𝑎: 𝐈𝐝 𝐴 𝑎 𝑎. A
general inductive type scheme is outside the scope of this paper, and we choose to present these
type formers because, in combination with dependent sums, and the empty 𝟎, unit 𝟏 and boolean
𝐁 types, they are enough to emulate all indexed inductive types [Abbott et al. 2005; Altenkirch,

5

T. Laurent, M. Lennon-Bertrand, K. Maillard

Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴 Terms 𝑢 and 𝑣 are convertible at type 𝐴 under context Γ
Γ ⊢ 𝐴 ≅ 𝐵 Types 𝐴 and 𝐵 are convertible under context Γ

βFun
Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵 Γ ⊢ 𝑢 : 𝐴

Γ ⊢ (λ𝑥: 𝐴.𝑡) 𝑢 ≅ 𝑡[𝑢] : 𝐵[𝑢] ηFun
Γ, 𝑥: 𝐴 ⊢ 𝑓 𝑥 ≅ 𝑔 𝑥 : 𝐵
Γ ⊢ 𝑓 ≅ 𝑔 :Π𝑥: 𝐴.𝐵

βNil

Γ ⊢ 𝐴 Γ, 𝑙: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃
Γ ⊢ 𝑏𝜀 : 𝑃 [𝜀𝐴] Γ, 𝑎: 𝐴, 𝑙: 𝐋𝐢𝐬𝐭 𝐴, ℎ: 𝑃 [𝑙] ⊢ 𝑏:: : 𝑃 [𝑎 ::A 𝑙]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝜀𝐴; 𝑙.𝑃 ; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::) ≅ 𝑏𝜀 : 𝑃 [𝜀𝐴]

βCons

Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑙 : 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑙: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃 Γ ⊢ 𝑏𝜀 : 𝑃 [𝜀𝐴] Γ, 𝑎: 𝐴, 𝑙: 𝐋𝐢𝐬𝐭 𝐴, ℎ: 𝑃 [𝑦] ⊢ 𝑏:: : 𝑃 [𝑎 ::A 𝑙]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑎 ::A 𝑙; 𝑙.𝑃 ; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::) ≅ 𝑏::[id, 𝑎, 𝑙, ind𝐋𝐢𝐬𝐭 𝐴(𝑙; 𝑙.𝑃 ; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::)] : 𝑃 [𝑎 ::A 𝑙]

ConvConv
Γ ⊢ 𝑡 ≅ 𝑡′ : 𝐴 Γ ⊢ 𝐴 ≅ 𝐴′

Γ ⊢ 𝑡 ≅ 𝑡′ : 𝐴′ ElConv
Γ ⊢ 𝐴 ≅ 𝐴′ :Type𝑖

Γ ⊢ 𝐴 ≅ 𝐴′

Refl
Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝑡 ≅ 𝑡 : 𝐴 Sym
Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴
Γ ⊢ 𝑢 ≅ 𝑡 : 𝐴 TRans

Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴 Γ ⊢ 𝑢 ≅ 𝑣 : 𝐴
Γ ⊢ 𝑡 ≅ 𝑣 : 𝐴

Fig. 3. Declarative conversion for MLTT (complete rules: Appendix B.1)

Ghani, et al. 2015; Hugunin 2020]. We will see however in Section 3.1 that this standard encoding
does not necessarily yield definitionally functorial maps on the encoded datatype. As a result, we
consider positive sum types 𝐴 + 𝐵 instead of plain booleans, introduced by the alternative inj𝑙 𝑎
for 𝑎: 𝐴 or inj𝑟 𝑏 for 𝑏: 𝐵 and eliminated by pattern matching. As 𝟎 and 𝟏 are not parametrized,
their presentation in our setting is entirely standard. The specific types we present cover all the
difficulties of general inductive types: recursion, branching, parameters, and indices.

Rules in the paper and in the appendix. To avoid cluttering the paper with too many rules, we
focus in the text on the most interesting ones, and on two types: dependent functions and lists. To-
gether, they cover the technically interesting points of our development: dependent product types
have a binder and come with an 𝜂-law; lists are a parametrized datatype, for which definitional
functor laws are challenging. Complete rules for reference are given in Appendix B.

2.1 Metatheoretical properties
In order to show that the extension of MLTT from Figure 1 are well-behaved and suitable for
implementations, we seek to establish the following meta-theoretical properties.

Consistency and canonicity. In order to be employed as a logic, a type theory should not allow
to derive every statement. This is equivalent to showing that there is no closed term of the empty
type, i.e. that ⊢ 𝑡 : 𝟎 is not derivable for any 𝑡. This consistency property is satisfied by all our
type theories and an easy consequence of the stronger canonicity results, which characterizes the
inhabitants of inductive types in the empty context up to conversion, as those obtained by repeated
applications of constructors. Consistency follows from canonicity, because 𝟎 has no constructors.

6

Definitional Functoriality for Dependent (Sub)Types

𝑡 {1 𝑡′ Term 𝑡 weak-head reduces in one step to term 𝑡′

βRed (λ𝑥: 𝐴.𝑡) 𝑢 {1 𝑡[𝑢] βRedNil
ind𝐋𝐢𝐬𝐭 𝐴(𝜀𝐴; 𝑥.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) {1 𝑏𝜀

βRedCons
ind𝐋𝐢𝐬𝐭 𝐴(𝑎 ::A 𝑙; 𝑥.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) {1 𝑏::[id, 𝑎, 𝑙, ind𝐋𝐢𝐬𝐭 𝐴(𝑙; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::)]

RedApp
𝑡 {1 𝑡′

𝑡 𝑢 {1 𝑡′ 𝑢 RedInd
𝑡 {1 𝑡′

ind𝐋𝐢𝐬𝐭 𝐴(𝑡; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) {1 ind𝐋𝐢𝐬𝐭 𝐴(𝑡′; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::)

𝑡 {⋆ 𝑡′ Term 𝑡 weak-head reduces in multiple steps to term 𝑡′

RedBase 𝑡 {⋆ 𝑡 RedStep
𝑡 {1 𝑡′ 𝑡′ {⋆ 𝑡″

𝑡 {⋆ 𝑡″

nf 𝑓 ≝ 𝑛 ∣ Π𝑥: 𝑡1.𝑡2 ∣ Type𝑖 ∣ 𝐋𝐢𝐬𝐭 𝑡 ∣ λ𝑥: 𝐴.𝑡 ∣ 𝜀𝐴 ∣ 𝑡1 ::A 𝑡2 weak-head normal forms
ne 𝑛 ≝ 𝑥 ∣ 𝑛 𝑡 ∣ ind𝐋𝐢𝐬𝐭 𝐴(𝑛; 𝑡; 𝑡, 𝑡) weak-head neutrals

Fig. 4. Weak-head reduction and normal forms (𝑡 stands for an arbitrary term) (complete rules: Appendix B.2)

Decidability of type-checking and conversion. A consistent proof assistant must also be able to
check whether a proof is valid or not, i.e. whether a typing judgement is derivable in the type
theory. In a dependent type system where terms encode the essential structure of derivations, the
main obstacle to decidability lies in the conversion of types and terms.

Normal forms for terms and derivations. In order to establish both consistency and decidability
of type-checking, we exhibit a function computing normal forms of term. Inspecting the possible
normal forms in the empty context entails canonicity and thus consistency. Moreover, on these
normal forms conversion is easily decidable, and so we can build on normalization to decide con-
version. Finally, we can go further, and use normalization to build canonical representatives of
typing and conversion derivations, which we rely on to relate our different systems.

Injectivity of type constructors. A more technical, but very important property is injectivity of
type constructors, for instance the fact that whenever Π𝑥: 𝐴.𝐵 ≅ Π𝑥: 𝐴′.𝐵′, then 𝐴 ≅ 𝐴 and
𝐵 ≅ 𝐵′. This property fails in ETT, where the equational theory is too rich. For dependent type
theories like ours, injectivity of type constructors is the main obstruction to subject reduction, i.e.
that reduction is type-preserving, and included in conversion on typed instances.

2.2 Neutrals, normals, and reduction
Before getting to the techniques we use to establish these properties, we must introduce a last
element missing in Figure 3: computation. Indeed, most of the rules in that figure can be oriented,
and thus seen not just as equalities but as computations to be performed.This leads to the definition
of weak-head reduction{⋆ in Figure 4, an evaluation strategy for open terms which reduces just
as much as needed in order to uncover the head constructor of a term. This means reducing not
just at top level, as rule RedApp shows: if our term is an application, we might need to reduce
the function in order to expose a 𝜆-abstraction and subsequently 𝛽-reduce the term with the (call-
by-name) rule βRed. However, we do not allow reduction in the argument of an application, so

7

T. Laurent, M. Lennon-Bertrand, K. Maillard

that reduction remains deterministic: there is at most one possible reduct for any term.Weak-head
reduction is the only reduction that will be used throughout this article.

The normal forms (nf) for weak-head reduction, i.e. the terms that cannot reduce, are inductively
characterized at the bottom of Figure 4, together with the companion notion of neutral forms (ne).
Normal forms can be either a canonical term, starting with a head constructor (for instance, a 𝜆-
abstraction or 𝜀), or a neutral term. Neutral terms are stuck computations, blocked by some head
variable, e.g. 𝑥 𝑢 cannot reduce further, and will be unstuck once 𝑥 is substituted by a λ-abstraction.

2.3 Proof methods
We can now go through the techniques we use to establish the properties of Section 2.1.

Logical relations. Logical relations are our main tool to obtain normalization and canonicity
results. We follow the approach of Abel et al. [2017], who formalize a logical relation for MLTT in
Agda. At a high-level, the logical relation is based on reducibility, a complex predicate on types
and terms, which in particular implies having a weak-head normal form. Combining this property
with the fundamental lemma stating that every well-typed term is reducible, i.e. that the logical
relation is a model of MLTT, we obtain weak-head normalization.

PRopeRty 2.1 (WeaK-head noRmalization). If Γ ⊢ 𝑡 : 𝑇 , then there exists a normal form 𝑡′ (i.e.
a term 𝑡′ such that nf 𝑡′), such that 𝑡 {⋆ 𝑡′.

Strong normal forms can be obtained through inspection of reducibility derivations for a term,
that contain iterated reduction steps to a normal form. These derivations are obtained for any
well-typed term by using the fundamental lemma of the logical relation.

We use the logical relation not only to characterize the normal forms of terms but also the
conversion between them, showing that a proof of convertibility between two terms can be trans-
formed to a canonical shape interleaving weak-head reduction sequences and congruence steps
between weak-head normal forms. We detail in Section 4 the novel challenges we encountered
when adapting the approach of Abel et al. [2017] to parameterized inductive types.

Bidirectional typing and algorithmic conversion. Our second tool is a presentation of conversion
and typing that, while still inductively defined, is as close as possible to an actual implementation.
Typing is bidirectional [Pierce and Turner 2000; Lennon-Bertrand 2021], i.e. the declarative typing
predicate of Figure 2 is decomposed into type inference and type checking shown in Figure 5.3 We
use bidirectional typing for its rigid, canonical derivation structure, rather than for its ability to
cut down type annotations on terms. As a result, although we use bidirectional judgements, all of
our terms infer a type, in contrast to what is common in the bidirectional literature [Dunfield and
Krishnaswami 2021; McBride 2022], where some terms can only be checked.

The presentation of algorithmic conversion in Figure 6 combines ideas from both bidirectional
typing and the presentation of Abel et al. [2017]. Crucially, it gets rid entirely of the generic tran-
sitivity rule TRans, and instead uses term-directed reduction, intertwined with comparison of the
heads of weak-head normal forms. Algorithmic conversion is mutually defined with a second rela-
tion, dedicated to comparingweak-head neutral forms, which is calledwhen encountering neutrals
at positive types. We think of general conversion as “checking”, i.e. as taking a type as input, while
neutral comparison is “inferring”, i.e. the type is an output.

Using the consequences of the logical relation, we can show that this algorithmic presentation
has many desirable properties. For instance, transitivity is admissible, even though there is no

3Following Lennon-Bertrand [2021], to avoid clashing with Coq’s => in the formalization, we pick ▷ as the symbol for
inference, and ◁ as the one for checking, instead of the slightly more standard ⇒ and ⇐.

8

Definitional Functoriality for Dependent (Sub)Types

Γ ⊢ 𝑡 ▷ 𝑇 Term 𝑡 infers type 𝑇 in context Γ

SoRt Γ ⊢ Type𝑖 ▷Type𝑖+1
VaR

(𝑥: 𝑇) ∈ Γ
Γ ⊢ 𝑥 ▷ 𝑇

PRod
Γ ⊢ 𝐴 ▷h Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁Type𝑖

Γ ⊢ Π𝑥: 𝐴.𝐵 ▷ Type𝑖
List

Γ ⊢ 𝐴 ▷h Type𝑖
Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 ▷ Type𝑖

Abs
Γ ⊢ 𝐴 ▷h Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷𝐵

Γ ⊢ λ𝑥: 𝐴.𝑡 ▷ Π𝑥: 𝐴.𝐵 App
Γ ⊢ 𝑡 ▷h Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑢◁𝐴

Γ ⊢ 𝑡 𝑢 ▷𝐵[𝑢]

Nil
Γ ⊢ 𝐴 ▷h Type𝑖
Γ ⊢ 𝜀𝐴 ▷ 𝐋𝐢𝐬𝐭 𝐴 Cons

Γ ⊢ 𝐴 ▷h Type𝑖 Γ ⊢ 𝑎◁𝐴 Γ ⊢ 𝑙◁𝐋𝐢𝐬𝐭 𝐴
Γ ⊢ 𝑎 ::A 𝑙 ▷ 𝐋𝐢𝐬𝐭 𝐴

ListInd

Γ ⊢ 𝐴 ▷h Type𝑖 Γ ⊢ 𝑠◁𝐋𝐢𝐬𝐭 𝐴 Γ, 𝑥: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃 ▷h Type𝑗
Γ ⊢ 𝑏𝜀 ◁𝑃 [𝜀𝐴] Γ, 𝑥: 𝐴, 𝑦: 𝐋𝐢𝐬𝐭 𝐴, 𝑧: 𝑃 [𝑦] ⊢ 𝑏:: ◁𝑃 [𝑥 ::A 𝑦]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) ▷ 𝑃 [𝑠]

Γ ⊢ 𝑡◁𝑇 Term 𝑡 checks against type 𝑇 Γ ⊢ 𝑡 ▷h 𝑇 Term 𝑡 infers the reduced type 𝑇

ChecK
Γ ⊢ 𝑡 ▷ 𝑇 ′ Γ ⊢ 𝑇 ′ ≅ 𝑇 ◁

Γ ⊢ 𝑡◁𝑇 InfRed
Γ ⊢ 𝑡 ▷ 𝑇 ′ 𝑇 ′ {⋆ 𝑇

Γ ⊢ 𝑡 ▷h 𝑇

Fig. 5. Typing rules for algorithmic/bidirectional typing (complete rules: Appendix B.2)

dedicated rule. Collecting the properties derived from the logical relation, we can obtain our second
main property: equivalence between the algorithmic and declarative presentations.

PRopeRty 2.2 (Eivalence of the pResentations). If Γ ⊢ 𝑡 : 𝑇 , then Γ ⊢ 𝑡◁𝑇 . Conversely, if
⊢ Γ, Γ ⊢ 𝑇 and Γ ⊢ 𝑡◁𝑇 , then Γ ⊢ 𝑡 : 𝑇 .

Note that the implication from the bidirectional judgement to the declarative one is not absolute,
it only holds if the context and type are well-formed. In general, our algorithmic presentations are
“garbage-in, garbage-out”: they maintain well-formation of types and contexts, but do not enforce
them.Thus,most properties of the algorithmic derivations only hold if their inputs arewell-formed,
in the sense of Figure 7. Note that in checking and inference modes, while the term is certainly an
input of the judgement, it is of course not assumed to be well-formed in advance, since this is what
the judgement itself asserts. This algorithmic presentation, being syntax directed, is well suited to
design implementations and establish relationships between MLTTmap, MLTTcoe and MLTTsub.

3 A FUNCTORIAL TYPE THEORY
Wedevelop an extensionMLTTmap ofMLTTwith primitivemap𝐹 operations for each parametrized
type former 𝐹 of MLTT, that is Π, Σ,+, 𝐋𝐢𝐬𝐭, 𝐖, and 𝐈𝐝. These map operations internalize the
functorial character of the type formers,4 and by design definitionally satisfy the generic functor

4These equations are all propositionally true in MLTT, proven by induction for datatypes.

9

T. Laurent, M. Lennon-Bertrand, K. Maillard

Γ ⊢ 𝑡 ≈ 𝑡′ ▷ 𝑇 Neutrals 𝑡 and 𝑡′ are comparable, inferring the type 𝑇

NVaR
(𝑥: 𝑇) ∈ Γ

Γ ⊢ 𝑥 ≈ 𝑥 ▷ 𝑇 NApp
Γ ⊢ 𝑛 ≈h 𝑛′ ▷ Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ≅ 𝑢′ ◁𝐴

Γ ⊢ 𝑛 𝑢 ≈ 𝑛′ 𝑢′ ▷𝐵[𝑢]

NListInd

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ ⊢ 𝑠 ≈ 𝑠′ ▷ 𝑆 Γ, 𝑙: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃 ≅ 𝑃 ′ ◁
Γ ⊢ 𝑏𝜀 ≅ 𝑏′

𝜀 ◁𝑃 [𝜀𝐴] Γ, 𝑎: 𝐴, 𝑙: 𝐋𝐢𝐬𝐭 𝐴, ℎ: 𝑃 [𝑦] ⊢ 𝑏:: ≅ 𝑏′
:: ◁𝑃 [𝑎 ::A 𝑙]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑙.𝑃 ; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::) ≈ ind𝐋𝐢𝐬𝐭 𝐴′(𝑠′; 𝑙.𝑃 ′; 𝑏′
𝜀, 𝑎.𝑙.ℎ.𝑏′

::) ▷ 𝑃 [𝑠]

Γ ⊢ 𝑇 ≅h 𝑇 ′ ◁ Reduced types 𝑇 and 𝑇 ′ are convertible

Γ ⊢ 𝑡 ≅h 𝑡′ ◁𝐴 Reduced terms 𝑡 and 𝑡′ are convertible at type 𝐴

CUni Γ ⊢ Type𝑖 ≅h Type𝑗 ◁Type𝑘
CList

Γ ⊢ 𝐴 ≅ 𝐴′ ◁Type𝑖
Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 ≅h 𝐋𝐢𝐬𝐭 𝐴′ ◁Type𝑖

CPRod
Γ ⊢ 𝐴 ≅ 𝐴′ ◁Type𝑖 Γ, 𝑥: 𝐴′ ⊢ 𝐵 ≅ 𝐵′ ◁Type𝑖

Γ ⊢ Π𝑥: 𝐴.𝐵 ≅h Π𝑥: 𝐴′.𝐵′ ◁Type𝑖
CFun

Γ, 𝑥: 𝐴 ⊢ 𝑓 𝑥 ≅ 𝑓 ′ 𝑥◁𝐵
Γ ⊢ 𝑓 ≅h 𝑓 ′ ◁Π𝑥: 𝐴.𝐵

CNil Γ ⊢ 𝜀𝐴 ≅h 𝜀𝐴′ ◁𝐋𝐢𝐬𝐭 𝐴″ CCons
Γ ⊢ 𝑎 ≅ 𝑎′ ◁𝐴″ Γ ⊢ 𝑙 ≅ 𝑙′ ◁𝐋𝐢𝐬𝐭 𝐴″

Γ ⊢ 𝑎 ::A 𝑙 ≅h 𝑎′ ::A' 𝑙′ ◁𝐋𝐢𝐬𝐭 𝐴″

NeuUni
Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑇

Γ ⊢ 𝑛 ≅h 𝑛′ ◁Type𝑖
NeuList

Γ ⊢ 𝑛 ≈h 𝑛′ ▷ 𝑆
Γ ⊢ 𝑛 ≅h 𝑛′ ◁𝐋𝐢𝐬𝐭 𝐴 NeuNeu

ne𝑀
Γ ⊢ 𝑛 ≈ 𝑛′ ▷𝑁
Γ ⊢ 𝑛 ≅h 𝑛′ ◁𝑀

Γ ⊢ 𝑇 ≅ 𝑇 ′ ◁ Types 𝑇 and 𝑇 ′ are convertible
Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝑇 Terms 𝑡 and 𝑡′ are convertible at type 𝑇
Γ ⊢ 𝑡 ≈h 𝑡′ ▷ 𝑇 Neutrals 𝑡 and 𝑡′ are comparable, inferring the reduced type 𝑇

TmRed

𝑡 {⋆ 𝑢 𝑡′ {⋆ 𝑢′

𝑇 {⋆ 𝑈 Γ ⊢ 𝑢 ≅h 𝑢′ ◁𝑈
Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝑇 NRed

Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑇 𝑇 {⋆ 𝑆
Γ ⊢ 𝑛 ≈h 𝑛′ ▷ 𝑆

Fig. 6. Algorithmic conversion and comparison of neutral terms (complete rules: Appendix B.2)

Judgement Input(s) Inputs are well-formed
Γ ⊢ 𝑡 ▷ 𝑇 Γ, 𝑡 ⊢ Γ
Γ ⊢ 𝑡◁𝑇 Γ, 𝑇 , 𝑡 ⊢ Γ and Γ ⊢ 𝑇

Γ ⊢ 𝑇 ≅ 𝑇 ′ ◁ Γ, 𝑇 and 𝑇 ′ ⊢ Γ, Γ ⊢ 𝑇 and Γ ⊢ 𝑇 ′

Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝑇 Γ, 𝑡, 𝑡′ and 𝑇 ⊢ Γ, Γ ⊢ 𝑇 , Γ ⊢ 𝑡 : 𝑇 and Γ ⊢ 𝑡′ : 𝑇
Γ ⊢ 𝑡 ≈ 𝑡′ ▷ 𝑇 Γ, 𝑡 and 𝑡′ ⊢ Γ, ne 𝑡, ne 𝑡′, and ∃𝐴, 𝐴′ s.t. Γ ⊢ 𝑡 : 𝐴, Γ ⊢ 𝑡′ : 𝐴′

Fig. 7. Well-formed inputs (for ≅h, ≈h, ▷h, similar to their non-reduced variants)

10

Definitional Functoriality for Dependent (Sub)Types

laws for each type former 𝐹 :
map𝐹 id ≅ id (id-eq)

map𝐹 𝑓 ∘ map𝐹 𝑔 ≅ map𝐹 (𝑓 ∘ 𝑔) (comp-eq)
Section 3.1 describes the structure needed on type formers to state their functoriality in MLTTmap.
In Section 3.2 we show how definitionally functorial map𝐹 are definable in vanilla MLTT for type
formers with an 𝜂-law. Section 3.3 introduces the main content of this paper, the extension of the
equational theory on neutral terms required to enforce the functor laws on inductive type for-
mers. We explain the technical design choices needed to define and use the logical relations for
MLTTmap and obtain as a consequence that the theory enjoys consistency, canonicity, and decid-
able conversion and type-checking. We implement these design choices in Coq for a simplified
but representative version of MLTTmap, with one universe and the Π, Σ, 𝐋𝐢𝐬𝐭 and 𝐍 type formers,
with their respective map operators. This formalization is detailed in the following Section 4.

3.1 Functorial structure on type formers
In order to state the functor laws for a type former 𝐹 , such as Π,Σ, 𝐋𝐢𝐬𝐭, 𝐖, 𝐈𝐝, we must specify
the categorical structures involved. A type former 𝐹 is parametrized by a telescope of parameters
that we collectively refer to as dom(𝐹), and produces a type. We will always equip the codomain
Type of a type former 𝐹 with the category structure of functions between types, with the standard
identity and composition. Note that composition is associative and unital up to conversion, thanks
to 𝜂 laws on function types.

The domain dom(𝐹) of a type former must also be equipped with the structure of a category.
We introduce the judgementΔ ⊢map 𝑋 : dom(𝐹) to stand for a substitution in context Δ of the
telescope of parameters of 𝐹 , and given two such instances 𝑋1 and 𝑋2, the judgement Δ ⊢map
𝜑 : hom𝐹 (𝑋1, 𝑋2) classifies morphisms between 𝑋1 and 𝑋2. We require 𝐹 to be also equipped
with identities and a definitionally associative and unital composition:

Δ ⊢map 𝑋 : dom(𝐹)
Δ ⊢map id𝐹

𝑋 : hom𝐹 (𝑋, 𝑋)
Δ ⊢map 𝜑 : hom𝐹 (𝑋, 𝑌) Δ ⊢map 𝜓 : hom𝐹 (𝑌 , 𝑍)

Δ ⊢map 𝜓 ∘𝐹 𝜑 : hom𝐹 (𝑋, 𝑍)
For instance, in the case of dependent products, we take dom(Π) and hom(Π) to be

Δ ⊢map (𝐴, 𝐵) : dom(Π) ⟺ Δ ⊢map 𝐴 ∧ Δ, 𝑎: 𝐴 ⊢map 𝐵
Δ ⊢map (𝑓, 𝑔) : homΠ((𝐴1, 𝐵1), (𝐴2, 𝐵2)) ⟺ Δ ⊢map 𝑓 : 𝐴2 → 𝐴1 ∧

Δ, 𝑎: 𝐴2 ⊢map 𝑔 : 𝐵1[𝑓 𝑎] → 𝐵2

with identity idΠ
(𝐴,𝐵) ≝ (id𝐴, id𝐵) and composition (𝑓, 𝑔) ∘Π (𝑓 ′, 𝑔′) ≝ (𝑓 ′ ∘ 𝑓, 𝑔 ∘ 𝑔′).

The domain and morphism for each type former are described in Figure 8. Identities and compo-
sitions are given by the categorical structure on Type for 𝐋𝐢𝐬𝐭 and 𝐈𝐝, and are defined componen-
twise, for Σ and 𝐖, similarly to Π. Figure 9 presents the conversion rules of MLTTmap, extending
those of MLTT with general functoriality rules and specific rules for each type former. For each
type former 𝐹 , map𝐹 is introduced using Map and witnesses the functorial nature of 𝐹 , that is 𝐹
maps morphisms 𝜑 in its domain between two instances of its parameters 𝑋, 𝑌 (left implicit) to
functions between types

Δ ⊢map 𝜑 : hom𝐹 (𝑋, 𝑌) ⟹ Δ ⊢map map𝐹 𝜑 : 𝐹 𝑋 → 𝐹 𝑌
These mapping operations obey the two functor laws, as stated by MapId and MapComp.

The computational behaviour of maps, as defined by weak-head reduction, depends on the type
former. OnΠ and Σ,map is defined by its observation, namely application for Π and first and second
projections for Σ. On inductive types such as 𝐋𝐢𝐬𝐭, 𝐖, 𝐈𝐝 and +, map traverses constructors,

11

T. Laurent, M. Lennon-Bertrand, K. Maillard

Type former 𝐹 Domain Δ ⊢map 𝑋 : dom(𝐹) Morphisms Δ ⊢map 𝜑 : hom𝐹 (⋅1, ⋅2)
𝐋𝐢𝐬𝐭 Δ ⊢map 𝐴 Δ ⊢map 𝑓 : 𝐴1 → 𝐴2

Π Δ ⊢map 𝐴 ∧ Δ ⊢map 𝑓 : 𝐴2 → 𝐴1 ∧
Δ, 𝑎: 𝐴 ⊢map 𝐵 Δ, 𝑎: 𝐴2 ⊢map 𝑔 : 𝐵1[𝑓 𝑎] → 𝐵2

Σ idem Δ ⊢map 𝑓 : 𝐴1 → 𝐴2 ∧
Δ, 𝑎: 𝐴1 ⊢map 𝑔 : 𝐵1 → 𝐵2[𝑓 𝑎]

𝐖 idem Δ ⊢map 𝑓 : 𝐴1 → 𝐴2 ∧
Δ, 𝑎: 𝐴1 ⊢map 𝑔 : 𝐵2[𝑓 𝑎] → 𝐵1

𝐈𝐝
Δ ⊢map 𝐴 ∧ Δ ⊢map 𝑓 : 𝐴1 → 𝐴2 ∧

Δ ⊢map 𝑥 : 𝐴 ∧ Δ ⊢map 𝑓 𝑥1 ≅ 𝑥2 : 𝐴2 ∧
Δ ⊢map 𝑦 : 𝐴 ∧ Δ ⊢map 𝑓 𝑦1 ≅ 𝑦2 : 𝐴2

+ Δ ⊢map 𝐴 ∧ Δ ⊢map 𝐵 Δ ⊢map 𝑓 : 𝐴1 → 𝐴2 ∧ Δ ⊢map 𝑔 : 𝐵1 → 𝐵2

Fig. 8. Domain and categorical structure on type formers

applying the provided morphism on elements of the parameter type(s), and itself to recursive
arguments. This corresponds to the usual notion of map on lists. On 𝐖-types, the map operation
relabels the nodes of the trees using its first component, and reorganizes the subtrees according
to its second component. On identity types, the reflexivity proof refl𝐴,𝑎 at a point 𝑎 : 𝐴 is mapped
to the reflexivity proof at 𝑓 𝑎 : 𝐴′ for 𝑓 : 𝐴 → 𝐴′. On sum types 𝐴 + 𝐵, either the first or second
component of the morphism (𝑓, 𝑔) is employed depending on the constructor inj𝑙 or inj𝑟 . Each
reduction rule has a corresponding conversion rule that can be found in Appendix B.3.

Functorial maps and type former encodings. Positive sum types 𝐴 + 𝐵 can be simulated in
MLTT by the type Σ 𝑏: 𝐁 .𝛿(𝑏, 𝐴, 𝐵), where 𝛿(𝑏, 𝐴, 𝐵): = ind𝐁(𝑏; 𝑧.Type𝑖; 𝐴, 𝐵), which admits
the adequate introduction and elimination rules. The encoding induces a mapping from dom(+)
to dom(Σ), that maps a morphism Δ ⊢map (𝑓, 𝑔) : hom+((𝐴1, 𝐵1), (𝐴2, 𝐵2)) to Δ ⊢map (id𝐁, 𝑓 ⊕
𝑔) : homΣ((𝐁, 𝛿(𝑏, 𝐴, 𝐵)), (𝐁, 𝛿(𝑏, 𝐴′, 𝐵′))) where 𝑓 ⊕ 𝑔 is defined as

Δ, 𝑏: 𝐁 ⊢map ind𝐁(𝑏; 𝑧.𝛿(𝑧, 𝐴, 𝐵) → 𝛿(𝑧, 𝐴′, 𝐵′); 𝑓, 𝑔) : 𝛿(𝑏, 𝐴, 𝐵) → 𝛿(𝑏, 𝐴′, 𝐵′).
We can show by case analysis on 𝐁 that this mapping satisfies the propositional functor laws.
However, it falls short from satisfying the definitional ones.5 It is thus not enough to compose
mapΣ with this mapping to obtain a functorial action on sum types 𝐴 + 𝐵, and explains why we
add + primitively.

This obstruction to inductive encodings would motivate a general definition of functorial map
for a scheme of indexed inductive types. However, it seems already non-trivial to specify the cat-
egorical structure on the domain of an arbitrary inductive type, let alone generate the type and
equations for the corresponding map operation.Thus, we rather concentrate on understanding the
theory on quintessential examples, leaving out the question of a general treatment to future work.

3.2 Extensional types and map
A type 𝐴 is extensional when its elements are characterized by their observation, i.e. any element
is convertible to its 𝜂-expansion, an elimination followed by an introduction – an equation usually
called 𝜂-law. For extensional type former, it is possible to define a map operation satisfying the
5This would amount to an instance of the 𝜂-law for 𝐁.

12

Definitional Functoriality for Dependent (Sub)Types

For each type former 𝐹 (Π, Σ, 𝐋𝐢𝐬𝐭, 𝐖, 𝐈𝐝, +)

Map

Γ ⊢map 𝑋, 𝑌 : dom(𝐹)
Γ ⊢map 𝑓 : hom𝐹 (𝑋, 𝑌)

Γ ⊢map map𝐹 𝑓 : 𝐹 𝑋 → 𝐹 𝑌 MapId

Γ ⊢map 𝑋 : dom(𝐹)
Γ ⊢map 𝑡 : 𝐹 𝑋

Γ ⊢map map𝐹 id𝐹
𝑋 𝑡 ≅ 𝑡 : 𝐹 𝑋

MapComp

Γ ⊢map 𝑋, 𝑌 , 𝑍 : dom(𝐹)
Γ ⊢map 𝑔 : hom𝐹 (𝑋, 𝑌) Γ ⊢map 𝑓 : hom𝐹 (𝑌 , 𝑍) Γ ⊢map 𝑡 : 𝐹 𝑋

Γ ⊢map map𝐹 𝑓 (map𝐹 𝑔 𝑡) ≅ map𝐹 (𝑓 ∘𝐹 𝑔) 𝑡 : 𝐹 𝑍

Specific rules
map𝐋𝐢𝐬𝐭 𝑓 (ℎ𝑑 :: 𝑡𝑙) {1 𝑓 ℎ𝑑 ::map𝐋𝐢𝐬𝐭 𝑓 𝑡𝑙 map𝐋𝐢𝐬𝐭 𝑓 𝜀 {1 𝜀

𝜋1 (mapΣ 𝑓 𝑝) {1 𝜋1 𝑓 (𝜋1 𝑝) 𝜋2 (mapΣ 𝑓 𝑝) {1 𝜋2 𝑓 (𝜋2 𝑝)

mapΠ 𝑓 ℎ 𝑡 {1 (𝜋2 𝑓) (ℎ ((𝜋1 𝑓) 𝑡)) map𝐈𝐝 𝑓 refl𝐴,𝑎 {
1 refl𝐵,𝑓 𝑎

map𝐖{𝑇 }{𝑇 ′}𝑓 (sup 𝑎 𝑘) {1 sup𝑥.𝜋2 𝑇 ′(𝜋1 𝑓 𝑎) (λ𝑥: (𝜋2 𝑇 ′ (𝜋1 𝑓 𝑎)).map𝐖 𝑓 (𝑘 (𝜋2 𝑔 𝑥)))

map+ (𝑓, 𝑔) (inj𝑙 𝑎) {1 inj𝑙 (𝑓 𝑎) map+ (𝑓, 𝑔) (inj𝑟 𝑏) {1 inj𝑟 (𝑔 𝑏)

RedMapComp
ne 𝑛 𝐹 ∈ {𝐋𝐢𝐬𝐭, 𝐈𝐝, +, 𝐖}

map𝐹 𝑓 (map𝐹 𝑔 𝑛) {1 map𝐹 (𝑓 ∘ 𝑔) 𝑛

Fig. 9. MLTTmap (extends Figures 2 to 4, complete rules: Appendix B.3)

functor laws. In MLTT and MLTTmap, both (strong) dependent sums Σ and dependent products Π
have such extensionality laws, and so their map operations are definable.

mapΠ ((𝑔, 𝑓): homΠ((𝐴, 𝐵), (𝐴′, 𝐵′))) (ℎ:Π(𝑥: 𝐴)𝐵) ≝ λ𝑥: 𝐴′.𝑓 (ℎ (𝑔 𝑥))
mapΣ ((𝑔, 𝑓): homΣ((𝐴, 𝐵), (𝐴′, 𝐵′))) (𝑝:Σ(𝑥: 𝐴)𝐵) ≝ (𝑔 (𝜋1 𝑝), 𝑓 (𝜋2 𝑝))

Lemma 3.1. mapΠ and mapΣ satisfy the definitional functor laws MapId and MapComp.

Appendix C.1 gives a direct proof and the accompanying artifact also shows that the functor
laws hold for Coq’s Π and Σ types.6 The specific rule of Figure 9 hold by 𝛽-reduction.

3.3 New equations for neutral terms in dependent type theory
Inductive types in MLTT do not satisfy a definitional 𝜂-law. For identity types, the 𝜂-law is equiv-
alent to the equality reflection principle of extensional MLTT [Jacobs 2001], whose equational
theory is undecidable [Castellan et al. 2017]. Extensionality principles for inductive types with re-
cursive occurrences as 𝐋𝐢𝐬𝐭 or 𝐖 are also likely to break the decidability of the equational theory,
by adapting an argument for streams [McBride 2009].The result of the previous section hence does
not apply, and it is instructive to look at the actual obstruction. Consider the case of 𝐋𝐢𝐬𝐭, and the

6In file mapPiSigmaFunctorLaws.

13

 https://github.com/CoqHott/logrel-coq/tree/esop24-submission/theories/mapPiSigmaFunctorLaws.v

T. Laurent, M. Lennon-Bertrand, K. Maillard

nf 𝑓 ≝ ⋯ ∣ 𝑐 weak-head normal forms
ne 𝑛 ≝ ⋯ ∣ ind𝐋𝐢𝐬𝐭 𝐴(𝑐; 𝑡; 𝑡) weak-head neutrals
cne 𝑐 ≝ 𝑛 ∣ map𝐋𝐢𝐬𝐭 𝑓 𝑛 compacted neutrals

Fig. 10. Weak-head normal and neutrals for MLTTmap (extends Figure 4)

equation for preservation of identities:
Γ ⊢map map𝐋𝐢𝐬𝐭 id𝐴 𝑙 ≅ 𝑙 : 𝐋𝐢𝐬𝐭 𝐴. (⋆)

If we were to define map𝐋𝐢𝐬𝐭 by induction on lists as is standard, we would get
map𝐋𝐢𝐬𝐭(𝑓: 𝐴 → 𝐵) (𝑙: 𝐋𝐢𝐬𝐭 𝐴) ≝ ind𝐋𝐢𝐬𝐭(𝐋𝐢𝐬𝐭 𝐵; 𝑙; 𝜀𝐵, ℎ𝑑.𝑡𝑙.𝑖ℎ𝑡𝑙.(𝑓 ℎ𝑑) ::B 𝑖ℎ𝑡𝑙)

We can observe that Eq. (⋆) is validated on closed canonical terms of type 𝐋𝐢𝐬𝐭:

map𝐋𝐢𝐬𝐭 id𝐴 𝜀𝐴 ≅ 𝜀𝐴 map𝐋𝐢𝐬𝐭 id𝐴 (ℎ𝑑 ::A 𝑡𝑙) ≅ (id𝐴 ℎ𝑑) ::A map𝐋𝐢𝐬𝐭 id𝐴 𝑡𝑙
ind. hyp.

≅ ℎ𝑑 ::A 𝑡𝑙
However, on neutral terms, typically variables, we are stuck as long as we stay within the equa-
tional theory of MLTT:

𝐴:Type, 𝑥: 𝐋𝐢𝐬𝐭 𝐴 ⊬ map𝐋𝐢𝐬𝐭 id𝐴 𝑥 ≅ 𝑥 : 𝐋𝐢𝐬𝐭 𝐴
In order to validate Eq. (⋆), MLTTmap must thus at the very least extend the equational theory

on neutral terms. Allais et al. [2013] show in the simply-typed case that these equations between
neutral terms are actually the only obstruction to functor laws, and in the remainder of this section
we discuss how to adapt MLTT to this idea.

Map composition and compacted neutrals. The first step in order to validate the functor laws is to
get as close as possible to a canonical representation during reduction. In order to deal with compo-
sition of maps, we extend reduction with RedMapComp, fusing consecutive stuck maps. In order
to preserve the deterministic nature of weak-head reduction, map compaction should only apply
when no other rule does. To achieve this, the type former 𝐹 should not be extensional, because
mapΠ is already handled through the 𝜂-expansion of CFun, and similarly for mapΣ. Moreover,
the mapped term should be neither a canonical form where map already has a computational be-
haviour, nor a map itself that could fire the same rule. To control this, we split between neutrals –
which cannot contain a map as their head –, and compacted neutrals, which can start with at most
one map, as shown in Figure 10 alongside normal forms. Allais et al. [2013] also features a decom-
position of normal forms into three different classes akin to this, although their normal forms for
lists are more complex than ours as they validate more definitional equations than functor laws.

Maps on identities. For identities, using a similar reduction-based approach is difficult: turning
the equation Γ ⊢map map𝐋𝐢𝐬𝐭 id𝐴 𝑙 ≅ 𝑙 : 𝐋𝐢𝐬𝐭 𝐴 into a reduction raises issues similar to those
encountered with 𝜂-laws. Orienting it as an expansion 𝑙 {⋆ map𝐋𝐢𝐬𝐭 id𝐴 𝑙 requires knowledge
of the type to ensure the expansion only applies to lists, and is potentially non-terminating. Acco-
modating type-directed reduction would require a deep reworking of our setting.

As a result, just like for 𝜂 on functions in rule CFun, we implement this rule as part of conversion,
rather than as a reduction. We also incorporate it carefully in the notion of reducible conversion
in the logical relation, where we do have access to enough properties of the type theories. Since
the equation is always validated by canonical forms, we only need to enforce it on compacted
neutrals. The logical relation for an inductive type 𝐼 (𝐋𝐢𝐬𝐭, 𝐖, 𝐈𝐝, +) thus specifies that a neutral
𝑛 is reducibly convertible to a compacted neutral map𝐼 𝑓 𝑚, whenever the neutrals 𝑛 and 𝑚 are

14

Definitional Functoriality for Dependent (Sub)Types

convertible and 𝑓 agree with the identity of dom(𝐼) on any neutral term. See MapNeConvRedL
in the next section for the exact rule.

Eliminators: fusion or no fusion? When considering the interaction betweenmap and the elimina-
tor ind𝐋𝐢𝐬𝐭, arises a design choice: should we also fuse them, i.e. implement the following reduction
rule, which pushes the map from the scrutinee into the branches?
ind𝐼(map𝐋𝐢𝐬𝐭 𝑓 𝑛; 𝑙.𝑃 ; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::) {1 ind𝐼(𝑛; 𝑙.𝑃 [map𝐋𝐢𝐬𝐭 𝑓 𝑙]; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::[id, 𝑓 𝑎,map𝐋𝐢𝐬𝐭 𝑓 𝑙, ℎ])
From the point of view of functorial equations, this is not necessary. In Figure 10, and the rest of
this paper, we thus take the most conservative approach, and do not add this reduction rule.

However, from the point of view of a subsumptive bidirectional subtyping, this fusion is neces-
sary if we wish to infer the parameters of the inductive types from the scrutinee (as in Fus below),
rather than store them in the induction node (as in NoFus).

Fus

Γ ⊢sub 𝑠 ▷h 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑙: 𝐋𝐢𝐬𝐭 𝐴 ⊢sub 𝑃 ▷h Type …
Γ ⊢sub ind𝐋𝐢𝐬𝐭(𝑠; 𝑙.𝑃 ; …) ▷ 𝑃 [𝑠] NoFus

Γ ⊢sub 𝐴◁ Γ ⊢sub 𝑠◁𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑙: 𝐋𝐢𝐬𝐭 𝐴 ⊢sub 𝑃 ▷h Type …
Γ ⊢sub ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑙.𝑃 ; …) ▷ 𝑃 [𝑠]

Rule Fus is more appealing, as it removes an unnecessary conversion test between the type of 𝑠
and that stored in the node. Yet, elaborating it to a coercive system requires this target to have
the extra fusion law above. Intuitively, this is because rule Fus does not fix the parameter type
at which the eliminator is typed, and so this parameter can change, which in a coercive system
corresponds to pushing coercions into the branches, as in the fusion equation above.

Experimenting MLTTmap within proof assistants through rewrite rules. Even though we have not
attempted a justification of the metatheory of MLTTmap with a presentation purely based on
rewriting, it is still possible to use oriented version of the functor laws to experiment with this
theory: Agda experimentally supports rewrite rules [Cockx 2020b] while ongoing implementation
work exists for Coq [Gilbert, Leray, et al. 2023]. As an illustration, we implemented Example 1.1
in Agda.7 Concretely, we postulate a new constant map𝐹 and add the following rules:

map𝐹 𝐵′ 𝐶 𝑓 (map𝐹 𝐴 𝐵 𝑔 𝑥) {1 map𝐹 𝐴 𝐶 (𝜆𝑧: 𝐴.𝑓 (𝑔 𝑧)) 𝑥 (comp-rew)
map𝐹 𝐴 𝐴′ (𝜆𝑧: 𝐴″.𝑧) 𝑥 {1 𝑥 (id-rew)

together with the usual definition of map𝐹 on the constructors of the type former 𝐹 . We rely on
typing information to enforce that redundant data coincide, for instance that 𝐴, 𝐴′ and 𝐴″ are
convertible in id-rew.

4 FORMALIZING NEW EQUATIONS FOR NEUTRAL LISTS
In this sectionwe expose themain components of the accompanyingCoq formalization, which cov-
ers normalization, equivalence of declarative and algorithmic typing, decidability of type-checking,
and canonicity for a subset of MLTTmap with 𝟎, 𝐍,Π,Σ, 𝐋𝐢𝐬𝐭 and a single universe.The formaliza-
tion extends a port to Coq [Adjedj et al. 2023] of a previous Agda formalization [Abel et al. 2017],
which has already been extended multiple times [Gilbert, Cockx, et al. 2019; Pujet and Tabareau
2022, 2023]. We focus on the challenges to establish the functor laws on lists, and direct the reader
either to the Coq code, or to Abel et al. and Adjedj et al. for other details. The formalization spans
~26k lines of code, approximately 9k of which are specific to our extension with lists and defini-
tionally functorial maps and are new compared to Adjedj et al. Text in blue refer to files in the
companion artifact.
7See file map.agda in the companion artifact.

15

 https://github.com/CoqHott/logrel-coq/tree/esop24-submission/theories/DeclarativeTyping.v

T. Laurent, M. Lennon-Bertrand, K. Maillard

4.1 A logical relation with functor laws on list
The Coq development defines both declarative and algorithmic presentations of MLTTmap and
proves their equivalence through a logical relation parametrized by a generic typing interface8 in-
stantiated by both presentations. Beyond generic variants of the typing and conversion judgement,
the interface uses two extra judgements: Γ ⊢map 𝑡 {⋆ 𝑡′ : 𝐴 stating that 𝑡 reduces to 𝑡′ and that
they are both well typed at type 𝐴 in context Γ; and Γ ⊢map 𝑛 ≈ 𝑛′ : 𝐴 stating that 𝑛 and 𝑛′ are
convertible neutral terms.

Definition of the logical relation. Because we are dealingwith dependent types, the usual strategy
of reducibility proofs to define reducibility of terms by induction on their types fails. Rather, we
need to define reducibility of types and of terms mutually, the latter defined out of a witness of the
former, and the former reusing the latter for the universe. Following Abel et al. [2017], we thus
first define for each type former 𝐹 what it means to be a type reducible as 𝐹 , and then what it
means to be a reducible term and reducibly convertible terms at such a type reducible as 𝐹 . A type
is then reducible if it is reducible as 𝐹 for some type former 𝐹 . As we extend the logical relation
to handle 𝐋𝐢𝐬𝐭 and map𝐋𝐢𝐬𝐭, we focus on a high level description of the reducibility of types as
lists and the reducible convertibility of terms of type 𝐋𝐢𝐬𝐭, the most challenging elements in the
definition.9 Two points required specific attention with respect to prior work. First, to handle the
fact that constructors contain their parameters, we need to impose reducible conversions between
these and the parameters coming from the type. Second, in order to validate composition of map
on neutrals that may contain a map, we need to equip neutrals with additional reducibility data,
rather than pure typing information.

A type 𝑋 is reducible as a list in context Γ, written Γ ⊩𝐋𝐢𝐬𝐭 𝑋, if it weak-head reduces to 𝐋𝐢𝐬𝐭 𝐴
for some parameter type 𝐴 reducible in any context Δ extending Γ via a weakening 𝜌 : Wk(Δ, Γ).
If ℜ : Γ ⊩𝐋𝐢𝐬𝐭 𝑋 is a witness that 𝑋 is reducible as a list, then ℙ(ℜ) is for the parameter type 𝐴
of this witness, and ℙ⊩(ℜ) :Π{𝜌: Wk(Δ, Γ)}.Δ ⊩ ℙ(ℜ)[𝜌] is its witness of reducibility.

Reducible convertibility of terms as lists Γ ⊩ 𝑡 ≅ 𝑡′ : 𝐴 ∣ ℜ is defined in Figure 11. Two terms 𝑡
and 𝑡′ are reducibly convertible as lists according to ℜ : Γ ⊩𝐋𝐢𝐬𝐭 𝑋 if they reduce to normal forms
𝑣, 𝑣′ that are reducibly convertible as normal forms of type list Γ ⊩nf 𝑣 ≅ 𝑣′ : 𝐴 ∣ ℜ (ListRed).
Straightforwardly, two canonical forms are convertible if they are both 𝜀 (NilRed) or both − :: −
(ConsRed) with reducibly convertible heads and tails.

For compacted neutral forms, we need to consider four cases according to whether each of the
left or the right hand-side term is a map𝐋𝐢𝐬𝐭. NeRed provides the easy case where both terms
are actually neutral, with a single premise requiring that these are convertible as neutrals for the
generic typing interface. MapMapConvRed gives the congruence rule for stuck map𝐋𝐢𝐬𝐭, relating
map𝐋𝐢𝐬𝐭 𝑓 𝑛 and map𝐋𝐢𝐬𝐭 𝑓 ′ 𝑛′ when the mapped lists 𝑛 and 𝑛′ are convertible as neutrals and
the bodies 𝑓 𝑥 and 𝑓 ′ 𝑥 of the functions are reducibly convertible. Note that at this point of the
logical relation, we do not know that the domain of the functions 𝑓 and 𝑓 ′ is reducible, only that
their codomain is, as provided by ℙ⊩(ℜ). This constraint motivates both the 𝜂-expansion of the
functions on the fly before comparing them, and the necessity of a Kripke-style quantification
on larger contexts for the reducibility of the parameter type ℙ⊩(ℜ), together ensuring that the
recursive reducible conversion happens at a reducible type, namely an adequate instance of ℙ(ℜ).
Finally, the symmetric rules NeMapConvRedR and MapNeConvRedL deal with the comparison
of a map𝐋𝐢𝐬𝐭 against a neutral 𝑛, that can be morally thought as map𝐋𝐢𝐬𝐭 id 𝑛, and indeed the

8Defined in GenericTyping
9Available in file LogicalRelation.

16

 https://github.com/CoqHott/logrel-coq/tree/esop24-submission/theories/GenericTyping.v
 https://github.com/CoqHott/logrel-coq/tree/esop24-submission/theories/LogicalRelation.v

Definitional Functoriality for Dependent (Sub)Types

ListRed
Γ ⊢map 𝑡 {⋆ 𝑣 : 𝐋𝐢𝐬𝐭 ℙ(ℜ) Γ ⊢map 𝑡′ {⋆ 𝑣′ : 𝐋𝐢𝐬𝐭 ℙ(ℜ) Γ ⊩nf 𝑣 ≅ 𝑣′ : 𝑋 ∣ ℜ

Γ ⊩ 𝑡 ≅ 𝑡′ : 𝑋 ∣ ℜ

NeRed
Γ ⊢map 𝑛 ≈ 𝑛′ : 𝐋𝐢𝐬𝐭 ℙ(ℜ)

Γ ⊩nf 𝑛 ≅ 𝑛′ : 𝑋 ∣ ℜ NilRed

Γ ⊩ ℙ(ℜ) ≅ 𝑃 ∣ ℙ⊩(ℜ)
Γ ⊩ ℙ(ℜ) ≅ 𝑃 ′ ∣ ℙ⊩(ℜ)
Γ ⊩nf 𝜀𝑃 ≅ 𝜀𝑃 ′ : 𝑋 ∣ ℜ

ConsRed

Γ ⊩ ℙ(ℜ) ≅ 𝑃 ∣ ℙ⊩(ℜ) Γ ⊩ ℙ(ℜ) ≅ 𝑃 ′ ∣ ℙ⊩(ℜ)
Γ ⊩ ℎ𝑑 ≅ ℎ𝑑′ : ℙ(ℜ) ∣ ℙ⊩(ℜ) Γ ⊩ 𝑡𝑙 ≅ 𝑡𝑙′ : 𝑋 ∣ ℙ⊩(ℜ)

Γ ⊩nf ℎ𝑑 ::P 𝑡𝑙 ≅ ℎ𝑑′ ::P' 𝑡𝑙′ : 𝑋 ∣ ℜ

MapNeConvRedL

Γ ⊢map 𝑛 ≈ 𝑛′ : 𝐋𝐢𝐬𝐭 ℙ(ℜ)
Γ, 𝑥: ℙ(ℜ) ⊩ 𝑓 𝑥 ≅ 𝑥 : ℙ(ℜ) ∣ ℙ⊩(ℜ)

Γ ⊩nf map𝐋𝐢𝐬𝐭 𝑓 𝑛 ≅ 𝑛′ : 𝑋 ∣ ℜ NeMapConvRedR …

MapMapConvRed
Γ ⊢map 𝑛 ≈ 𝑛′ : 𝐋𝐢𝐬𝐭 𝐴 Γ, 𝑥: 𝐴 ⊩ 𝑓 𝑥 ≅ 𝑓 ′ 𝑥 : ℙ(ℜ) ∣ ℙ⊩(ℜ)

Γ ⊩nf map𝐋𝐢𝐬𝐭 𝑓 𝑛 ≅ map𝐋𝐢𝐬𝐭 𝑓 ′ 𝑛′ : 𝑋 ∣ ℜ

Fig. 11. Reducible convertibility of lists (where ℜ is a proof of Γ ⊩𝐋𝐢𝐬𝐭 𝑋)

premises correspond to what one would obtain with MapMapConvRed in that case, up to an
inlined 𝛽-reduction step.

Validity of the functor laws. All the expected properties extend to this new logical relation: reflex-
ivity, symmetry, transitivity, irrelevance with respect to reducible conversion, stability by weak-
ening and anti-reduction.10 These properties are essential in order to show that the logical relation
validates the functor laws on any reducible term. The proof proceeds through an usual argument
for logical relations: on canonical forms, the functor laws hold as observed already in Section 3.3;
on compacted neutrals and neutral forms, we need to show that any compositions of map𝐋𝐢𝐬𝐭
reduce to a single map of a function with a reducible body, which amounts to show that com-
posing reducible functions produces reducible outputs on reducible inputs. This last step in the
proof reflect our assumption that the categorical structure equipping domains of type formers,
here dom(𝐋𝐢𝐬𝐭), should be definitionally associative and unital.

4.2 Deciding conversion and typechecking for MLTTmap
Equivalence between declarative and algorithmic typing. Instantiating the generic typing inter-

face of the logical relation with declarative typing provides metatheoretic consequences of the
existence of normal forms, among which normalization, injectivity of type constructors and sub-
ject reduction. Using those, we can show that algorithmic typing is sound directly by induction,
and also that it fits the generic typing interface of the logical relation, which lets us derive that it
is complete with respect to declarative typing.

This part of the proof is close to Abel et al. [2017] and Adjedj et al. [2023]. The main change is
that we adapt algorithmic conversion to reflect the addition of compacted neutrals in our defini-
tion of normal forms, by introducing a third mutually defined relation to compare these compacted

10Available in the directory LogicalRelation.

17

 https://github.com/CoqHott/logrel-coq/tree/esop24-submission/theories/LogicalRelation/

T. Laurent, M. Lennon-Bertrand, K. Maillard

neutrals. The main idea is summed up in rules ListNeConv and NeMapListL below: when com-
paring compacted neutrals, we use the new relation ≈map, which simulates the behaviour of the
logical relation from Figure 11 on compacted neutrals.

ListNeConv
Γ ⊢map 𝑐 ≈map 𝑐′ ◁𝐋𝐢𝐬𝐭 𝐴
Γ ⊢map 𝑐 ≅h 𝑐′ ◁𝐋𝐢𝐬𝐭 𝐴 NeMapListL

Γ ⊢map 𝑛 ≈h 𝑛′ ▷ 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑥: 𝐴 ⊢map 𝑓 𝑥 ≅ 𝑥◁𝐵

Γ ⊢map map𝐋𝐢𝐬𝐭 𝑓 𝑛 ≈map 𝑛′ ◁𝐋𝐢𝐬𝐭 𝐵
Implementation of the decidability algorithms. Our final result is decidability of conversion and

type checking.11 Themain difficulty compared to Adjedj et al. [2023] is the addition of a compaction
phase to weak-head evaluation. Concretely, evaluation is implemented using a stack machine, on
which elimination forms are pushed as they are encountered. When the machine hits a variable, in
the original formalisation it means the whole term – the variable against the stack of eliminations,
which is now stuck – is a neutral. However, this is not the case for us: we want to compute a
compacted neutral. Thus, while in the original formalization the stack is simply traversed and
accumulated on the variable, we implement compaction on the fly, by merging successive map
operations from the stack as we unpile them. In turn, to reason about this operation we have to
explicit the formerly implicit invariant that the stack is always “well-typed” – in a suitable sense
we had to define.

5 SUBTYPING, COERCIVE AND SUBSUMPTIVE
The main application we develop for our definitional functor laws is structural subtyping. More
precisely, we describe two extensions of MLTT. The first, MLTTsub, has subsumptive subtyping:
whenever ⊢sub 𝑡 : 𝐴 ≼ 𝐴′, then also ⊢sub 𝑡 : 𝐴′, leaving subtyping implicit. The second, MLTTcoe,
features coercive subtyping, witnessed by an operator coe𝐴,𝐴′ 𝑡 explicitly marking where subtyp-
ing is used and well-typed whenever ⊢coe 𝑡 : 𝐴 ≼ 𝐴′. The computational behaviour of coe on type
formers coincides with that of map in MLTTmap.

In Section 5.1, we give both an algorithmic and declarative presentation of MLTTcoe, but only an
algorithmic presentation of MLTTsub. The idea is that the declarative version of MLTTcoe serves
as a specification for MLTTsub, with the algorithmic MLTTcoe as an intermediate step to relate the
two. In the context of a proof assistant or dependently typed programming language, MLTTsub
would be the flexible, user-facing system, and MLTTcoe its well-behaved foundation.

We explain in Section 5.2 how to adapt the metatheoretic work onMLTTmap to MLTTcoe, and in
particular the logical relation. Section 5.3 relates MLTTcoe and MLTTsub: there is a simple erasure
|⋅| from the former to the latter which removes coercions, and we show it is type-preserving; con-
versely, we show that any well-typed MLTTsub term can be elaborated to a well-typed MLTTcoe
term. The extra definitional functor laws are essential at this stage, to ensure that all equalities
valid in MLTTsub still hold in MLTTcoe. Since we are in a dependently-typed system, if equations
valid in MLTTsub failed to hold in MLTTcoe, elaboration could not be type-preserving. Finally,
Section 5.4 discuss the implications of this equivalence for coherence.

5.1 The type systems MLTTsub and MLTTcoe
5.1.1 Algorithmic MLTTsub. MLTTsub replaces ChecK in MLTT from Figure 5 with the following
rule, which uses subtyping ≼ instead of conversion:

ChecKSub
Γ ⊢sub 𝑡 ▷ 𝑇 ′ Γ ⊢sub 𝑇 ′ ≼ 𝑇 ◁

Γ ⊢sub 𝑡◁𝑇
11See file Decidability for the high-level function/theorem.

18

 https://github.com/CoqHott/logrel-coq/tree/esop24-submission/theories/Decidability.v

Definitional Functoriality for Dependent (Sub)Types

Γ ⊢sub 𝑇 ≼h 𝑇 ′ ◁ Reduced type 𝑇 is a subtype of reduced type 𝑇 ′

UniSub Γ ⊢sub Type𝑖 ≼h Type𝑖 ◁
PRodSub

Γ ⊢sub 𝐴′ ≼ 𝐴◁ Γ, 𝑥: 𝐴′ ⊢sub 𝐵 ≼ 𝐵′ ◁

Γ ⊢sub Π𝑥: 𝐴.𝐵 ≼h Π𝑥: 𝐴′.𝐵′ ◁

ListSub
Γ ⊢sub 𝐴 ≼ 𝐴′ ◁

Γ ⊢sub 𝐋𝐢𝐬𝐭 𝐴 ≼h 𝐋𝐢𝐬𝐭 𝐴′ ◁
NeuSub

Γ ⊢sub 𝑛 ≈h 𝑛′ ▷ 𝑇
Γ ⊢sub 𝑛 ≼h 𝑛′ ◁

Fig. 12. Algorithmic subtyping between reduced types (extends Figure 6, complete rules: Appendix B.7)

RecTy

ℒ ∈ 𝒫f(Lbl)
∀𝑙 ∈ ℒ. Γ ⊢sub 𝐴𝑙 ◁

Γ ⊢sub {𝑙 : 𝐴𝑙}𝑙∈ℒ ◁
RecSub

𝒦 ⊆ ℒ
∀𝑘 ∈ 𝒦. Γ ⊢sub 𝐴𝑘 ≼ 𝐵𝑘 ◁

Γ ⊢sub {𝑙 : 𝐴𝑙}𝑙∈ℒ ≼h {𝑘 : 𝐴𝑘}𝑘∈𝒦 ◁

Fig. 13. Records, typing and subtyping (extends Figures 5, 6 and 12, complete rules: Appendices B.5 and B.6)

Subtyping, defined in Figure 12, orients type-level conversion from Figure 6, taking into account
co- and contravariance. It relies on neutral comparison and term-level conversion, both of which
are not altered with respect to Figure 6: subtyping is a type-level concept only.

5.1.2 A type of records for a non-trivial instance of subtyping. While the rule of Figure 12 let us
propagate subtyping structurally through type formers, for the resulting system to be any different
fromMLTT, we need some base non-trivial subtyping. Its exact choice is largely orthogonal to the
focus of this paper on the structural aspect of subtyping, and indeed the development of this section
is relatively independent of it. Still, for our subtyping not to be degenerate, we must fix something.

We thus choose a simple example, presented in Figure 13.We fix a countable set of labelsLbl, and
for each finite set ℒ ⊆ Lbl of it and ℒ-indexed family of types 𝐴𝑙 we introduce a (non-dependent)
record type {𝑙 : 𝐴𝑙}𝑙∈ℒ.12 To each record type corresponds a record constructor {𝑙 ≔ 𝑎𝑙}𝑙∈ℒ, as
well as projections 𝑡.𝑙. Subtyping between record types is defined as inclusion of the set of labels,
and pairwise subtyping of types at the same label, i.e. both depth and width subtyping.

5.1.3 Algorithmic MLTTcoe. In contrast with MLTTsub, the rule ChecK in MLTTcoe is crucially
not altered. Instead, subtyping is only allowed when explicitly marked by coe, as follows:

Coe
Γ ⊢coe 𝐴◁ Γ ⊢coe 𝐴′ ◁ Γ ⊢coe 𝑡◁𝐴 Γ ⊢coe 𝐴 ≼ 𝐴′ ◁

Γ ⊢coe coe𝐴,𝐴′ 𝑡 ▷𝐴′

Inference rules for all other type and term formers are similar to those of Figures 5 and 13. Reduc-
tion must of course be extended to give an operational behaviour to coe, and is given in Figure 14,
together with normal forms. Operationally, coe𝐴,𝐴′ 𝑡 reduces the types 𝐴 and 𝐴′ to head normal
forms, then behaves like the relevant map, propagating coe recursively. Since coe𝐴,𝐴′ 𝑡 is well-
typed only when 𝐴 is a subtype of 𝐴′, the type formers of their head normal forms have to agree,
ensuring that we can always rely on this behaviour to enact structural subtyping. Just like map on
Σ-types (see Fig. 9), coercions between records are stuck, even on constructors, and only reduce
once they are projected. Finally, again as for map, rule CoeCoe lets us compact a succession of

12We choose to avoid dependency mainly for simplicity purposes, but see no difficulty to have dependent records instead.

19

T. Laurent, M. Lennon-Bertrand, K. Maillard

𝑡 {1 𝑡′

nf 𝑓 {
(coeΠ𝑥:𝐴′.𝐵′,Π𝑥:𝐴.𝐵 𝑓) 𝑎 {1 coe𝐵′[coe𝐴,𝐴′ 𝑎],𝐵[𝑎](𝑓 (coe𝐴,𝐴′ 𝑎))
(coe{𝑙𝑖:𝐴𝑖}𝑖∈[𝑛],{𝑘𝑗:𝐵𝑗}𝑗∈[𝑚]

𝑓).𝑙 {1 coe𝐴𝑖,𝐵𝑗
𝑓.𝑙 𝑙 = 𝑙𝑖 = 𝑘𝑗

coeType𝑖,Type𝑖
𝑡 {1 𝑡 coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′ 𝜀 {1 𝜀

coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′(ℎ :: 𝑡) {1 coe𝐴,𝐴′ ℎ :: coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′ 𝑡 CoeL
𝐴 {1 𝐴′

coe𝐴,𝐵 𝑡 {1 coe𝐴′,𝐵 𝑡

CoeR
nf⊕ or ne𝐴 𝐵 {1 𝐵′

coe𝐴,𝐵 𝑡 {1 coe𝐴,𝐵′ 𝑡 CoeTm
nf⊕ or ne𝐴, 𝐵 𝑡 {1 𝑡′

coe𝐴,𝐵 𝑡 {1 coe𝐴,𝐵 𝑡′

CoeCoe
nf⊕ or ne𝑈, 𝑈 ′, 𝑇 , 𝑇 ′ ne𝑛
coe𝑈,𝑈′ coe𝑇 ,𝑇 ′ 𝑛 {1 coe𝑇 ,𝑈′ 𝑛

nf 𝑓 ≝ 𝑛 ∣ 𝑃 ∣ 𝑁 ∣ λ𝑥: 𝑡.𝑡 ∣ {𝑙 ≔ 𝑡𝑙}𝑙∈ℒ ∣ weak-head normal forms
𝜀𝑡 ∣ 𝑡 ::t 𝑡 ∣ coe𝑁,𝑁 𝑓 ∣ …

nf⊖ 𝑁 ≝ Π𝑥: 𝑡.𝑡 ∣ {𝑙 : 𝑡𝑙}𝑙∈ℒ ∣ … negative whnf types
nf⊕ 𝑃 ≝ Type𝑖 ∣ 𝐋𝐢𝐬𝐭 𝑡 ∣ … positive whnf types
ne 𝑛 ≝ 𝑥 ∣ 𝑛 𝑡 ∣ 𝑛.𝑙 ∣ ind𝑃 (𝑛; 𝑡; 𝑡) ∣ … weak-head neutrals
cne 𝑐 ≝ 𝑛 ∣ coe𝑃,𝑃 𝑛 ∣ coe𝑛,𝑛 𝑛 compacted neutrals

Fig. 14. Weak-head reduction rules for coercion (extends Figure 4, complete rules: Appendix B.8)

Γ ⊢coe 𝑡 ≈coe 𝑡′ ◁𝑇 Compacted neutrals 𝑡 and 𝑡′ are comparable at type 𝑇

NCoe
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe coe𝑆,𝑇 𝑛 ≈coe coe𝑆′,𝑇 ′ 𝑛′ ◁𝑇 ″ NCoeL
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe coe𝑆,𝑇 𝑛 ≈coe 𝑛′ ◁𝑇 ″

NCoeR
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe 𝑛 ≈coe coe𝑆′,𝑇 ′ 𝑛′ ◁𝑇 ″ NNoCoe
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝑇 ″

Γ ⊢coe 𝑡 ≅h 𝑡′ ◁𝑇

NeuList
Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝐋𝐢𝐬𝐭 𝐴
Γ ⊢coe 𝑛 ≅h 𝑛′ ◁𝐋𝐢𝐬𝐭 𝐴 NeuNeu

Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝑀 ne𝑀
Γ ⊢coe 𝑛 ≅h 𝑛′ ◁𝑀

Fig. 15. Algorithmic comparison of neutrals in MLTTcoe (extends Figure 6, complete rules: Appendix B.9)

stuck coe.This only applies to positive types (characterized by nf⊕): for negative/extensional types
we do not compact coercions, waiting for the term to be observed to trigger further reduction.

20

Definitional Functoriality for Dependent (Sub)Types

Neutral conversion is described at the top of Figure 15 and features an additional comparison
between compacted neutrals similar to MLTTmap (ListNeConv). Rule NCoe is a congruence for
coercions, where the source and target types necessarily agree by typing invariants, and are thus
not compared. Rules NCoeL and NCoeR handle identity coercions. Accordingly, ≈coe is carefully
used whenever normal forms can be compacted neutrals, e.g. at neutral and positive types, as
shown at the bottom of Figure 15. Apart from this change, conversion at the term and type level
and subtyping are similar to those of MLTTsub.

5.1.4 DeclarativeMLTTcoe. Thedeclarative presentation ofMLTTcoe, noted⊢coe, straightforwardly
extends MLTT (Figures 2 and 3) with typing and conversion rules for records and coe similar to
the ones of the algorithmic presentation. Most importantly, it contains the following two rules for
definitional identity and composition of coercions.

CoeId
Γ ⊢coe 𝑡 : 𝐴

Γ ⊢coe coe𝐴,𝐴 𝑡 ≅ 𝑡 : 𝐴 CoeTRans
Γ ⊢coe 𝑡 : 𝐴 Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe 𝐴′ ≼ 𝐴″

Γ ⊢coe coe𝐴′,𝐴″ coe𝐴,𝐴′ 𝑡 ≅ coe𝐴,𝐴″ 𝑡 : 𝐴″

5.2 Equivalence of algorithmic and declarative typing
All the metatheoretic properties of MLTTmap mentioned in Section 4 carry over to MLTTcoe. We
highlight the following two. Note that the second in particular implies that inferred types in the
algorithmic system are principal.

TheoRem 5.1 (WeaK-head noRmalization). If Γ ⊢coe 𝑡 : 𝑇 , then there exists a weak-head normal
form 𝑡′ such that 𝑡 {⋆ 𝑡′.

TheoRem 5.2 (Soundness and completeness of algoRithmic typing). If ⊢coe Γ and Γ ⊢coe
𝑡 ▷ 𝑇 then Γ ⊢coe 𝑡 : 𝑇 , and similarly for the other judgements. Conversely, if Γ ⊢coe 𝑡 : 𝑇 , then
Γ ⊢coe 𝑡◁𝑇 , and similarly for the other judgements.

Proof ideas from MLTTmap carry over to MLTTcoe, and we did not mechanize this part of the
paper, focusing our formalization effort on the most challenging aspect of the theory. We sketch
how to extend the logical relation for MLTTmap to MLTTcoe – the proofs of equivalence between
the declarative and algorithmic systems from the logical relation then remain mostly unchanged.

pRoof sKetch (extending the logical Relation to MLTTcoe). MLTTcoe has three main dif-
ferences compared to MLTTmap: record types, subtyping and coercions.

First, we need to define the logical relation at record types and show the validity of introduction
and elimination forms. Since, records behave as iterated Cartesian products, the reducibility proof
carries over. Thus, reducibility at record types is defined as reducibility of each projection.

Second, we need to extend reducible type-level conversion to handle subtyping. As the structure
of the two judgements is exactly the same, apart from the base subtyping case, we can parame-
trize reducible conversion by a conversion problem,13 a three-valued variant indicating conversion,
subtyping, or supertyping, the latter being needed to handle contravariance and the left bias of
reducible conversion, which is defined on a proof of reducibility of its left type.

Finally, we need to show that coe𝐴,𝐴′ 𝑡 is reducible whenever 𝐴 is a reducible subtype of 𝐴′,
and 𝑡 is reducible at 𝐴. Because of the former, both must have normal forms which are either
constructed with the same type former 𝐹 , both record types, or both neutrals. In the first case,
coe𝐴,𝐴′ 𝑡 behaves like map𝐹 , and so the reducibility proofs from Section 4 carry over. In case 𝐴
and 𝐴′ are both neutral, coe𝐴,𝐴′ 𝑡 might compact if 𝑡 is a coercion itself, but this is also similar to
the case of a neutral map for lists in MLTTmap, and so the proof from Section 4 carries over again.
13This technique is borrowed from the way cumulativity is handled in MetaCoq [Sozeau et al. 2023].

21

T. Laurent, M. Lennon-Bertrand, K. Maillard

We are left with the case of record types. We need to show that if 𝑡 is reducible at {𝑙 : 𝐴𝑙}𝑙∈ℒ
which is a reducible subtype of {𝑘 : 𝐵𝑘}𝑘∈𝒦 then coe{𝑙 : 𝐴𝑙}𝑙∈ℒ,{𝑘 : 𝐵𝑘}𝑘∈𝒦

𝑡 is reducible. By definition
of reducibility at record types as reducibility of all projections, and closure of reducibility by anti-
reduction, it is enough to show that each coe𝐴𝑘,𝐵𝑘

𝑡.𝑘 is reducible at 𝐵𝑘 for 𝑘 ∈ 𝒦. Combining the
reducibility of 𝑡.𝑘 obtained from that of 𝑡, together with the induction hypothesis on the reducible
subtyping 𝐴𝑘 ≼ 𝐵𝑘 completes this step. □

5.3 Elaboration and erasure
We can now turn to the correspondence between MLTTsub and MLTTcoe. The translation in the
forward direction, erasure |⋅|, simply removes coercions ∣coe𝐴,𝐴′ 𝑡∣ = 𝑡 and is otherwise a congru-
ence. It is lifted pointwise to contexts.We first show that erasure is sound,meaning that it preserves
typing and conversion, and then that it is also invertible, i.e. that any well-typed MLTTsub term 𝑡′

elaborates to a well-typed MLTTcoe term 𝑡 whose erasure is 𝑡′ = |𝑡|.
5.3.1 Soundness of erasure. Erasure translates from a constrained system to a more liberal one.
Establishing its soundness is relatively easy as long as the reduction rules of Figure 14 is designed
so that the lemmas below hold.The key point is that reduction rules for coe do not change the struc-
ture of the erased term, and erase to exactly zero steps of reduction. For instance, the rule below
is inadequate, as it would 𝜂-expand terms at function types more in MLTTcoe than in MLTTsub. It
remains nonetheless true, but only as a conversion.

coeΠ𝑥:𝐴′.𝐵′,Π𝑥:𝐴.𝐵 𝑓 {1 λ𝑥: 𝐴. coe𝐵′[coe𝐴,𝐴′ 𝑥],𝐵(𝑓 coe𝐴,𝐴′ 𝑥)
Lemma 5.3 (ERasuRe of Reduction). If 𝑡 {⋆ 𝑢, then also |𝑡| {⋆ |𝑢|.
PRoof. By induction on the number of steps, and then on the derivation of one-step reduction.

Coercion reduction in MLTTcoe map to zero steps on the erased terms, while other reduction steps
map to their counterpart after erasure, using that erasure commutes with substitution. □

TheoRem 5.4 (ERasuRe pReseRves subtyping). The following implications hold whenever the
inputs of the first hypothesis are well-formed:

(1) if Γ ⊢coe 𝑡 ≈coe 𝑢◁𝑇 then there exists 𝑇 ′ such that Γ ⊢coe 𝑇 ′ ≼ 𝑇 ◁ and |Γ| ⊢sub |𝑡| ≈
|𝑢| ▷ |𝑇 ′|;

(2) if Γ ⊢coe 𝑇 ≼h 𝑈 ◁, then |Γ| ⊢sub |𝑇 | ≼h |𝑈|◁;
(3) and similarly for the other subtyping and conversion judgements.

PRoof. By mutual induction, each rule being mapped to their counterpart. Rules for Γ ⊢coe
𝑛 ≈coe 𝑛′ ◁𝑇 are simply dropped, as that judgement is replaced by Γ ⊢sub 𝑛 ≈ 𝑛′▷𝑆 in MLTTsub.
Lemma 5.3 is employed whenever terms and types are reduced to normal forms. □

TheoRem 5.5 (Soundness of eRasuRe – induction). The following implications hold, whenever
the inputs of the premise are well-formed:

• if Γ ⊢coe 𝑡 ▷ 𝑇 , then there exists 𝑇 ′ such that Γ ⊢coe 𝑇 ′ ≼ 𝑇 ◁ and |Γ| ⊢sub |𝑡| ▷ |𝑇 ′|;
• if Γ ⊢coe 𝑡 ▷h 𝑇 , then there exists 𝑇 ′ such that Γ ⊢coe 𝑇 ′ ≼h 𝑇 ◁ and |Γ| ⊢sub |𝑡| ▷h |𝑇 ′|;
• if Γ ⊢coe 𝑡◁𝑇 , then there exists 𝑇 ′ such that Γ ⊢coe 𝑇 ′ ≼ 𝑇 ◁ and |Γ| ⊢sub |𝑡| ▷ |𝑇 ′|.

PRoof. By mutual induction. Checking needs transitivity of ≼. Reduced inference relies on
Lemma 5.3 to handle reduction. Finally, each rule for inference can be mapped to its counter-
part, noting that Γ ⊢coe 𝑇 ′ ≼ 𝑇 ◁ and |Γ| ⊢sub |𝑡| ▷ |𝑇 ′| together imply, by Theorem 5.4,
|Γ| ⊢sub |𝑡|◁ |𝑇 |, so that induction hypothesis on checking premises in MLTTcoe can be turned
into checking premises in MLTTsub. Finally, for the introduction of coe𝐴,𝐵 𝑡, subtyping between
𝐴 and 𝐵 is combined with the subtyping derivation obtained by induction hypothesis on 𝑡. □

22

Definitional Functoriality for Dependent (Sub)Types

In the end, combining with completeness of algorithmic MLTTcoe, we obtain the following high-
level corollary that erasure preserves typing.

CoRollaRy 5.6 (Soundness of eRasuRe). If Γ ⊢coe 𝑡 : 𝑇 , then |Γ| ⊢sub |𝑡|◁ |𝑇 |.
5.3.2 Elaboration. This direction is more challenging: as we add annotations, we must show that
these do not hinder conversion checking.We follow the proof strategy of a similar proof of elabora-
tion soundness in Lennon-Bertrand et al. [2022]. The core of the argument are so-called “catch-up
lemmas”, which ensure that annotations never block redexes.

Lemma 5.7 (Catch up, function type). If Γ ⊢coe 𝑓 𝑎 : 𝐵 and |𝑓| = λ𝑥: 𝐴′. 𝑡′, then there exists
𝑡 such that |𝑡| = 𝑡′ and 𝑓 𝑎 {⋆ 𝑡[𝑎].

Lemma 5.8 (Catch up, RecoRd type). If Γ ⊢coe 𝑟.𝑙 : 𝐴 and |𝑟| = {𝑙 ≔ 𝑢𝑙}𝑙∈ℒ, then there exists 𝑡
such that |𝑡| = 𝑢𝑙 and 𝑟.𝑙 {⋆ 𝑡.

Lemma 5.9 (Catch up, positive types). If 𝑇 is a positive type (i.e. it is Type𝑖, 𝐍, 𝐋𝐢𝐬𝐭, 𝐖,+)
and Γ ⊢coe 𝑡 : 𝑇 is such that |𝑡| is a canonical form, then 𝑡 reduces to a term with the same head
constructor, and arguments which erase to those of |𝑡|.

PRoof. The idea is always the same: because 𝑡 erases to a canonical form, it must be that same
canonical form, surrounded by coercions. Because all types in these coercions are related by sub-
typing to the type of 𝑡, which is canonical as 𝑡 is, all these coercions must reduce away. A detailed
proof for the most challenging case, that of functions, is given in Appendix C.2. □

From these catch-up lemmas it follows that erasure is a backward simulation, therefore that it
preserves subtyping, and finally that it is type-preserving. Proofs are all by induction, and given
in Appendix C.2.

Lemma 5.10 (ERasuRe is a bacKwaRd simulation). Assume that Γ ⊢coe 𝑡 : 𝑇 . If |𝑡| {⋆ 𝑢′, with
𝑢′ a weak-head normal form, then 𝑡 {⋆ 𝑢, with 𝑢 a weak-head normal form such that |𝑢| = 𝑢′.

Lemma 5.11 (ElaboRation pReseRves subtyping). The following implications hold whenever the
inputs of the conclusions are well-formed:

(1) if |Γ| ⊢sub |𝑇 | ≼ |𝑈|◁, then Γ ⊢coe 𝑇 ≼ 𝑈 ◁;
(2) if |Γ| ⊢sub |𝑡| ≅ |𝑢|◁ |𝑇 |, then Γ ⊢coe 𝑡 ≅ 𝑢◁𝑇 ;
(3) if |Γ| ⊢sub |𝑡| ≈ |𝑢| ▷ 𝑇 , then Γ ⊢coe 𝑡 ≈ 𝑢 ▷ 𝑇 ;
(4) and similarly for the other judgements.

Finally, the main theorem states that we can elaborate terms using implicit subtyping to explicit
coercions, in a type-preserving way.

TheoRem 5.12 (ElaboRation – Induction). The following implications hold, whenever inputs to
the conclusion are well-formed:

(1) if |Γ| ⊢sub 𝑡′ ▷ 𝑇 ′, then there exists 𝑡 and 𝑇 such that 𝑡′ = |𝑡|, 𝑇 ′ = |𝑇 |, and Γ ⊢coe 𝑡 ▷ 𝑇 ;
(2) if |Γ| ⊢sub 𝑡′ ▷h 𝑇 ′, then there exists 𝑡 and 𝑇 such that 𝑡′ = |𝑡|, 𝑇 ′ = |𝑇 |, and Γ ⊢coe 𝑡 ▷h 𝑇 ;
(3) if |Γ| ⊢sub 𝑡′ ◁ |𝑇 |, then there exists 𝑡 such that 𝑡′ = |𝑡| and Γ ⊢coe 𝑡◁𝑇 .

PRoof. Once again, by mutual induction. Each rule is mapped to its counterpart, but for ChecK-
Sub, where we need to insert a coercion in the elaborated term. This coercion is well-typed by
Lemma 5.11. □

We can unfold the assumption of input well-formation, to get the following high-level corollary.

23

T. Laurent, M. Lennon-Bertrand, K. Maillard

CoRollaRy 5.13 (ElaboRation). If Γ ⊢coe 𝑇 and |Γ| ⊢sub 𝑡′ ◁ |𝑇 |, then there exists 𝑡 such that
Γ ⊢coe 𝑡 : 𝑇 , and |𝑡| = 𝑡′.

Note that, to establish this equivalencewe did not need to develop anymeta-theory forMLTTsub:
having the meta-theory of MLTTcoe was enough! Nonetheless, now that the equivalence between
the two systems has been established, we can use it to transport meta-theoretic properties, such
as normalization, from MLTTcoe to MLTTsub.

5.4 Coherence
An important property of elaboration is coherence, stating that the elaboration of a well-typed
term does not depend on its typing derivation. In our algorithmic setting, a term has at most one
typing derivation and so at most one elaboration. However, multiple well-typed terms in MLTTcoe
can still erase to the same MLTTsub term. While only one of them is the result of elaboration as
defined in Corollary 5.13, all these distinct terms should still behave similarly. The following is
a direct consequence of Lemma 5.11, and shows that the equations imposed on coe are enough
to give us a very strong form of coherence: it holds up to definitional equality, rather than in
a weaker, semantic way. Another way to look at this is that the scenario of Example 1.2 cannot
happen, thanks to our new equations: if two terms erase to the same coercion-free one inMLTTsub,
then they must be convertible in MLTTcoe. Hidden coercions cannot be responsible for failures of
conversion.

TheoRem 5.14 (CoheRence). If 𝑡, 𝑢 are such that Γ ⊢coe 𝑡◁𝑇 and Γ ⊢coe 𝑢◁𝑇 , and moreover
|𝑡| = |𝑢| (i.e. 𝑡 and 𝑢 are both “elaborations” of the same MLTTsub term), then Γ ⊢coe 𝑡 ≅ 𝑢◁𝑇 .

PRoof. By reflexivity (obtained through the equivalence with the declarative system), Γ ⊢coe
𝑡 ≅ 𝑡◁𝑇 . Using Theorem 5.5 (soundness of erasure), we get |Γ| ⊢sub |𝑡| ≅ |𝑡|◁ |𝑇 |, and so also
|Γ| ⊢sub |𝑡| ≅ |𝑢|◁ |𝑇 |. But then by Lemma 5.11 (elaboration preserving conversion), we can come
back, and obtain Γ ⊢coe 𝑡 ≅ 𝑢◁𝑇 . □

6 RELATED AND FUTURE WORK
Adding definitional equations to dependent type theory. Strub [2010] endows a dependent type

theory with additional equations from first order decidable theories, with further extensions to a
universe hierarchy and large eliminations in Jouannaud and Strub [2017] and Barras et al. [2011].
Equational theories can sometimes be presented by a confluent set of rewrite rules, a case advo-
cated by Cockx et al. [2021].They show through counter-examples that ensuring type preservation
in dependent type theory is a subtle matter and do not ensure normalization of the resulting the-
ory. On the theoretical side, categorical tools are being developed to prove general conservativity
and strictification results for type theories [Bocquet 2021, 2023] extending the seminal work of
Hofmann [1997] on conservativity of extensional type theory with respect to intensional type
theory [Winterhalter et al. 2019].

Formalizedmetatheory with logical relations. Allais et al. [2013] propose to add a variety of fusion
laws for lists, including our functor laws, to a simply typed 𝜆-calculus, only sketching an extension
to dependent types. While we depart from their normalization by evaluation approach, we retain
some traces of it, typically in the presence of three classes of normal forms (see Figures 10 and 14)
instead of the usual normal/neutral. Formalizing logical relations for MLTT is a difficult exercise,
pioneered by Abel et al. [2017] in Agda using inductive-recursive definitions, and Wieczorek and
Biernacki [2018] in Coq using impredicativity. We build upon and extend a Coq reimplementation
of the former [Adjedj et al. 2023].

24

Definitional Functoriality for Dependent (Sub)Types

Cast and coercion operators. Pujet and Tabareau [2022, 2023] extend Abel et al. [2017] to establish
themetatheory of observational type theory [Altenkirch, McBride, et al. 2007].Their work features
a cast operator behaving similarly to coe, but guarded by an internal proof of equality instead of
an external subtyping derivation. Their cast does not satisfy definitional transitivity, and we give
evidence in Appendix A that such an extension would break metatheoretical properties. Another
cast primitive with a similar operational behaviour appears in cast calculi for gradual typing [Siek
et al. 2015], and indeed our proof that elaboration is type preserving in Section 5.3 is inspired by a
similar one for GCIC, which combines gradual and dependent types [Lennon-Bertrand et al. 2022].
In this case, casting is allowed between any two types, but the absence of guard is compensated
by the possibility of runtime errors, making the type theory inconsistent.

Functorial maps for inductive type schemes. Z. Luo and Adams [2008] describe the construction
of map for a class of strictly positive operators on paper, but do not implement it. Deriving map-
like construction is a typical example of metaprogramming frameworks for proof assistants, e.g.
Coq-Elpi [Tassi 2018; Dunchev et al. 2015] in Coq, and the generics Agda library [Escot and Cockx
2022] derives a fold operation, from which map can be easily obtained. In a simply typed setting,
Barral and Soloviev [2006] employ rewriting techniques, in particular rewriting postponement, to
show that an oriented variant of the functor laws are confluent and normalizing. These techniques
rely on normalization, and could not be easily adapted to the dependent setting, however the idea of
postponing the reduction step for identity appear in our logical relation as well. In a short abstract,
McBride and Nordvall Forsberg [2021] investigate a notion of functorial adapters that generalizes
and unifies both the ChecK rule from bidirectional typing and the Coe rule from MLTTcoe.

Subtyping, dependent types and algorithmic derivations. Coherence of coercions in presence of
structural subtyping is a challenging problem. To address the issue, Z. Luo and Y. Luo [2005] intro-
duce a notion of weak transitivity, weakening the coherence of the transitivity up to propositional
equality. This solution does not interact well with dependency, forcing them to restrict structural
subtyping to a class of non-dependent inductives, e.g. excluding (positive) Σ. Z. Luo and Adams
[2008] show that the transitivity of coercions is admissible in presence of definitional compositions
– called 𝜒-rules there – for inductive schemata.They rely on a conjecture that strong normalization
and subject reduction hold in presence of these 𝜒-rules, explicitly mentioning that the metatheory
with those additional equality rules is “largely unknown”. We provide such results, and have for-
malized them for 𝐋𝐢𝐬𝐭. We use a completely different proof technique, that scales to a theory with
universes and large elimination. Both aforementioned papers employ a strict order for subtyping
and do not consider the functor law for the identity, nor tackle decidability of type-checking.

Aspinall and Compagnoni [2001] investigate the relationship between subtyping and dependent
types using algorithmic derivations to control the subtyping derivations for a variant of 𝜆𝑃 , a type
theory logically much weaker than MLTT. Lungu and Z. Luo [2018] study an elaboration of a sub-
sumptive presentation into coercive one in presence of a coherent signature of subtyping relations
between base types. Assuming normalization, they show that subtyping extends to Π types, set-
ting aside other parametrized types. While they work over an abstract signature of coercions, the
functor laws we study are needed to instantiate this signature with meaningful datatypes while re-
specting their assumptions. We explain the relation of these algorithmic system with bidirectional
systems, notably the one of Abel et al. [2017], contributing to a sharper picture.

Integration with other forms of subtyping. As we mentioned in Section 5, our design of base
subtyping was guided by simplicity. Our work on structural subtyping should integrate mostly
seamlessly with other, more ambitious forms of subtyping. Coercions between dependent records
form the foundation of hierarchical organizations of mathematical structures [Cohen et al. 2020;

25

T. Laurent, M. Lennon-Bertrand, K. Maillard

Affeldt et al. 2020;Wieser 2023], and should be a simple extension of our framework.This could lead
to vast simplification of the complex apparatus currently needed to deal with these hierarchies.

Refinement subtyping is heavily used in F⋆ but also in Coq’s PRogRam [Sozeau 2007] to specify
the behaviour of programs. Relativizing any result of decidability of type-checking to that of the
chosen fragment of refinements, an implementation of refinement subtyping using definitionally
irrelevant propositions [Gilbert, Cockx, et al. 2019] to preserve coherence14 should be within reach.

Our techniques for structural subtyping should also apply well in the context of algebraic ap-
proaches to cumulativity between universes [Sterling 2019; Kovács 2022]. Cumulativity goes be-
yondmere subtyping, as it also involves definitional isomorphisms between two copies of the same
type at different universe levels. Our definitional functor laws already allow these to interact well
with map operations, but it would be interesting to investigate which extra definitional equations
are needed – and can be realized – to make structural cumulativity work seamlessly, hopefully
obtaining a translation from Russel-style to Tarski-style universes similar to our elaboration from
MLTTsub to MLTTcoe.

REFERENCES
Michael GordonAbbott,Thorsten Altenkirch, and Neil Ghani. 2005. “Containers: Constructing strictly positive types.”Theor.

Comput. Sci., 342, 1, 3–27. doi: 10.1016/j.tcs.2005.06.002.
Andreas Abel, JoakimÖhman, and Andrea Vezzosi. Dec. 2017. “Decidability of Conversion for TypeTheory in TypeTheory.”

Proc. ACM Program. Lang., 2, POPL, Article 23, (Dec. 2017), 29 pages. doi: 10.1145/3158111.
Arthur Adjedj, Meven Lennon-Bertrand, Kenji Maillard, Pierre-Marie Pédrot, and Loïc Pujet. Sept. 2023. “Martin-Löf à la

Coq.” working paper or preprint. (Sept. 2023). https://inria.hal.science/hal-04214008.
Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien Rouhling, and Kazuhiko Sakaguchi. June 2020.

“Competing inheritance paths in dependent type theory: a case study in functional analysis.” In: IJCAR 2020 - Interna-
tional Joint Conference on Automated Reasoning. Paris, France, (June 2020), 1–19. https://inria.hal.science/hal-02463336.

Agda Development Team. 2023. Agda 2.6.3 documentation. https://agda.readthedocs.io/en/v2.6.3/.
Guillaume Allais, Conor McBride, and Pierre Boutillier. 2013. “New Equations for Neutral Terms: A Sound and Complete

Decision Procedure, Formalized.” In: Proceedings of the 2013 ACM SIGPLAN Workshop on Dependently-Typed Program-
ming (DTP ’13). Association for Computing Machinery, Boston, Massachusetts, USA, 13–24. isbn: 9781450323840. doi:
10.1145/2502409.2502411.

Thorsten Altenkirch, Neil Ghani, Peter G. Hancock, Conor McBride, and Peter Morris. 2015. “Indexed containers.” J. Funct.
Program., 25. doi: 10.1017/S095679681500009X.

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. “Observational Equality, Now!” In: Proceedings of the
2007Workshop on Programming LanguagesMeets ProgramVerification (PLPV ’07). Association for ComputingMachinery,
Freiburg, Germany, 57–68. isbn: 9781595936776. doi: 10.1145/1292597.1292608.

David Aspinall and Adriana Compagnoni. 2001. “Subtyping dependent types.”Theoretical Computer Science, 266, 1, 273–309.
doi: https://doi.org/10.1016/S0304-3975(00)00175-4.

Freiric Barral and Sergei Soloviev. 2006. “Inductive Type Schemas as Functors.” In: Computer Science - Theory and Applica-
tions, First International Symposium on Computer Science in Russia, CSR 2006, St. Petersburg, Russia, June 8-12, 2006, Pro-
ceedings (Lecture Notes in Computer Science). Ed. by Dima Grigoriev, John Harrison, and Edward A. Hirsch. Vol. 3967.
Springer, 35–45. isbn: 3-540-34166-8. doi: 10.1007/11753728_7.

Bruno Barras, Jean-Pierre Jouannaud, Pierre-Yves Strub, and Qian Wang. 2011. “CoQMTU: A Higher-Order Type Theory
with a Predicative Hierarchy of Universes Parametrized by a Decidable First-Order Theory.” In: Proceedings of the 26th
Annual IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada. IEEE Com-
puter Society, 143–151. isbn: 978-0-7695-4412-0. doi: 10.1109/LICS.2011.37.

Rafaël Bocquet. 2021. “Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts.” In: 27th Inter-
national Conference on Types for Proofs and Programs, TYPES 2021, June 14-18, 2021, Leiden, The Netherlands (Virtual
Conference) (LIPIcs). Ed. by Henning Basold, Jesper Cockx, and Silvia Ghilezan. Vol. 239. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 3:1–3:23. isbn: 978-3-95977-254-9. doi: 10.4230/LIPIcs.TYPES.2021.3.

Rafaël Bocquet. 2023. “Towards coherence theorems for equational extensions of type theories.” CoRR, abs/2304.10343.
arXiv: 2304.10343. doi: 10.48550/arXiv.2304.10343.

14With proof-relevant propositions, different proofs of 𝑝 ⇒ 𝑞 induce different coercions between {𝑥 ∣ 𝑝} and {𝑥 ∣ 𝑞},
breaking coherence.

26

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1145/3158111
https://inria.hal.science/hal-04214008
https://inria.hal.science/hal-02463336
https://agda.readthedocs.io/en/v2.6.3/
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1145/1292597.1292608
https://doi.org/https://doi.org/10.1016/S0304-3975(00)00175-4
https://doi.org/10.1007/11753728_7
https://doi.org/10.1109/LICS.2011.37
https://doi.org/10.4230/LIPIcs.TYPES.2021.3
https://arxiv.org/abs/2304.10343
https://doi.org/10.48550/arXiv.2304.10343

Definitional Functoriality for Dependent (Sub)Types

Edwin C. Brady. 2021. “Idris 2: Quantitative Type Theory in Practice (Artifact).” Dagstuhl Artifacts Ser., 7, 2, 10:1–10:7. doi:
10.4230/DARTS.7.2.10.

Simon Castellan, Pierre Clairambault, and Peter Dybjer. 2017. “Undecidability of Equality in the Free Locally Cartesian
Closed Category (Extended version).” Log. Methods Comput. Sci., 13, 4. doi: 10.23638/LMCS-13(4:22)2017.

Jesper Cockx. 2020a. Disable all subtyping by default? https://github.com/agda/agda/issues/4474. Accessed: 2023-07-10.
(2020).

Jesper Cockx. 2020b. “Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules.” In: 25th International
Conference on Types for Proofs and Programs (TYPES 2019) (Leibniz International Proceedings in Informatics (LIPIcs)). Ed.
by Marc Bezem and Assia Mahboubi. Vol. 175. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
2:1–2:27. isbn: 978-3-95977-158-0. doi: 10.4230/LIPIcs.TYPES.2019.2.

Jesper Cockx, Nicolas Tabareau, andThéoWinterhalter. 2021. “The Taming of the Rew: A TypeTheory with Computational
Assumptions.” Proceedings of the ACM on Programming Languages. POPL 2021. https://hal.archives-ouvertes.fr/hal-029
01011.

Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi. June 2020. “Hierarchy Builder: algebraic hierarchies made easy in Coq
with Elpi.” In: FSCD 2020 - 5th International Conference on Formal Structures for Computation and Deduction 167. Paris,
France, (June 2020), 34:1–34:21. doi: 10.4230/LIPIcs.FSCD.2020.34.

Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. Nov. 2015. “ELPI: fast, Embeddable, 𝜆Prolog
Interpreter.” In: Proceedings of LPAR. Suva, Fiji, (Nov. 2015). https://inria.hal.science/hal-01176856.

Jana Dunfield and Neel Krishnaswami. May 2021. “Bidirectional Typing.” ACM Computing Surveys, 54, 5, Article 98, (May
2021), 38 pages. doi: 10.1145/3450952.

Lucas Escot and Jesper Cockx. 2022. “Practical Generic Programming over a Universe of Native Datatypes.” Proc. ACM
Program. Lang., 6, ICFP, Article 113, 25 pages. doi: 10.1145/3547644.

Lucas Escot, Josselin Poiret, Joris Ceulemans, Andreas Nuyts, and Malin Altenmüller. 2023. “Read the mode and stay posi-
tive.” In: 29th International Conference on Types for Proofs and Programs.

Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Jan. 2019. “Definitional Proof-Irrelevance without
K.” Proceedings of the ACM on Programming Languages. POPL’19 3, POPL, (Jan. 2019), 1–28. doi: 10.1145/329031610.114
5/3290316.

Gaëtan Gilbert, Yann Leray, Nicolas Tabareau, and Théo Winterhalter. June 2023. The Rewster: The Coq Proof Assistant with
Rewrite Rules. Presentation at TYPES’23. (June 2023). https://media.upv.es/#/portal/video/bf2591f0-34a6-11ee-8485-f13
3f82f8945.

Martin Hofmann. 1997. Extensional constructs in intensional type theory. CPHC/BCS distinguished dissertations. Springer.
isbn: 978-3-540-76121-1.

Cătălin Hrițcu. 2014. Polarities: subtyping for datatypes. https://github.com/FStarLang/FStar/issues/65. Accessed: 2023-07-
04. (2014).

Jasper Hugunin. 2020. “Why NotW?” In: 26th International Conference on Types for Proofs and Programs, TYPES 2020, March
2-5, 2020, University of Turin, Italy (LIPIcs). Ed. by Ugo de’Liguoro, Stefano Berardi, and Thorsten Altenkirch. Vol. 188.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 8:1–8:9. isbn: 978-3-95977-182-5. doi: 10.4230/LIPIcs.TYPES.2020.8.

Bart P. F. Jacobs. 2001. Categorical Logic and Type Theory. Studies in logic and the foundations of mathematics. Vol. 141.
North-Holland. isbn: 978-0-444-50853-9. http://www.elsevierdirect.com/product.jsp?isbn=9780444508539.

Jean-Pierre Jouannaud and Pierre-Yves Strub. 2017. “Coq without Type Casts: A Complete Proof of Coq ModuloTheory.” In:
LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana,
May 7-12, 2017 (EPiC Series in Computing). Ed. by Thomas Eiter and David Sands. Vol. 46. EasyChair, 474–489. doi:
10.29007/bjpg.

András Kovács. 2022. “Generalized Universe Hierarchies and First-Class Universe Levels.” In: 30th EACSLAnnual Conference
on Computer Science Logic (CSL 2022) (Leibniz International Proceedings in Informatics (LIPIcs)). Ed. by Florin Manea
and Alex Simpson. Vol. 216. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 28:1–28:17. isbn:
978-3-95977-218-1. doi: 10.4230/LIPIcs.CSL.2022.28.

Meven Lennon-Bertrand. 2021. “Complete Bidirectional Typing for the Calculus of Inductive Constructions.” In: 12th Inter-
national Conference on Interactive Theorem Proving (ITP 2021) (Leibniz International Proceedings in Informatics (LIPIcs)).
Ed. by Liron Cohen and Cezary Kaliszyk. Vol. 193. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. isbn: 978-3-
95977-188-7. doi: 10.4230/LIPIcs.ITP.2021.24.

Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter. Apr. 2022. “Gradualizing the Calculus of In-
ductive Constructions.” ACM Transactions on Programming Languages and Systems, 44, 2, Article 7, (Apr. 2022), 82 pages.
doi: 10.1145/3495528.

Miran Lipovača. 2010. Learn You a Haskell for Great Good! http://learnyouahaskell.com/. (2010). http://learnyouahaskell.co
m/.

27

https://doi.org/10.4230/DARTS.7.2.10
https://doi.org/10.23638/LMCS-13(4:22)2017
https://doi.org/10.4230/LIPIcs.TYPES.2019.2
https://hal.archives-ouvertes.fr/hal-02901011
https://hal.archives-ouvertes.fr/hal-02901011
https://doi.org/10.4230/LIPIcs.FSCD.2020.34
https://inria.hal.science/hal-01176856
https://doi.org/10.1145/3450952
https://doi.org/10.1145/3547644
https://doi.org/10.1145/329031610.1145/3290316
https://doi.org/10.1145/329031610.1145/3290316
https://media.upv.es/#/portal/video/bf2591f0-34a6-11ee-8485-f133f82f8945
https://media.upv.es/#/portal/video/bf2591f0-34a6-11ee-8485-f133f82f8945
https://doi.org/10.4230/LIPIcs.TYPES.2020.8
http://www.elsevierdirect.com/product.jsp?isbn=9780444508539
https://doi.org/10.29007/bjpg
https://doi.org/10.4230/LIPIcs.CSL.2022.28
https://doi.org/10.4230/LIPIcs.ITP.2021.24
https://doi.org/10.1145/3495528
http://learnyouahaskell.com/
http://learnyouahaskell.com/

T. Laurent, M. Lennon-Bertrand, K. Maillard

Georgiana Elena Lungu and Zhaohui Luo. 2018. “On Subtyping in Type Theories with Canonical Objects.” In: 22nd Inter-
national Conference on Types for Proofs and Programs (TYPES 2016) (Leibniz International Proceedings in Informatics
(LIPIcs)). Ed. by Silvia Ghilezan, Herman Geuvers, and Jelena Ivetić. Vol. 97. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 13:1–13:31. isbn: 978-3-95977-065-1. doi: 10.4230/LIPIcs.TYPES.2016.13.

Zhaohui Luo and RobinAdams. 2008. “Structural subtyping for inductive typeswith functorial equality rules.”Mathematical
Structures in Computer Science, 18, 5, 931–972. doi: 10.1017/S0960129508006956.

Zhaohui Luo and Yong Luo. 2005. “Transitivity in coercive subtyping.” Inf. Comput., 197, 1-2, 122–144. doi: 10.1016/j.ic.20
04.10.008.

Saunders MacLane. 1971. Categories for theWorkingMathematician. Graduate Texts inMathematics, Vol. 5. Springer-Verlag,
New York.

Per Martin-Löf and Giovanni Sambin. 1984. Intuitionistic Type Theory. Studies in Proof Theory 1. Napoli: Bibliopolis.
Conor McBride. 2009. “Grins from my Ripley Cupboard.” (2009).
Conor McBride. 2022. “Types Who Say Ni.” (2022).
Conor McBride and Frederik Nordvall Forsberg. June 2021. Functorial Adapters. 27th International Conference on Types

for Proofs and Programs. (June 2021).
Leonardo de Moura and Sebastian Ullrich. 2021. “The Lean 4 Theorem Prover and Programming Language.” In: Automated

Deduction - CADE 28 - 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings
(Lecture Notes in Computer Science). Ed. by André Platzer and Geoff Sutcliffe. Vol. 12699. Springer, 625–635. isbn:
978-3-030-79875-8. doi: 10.1007/978-3-030-79876-5_37.

Benjamin C. Pierce and David N. Turner. Jan. 2000. “Local Type Inference.” ACM Transactions on Programming Languages
and Systems, 22, 1, (Jan. 2000), 1–44. doi: 10.1145/345099.345100.

Loıc̈ Pujet and Nicolas Tabareau. Jan. 2023. “Impredicative Observational Equality.” Proc. ACM Program. Lang., 7, POPL,
Article 74, (Jan. 2023), 26 pages. doi: 10.1145/3571739.

Loıc̈ Pujet and Nicolas Tabareau. 2022. “Observational Equality: Now for Good.” Proc. ACM Program. Lang., 6, POPL, Article
32, 27 pages. doi: 10.1145/3498693.

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015. “Refined Criteria for Gradual Typing.”
In: 1st Summit on Advances in Programming Languages (SNAPL 2015) (Leibniz International Proceedings in Informatics
(LIPIcs)). Ed. by Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett. Vol. 32.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 274–293. doi: 10.4230/LIPIcs.SNAPL.2015.274.

Matthieu Sozeau. 2007. “Subset Coercions in Coq.” In: Types for Proofs and Programs. Ed. byThorsten Altenkirch and Conor
McBride. Springer Berlin Heidelberg, Berlin, Heidelberg, 237–252. isbn: 978-3-540-74464-1.

Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob BotschNielsen, Nicolas Tabareau, andThéoWinterhalter.
Apr. 2023. “Correct and Complete Type Checking and Certified Erasure for Coq, in Coq.” Preprint. (Apr. 2023). https://i
nria.hal.science/hal-04077552.

Jonathan Sterling. 2019. “Algebraic Type Theory and Universe Hierarchies.” CoRR, abs/1902.08848. arXiv: 1902.08848.
Pierre-Yves Strub. 2010. “Coq Modulo Theory.” In: Computer Science Logic, 24th International Workshop, CSL 2010, 19th

Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceedings (Lecture Notes in Computer
Science). Ed. by Anuj Dawar and Helmut Veith. Vol. 6247. Springer, 529–543. isbn: 978-3-642-15204-7. doi: 10.1007/978
-3-642-15205-4_40.

Nikhil Swamy et al.. 2016. “Dependent types and multi-monadic effects in F.” In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016. Ed. by Rastislav Bodıḱ and Rupak Majumdar. ACM, 256–270. isbn: 978-1-4503-3549-2. doi: 10.1145/2837614.2
837655.

Enrico Tassi. Jan. 2018. “Elpi: an extension language for Coq (Metaprogramming Coq in the Elpi 𝜆Prolog dialect).” working
paper or preprint. (Jan. 2018). https://inria.hal.science/hal-01637063.

[SW] The Coq Development Team, The Coq Proof Assistant version 8.16, Sept. 2022. doi: 10.5281/zenodo.7313584, uRl:
https://doi.org/10.5281/zenodo.7313584.

Paweł Wieczorek and Dariusz Biernacki. 2018. “A Coq Formalization of Normalization by Evaluation for Martin-Löf Type
Theory.” In: Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2018).
Association for Computing Machinery, Los Angeles, CA, USA, 266–279. isbn: 9781450355865. doi: 10.1145/3167091.

Eric Wieser. 2023. Multiple inheritance hazards in algebraic typeclass hierarchies. (2023). arXiv: 2306.00617 [cs.LO].
Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau. 2019. “Eliminating reflection from type theory.” In: Proceedings

of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January
14-15, 2019. Ed. by Assia Mahboubi and Magnus O. Myreen. ACM, 91–103. isbn: 978-1-4503-6222-1. doi: 10.1145/32938
80.3294095.

28

https://doi.org/10.4230/LIPIcs.TYPES.2016.13
https://doi.org/10.1017/S0960129508006956
https://doi.org/10.1016/j.ic.2004.10.008
https://doi.org/10.1016/j.ic.2004.10.008
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/3571739
https://doi.org/10.1145/3498693
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://inria.hal.science/hal-04077552
https://inria.hal.science/hal-04077552
https://arxiv.org/abs/1902.08848
https://doi.org/10.1007/978-3-642-15205-4_40
https://doi.org/10.1007/978-3-642-15205-4_40
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://inria.hal.science/hal-01637063
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.1145/3167091
https://arxiv.org/abs/2306.00617
https://doi.org/10.1145/3293880.3294095
https://doi.org/10.1145/3293880.3294095

Definitional Functoriality for Dependent (Sub)Types

A INTERNAL SUBTYPING AND UNDECIDABILITY OF CONVERSION
The goal of the coercive approach is to reflect all the potential ambiguities present in a subtyping
derivation. As such, wouldn’t it be easier to just internalize the notion of subtype and let type
theory deal with it? The following observation shows that there exists a big obstruction to any
decidability result for conversion as long as we want to stay equivalent to the subsumptive pre-
sentation of subtyping.

ObseRvation A.1 (No-go of inteRnal subtyping). Suppose that 𝒯 is a type theory with a
family sub𝐴 𝐵 for any two types 𝐴 and 𝐵, equipped with reflexivity witnesses refl𝐴 : sub𝐴 𝐴 and
transitivity witnesses trans𝑤 𝑤′ : sub𝐴 𝐶 for 𝑤 : sub𝐴 𝐵 and 𝑤′ : sub𝐵 𝐶 , as well as a coercion
function coe𝐴,𝐵 : sub𝐴 𝐵 → 𝐴 → 𝐵, such that coe𝐴,𝐴 refl𝐴 ≅ id𝐴 and coe𝐵,𝐶 𝑤∘coe𝐴,𝐵 𝑤′ ≅
coe𝐴,𝐶(trans𝑤𝐴,𝐵 𝑤𝐵,𝐶). Then 𝒯 embeds definitional models of the untyped 𝜆-calculus, and in
particular divergent terms.

Indeed, whenever a context provides inhabitants of both sub𝐴 𝐵 and sub𝐵 𝐴, coe𝐴,𝐵 and
coe𝐵,𝐴 provide a definitional isomorphism𝐴 ≅ 𝐵. In particular any context inhabiting sub𝐴 𝐴 →
𝐴 and sub𝐴 → 𝐴 𝐴, for instance an inconsistent one, provides a definitional retraction of 𝐴 → 𝐴
onto 𝐴, hence a non-trivial model of the untyped 𝜆-calculus with a divergent element Ω𝐴: 𝐴. This
observation motivates our external approach to subtyping with a specific judgement of subtyping
that cannot be abstracted upon.

B COMPLETE TYPING RULES
B.1 Declarative MLTT

⊢ Γ Context Γ is well-formed

⊢ ⋅
⊢ Γ Γ ⊢ 𝐴 :Type𝑖

⊢ Γ, 𝑥: 𝐴

Γ ⊢ 𝜎 : Δ 𝜎 is a well-typed substitution between contexts Γ and Δ

Γ ⊢ ⋅ : ⋅
Γ ⊢ 𝜎 : Δ Γ ⊢ 𝑡 : 𝐴[𝜎]

Γ ⊢ (𝜎, 𝑡) : Δ, 𝑥: 𝐴

Γ ⊢ 𝑇 Type 𝑇 is well-formed in context Γ

El
Γ ⊢ 𝐴 :Type𝑖

Γ ⊢ 𝐴 FunTy
Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵

Γ ⊢ Π𝑥: 𝐴.𝐵 ListTy
Γ ⊢ 𝐴

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴

SigTy
Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵

Γ ⊢ Σ𝑥: 𝐴.𝐵 TReeTy
Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵

Γ ⊢ 𝐖 𝑥: 𝐴.𝐵

IdTy
Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑎′ : 𝐴

Γ ⊢ 𝐈𝐝𝐴 𝑎 𝑎′ SumTy
Γ ⊢ 𝐴 Γ ⊢ 𝐵

Γ ⊢ 𝐴 + 𝐵

29

T. Laurent, M. Lennon-Bertrand, K. Maillard

Γ ⊢ 𝑡 : 𝑇 Term 𝑡 has type 𝑇 under context Γ

Conv
Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝐴 ≅ 𝐵

Γ ⊢ 𝑡 : 𝐵 VaR
⊢ Γ (𝑥: 𝐴) ∈ Γ

Γ ⊢ 𝑥 : 𝐴 SoRt
⊢ Γ

Γ ⊢ Type𝑖 :Type𝑖+1

FunUni

Γ ⊢ 𝐴 :Type𝑖
Γ, 𝑥: 𝐴 ⊢ 𝐵 :Type𝑖

Γ ⊢ Π𝑥: 𝐴.𝐵 :Type𝑖
Abs

Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵
Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵

Γ ⊢ λ𝑥: 𝐴.𝑡 :Π𝑥: 𝐴.𝐵 App

Γ ⊢ 𝑡 :Π𝑥: 𝐴.𝐵
Γ ⊢ 𝑢 : 𝐴

Γ ⊢ 𝑡 𝑢 : 𝐵[𝑢]

ListUni
Γ ⊢ 𝐴 :Type𝑖

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 :Type𝑖
Nil

Γ ⊢ 𝐴
Γ ⊢ 𝜀𝐴 : 𝐋𝐢𝐬𝐭 𝐴 Cons

Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴
Γ ⊢ 𝑙 : 𝐋𝐢𝐬𝐭 𝐴

Γ ⊢ 𝑎 ::A 𝑙 : 𝐋𝐢𝐬𝐭 𝐴

ListInd

Γ ⊢ 𝐴 Γ ⊢ 𝑠 : 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑥: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃 Γ ⊢ 𝑏𝜀 : 𝑃 [𝜀𝐴] Γ, 𝑥: 𝐴, 𝑦: 𝐋𝐢𝐬𝐭 𝐴, 𝑧: 𝑃 [𝑦] ⊢ 𝑏:: : 𝑃 [𝑥 ::A 𝑦]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) : 𝑃 [𝑠]

EmptyUni Γ ⊢ 𝟎 :Type0
UnitUni Γ ⊢ 𝟏 :Type0

UnitTm Γ ⊢ () : 𝟏

EmptyInd
Γ ⊢ 𝑠 : 𝟎 Γ ⊢ 𝑃
Γ ⊢ ind𝟎(𝑠; 𝑃) : 𝑃 UnitInd

Γ ⊢ 𝑠 : 𝟏 Γ, 𝑧: 𝟏 ⊢ 𝑃 Γ ⊢ 𝑏() : 𝑃 [()]
Γ ⊢ ind𝟏(𝑠; 𝑧.𝑃 ; 𝑏()) : 𝑃 [𝑠]

SigUni
Γ ⊢ 𝐴 :Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 :Type𝑖

Γ ⊢ Σ𝑥: 𝐴.𝐵 :Type𝑖
PaiR

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑢 : 𝐵[𝑡]
Γ ⊢ (𝑡, 𝑢)𝑥.𝐵 :Σ𝑥: 𝐴.𝐵

PRoj1
Γ ⊢ 𝑝 :Σ𝑥: 𝐴.𝐵

Γ ⊢ 𝜋1 𝑝 : 𝐴 PRoj2
Γ ⊢ 𝑝 :Σ𝑥: 𝐴.𝐵
Γ ⊢ 𝜋2 𝑝 : 𝐵[𝑢]

TReeUni
Γ ⊢ 𝐴 :Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 :Type𝑖

Γ ⊢ 𝐖 𝑥: 𝐴.𝐵 :Type𝑖
Sup

Γ, 𝑥: 𝐴 ⊢ 𝐵
Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑘 : 𝐵[𝑎] → 𝐖 𝑥: 𝐴.𝐵

Γ ⊢ sup𝑥.𝐵 𝑎 𝑘 : 𝐖 𝑥: 𝐴.𝐵

TReeInd

Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵 Γ ⊢ 𝑠 : 𝐖 𝑥: 𝐴.𝐵 Γ, 𝑧: 𝐖 𝑥: 𝐴.𝐵 ⊢ 𝑃
Γ, 𝑥: 𝐴, 𝑦: 𝐵[𝑥] → 𝑊𝑥: 𝐴.𝐵, ℎ:Π 𝑧: 𝐵[𝑥].𝑃 [𝑦 𝑧] ⊢ 𝑏 : 𝑃 [sup𝑥.𝐵 𝑥 𝑦]

Γ ⊢ ind𝐖 𝑥:𝐴.𝐵(𝑠; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏) : 𝑃 [𝑠]

BoolUni Γ ⊢ 𝐁 :Type0
TRue Γ ⊢ tt : 𝐁 False Γ ⊢ ff : 𝐁

BoolInd
Γ ⊢ 𝑠 : 𝐁 Γ, 𝑧: 𝐁 ⊢ 𝑃 Γ ⊢ 𝑏tt : 𝑃 [tt] Γ ⊢ 𝑏ff : 𝑃 [ff]

Γ ⊢ ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏tt, 𝑏ff) : 𝑃 [𝑠]

SumUni
Γ ⊢ 𝐴 :Type𝑖 Γ ⊢ 𝐵 :Type𝑖

Γ ⊢ 𝐴 + 𝐵 :Type𝑖
SumInjLeft

Γ ⊢ 𝐵 Γ ⊢ 𝑎 : 𝐴
Γ ⊢ inj𝑙𝐵 𝑎 : 𝐴 + 𝐵

30

Definitional Functoriality for Dependent (Sub)Types

SumInjRight
Γ ⊢ 𝐴 Γ ⊢ 𝑏 : 𝐵
Γ ⊢ inj𝑟𝐴 𝑏 : 𝐴 + 𝐵

SumInd

Γ ⊢ 𝑠 : 𝐴 + 𝐵 Γ, 𝑧: 𝐴 + 𝐵 ⊢ 𝑃
Γ, 𝑥: 𝐴 ⊢ 𝑏𝑙 : 𝑃 [inj𝑙𝐵 𝑥] Γ, 𝑥: 𝐵 ⊢ 𝑏𝑟 : 𝑃 [inj𝑟𝐴 𝑥]

Γ ⊢ ind+(𝑠; 𝑧.𝑃 ; 𝑥.𝑏𝑙, 𝑥.𝑏𝑟) : 𝑃 [𝑠]

IdTy
Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑎′ : 𝐴

Γ ⊢ 𝐈𝐝𝐴 𝑎 𝑎′ ReflTm
Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴
Γ ⊢ refl𝐴,𝑎 : 𝐈𝐝𝐴 𝑎 𝑎

IdInd

Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑎′ : 𝐴
Γ ⊢ 𝑠 : 𝐈𝐝𝐴 𝑎 𝑎′ Γ, 𝑥: 𝐴, 𝑦: 𝐴, 𝑧: 𝐈𝐝𝐴 𝑥 𝑦 ⊢ 𝑃 Γ, 𝑥: 𝐴 ⊢ 𝑏 : 𝑃[id, 𝑥, 𝑥, refl𝐴,𝑥]

Γ ⊢ ind𝐈𝐝𝐴
(𝑠; 𝑥.𝑦.𝑧.𝑃 ; 𝑥.𝑏) : 𝑃 [id, 𝑎, 𝑎′, 𝑠]

Γ ⊢ 𝑇 ≅ 𝑇 ′ Types 𝑇 and 𝑇 ′ are convertible in context Γ

ReflTy
Γ ⊢ 𝐴

Γ ⊢ 𝐴 ≅ 𝐴 TRansTy
Γ ⊢ 𝐴 ≅ 𝐵 Γ ⊢ 𝐵 ≅ 𝐶

Γ ⊢ 𝐴 ≅ 𝐶 ElC
Γ ⊢ 𝐴 ≅ 𝐴′ :Type𝑖

Γ ⊢ 𝐴 ≅ 𝐴′

FunTyC
Γ ⊢ 𝐴 ≅ 𝐴′ Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′

Γ ⊢ Π𝑥: 𝐴.𝐵 ≅ Π𝑥: 𝐴′.𝐵′ ListTyC
Γ ⊢ 𝐴 ≅ 𝐴′

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 ≅ 𝐋𝐢𝐬𝐭 𝐴′

SigTyC
Γ ⊢ 𝐴 ≅ 𝐴′ Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′

Γ ⊢ Σ𝑥: 𝐴.𝐵 ≅ Σ𝑥: 𝐴′.𝐵′ TReeTyC
Γ ⊢ 𝐴 ≅ 𝐴′ Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′

Γ ⊢ 𝐖 𝑥: 𝐴.𝐵 ≅ 𝐖 𝑥: 𝐴′.𝐵′

IdTyC

Γ ⊢ 𝐴 ≅ 𝐴′ Γ ⊢ 𝑡 ≅ 𝑡′ : 𝐴
Γ ⊢ 𝑢 ≅ 𝑢′ : 𝐴

Γ ⊢ 𝐈𝐝𝐴 𝑡 𝑢 ≅ 𝐈𝐝𝐴′ 𝑡′ 𝑢′ SumTyC
Γ ⊢ 𝐴 ≅ 𝐴′ Γ ⊢ 𝐵 ≅ 𝐵′

Γ ⊢ 𝐴 + 𝐵 ≅ 𝐴′ + 𝐵′

Γ ⊢ 𝑡 ≅ 𝑡′ : 𝑇 Terms 𝑡 and 𝑡′ are convertible at type 𝑇 in context Γ

Refl
Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝑡 ≅ 𝑡 : 𝐴 TRans
Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴 Γ ⊢ 𝑢 ≅ 𝑣 : 𝐴

Γ ⊢ 𝑡 ≅ 𝑣 : 𝐴 Conv

Γ ⊢ 𝑡 ≅ 𝑡′ : 𝐴
Γ ⊢ 𝐴 ≅ 𝐵

Γ ⊢ 𝑡 ≅ 𝑡′ : 𝐵

βFun

Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵
Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ (λ𝑥: 𝐴.𝑡) 𝑢 ≅ 𝑡[𝑢] : 𝐵[𝑢] ηFun

Γ, 𝑥: 𝐴 ⊢ 𝑓 𝑥 ≅ 𝑔 𝑥 : 𝐵
Γ ⊢ 𝑓 ≅ 𝑔 :Π𝑥: 𝐴.𝐵

βSig1

Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵
Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑢 : 𝐵[𝑡]
Γ ⊢ 𝜋1 (𝑡, 𝑢)𝑥.𝐵 ≅ 𝑡 : 𝐴 βSig2

Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵
Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑢 : 𝐵[𝑡]
Γ ⊢ 𝜋2 (𝑡, 𝑢)𝑥.𝐵 ≅ 𝑢 : 𝐵[𝑡]

ηSig
Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵 Γ ⊢ 𝑝 :Σ𝑥: 𝐴.𝐵

Γ ⊢ 𝑝 ≅ (𝜋1 𝑝, 𝜋2 𝑝)𝑥.𝐵 :Σ𝑥: 𝐴.𝐵

31

T. Laurent, M. Lennon-Bertrand, K. Maillard

βNil

Γ ⊢ 𝐴 Γ, 𝑥: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃
Γ ⊢ 𝑏𝜀 : 𝑃 [𝜀𝐴] Γ, 𝑥: 𝐴, 𝑦: 𝐋𝐢𝐬𝐭 𝐴, 𝑧: 𝑃 [𝑦] ⊢ 𝑏:: : 𝑃 [𝑥 ::A 𝑦]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝜀𝐴; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) ≅ 𝑏𝜀 : 𝑃 [𝜀𝐴]

βCons

Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑙 : 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑥: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃 Γ ⊢ 𝑏𝜀 : 𝑃 [𝜀𝐴] Γ, 𝑥: 𝐴, 𝑦: 𝐋𝐢𝐬𝐭 𝐴, 𝑧: 𝑃 [𝑦] ⊢ 𝑏:: : 𝑃 [𝑥 ::A 𝑦]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑎 ::A 𝑙; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) ≅ 𝑏::[id, 𝑎, 𝑙, ind𝐋𝐢𝐬𝐭 𝐴(𝑙; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::)] : 𝑃 [𝑎 ::A 𝑙]

βTRue

Γ, 𝑧: 𝐁 ⊢ 𝑃
Γ ⊢ 𝑏tt : 𝑃 [tt] Γ ⊢ 𝑏ff : 𝑃 [ff]

Γ ⊢ ind𝐁(tt; 𝑧.𝑃 ; 𝑏tt, 𝑏ff) ≅ 𝑏tt : 𝑃 [tt] βFalse

Γ, 𝑧: 𝐁 ⊢ 𝑃
Γ ⊢ 𝑏tt : 𝑃 [tt] Γ ⊢ 𝑏ff : 𝑃 [ff]

Γ ⊢ ind𝐁(ff; 𝑧.𝑃 ; 𝑏tt, 𝑏ff) ≅ 𝑏ff : 𝑃 [ff]

βInjLeft

Γ ⊢ 𝐴 + 𝐵 Γ ⊢ 𝑎 : 𝐴 Γ, 𝑧: 𝐴 + 𝐵 ⊢ 𝑃
Γ, 𝑥: 𝐴 ⊢ 𝑏𝑙 : 𝑃 [inj𝑙𝐵 𝑥] Γ, 𝑥: 𝐵 ⊢ 𝑏𝑟 : 𝑃 [inj𝑟𝐴 𝑥]
Γ ⊢ ind+(inj𝑙𝐵 𝑎; 𝑧.𝑃 ; 𝑥.𝑏𝑙, 𝑥.𝑏𝑟) ≅ 𝑏𝑙[𝑎] : 𝑃 [inj𝑙𝐵 𝑎]

βInjRiht

Γ ⊢ 𝐴 + 𝐵 Γ ⊢ 𝑏 : 𝐵 Γ, 𝑧: 𝐴 + 𝐵 ⊢ 𝑃
Γ, 𝑥: 𝐴 ⊢ 𝑏𝑙 : 𝑃 [inj𝑙𝐵 𝑥] Γ, 𝑥: 𝐵 ⊢ 𝑏𝑟 : 𝑃 [inj𝑟𝐴 𝑥]
Γ ⊢ ind+(inj𝑙𝐴 𝑏; 𝑧.𝑃 ; 𝑥.𝑏𝑙, 𝑥.𝑏𝑟) ≅ 𝑏𝑟[𝑏] : 𝑃 [inj𝑟𝐴 𝑏]

βTRee

Γ, 𝑥: 𝐴 ⊢ 𝐵 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑘 : 𝐵[𝑎] → 𝐖 𝑥: 𝐴.𝐵 Γ, 𝑧: 𝐖 𝑥: 𝐴.𝐵 ⊢ 𝑃
Γ, 𝑥: 𝐴, 𝑦: 𝐵[𝑥] → 𝑊𝑥: 𝐴.𝐵, ℎ:Π 𝑧: 𝐵[𝑥].𝑃 [𝑦 𝑧] ⊢ 𝑏 : 𝑃 [sup𝑥.𝐵 𝑥 𝑦]
Γ ⊢ ind𝐖 𝑥:𝐴.𝐵(sup𝑥.𝐵 𝑎 𝑘; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏) ≅

𝑏[id, 𝑎, 𝑘, (λ 𝑧: 𝐵[𝑥]. ind𝐖 𝑥:𝐴.𝐵(𝑘 𝑧; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏))] : 𝑃 [sup𝑥.𝐵 𝑎 𝑘]

βRefl
Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴 Γ, 𝑥: 𝐴, 𝑦: 𝐴, 𝑧: 𝐈𝐝𝐴 𝑥 𝑦 ⊢ 𝑃 Γ, 𝑥: 𝐴 ⊢ 𝑏 : 𝑃[id, 𝑥, 𝑥, refl𝐴,𝑥]

Γ ⊢ ind𝐈𝐝𝐴
(refl𝐴,𝑎; 𝑥.𝑦.𝑧.𝑃 ; 𝑥.𝑏) ≅ 𝑏[𝑎] : 𝑃 [id, 𝑎, 𝑎, refl𝐴,𝑎]

FunCong
Γ ⊢ 𝐴 ≅ 𝐴′ :Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′ :Type𝑖

Γ ⊢ Π𝑥: 𝐴.𝐵 ≅ Π𝑥: 𝐴′.𝐵′ :Type𝑖
other congruences omitted

B.2 Algorithmic MLTT

𝑡 {1 𝑡′ Term 𝑡 weak-head reduces in one step to term 𝑡′

βFun (λ𝑥: 𝐴.𝑡) 𝑢 {1 𝑡[𝑢] βSig1 𝜋1 (𝑡, 𝑢)𝑥.𝐵 {
1 𝑡 βSig2 𝜋2 (𝑡, 𝑢)𝑥.𝐵 {

1 𝑢

βRedNil
ind𝐋𝐢𝐬𝐭 𝐴(𝜀𝐴; 𝑥.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) {1 𝑏𝜀

βRedCons
ind𝐋𝐢𝐬𝐭 𝐴(𝑎 ::A 𝑙; 𝑥.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) {1 𝑏::[id, 𝑎, 𝑙, ind𝐋𝐢𝐬𝐭 𝐴(𝑙; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::)]

βTRee
ind𝐖 𝑥:𝐴.𝐵(sup𝑥.𝐵 𝑎 𝑘; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏) {1 𝑏[id, 𝑎, 𝑘, (λ 𝑧: 𝐵[𝑥]. ind𝐖 𝑥:𝐴.𝐵(𝑘 𝑧; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏))]

32

Definitional Functoriality for Dependent (Sub)Types

βTRue
ind𝐁(tt; 𝑧.𝑃 ; 𝑏tt, 𝑏ff) {1 𝑏tt

βFalse
ind𝐁(ff; 𝑧.𝑃 ; 𝑏tt, 𝑏ff) {1 𝑏ff

βInjLeft
ind+(inj𝑙 𝑎; 𝑧.𝑃 ; 𝑥.𝑏𝑙, 𝑥.𝑏𝑟) {1 𝑏𝑙[𝑎]

βInjRight
ind+(inj𝑟 𝑏; 𝑧.𝑃 ; 𝑥.𝑏𝑙, 𝑥.𝑏𝑟) {1 𝑏𝑟[𝑏] βRefl

ind𝐈𝐝𝐴
(refl𝐴,𝑎; 𝑥.𝑧.𝑃 ; 𝑥.𝑏) {1 𝑏[𝑎]

RedApp
𝑡 {1 𝑡′

𝑡 𝑢 {1 𝑡′ 𝑢 RedSig1
𝑡 {1 𝑡′

𝜋1 𝑡 {1 𝜋1 𝑡′ RedSig2
𝑡 {1 𝑡′

𝜋2 𝑡 {1 𝜋2 𝑡′

RedInd
𝑡 {1 𝑡′

ind𝑇 (𝑡; 𝑃 ; ⃗𝑏) {1 ind𝑇 (𝑡′; 𝑃 ; ⃗𝑏)

𝑡 {⋆ 𝑡′ Term 𝑡 weak-head reduces in multiple steps to term 𝑡′

RedBase 𝑡 {⋆ 𝑡 RedStep
𝑡 {1 𝑡′ 𝑡′ {⋆ 𝑡″

𝑡 {⋆ 𝑡″

nf 𝑓 ≝ 𝑛 ∣ Type𝑖 ∣ Π𝑥: 𝑡.𝑡 ∣ λ𝑥: 𝑡.𝑡 ∣ 𝐋𝐢𝐬𝐭 𝑡 ∣ 𝜀𝑡 ∣ 𝑡 ::t 𝑡 ∣ weak-head normal forms
Σ𝑥: 𝑡.𝑡 ∣ (𝑡, 𝑡) ∣ 𝐖 𝑥: 𝑡.𝑡 ∣ sup𝑡 𝑡 𝑡 ∣ 𝟎 ∣ 𝟏 ∣ () ∣
𝐁 ∣ tt ∣ ff ∣ 𝐈𝐝𝑡 𝑡 𝑡′ ∣ refl𝑡,𝑡 ∣ 𝑡 + 𝑡 ∣ inj𝑙𝑡 𝑡 ∣ inj𝑟𝑡 𝑡

ne 𝑛 ≝ 𝑥 ∣ 𝑛 𝑡 ∣ ind𝑇 (𝑛; 𝑡; 𝑡) ∣ 𝜋1 𝑛 ∣ 𝜋2 𝑛 weak-head neutrals

Γ ⊢ 𝑇 ◁ 𝑇 is a type in Γ

FunTy
Γ ⊢ 𝐴◁ Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁

Γ ⊢ Π𝑥: 𝐴.𝐵 ◁ ListTy
Γ ⊢ 𝐴◁

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴◁

SigTy
Γ ⊢ 𝐴◁ Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁

Γ ⊢ Σ𝑥: 𝐴.𝐵 ◁ TReeTy
Γ ⊢ 𝐴◁ Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁

Γ ⊢ 𝐖 𝑥: 𝐴.𝐵 ◁ EmptyTy Γ ⊢ 𝟎◁

UnitTy Γ ⊢ 𝟏◁ BoolTy Γ ⊢ 𝐁◁ IdTy
Γ ⊢ 𝐴◁ Γ ⊢ 𝑎◁𝐴 Γ ⊢ 𝑎′ ◁𝐴

Γ ⊢ 𝐈𝐝𝐴 𝑎 𝑎′ ◁

SumTy
Γ ⊢ 𝐴◁ Γ ⊢ 𝐵 ◁

Γ ⊢ 𝐴 + 𝐵 ◁ El
Γ ⊢ 𝐴 ▷h Type𝑖 𝐴 is not a canonical form

Γ ⊢ 𝐴◁

Γ ⊢ 𝑡 ▷ 𝑇 Term 𝑡 infers type 𝑇 in context Γ

SoRt Γ ⊢ Type𝑖 ▷Type𝑖+1
VaR

(𝑥: 𝑇) ∈ Γ
Γ ⊢ 𝑥 ▷ 𝑇 Fun

Γ ⊢ 𝐴 ▷h Type𝑖
Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁Type𝑖

Γ ⊢ Π𝑥: 𝐴.𝐵 ▷ Type𝑖

33

T. Laurent, M. Lennon-Bertrand, K. Maillard

Abs
Γ ⊢ 𝐴◁ Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷𝐵

Γ ⊢ λ𝑥: 𝐴.𝑡 ▷ Π𝑥: 𝐴.𝐵 App
Γ ⊢ 𝑡 ▷h Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑢◁𝐴

Γ ⊢ 𝑡 𝑢 ▷𝐵[𝑢]

List
Γ ⊢ 𝐴 ▷h Type𝑖

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 ▷ Type𝑖
Nil

Γ ⊢ 𝐴◁
Γ ⊢ 𝜀𝐴 ▷ 𝐋𝐢𝐬𝐭 𝐴 Cons

Γ ⊢ 𝐴◁
Γ ⊢ 𝑎◁𝐴 Γ ⊢ 𝑙◁𝐋𝐢𝐬𝐭 𝐴

Γ ⊢ 𝑎 ::A 𝑙 ▷ 𝐋𝐢𝐬𝐭 𝐴

ListInd

Γ ⊢ 𝐴◁ Γ ⊢ 𝑠◁𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑥: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃▷ Γ ⊢ 𝑏𝜀 ◁𝑃 [𝜀𝐴] Γ, 𝑥: 𝐴, 𝑦: 𝐋𝐢𝐬𝐭 𝐴, 𝑧: 𝑃 [𝑦] ⊢ 𝑏:: ◁𝑃 [𝑥 ::A 𝑦]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) ▷ 𝑃 [𝑠]

Empty Γ ⊢ 𝟎▷Type0
EmptyInd

Γ ⊢ 𝑠◁𝟎 Γ ⊢ 𝑃 ◁
Γ ⊢ ind𝟎(𝑠; 𝑃) ▷ 𝑃 UnitUni Γ ⊢ 𝟏▷Type0

UnitTm Γ ⊢ ()▷𝟏 UnitInd
Γ ⊢ 𝑠◁𝟏 Γ, 𝑧: 𝟏 ⊢ 𝑃 ◁ Γ ⊢ 𝑏() ◁𝑃 [()]

Γ ⊢ ind𝟏(𝑠; 𝑧.𝑃 ; 𝑏()) ▷ 𝑃 [𝑠]

Sig
Γ ⊢ 𝐴 ▷h Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁Type𝑖

Γ ⊢ Σ𝑥: 𝐴.𝐵 ▷ Type𝑖
PaiR

Γ ⊢ 𝑡 ▷𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁
Γ ⊢ 𝑢◁𝐵[𝑡]

Γ ⊢ (𝑡, 𝑢)𝑥.𝐵 ▷ Σ𝑥: 𝐴.𝐵

PRoj1
Γ ⊢ 𝑝 ▷h Σ𝑥: 𝐴.𝐵

Γ ⊢ 𝜋1 𝑝 ▷𝐴 PRoj2
Γ ⊢ 𝑝 ▷ Σ𝑥: 𝐴.𝐵
Γ ⊢ 𝜋2 𝑝 ▷𝐵[𝑢]

TRee
Γ ⊢ 𝐴 ▷h Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁Type𝑖

Γ ⊢ 𝐖 𝑥: 𝐴.𝐵 ◁Type𝑖

Sup
Γ ⊢ 𝑎 ▷𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁ Γ ⊢ 𝑘◁𝐵[𝑎] → 𝐖 𝑥: 𝐴.𝐵

Γ ⊢ sup𝑥.𝐵 𝑎 𝑘 ▷𝐖 𝑥: 𝐴.𝐵

TReeInd

Γ ⊢ 𝐴◁ Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁ Γ ⊢ 𝑠◁𝐖 𝑥: 𝐴.𝐵 Γ, 𝑧: 𝐖 𝑥: 𝐴.𝐵 ⊢ 𝑃 ◁
Γ, 𝑥: 𝐴, 𝑦: 𝐵[𝑥] → 𝑊𝑥: 𝐴.𝐵, ℎ:Π 𝑧: 𝐵[𝑥].𝑃 [𝑦 𝑧] ⊢ 𝑏◁𝑃[sup𝑥.𝐵 𝑥 𝑦]

Γ ⊢ ind𝐖 𝑥:𝐴.𝐵(𝑠; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏) ▷ 𝑃 [𝑠]

BoolUni Γ ⊢ 𝐁▷Type0
TRue Γ ⊢ tt▷𝐁 False Γ ⊢ ff▷𝐁

BoolInd
Γ ⊢ 𝑠◁𝐁 Γ, 𝑧: 𝐁 ⊢ 𝑃 ◁ Γ ⊢ 𝑏tt ◁𝑃 [tt] Γ ⊢ 𝑏ff ◁𝑃 [ff]

Γ ⊢ ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏tt, 𝑏ff) ▷ 𝑃 [𝑠]

Sum
Γ ⊢ 𝐴 ▷h Type𝑖 Γ ⊢ 𝐵 ◁Type𝑖

Γ ⊢ 𝐴 + 𝐵 ▷ Type𝑖
SumInjLeft

Γ ⊢ 𝐵 ◁ Γ ⊢ 𝑎 ▷𝐴
Γ ⊢ inj𝑙𝐵 𝑎 ▷𝐴 + 𝐵

SumInjRight
Γ ⊢ 𝐴◁ Γ ⊢ 𝑏 ▷𝐵

Γ ⊢ inj𝑟𝐴 𝑏 ▷𝐴 + 𝐵

34

Definitional Functoriality for Dependent (Sub)Types

SumInd

Γ ⊢ 𝐴◁ Γ ⊢ 𝐵 ◁ Γ ⊢ 𝑠◁𝐴 + 𝐵 Γ, 𝑧: 𝐴 + 𝐵 ⊢ 𝑃 ◁
Γ, 𝑥: 𝐴 ⊢ 𝑏𝑙 ◁𝑃[inj𝑙𝐵 𝑥] Γ, 𝑥: 𝐵 ⊢ 𝑏𝑟 ◁𝑃[inj𝑟𝐴 𝑥]

Γ ⊢ ind𝐴 + 𝐵(𝑠; 𝑧.𝑃 ; 𝑥.𝑏𝑙, 𝑥.𝑏𝑟) ▷ 𝑃 [𝑠]

Id
Γ ⊢ 𝐴 ▷h Type𝑖 Γ ⊢ 𝑎◁𝐴 Γ ⊢ 𝑎′ ◁𝐴

Γ ⊢ 𝐈𝐝𝐴 𝑎 𝑎′ ▷ Type𝑖
ReflTm

Γ ⊢ 𝐴◁ Γ ⊢ 𝑎◁𝐴
Γ ⊢ refl𝐴,𝑎 ▷ 𝐈𝐝𝐴 𝑎 𝑎

IdInd

Γ ⊢ 𝐴◁
Γ ⊢ 𝑠 ▷h 𝐈𝐝𝐴′ 𝑎 𝑎′ Γ, 𝑥, 𝑦: 𝐴, 𝑧: 𝐈𝐝𝐴 𝑥 𝑦 ⊢ 𝑃 ◁ Γ, 𝑥: 𝐴 ⊢ 𝑏◁𝑃[id, 𝑥, 𝑥, refl𝐴,𝑥]

Γ ⊢ ind𝐈𝐝𝐴
(𝑠; 𝑥.𝑦.𝑧.𝑃 ; 𝑥.𝑏) ▷ 𝑃 [id, 𝑎, 𝑎′, 𝑠]

Γ ⊢ 𝑡◁𝑇 Term 𝑡 checks against type 𝑇

ChecK
Γ ⊢ 𝑡 ▷ 𝑇 ′ Γ ⊢ 𝑇 ′ ≅ 𝑇 ◁

Γ ⊢ 𝑡◁𝑇

Γ ⊢ 𝑡 ▷h 𝑇 Term 𝑡 infers the reduced type 𝑇

InfRed
Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑇 {⋆ 𝑇 ′

Γ ⊢ 𝑡 ▷h 𝑇 ′

Γ ⊢ 𝑇 ≅ 𝑇 ′ ◁ Types 𝑇 and 𝑇 ′ are convertible

TyRed
𝑇 {⋆ 𝑈 𝑇 ′ {⋆ 𝑈 ′ Γ ⊢ 𝑈 ≅h 𝑈 ′ ◁

Γ ⊢ 𝑇 ≅ 𝑇 ′ ◁

Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝐴 Terms 𝑡 and 𝑡′ are convertible at type 𝑇

TmRed
𝑡 {⋆ 𝑢 𝑡′ {⋆ 𝑢′ 𝑇 {⋆ 𝑈 Γ ⊢ 𝑢 ≅h 𝑢′ ◁𝑈

Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝑇

Γ ⊢ 𝑇 ≅h 𝑇 ′ ◁ Reduced types 𝑇 and 𝑇 ′ are convertible

CUniTy Γ ⊢ Type𝑖 ≅h Type𝑖 ◁
CPRodTy

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ, 𝑥: 𝐴′ ⊢ 𝐵 ≅ 𝐵′ ◁

Γ ⊢ Π𝑥: 𝐴.𝐵 ≅h Π𝑥: 𝐴′.𝐵′ ◁

CListTy
Γ ⊢ 𝐴 ≅ 𝐴′ ◁

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 ≅h 𝐋𝐢𝐬𝐭 𝐴′ ◁
CSigTy

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′ ◁

Γ ⊢ Σ𝑥: 𝐴.𝐵 ≅h Σ𝑥: 𝐴′.𝐵′ ◁

CTReeTy

Γ ⊢ 𝐴 ≅ 𝐴′ ◁
Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′ ◁

Γ ⊢ 𝐖 𝑥: 𝐴.𝐵 ≅h 𝐖 𝑥: 𝐴′.𝐵′ ◁
CIdTy

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝐴
Γ ⊢ 𝑢 ≅ 𝑢′ ◁𝐴

Γ ⊢ 𝐈𝐝𝐴 𝑡 𝑢 ≅h 𝐈𝐝𝐴′ 𝑡′ 𝑢′ ◁

35

T. Laurent, M. Lennon-Bertrand, K. Maillard

CSumTy
Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ ⊢ 𝐵 ≅ 𝐵′ ◁

Γ ⊢ 𝐴 + 𝐵 ≅ 𝐴′ + 𝐵′ ◁
CReflTy

𝑇 is 𝟎, 𝟏 or 𝐁
Γ ⊢ 𝑇 ≅h 𝑇 ◁

NeuTy
Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑇
Γ ⊢ 𝑛 ≅h 𝑛′ ◁

Γ ⊢ 𝑡 ≅h 𝑡′ ◁𝐴 Reduced terms 𝑡 and 𝑡′ are convertible at type 𝐴

CUni Γ ⊢ Type𝑖 ≅h Type𝑗 ◁Type𝑘
CFun

Γ ⊢ 𝐴 ≅ 𝐴′ ◁Type𝑖
Γ, 𝑥: 𝐴′ ⊢ 𝐵 ≅ 𝐵′ ◁Type𝑖

Γ ⊢ Π𝑥: 𝐴.𝐵 ≅h Π𝑥: 𝐴′.𝐵′ ◁Type𝑖

CFunEta
Γ, 𝑥: 𝐴 ⊢ 𝑓 𝑥 ≅ 𝑓 ′ 𝑥◁𝐵
Γ ⊢ 𝑓 ≅h 𝑓 ′ ◁Π𝑥: 𝐴.𝐵 CSig

Γ ⊢ 𝐴 ≅ 𝐴′ ◁Type𝑖
Γ, 𝑥: 𝐴′ ⊢ 𝐵 ≅ 𝐵′ ◁Type𝑖

Γ ⊢ Σ𝑥: 𝐴.𝐵 ≅h Σ𝑥: 𝐴′.𝐵′ ◁Type𝑖

CSigEta

Γ ⊢ 𝜋1 𝑝 ≅ 𝜋1 𝑝′ ◁𝐴
Γ ⊢ 𝜋2 𝑝 ≅ 𝜋2 𝑝′ ◁𝐵[𝜋1 𝑝]

Γ ⊢ 𝑝 ≅h 𝑝′ ◁Σ𝑥: 𝐴.𝐵 CList
Γ ⊢ 𝐴 ≅ 𝐴′ ◁Type𝑖

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 ≅h 𝐋𝐢𝐬𝐭 𝐴′ ◁Type𝑖

CNil Γ ⊢ 𝜀𝐴 ≅h 𝜀𝐴′ ◁𝐋𝐢𝐬𝐭 𝐴″ CCons
Γ ⊢ 𝑎 ≅ 𝑎′ ◁𝐴″ Γ ⊢ 𝑙 ≅ 𝑙′ ◁𝐋𝐢𝐬𝐭 𝐴″

Γ ⊢ 𝑎 ::A 𝑙 ≅h 𝑎′ ::A' 𝑙′ ◁𝐋𝐢𝐬𝐭 𝐴″

CReflUni
𝑇 is 𝟎, 𝟏 or 𝐁

Γ ⊢ 𝑇 ≅h 𝑇 ◁Type0
CUnitK Γ ⊢ () ≅h ()◁𝟏 CReflBool

𝑡 is tt or ff
Γ ⊢ 𝑡 ≅h 𝑡◁𝐁

CTRee

Γ ⊢ 𝐴 ≅ 𝐴′ ◁Type𝑖
Γ, 𝑥: 𝐴′ ⊢ 𝐵 ≅ 𝐵′ ◁Type𝑖

Γ ⊢ 𝐖 𝑥: 𝐴.𝐵 ≅h 𝐖 𝑥: 𝐴′.𝐵′ ◁Type𝑖

CSup
Γ ⊢ 𝑎 ≅ 𝑎′ ◁𝐴″ Γ ⊢ 𝑘 ≅ 𝑘′ ◁𝐵″[𝑎] → 𝐖 𝑥: 𝐴″.𝐵″

Γ ⊢ sup𝑥.𝐵 𝑎 𝑘 ≅h sup𝑥.𝐵′ 𝑎′ 𝑘′ ◁𝐖 𝑥: 𝐴″.𝐵″

CSum
Γ ⊢ 𝐴 ≅ 𝐴′ ◁Type𝑖 Γ ⊢ 𝐵 ≅ 𝐵′ ◁Type𝑖

Γ ⊢ 𝐴 + 𝐵 ≅ 𝐴′ + 𝐵′ ◁Type𝑖

CInjLeft
Γ ⊢ 𝐵 ≅ 𝐵′ ◁ Γ ⊢ 𝑎 ≅ 𝑎′ ◁𝐴

Γ ⊢ inj𝑙𝐵 𝑎 ≅ inj𝑙𝐵′ 𝑎′ ◁𝐴 + 𝐵
CInjRight

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ ⊢ 𝑏 ≅ 𝑏′ ◁𝐵
Γ ⊢ inj𝑟𝐴 𝑏 ≅ inj𝑟𝐴′ 𝑏′ ◁𝐴 + 𝐵

ReflRefl Γ ⊢ refl𝐴,𝑎 ≅ refl𝐴′,𝑎′ ◁ 𝐈𝐝𝐴″ 𝑡 𝑢 NeuNeu
Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑆 ne𝑀

Γ ⊢ 𝑛 ≅h 𝑛′ ◁𝑀

NeuPos
Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑆 𝑇 is Type𝑖, 𝟎, 𝟏, 𝐁, 𝐋𝐢𝐬𝐭 𝐴, 𝐖 𝑥: 𝐴.𝐵 or 𝐈𝐝𝐴 𝑎 𝑎′

Γ ⊢ 𝑛 ≅h 𝑛′ ◁𝑇

36

Definitional Functoriality for Dependent (Sub)Types

Γ ⊢ 𝑡 ≈h 𝑡′ ▷ 𝑇 Neutrals 𝑡 and 𝑡′ are comparable, inferring the reduced type 𝑇

NRed
Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑇 𝑇 {⋆ 𝑆

Γ ⊢ 𝑛 ≈h 𝑛′ ▷ 𝑆

Γ ⊢ 𝑡 ≈ 𝑡′ ▷ 𝑇 Neutrals 𝑡 and 𝑡′ are comparable, inferring the type 𝑇

NVaR
(𝑥: 𝑇) ∈ Γ

Γ ⊢ 𝑥 ≈ 𝑥 ▷ 𝑇 NApp
Γ ⊢ 𝑛 ≈h 𝑛′ ▷ Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ≅ 𝑢′ ◁𝐴

Γ ⊢ 𝑛 𝑢 ≈ 𝑛′ 𝑢′ ▷𝐵[𝑢]

NListInd

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ ⊢ 𝑠 ≈ 𝑠′ ▷ 𝑆 Γ, 𝑧: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃 ≅ 𝑃 ′ ◁
Γ ⊢ 𝑏𝜀 ≅ 𝑏′

𝜀 ◁𝑃 [𝜀𝐴] Γ, 𝑥: 𝐴, 𝑦: 𝐋𝐢𝐬𝐭 𝐴, 𝑧: 𝑃 [𝑦] ⊢ 𝑏:: ≅ 𝑏′
:: ◁𝑃 [𝑥 ::A 𝑦]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) ≈ ind𝐋𝐢𝐬𝐭 𝐴′(𝑠′; 𝑧.𝑃 ′; 𝑏′
𝜀, 𝑥.𝑦.𝑧.𝑏′

::) ▷ 𝑃 [𝑠]

NEmptyInd
Γ ⊢ 𝑠 ≈h 𝑠′ ▷ 𝟎 Γ ⊢ 𝑃 ≅ 𝑃 ′ ◁

Γ ⊢ ind𝟎(𝑠; 𝑃) ≈ ind𝟎(𝑠′; 𝑃 ′) ▷ 𝑃

NUnitInd
Γ ⊢ 𝑠 ≈h 𝑠′ ▷ 𝟏 Γ, 𝑧: 𝟏 ⊢ 𝑃 ≅ 𝑃 ′ ◁ Γ ⊢ 𝑏 ≅ 𝑏′ ◁𝑃 [()]

Γ ⊢ ind𝟏(𝑠; 𝑧.𝑃 ; 𝑏) ≈ ind𝟎(𝑠′; 𝑧.𝑃 ′; 𝑏′) ▷ 𝑃 [𝑠]

NSig1
Γ ⊢ 𝑛 ≈h 𝑛′ ▷ Σ𝑥: 𝐴.𝐵
Γ ⊢ 𝜋1 𝑛 ≈ 𝜋1 𝑛′ ▷𝐴 NSig2

Γ ⊢ 𝑛 ≈h 𝑛′ ▷ Σ𝑥: 𝐴.𝐵
Γ ⊢ 𝜋2 𝑛 ≈ 𝜋2 𝑛′ ▷𝐵[𝜋1 𝑛]

NTReeInd

Γ ⊢ 𝐴 ≅ 𝐴′ ◁
Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′ ◁ Γ ⊢ 𝑠 ≈ 𝑠′ ▷ 𝑆 Γ, 𝑧: 𝐖 𝑥: 𝐴.𝐵 ⊢ 𝑃 ≅ 𝑃 ′ ◁

Γ, 𝑥: 𝐴, 𝑦: 𝐵[𝑥] → 𝑊𝑥: 𝐴.𝐵, ℎ:Π 𝑧: 𝐵[𝑥].𝑃 [𝑦 𝑧] ⊢ 𝑏 ≅ 𝑏′ ◁𝑃[sup𝑥.𝐵 𝑥 𝑦]
Γ ⊢ ind𝐖 𝑥:𝐴.𝐵(𝑠; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏) ≈ ind𝐖 𝑥:𝐴′.𝐵′(𝑠′; 𝑧.𝑃 ′; 𝑥.𝑦.𝑧.𝑏′) ▷ 𝑃 [𝑠]

NBoolInd

Γ ⊢ 𝑠 ≈h 𝑠′ ▷ 𝑆
Γ, 𝑧: 𝐁 ⊢ 𝑃 ≅ 𝑃 ′ ◁ Γ ⊢ 𝑏tt ≅ 𝑏′

tt ◁𝑃 [tt] Γ ⊢ 𝑏ff ≅ 𝑏′
ff ◁𝑃 [ff]

Γ ⊢ ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏tt, 𝑏ff) ≈ ind𝐁(𝑠′; 𝑧.𝑃 ′; 𝑏′
tt, 𝑏′

ff) ▷ 𝑃 [𝑠]

NSumInd

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ ⊢ 𝐵 ≅ 𝐵′ ◁ Γ ⊢ 𝑠 ≈h 𝑠′ ▷ 𝑆 Γ, 𝑧: 𝐴 + 𝐵 ⊢ 𝑃 ≅ 𝑃 ′ ◁
Γ, 𝑥: 𝐴 ⊢ 𝑏𝑙 ≅ 𝑏′

𝑙 ◁𝑃[inj𝑙 𝑥] Γ, 𝑥: 𝐵 ⊢ 𝑏𝑟 ≅ 𝑏′
𝑟 ◁𝑃[inj𝑟 𝑥]

Γ ⊢ ind𝐴 + 𝐵(𝑠; 𝑧.𝑃 ; 𝑥.𝑏𝑙, 𝑥.𝑏𝑟) ≈ ind𝐴′ + 𝐵′(𝑠′; 𝑧.𝑃 ′; 𝑥.𝑏′
𝑙 , 𝑥.𝑏′

𝑟) ▷ 𝑃 [𝑠]

NIdInd

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ ⊢ 𝑠 ≈h 𝑠′ ▷ 𝐈𝐝𝐴″ 𝑎 𝑎′

Γ, 𝑥: 𝐴, 𝑦: 𝐴, 𝑧: 𝐈𝐝𝐴 𝑥 𝑦 ⊢ 𝑃 ≅ 𝑃 ′ ◁ Γ, 𝑥: 𝐴 ⊢ 𝑏 ≅ 𝑏′ ◁𝑃[id, 𝑥, 𝑥, refl𝐴,𝑥]
Γ ⊢ ind𝐈𝐝𝐴

(𝑠; 𝑥.𝑦.𝑧.𝑃 ; 𝑥.𝑏) ≈ ind𝐈𝐝𝐴′ (𝑠′; 𝑥.𝑦.𝑧.𝑃 ′; 𝑥.𝑏′) ▷ 𝑃 [id, 𝑎, 𝑎′, 𝑠]

37

T. Laurent, M. Lennon-Bertrand, K. Maillard

B.3 Declarative MLTTmap
Extend the rules of Appendix B.1. In rule MapComp, we rely on conversion at domain and mor-
phism types for a type former 𝐹 . These are obtained from the judgements of Fig. 8 by replacing
every typing judgment by a conversion judgement, and forgetting conversions. For instance, for
Π types, we have

Δ ⊢map (𝐴, 𝐵) ≅ (𝐴′, 𝐵′) : dom(Π) ⟺ Δ ⊢map 𝐴 ≅ 𝐴′ ∧ Δ, 𝑥: 𝐴 ⊢map 𝐵 ≅ 𝐵′

Δ ⊢map (𝑓, 𝑔) ≅ (𝑓 ′, 𝑔′) : homΠ((𝐴1, 𝐵1), (𝐴2, 𝐵2)) ⟺ Δ ⊢map 𝑓 ≅ 𝑓 ′ : 𝐴2 → 𝐴1 ∧
Δ, 𝑥: 𝐴2 ⊢map 𝑔 ≅ 𝑔′ : 𝐵1[𝑓 𝑥] → 𝐵2

For each type former 𝐹 (Π, Σ, 𝐋𝐢𝐬𝐭, 𝐖, 𝐈𝐝, +)

Map

Γ ⊢map 𝑋, 𝑌 : dom(𝐹)
Γ ⊢map 𝑓 : hom𝐹 (𝑋, 𝑌)

Γ ⊢map map𝐹 𝑓 : 𝐹 𝑋 → 𝐹 𝑌 MapId

Γ ⊢map 𝑋 : dom(𝐹)
Γ ⊢map 𝑡 : 𝐹 𝑋

Γ ⊢map map𝐹 id𝐹
𝑋 𝑡 ≅ 𝑡 : 𝐹 𝑋

MapComp

Γ ⊢map 𝑋, 𝑌 , 𝑍 : dom(𝐹)
Γ ⊢map 𝑔 : hom𝐹 (𝑋, 𝑌) Γ ⊢map 𝑓 : hom𝐹 (𝑌 , 𝑍) Γ ⊢map 𝑡 : 𝐹 𝑋

Γ ⊢map map𝐹 𝑓 (map𝐹 𝑔 𝑡) ≅ map𝐹 (𝑓 ∘ 𝑔) 𝑡 : 𝐹 𝑍

MapCong

Γ ⊢map 𝑋 ≅ 𝑋′ : dom(𝐹) Γ ⊢map 𝑌 ≅ 𝑌 ′ : dom(𝐹)
Γ ⊢map 𝑓 : hom𝐹 (𝑋, 𝑌)

Γ ⊢map 𝑓 ′ : hom𝐹 (𝑋′, 𝑌 ′) Γ ⊢map 𝑓 ≅ 𝑓 ′ : hom𝐹 (𝑋, 𝑌)
Γ ⊢map map𝐹 𝑓 ≅ map𝐹 𝑓 ′ : 𝐹 𝑋 → 𝐹 𝑌

Γ ⊢map 𝑡 ≅ 𝑢 : 𝐴

mapFun
Γ ⊢map (𝑓, 𝑔) : homΠ((𝐴, 𝐵), (𝐴′, 𝐵′)) Γ ⊢map ℎ :Π𝑥: 𝐴.𝐵 Γ ⊢map 𝑎′ : 𝐴′

Γ ⊢map mapΠ (𝑓, 𝑔) ℎ 𝑎′ ≅ 𝑔 (ℎ (𝑓 𝑎′)) : 𝐵′[𝑎′]

mapSig1
Γ ⊢map (𝑓, 𝑔) : homΣ((𝐴, 𝐵), (𝐴′, 𝐵′)) Γ ⊢map 𝑝 :Σ𝑥: 𝐴.𝐵

Γ ⊢map 𝜋1 (mapΣ (𝑓, 𝑔) 𝑝) ≅ 𝑓 (𝜋1 𝑝) : 𝐴′

mapSig2
Γ ⊢map (𝑓, 𝑔) : homΣ((𝐴, 𝐵), (𝐴′, 𝐵′)) Γ ⊢map 𝑝 :Σ𝑥: 𝐴.𝐵

Γ ⊢map 𝜋2 (mapΣ (𝑓, 𝑔) 𝑝) ≅ 𝑔 (𝜋2 𝑝) : 𝐵′[𝑓 (𝜋1 𝑝)]

mapListNil
Γ ⊢map 𝑓 : hom𝐋𝐢𝐬𝐭(𝐴, 𝐴′)

Γ ⊢map map𝐋𝐢𝐬𝐭 𝑓 𝜀𝐴 ≅ 𝜀𝐴′ : 𝐋𝐢𝐬𝐭 𝐴′

mapListCons
Γ ⊢map 𝑓 : hom𝐋𝐢𝐬𝐭(𝐴, 𝐴′) Γ ⊢map ℎ𝑑 : 𝐴 Γ ⊢map 𝑡𝑙 : 𝐋𝐢𝐬𝐭 𝐴

Γ ⊢map map𝐋𝐢𝐬𝐭 𝑓 (ℎ𝑑 ::A 𝑡𝑙) ≅ (𝑓 ℎ𝑑) ::A'(map𝐋𝐢𝐬𝐭 𝑓 𝑡𝑙) : 𝐋𝐢𝐬𝐭 𝐴′

mapW

Γ ⊢map (𝑓, 𝑔) : hom𝐖((𝐴, 𝐵), (𝐴′, 𝐵′))
Γ ⊢map 𝑎 : 𝐴 Γ ⊢map 𝑘 : 𝐵 𝑎 → 𝐖 𝑥: 𝐴.𝐵

Γ ⊢map map𝐖(𝑓, 𝑔) (sup𝑥.𝐵 𝑎 𝑘) ≅ sup𝑥.𝐵′(𝑓 𝑎) (λ𝑥: 𝐵′[𝑓 𝑎].map𝐖(𝑓, 𝑔) (𝑘 (𝑔 𝑥))) : 𝐖 𝑥: 𝐴′.𝐵′

38

Definitional Functoriality for Dependent (Sub)Types

mapId
Γ ⊢map 𝑓 : hom𝐈𝐝(𝐴, 𝐴′) Γ ⊢map 𝑎 : 𝐴

Γ ⊢map map𝐈𝐝 𝑓 refl𝐴,𝑎 ≅ refl𝐴′,𝑓 𝑎 : 𝐈𝐝 𝐴′ (𝑓 𝑎) (𝑓 𝑎)

mapSumLeft
Γ ⊢map (𝑓, 𝑔) : hom+((𝐴, 𝐵), (𝐴′, 𝐵′)) Γ ⊢map 𝑎 : 𝐴

Γ ⊢map map+ (𝑓, 𝑔) (inj𝑙 𝑎) ≅ inj𝑙 (𝑓 𝑎) : 𝐴′ + 𝐵′

mapSumRight
Γ ⊢map (𝑓, 𝑔) : hom+((𝐴, 𝐵), (𝐴′, 𝐵′)) Γ ⊢map 𝑏 : 𝐵

Γ ⊢map map+ (𝑓, 𝑔) (inj𝑟 𝑏) ≅ inj𝑟 (𝑔 𝑏) : 𝐴′ + 𝐵′

B.4 Algorithmic MLTTmap
Extends Appendix B.2. Replaces the rules already named with the same name in Appendix B.2.

Γ ⊢map 𝑡 ≅h 𝑡′ ◁𝑇

NeuPosMap
Γ ⊢map 𝑛 ≈map 𝑛′ ◁𝑇 𝑇 is Type𝑖, 𝐋𝐢𝐬𝐭 𝐴, 𝐖 𝑥: 𝐴.𝐵, 𝐴 + 𝐵 or 𝐈𝐝𝐴 𝑎 𝑎′

Γ ⊢map 𝑛 ≅h 𝑛′ ◁𝑇

Γ ⊢map 𝑛 ≈ 𝑛′ ▷ 𝑇

NListInd

Γ ⊢map 𝐴 ≅ 𝐴′ ◁ Γ ⊢map 𝑠 ≈map 𝑠′ ◁𝐋𝐢𝐬𝐭 𝐴 Γ, 𝑧: 𝐋𝐢𝐬𝐭 𝐴 ⊢map 𝑃 ≅ 𝑃 ′ ◁
Γ ⊢map 𝑏𝜀 ≅ 𝑏′

𝜀 ◁𝑃 [𝜀𝐴] Γ, 𝑥: 𝐴, 𝑦: 𝐋𝐢𝐬𝐭 𝐴, 𝑧: 𝑃 [𝑦] ⊢map 𝑏:: ≅ 𝑏′
:: ◁𝑃 [𝑥 ::A 𝑦]

Γ ⊢map ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) ≈ ind𝐋𝐢𝐬𝐭 𝐴′(𝑠′; 𝑧.𝑃 ′; 𝑏′
𝜀, 𝑥.𝑦.𝑧.𝑏′

::) ▷ 𝑃 [𝑠]

NTReeInd

Γ ⊢map 𝐴 ≅ 𝐴′ ◁ Γ, 𝑥: 𝐴 ⊢map 𝐵 ≅ 𝐵′ ◁
Γ ⊢map 𝑠 ≈map 𝑠′ ◁𝐖 𝑥: 𝐴.𝐵 Γ, 𝑧: 𝐖 𝑥: 𝐴.𝐵 ⊢map 𝑃 ≅ 𝑃 ′ ◁

Γ, 𝑥: 𝐴, 𝑦: 𝐵[𝑥] → 𝑊𝑥: 𝐴.𝐵, ℎ:Π 𝑧: 𝐵[𝑥].𝑃 [𝑦 𝑧] ⊢map 𝑏 ≅ 𝑏′ ◁𝑃[sup𝑥.𝐵 𝑥 𝑦]
Γ ⊢map ind𝐖 𝑥:𝐴.𝐵(𝑠; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏) ≈ ind𝐖 𝑥:𝐴′.𝐵′(𝑠′; 𝑧.𝑃 ′; 𝑥.𝑦.𝑧.𝑏′) ▷ 𝑃 [𝑠]

NSumInd

Γ ⊢map 𝐴 ≅ 𝐴′ ◁
Γ ⊢map 𝐵 ≅ 𝐵′ ◁ Γ ⊢map 𝑠 ≈map 𝑠′ ◁𝐴 + 𝐵 Γ, 𝑧: 𝐴 + 𝐵 ⊢map 𝑃 ≅ 𝑃 ′ ◁

Γ, 𝑥: 𝐴 ⊢map 𝑏𝑙 ≅ 𝑏′
𝑙 ◁𝑃[inj𝑙 𝑥] Γ, 𝑥: 𝐵 ⊢map 𝑏𝑟 ≅ 𝑏′

𝑟 ◁𝑃[inj𝑟 𝑥]
Γ ⊢map ind𝐴 + 𝐵(𝑠; 𝑧.𝑃 ; 𝑥.𝑏𝑙, 𝑥.𝑏𝑟) ≈ ind𝐴′ + 𝐵′(𝑠′; 𝑧.𝑃 ′; 𝑥.𝑏′

𝑙 , 𝑥.𝑏′
𝑟) ▷ 𝑃 [𝑠]

NIdInd

Γ ⊢map 𝐴 ≅ 𝐴′ ◁ Γ ⊢map 𝑠 ≈map 𝑠′ ◁ 𝐈𝐝𝐴 ▷ 𝑎, 𝑎′

Γ, 𝑥, 𝑦: 𝐴, 𝑧: 𝐈𝐝𝐴 𝑥 𝑦 ⊢map 𝑃 ≅ 𝑃 ′ ◁ Γ, 𝑥: 𝐴 ⊢map 𝑏 ≅ 𝑏′ ◁𝑃[id, 𝑥, 𝑥, refl𝐴,𝑥]
Γ ⊢map ind𝐈𝐝𝐴

(𝑠; 𝑥.𝑧.𝑃 ; 𝑏) ≈ ind𝐈𝐝𝐴′ (𝑠′; 𝑥.𝑧.𝑃 ′; 𝑏′) ▷ 𝑃 [id, 𝑎, 𝑎′, 𝑠]

unmap, unmapfun, unmapfun1, unmapfun2
unmap(map𝐹 𝑓 𝑡) ≝ 𝑡 unmap(𝑡) ≝ 𝑡 otherwise

unmapfun(map𝐹 𝑓 𝑡, 𝑥) ≝ 𝑓 𝑥 unmapfun(𝑡, 𝑥) ≝ 𝑥 otherwise
unmapfun1(map𝐹 𝑓 𝑡, 𝑥) ≝ 𝜋1 𝑓 𝑥 unmapfun1(𝑡, 𝑥) ≝ 𝑥 otherwise
unmapfun2(map𝐹 𝑓 𝑡, 𝑦) ≝ 𝜋2 𝑓 𝑦 unmapfun2(𝑡, 𝑦) ≝ 𝑦 otherwise

39

T. Laurent, M. Lennon-Bertrand, K. Maillard

Γ ⊢map 𝑛 ≈map 𝑛′ ◁𝑇

UnmapList

Γ ⊢map unmap(𝑛) ≈h unmap(𝑛′) ▷ 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑥: 𝐴 ⊢map unmapfun(𝑛, 𝑥) ≅ unmapfun(𝑛′, 𝑥)◁𝐵

Γ ⊢map 𝑛 ≈map 𝑛′ ◁𝐋𝐢𝐬𝐭 𝐵

UnmapTRee

Γ ⊢map unmap(𝑛) ≈h unmap(𝑛′) ▷𝐖 𝑥: 𝐴.𝐵
Γ, 𝑥: 𝐴 ⊢map unmapfun1(𝑛, 𝑥) ≅ unmapfun1(𝑛′, 𝑥)◁𝐴′

Γ, 𝑥: 𝐴, 𝑦: 𝐵′[unmapfun1(𝑛, 𝑥)] ⊢map unmapfun2(𝑛, 𝑦) ≅ unmapfun2(𝑛′, 𝑦)◁𝐵 𝑥
Γ ⊢map 𝑛 ≈map 𝑛′ ◁𝐖 𝑥: 𝐴′.𝐵′

UnmapSum

Γ ⊢map unmap(𝑛) ≈h unmap(𝑛′) ▷𝐴 + 𝐵
Γ, 𝑥: 𝐴 ⊢map unmapfun1(𝑛, 𝑥) ≅ unmapfun1(𝑛′, 𝑥)◁𝐴′

Γ, 𝑥: 𝐵 ⊢map unmapfun2(𝑛, 𝑥) ≅ unmapfun2(𝑛′, 𝑥)◁𝐵′

Γ ⊢map 𝑛 ≈map 𝑛′ ◁𝐴′ + 𝐵′

UnmapId

Γ ⊢map unmap(𝑛) ≈h unmap(𝑛′) ▷ 𝐈𝐝𝐴 𝑎 𝑎′

Γ, 𝑥: 𝐴 ⊢map unmapfun(𝑛, 𝑥) ≅ unmapfun(𝑛′, 𝑥)◁𝐴′

Γ ⊢map 𝑛 ≈map 𝑛′ ◁ 𝐈𝐝𝐴′ ▷ unmapfun(𝑛, 𝑎), unmapfun(𝑛, 𝑎′)

𝑡 {1 𝑡′

𝜋1 (mapΣ 𝑓 𝑝) {1 𝜋1 𝑓 (𝜋1 𝑝) 𝜋2 (mapΣ 𝑓 𝑝) {1 𝜋2 𝑓 (𝜋2 𝑝)

mapΠ 𝑓 ℎ 𝑡 {1 (𝜋2 𝑓) (ℎ ((𝜋1 𝑓) 𝑡)) map𝐈𝐝 𝑓 refl𝐴,𝑎 {
1 refl𝐵,𝑓 𝑎

map𝐋𝐢𝐬𝐭 𝑓 𝜀 {1 𝜀 map𝐋𝐢𝐬𝐭 𝑓 (ℎ𝑑 :: 𝑡𝑙) {1 𝑓 ℎ𝑑 ::map𝐋𝐢𝐬𝐭 𝑓 𝑡𝑙

map𝐖{𝑇 }{𝑇 ′}𝑓 (sup 𝑎 𝑘) {1 sup𝑥.𝜋2 𝑇 ′(𝜋1 𝑓 𝑎) (λ𝑥: (𝜋2 𝑇 ′ (𝜋1 𝑓 𝑎)).map𝐖 𝑓 (𝑘 (𝜋2 𝑔 𝑥)))

map+ (𝑓, 𝑔) (inj𝑙 𝑎) {1 inj𝑙 (𝑓 𝑎) map+ (𝑓, 𝑔) (inj𝑟 𝑏) {1 inj𝑟 (𝑔 𝑏)

RedMapComp
ne 𝑛 𝐹 ∈ {𝐋𝐢𝐬𝐭, 𝐈𝐝, +, 𝐖}

map𝐹 𝑓 (map𝐹 𝑔 𝑛) {1 map𝐹 (𝑓 ∘ 𝑔) 𝑛

B.5 Declarative record types
Extends Appendix B.1.

RecTy
ℒ ∈ 𝒫f(Lbl) ∀𝑙 ∈ ℒ. Γ ⊢ 𝐴𝑙

Γ ⊢ {𝑙 : 𝐴𝑙}𝑙∈ℒ

RecUni
ℒ ∈ 𝒫f(Lbl) ∀𝑙 ∈ ℒ. Γ ⊢ 𝐴𝑙 :Type𝑖

Γ ⊢ {𝑙 : 𝐴𝑙}𝑖
𝑙∈ℒ :Type𝑖

40

Definitional Functoriality for Dependent (Sub)Types

RecTm
ℒ ∈ 𝒫f(Lbl) ∀𝑙 ∈ ℒ. Γ ⊢ 𝑢𝑙 : 𝐴𝑙

Γ ⊢ {𝑙 ≔ 𝑢𝑙}𝑙∈ℒ :{𝑙 : 𝐴𝑙}𝑙∈ℒ
RecPRoj

Γ ⊢ 𝑟 :{𝑙 : 𝐴𝑙}𝑙∈ℒ
Γ ⊢ 𝑟.𝑙 : 𝐴𝑙

βRec
ℒ ∈ 𝒫f(Lbl) ∀𝑙 ∈ ℒ. Γ ⊢ 𝑢𝑙 : 𝐴𝑙

Γ ⊢ {𝑙 ≔ 𝑢𝑙}𝑙∈ℒ.𝑙 ≅ 𝑢𝑙 : 𝐴𝑙
ηRec

Γ ⊢ 𝑟 :{𝑙 : 𝐴𝑙}𝑙∈ℒ
Γ ⊢ 𝑟 ≅ {𝑙 ≔ 𝑟.𝑙}𝑙∈ℒ :{𝑙 : 𝐴𝑙}𝑙∈ℒ

B.6 Algorithmic record types
Extends Appendix B.2. Record construction terms {𝑙 ≔ 𝑢𝑙}𝑙∈ℒ are normal forms, and 𝑟.𝑙 is neutral
whenever 𝑟 is.

βRec {𝑙 ≔ 𝑢𝑙}𝑙∈ℒ.𝑙 {1 𝑢𝑙
RecUni

ℒ ∈ 𝒫f(Lbl) ∀𝑙 ∈ ℒ. Γ ⊢ 𝐴𝑙 ▷h Type𝑖
Γ ⊢ {𝑙 : 𝐴𝑙}𝑖

𝑙∈ℒ ▷ Type𝑖

RecTm
ℒ ∈ 𝒫f(Lbl) ∀𝑙 ∈ ℒ. Γ ⊢ 𝑢𝑙 ▷𝐴𝑙

Γ ⊢ {𝑙 ≔ 𝑢𝑙}𝑙∈ℒ ▷ {𝑙 : 𝐴𝑙}𝑙∈ℒ
RecEta

∀𝑙 ∈ ℒ. Γ ⊢ 𝑟.𝑙 ≅ 𝑟′.𝑙◁𝐴𝑙
Γ ⊢ 𝑟 ≅h 𝑟′ ◁{𝑙 : 𝐴𝑙}𝑙∈ℒ

NRecPRoj
Γ ⊢ 𝑛 ≈h 𝑛′ ▷ {𝑙 : 𝐴𝑙}𝑙∈ℒ

Γ ⊢ 𝑛.𝑙 ≈ 𝑛′.𝑙 ▷𝐴𝑙

B.7 Algorithmic MLTTsub
Extends Appendices B.2 and B.6, with rule ChecKSub replacing ChecK.

Γ ⊢sub 𝑡◁𝑇

ChecKSub
Γ ⊢sub 𝑡 ▷ 𝑇 ′ Γ ⊢sub 𝑇 ′ ≼ 𝑇 ◁

Γ ⊢sub 𝑡◁𝑇

Γ ⊢sub 𝑇 ≼ 𝑇 ′ ◁ Type 𝑇 is a subtype of type 𝑇 ′

TyRed
𝑇 {⋆ 𝑈 𝑇 ′ {⋆ 𝑈 ′ Γ ⊢sub 𝑈 ≼h 𝑈 ′ ◁

Γ ⊢sub 𝑇 ≼ 𝑇 ′ ◁

Γ ⊢sub 𝑇 ≼h 𝑇 ′ ◁ Reduced type 𝑇 is a subtype of reduced type 𝑇 ′

RecSub
𝒦 ⊆ ℒ ∀𝑘 ∈ 𝒦. Γ ⊢sub 𝐴𝑘 ≼ 𝐵𝑘 ◁

Γ ⊢sub {𝑙 : 𝐴𝑙}𝑙∈ℒ ≼h {𝑘 : 𝐴𝑘}𝑘∈𝒦 ◁

PRodSub
Γ ⊢sub 𝐴′ ≼ 𝐴◁ Γ, 𝑥: 𝐴′ ⊢sub 𝐵 ≼ 𝐵′ ◁

Γ ⊢sub Π𝑥: 𝐴.𝐵 ≼h Π𝑥: 𝐴′.𝐵′ ◁
ListSub

Γ ⊢sub 𝐴 ≼ 𝐴′ ◁

Γ ⊢sub 𝐋𝐢𝐬𝐭 𝐴 ≼h 𝐋𝐢𝐬𝐭 𝐴′ ◁

SigSub

Γ ⊢sub 𝐴 ≼ 𝐴′ ◁
Γ, 𝑥: 𝐴 ⊢sub 𝐵 ≼ 𝐵′ ◁

Γ ⊢sub Σ𝑥: 𝐴.𝐵 ≼h Σ𝑥: 𝐴′.𝐵′ ◁
TReeSub

Γ ⊢sub 𝐴 ≼ 𝐴′ ◁
Γ, 𝑥: 𝐴 ⊢sub 𝐵′ ≼ 𝐵 ◁

Γ ⊢sub 𝐖 𝑥: 𝐴.𝐵 ≼h 𝐖 𝑥: 𝐴′.𝐵′ ◁

41

T. Laurent, M. Lennon-Bertrand, K. Maillard

IdSub

Γ ⊢sub 𝐴 ≼ 𝐴′ ◁ Γ ⊢sub 𝑡 ≅ 𝑡′ ◁𝐴′

Γ ⊢sub 𝑢 ≅ 𝑢′ ◁𝐴′

Γ ⊢sub 𝐈𝐝𝐴 𝑡 𝑢 ≼h 𝐈𝐝𝐴′ 𝑡′ 𝑢′ ◁
SubRefl

𝑇 is Type𝑖, 𝟎, 𝟏 or 𝐁
Γ ⊢sub 𝑇 ≼h 𝑇 ◁

SumSub
Γ ⊢sub 𝐴 ≼ 𝐴′ ◁ Γ ⊢sub 𝐵 ≼ 𝐵′ ◁

Γ ⊢sub 𝐴 + 𝐵 ≼h 𝐴′ + 𝐵′ ◁
NeuSub

Γ ⊢sub 𝑛 ≈h 𝑛′ ▷ 𝑇
Γ ⊢sub 𝑛 ≼h 𝑛′ ◁

Admissible rules

ConvSub
Γ ⊢sub 𝐴 ≅ 𝐴′ ◁

Γ ⊢sub 𝐴 ≼ 𝐴′ ◁
SubAntiSym

Γ ⊢sub 𝐴 ≼ 𝐴′ ◁ Γ ⊢sub 𝐴′ ≼ 𝐴◁
Γ ⊢sub 𝐴 ≅ 𝐴′ ◁

SubTRans
Γ ⊢sub 𝐴 ≼ 𝐴′ ◁ Γ ⊢sub 𝐴′ ≼ 𝐴″ ◁

Γ ⊢sub 𝐴 ≼ 𝐴″ ◁

B.8 Reduction rules and normal forms for MLTTcoe

𝑡 {1 𝑡′

RedCoeFun
nf 𝑓

(coeΠ𝑥:𝐴.𝐵,Π𝑥:𝐴′.𝐵′ 𝑓) 𝑎 {1 coe𝐵[coe𝐴′,𝐴 𝑎],𝐵′[𝑎](𝑓 (coe𝐴′,𝐴 𝑎))

RedCoeSig1
nf 𝑝

𝜋1 (coeΣ𝑥:𝐴.𝐵,Σ𝑥:𝐴′.𝐵′ 𝑝) {1 coe𝐴,𝐴′(𝜋1 𝑝)

RedCoeSig2
nf 𝑝

𝜋2 (coeΣ𝑥:𝐴.𝐵,Σ𝑥:𝐴′.𝐵′ 𝑝) {1 coe𝐵[𝜋1 𝑝],𝐵′[coe𝐴,𝐴′ (𝜋1 𝑝)](𝜋2 𝑝)

RedCoeRec
nf 𝑟

(coe{𝑙 : 𝐴𝑙}𝑙∈ℒ,{𝑘 : 𝐴𝑘}𝑘∈𝒦
𝑟).𝑙 {1 coe𝐴𝑙,𝐵𝑙

𝑟.𝑙 CoeRedId
𝑇 is Type𝑖, 𝟎, 𝟏 or 𝐁

coe𝑇 ,𝑇 𝑡 {1 𝑡

coe𝐴 + 𝐵,𝐴′ + 𝐵′(inj𝑙𝐵 𝑎) {1 inj𝑙𝐵′ (coe𝐴,𝐴′ 𝑎) coe𝐴 + 𝐵,𝐴′ + 𝐵′(inj𝑟𝐴 𝑏) {1 inj𝑟𝐴′ (coe𝐵,𝐵′ 𝑏)

coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′ 𝜀 {1 𝜀𝐴′ coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′(ℎ :: 𝑡) {1 coe𝐴,𝐴′ ℎ ::A' coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′ 𝑡

coe𝐖 𝑥:𝐴.𝐵,𝐖 𝑥:𝐴.𝐵′(sup 𝑎 𝑙) {1

sup𝑥.𝐵′(coe𝐴,𝐴′ 𝑎) (λ𝑥: 𝐵′[coe𝐴,𝐴′ 𝑎]. coe𝐖 𝑥:𝐴.𝐵,𝐖 𝑥:𝐴.𝐵′(𝑘 (coe𝐵′[coe𝐴,𝐴′ 𝑎],𝐵[𝑎] 𝑥)))

coe𝐈𝐝𝐴 𝑎 𝑏,𝐈𝐝𝐴′ 𝑎′ 𝑏′ refl𝐴,𝑎 {
1 refl𝐴′,(coe𝐴,𝐴′ 𝑎)

CoeL
𝐴 {1 𝐴′

coe𝐴,𝐵 𝑡 {1 coe𝐴′,𝐵 𝑡 CoeR
nf⊕ or ne𝐴 𝐵 {1 𝐵′

coe𝐴,𝐵 𝑡 {1 coe𝐴,𝐵′ 𝑡

42

Definitional Functoriality for Dependent (Sub)Types

CoeTm
nf⊕ or ne𝐴, 𝐵 𝑡 {1 𝑡′

coe𝐴,𝐵 𝑡 {1 coe𝐴,𝐵 𝑡′ CoeCoe
nf⊕ or ne𝑈, 𝑈 ′, 𝑇 , 𝑇 ′ ne𝑛
coe𝑈,𝑈′ coe𝑇 ,𝑇 ′ 𝑛 {1 coe𝑇 ,𝑈′ 𝑛

nf 𝑓 ≝ 𝑛 ∣ 𝑃 ∣ 𝑁 ∣ λ𝑥: 𝑡.𝑡 ∣ (𝑡, 𝑡) ∣ {𝑙 ≔ 𝑡𝑙}𝑙∈ℒ ∣ weak-head normal forms
𝜀𝑡 ∣ 𝑡 ::t 𝑡 ∣ sup𝑡 𝑡 𝑡 ∣ () ∣ tt ∣ ff ∣ refl𝑡,𝑡 ∣ inj𝑙𝑡 𝑡 ∣ inj𝑟𝑡 𝑡
coe𝑁,𝑁 𝑓

nf⊖ 𝑁 ≝ Π𝑥: 𝑡.𝑡 ∣ Σ𝑥: 𝑡.𝑡 ∣ {𝑙 : 𝑡𝑙}𝑙∈ℒ negative whnf types
nf⊕ 𝑃 ≝ Type𝑖 ∣ 𝟎 ∣ 𝟏 ∣ 𝐁 ∣ 𝐋𝐢𝐬𝐭 𝑡 ∣ 𝐖 𝑥: 𝑡.𝑡 ∣ 𝑡 + 𝑡 ∣ 𝐈𝐝𝑡 𝑡 𝑡′ other whnf types
ne 𝑛 ≝ 𝑥 ∣ 𝑛 𝑡 ∣ 𝜋1 𝑛 ∣ 𝜋2 𝑛 ∣ 𝑛.𝑙 ∣ ind𝑃 (𝑛; 𝑡; 𝑡) weak-head neutrals
cne 𝑐 ≝ 𝑛 ∣ coe𝑃,𝑃 𝑛 ∣ coe𝑛,𝑛 𝑛 compacted neutrals

B.9 Algorithmic MLTTcoe
Extends Appendix B.2 and Appendix B.6.

Γ ⊢coe 𝑡 ▷ 𝑇

Coe
Γ ⊢coe 𝐴◁ Γ ⊢coe 𝐴′ ◁ Γ ⊢coe 𝑡◁𝐴 Γ ⊢coe 𝐴 ≼ 𝐴′ ◁

Γ ⊢coe coe𝐴,𝐴′ 𝑡 ▷𝐴′

Γ ⊢coe 𝑡 ≈coe 𝑡′ ◁𝑇 Compacted neutrals 𝑡 and 𝑡′ are comparable at type 𝑇

NCoe
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe coe𝑆,𝑇 𝑛 ≈coe coe𝑆′,𝑇 ′ 𝑛′ ◁𝑇 ″ NCoeL
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe coe𝑆,𝑇 𝑛 ≈coe 𝑛′ ◁𝑇 ″

NCoeR
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe 𝑛 ≈coe coe𝑆′,𝑇 ′ 𝑛′ ◁𝑇 ″ NNoCoe
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝑇 ″

Γ ⊢coe 𝑡 ≅h 𝑡′ ◁𝑇

NeuList
Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝐋𝐢𝐬𝐭 𝐴
Γ ⊢coe 𝑛 ≅h 𝑛′ ◁𝐋𝐢𝐬𝐭 𝐴 NeuTRee

Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝐖 𝑥: 𝐴.𝐵
Γ ⊢coe 𝑛 ≅h 𝑛′ ◁𝐖 𝑥: 𝐴.𝐵

NeuId
Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁ 𝐈𝐝𝐴 𝑎 𝑎′

Γ ⊢coe 𝑛 ≅h 𝑛′ ◁ 𝐈𝐝𝐴 𝑎 𝑎′ NeuSum
Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝐴 + 𝐵
Γ ⊢coe 𝑛 ≅h 𝑛′ ◁𝐴 + 𝐵

NeuNeu
Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝑀 ne𝑀

Γ ⊢coe 𝑛 ≅h 𝑛′ ◁𝑀

Γ ⊢coe 𝑇 ≼ 𝑇 ′ ◁

TyRed
𝑇 {⋆ 𝑈 𝑇 ′ {⋆ 𝑈 ′ Γ ⊢coe 𝑈 ≼h 𝑈 ′ ◁

Γ ⊢coe 𝑇 ≼ 𝑇 ′ ◁

43

T. Laurent, M. Lennon-Bertrand, K. Maillard

Γ ⊢coe 𝑇 ≼h 𝑇 ′ ◁

RecSub
𝒦 ⊆ ℒ ∀𝑘 ∈ 𝒦. Γ ⊢coe 𝐴𝑘 ≼ 𝐵𝑘 ◁

Γ ⊢coe {𝑙 : 𝐴𝑙}𝑙∈ℒ ≼h {𝑘 : 𝐴𝑘}𝑘∈𝒦 ◁

PRodSub
Γ ⊢coe 𝐴′ ≼ 𝐴◁ Γ, 𝑥: 𝐴′ ⊢coe 𝐵[coe𝐴′,𝐴 𝑥] ≼ 𝐵′ ◁

Γ ⊢coe Π𝑥: 𝐴.𝐵 ≼h Π𝑥: 𝐴′.𝐵′ ◁

ListSub
Γ ⊢coe 𝐴 ≼ 𝐴′ ◁

Γ ⊢coe 𝐋𝐢𝐬𝐭 𝐴 ≼h 𝐋𝐢𝐬𝐭 𝐴′ ◁
SigSub

Γ ⊢coe 𝐴 ≼ 𝐴′ ◁
Γ, 𝑥: 𝐴 ⊢coe 𝐵 ≼ 𝐵′[coe𝐴,𝐴′ 𝑥]◁
Γ ⊢coe Σ𝑥: 𝐴.𝐵 ≼h Σ𝑥: 𝐴′.𝐵′ ◁

TReeSub
Γ ⊢coe 𝐴 ≼ 𝐴′ ◁ Γ, 𝑥: 𝐴 ⊢coe 𝐵′[coe𝐴,𝐴′ 𝑥] ≼ 𝐵 ◁

Γ ⊢coe 𝐖 𝑥: 𝐴.𝐵 ≼h 𝐖 𝑥: 𝐴′.𝐵′ ◁

IdSub
Γ ⊢coe 𝐴 ≼ 𝐴′ ◁ Γ ⊢coe coe𝐴,𝐴′ 𝑡 ≅ 𝑡′ ◁𝐴′ Γ ⊢coe coe𝐴,𝐴′ 𝑢 ≅ 𝑢′ ◁𝐴′

Γ ⊢coe 𝐈𝐝𝐴 𝑡 𝑢 ≼h 𝐈𝐝𝐴′ 𝑡′ 𝑢′ ◁

ListSub
Γ ⊢coe 𝐴 ≼ 𝐴′ ◁ Γ ⊢coe 𝐵 ≼ 𝐵′ ◁

Γ ⊢coe 𝐴 + 𝐵 ≼h 𝐴′ + 𝐵′ ◁
SubRefl

𝑇 is Type𝑖, 𝟎, 𝟏 or 𝐁
Γ ⊢coe 𝑇 ≼ 𝑇 ◁

B.10 Declarative MLTTcoe
Extends Appendix B.1 and Appendix B.5.

Γ ⊢coe 𝑡 : 𝑇

Coe
Γ ⊢coe 𝐴 Γ ⊢coe 𝐴′ Γ ⊢coe 𝑡 : 𝐴 Γ ⊢coe 𝐴 ≼ 𝐴′

Γ ⊢coe coe𝐴,𝐴′ 𝑡 : 𝐴′

Γ ⊢coe 𝑡 ≅ 𝑡′ : 𝑇

CoeId
Γ ⊢coe 𝑡 : 𝐴

Γ ⊢coe coe𝐴,𝐴 𝑡 ≅ 𝑡 : 𝐴 CoeTRans
Γ ⊢coe 𝑡 : 𝐴 Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe 𝐴′ ≼ 𝐴″

Γ ⊢coe coe𝐴′,𝐴″ coe𝐴,𝐴′ 𝑡 ≅ coe𝐴,𝐴″ 𝑡 : 𝐴″

CoeCong
Γ ⊢coe 𝑡 ≅ 𝑡′ : 𝐴 Γ ⊢coe 𝐴 ≅ 𝐴′ Γ ⊢coe 𝐵 ≅ 𝐵′

Γ ⊢coe coe𝐴,𝐵 𝑡 ≅ coe𝐴′,𝐵′ 𝑡′ : 𝐵

CoeFun

Γ ⊢coe 𝐴′ ≼ 𝐴 Γ, 𝑥: 𝐴′ ⊢coe 𝐵[coe𝐴′,𝐴 𝑥] ≼ 𝐵′

Γ ⊢coe 𝑓 :Π𝑥: 𝐴.𝐵 Γ ⊢coe 𝑎 : 𝐴′

Γ ⊢coe (coeΠ𝑥:𝐴.𝐵,Π𝑥:𝐴′.𝐵′ 𝑓) 𝑎 ≅ coe𝐵[coe𝐴′,𝐴 𝑎],𝐵′[𝑥](𝑓 (coe𝐴′,𝐴 𝑎)) :Π𝑥: 𝐴′.𝐵′

CoeSig1
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ, 𝑥: 𝐴 ⊢coe 𝐵 ≼ 𝐵′[coe𝐴,𝐴′ 𝑥] Γ ⊢coe 𝑝 :Σ𝑥: 𝐴.𝐵

Γ ⊢coe 𝜋1 (coeΣ𝑥:𝐴.𝐵,Σ𝑥:𝐴′.𝐵′ 𝑝) ≅ coe𝐴,𝐴′(𝜋1 𝑝) : 𝐴′

44

Definitional Functoriality for Dependent (Sub)Types

CoeSig2
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ, 𝑥: 𝐴 ⊢coe 𝐵 ≼ 𝐵′[coe𝐴,𝐴′ 𝑥] Γ ⊢coe 𝑝 :Σ𝑥: 𝐴.𝐵

Γ ⊢coe 𝜋2 (coeΣ𝑥:𝐴.𝐵,Σ𝑥:𝐴′.𝐵′ 𝑝) ≅ coe𝐵[𝜋1 𝑝],𝐵′[coe𝐴,𝐴′ (𝜋1 𝑝)](𝜋2 𝑝) : 𝐵′[coe𝐴,𝐴′(𝜋1 𝑝)]

CoeRec
𝒦 ⊆ ℒ ∀𝑘 ∈ 𝒦. Γ ⊢coe 𝐴𝑘 ≼ 𝐵𝑘 Γ ⊢ 𝑟 ▷ {𝑙 : 𝐴𝑙}𝑙∈ℒ

Γ ⊢coe (coe{𝑙 : 𝐴𝑙}𝑙∈ℒ,{𝑘 : 𝐴𝑘}𝑘∈𝒦
𝑟).𝑘 ≅ coe𝐴𝑘,𝐵𝑘

𝑟.𝑘 : 𝐵𝑘

CoeNil
Γ ⊢coe 𝐴 ≼ 𝐴′

Γ ⊢coe coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′ 𝜀𝐴 ≅ 𝜀𝐴′ : 𝐋𝐢𝐬𝐭 𝐴′

CoeCons
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe 𝑎 : 𝐴 Γ ⊢coe 𝑙 : 𝐋𝐢𝐬𝐭 𝐴

Γ ⊢coe coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′(𝑎 ::A 𝑙) ≅ (coe𝐴,𝐴′ 𝑎) ::A'(coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′ 𝑙) : 𝐋𝐢𝐬𝐭 𝐴′

CoeTRee

Γ ⊢coe 𝐴 ≼ 𝐴′

Γ, 𝑥: 𝐴 ⊢coe 𝐵′[coe𝐴,𝐴′ 𝑥] ≼ 𝐵 Γ ⊢coe 𝑎 : 𝐴 Γ ⊢coe 𝑘 : 𝐵 𝑎 → 𝐖 𝑥: 𝐴.𝐵
Γ ⊢coe coe𝐖 𝑥:𝐴.𝐵,𝐖 𝑥:𝐴.𝐵′(sup𝑥.𝐵 𝑎 𝑙) ≅
sup𝑥.𝐵′(coe𝐴,𝐴′ 𝑎) (λ𝑥: 𝐵′[coe𝐴,𝐴′ 𝑎]. coe𝐖 𝑥:𝐴.𝐵,𝐖 𝑥:𝐴.𝐵′(𝑘 (coe𝐵′[coe𝐴,𝐴′ 𝑎],𝐵[𝑎] 𝑥)))

: 𝐖 𝑥: 𝐴′.𝐵′

CoeId
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe 𝑎 : 𝐴

Γ ⊢coe coe𝐈𝐝𝐴 𝑎 𝑎,𝐈𝐝𝐴′ (coe𝐴,𝐴′ 𝑎) (coe𝐴,𝐴′ 𝑎) refl𝐴,𝑎 ≅ refl𝐴′,(coe𝐴,𝐴′ 𝑎) : 𝐈𝐝𝐴 (coe𝐴,𝐴′ 𝑎) (coe𝐴,𝐴′ 𝑎)

CoeSumLeft
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe 𝐵 ≼ 𝐵′ Γ ⊢coe 𝑎 : 𝐴

Γ ⊢coe coe𝐴 + 𝐵,𝐴′ + 𝐵′(inj𝑙 𝑎) ≅ inj𝑙 (coe𝐴,𝐴′ 𝑎) : 𝐴′ + 𝐵′

CoeSumRight
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe 𝐵 ≼ 𝐵′ Γ ⊢coe 𝑏 : 𝐵

Γ ⊢coe coe𝐴 + 𝐵,𝐴′ + 𝐵′(inj𝑟 𝑏) ≅ inj𝑟 (coe𝐵,𝐵′ 𝑏) : 𝐴′ + 𝐵′

Γ ⊢coe 𝑇 ≼ 𝑇 ′ 𝑇 is a subtype of 𝑇 ′ in context Γ

RecSub
𝒦 ⊆ ℒ ∀𝑘 ∈ 𝒦. Γ ⊢coe 𝐴𝑘 ≼ 𝐵𝑘

Γ ⊢coe {𝑙 : 𝐴𝑙}𝑙∈ℒ ≼ {𝑘 : 𝐴𝑘}𝑘∈𝒦

PRodSub
Γ ⊢coe 𝐴′ ≼ 𝐴 Γ, 𝑥: 𝐴′ ⊢coe 𝐵[coe𝐴′,𝐴 𝑥] ≼ 𝐵′

Γ ⊢coe Π𝑥: 𝐴.𝐵 ≼ Π𝑥: 𝐴′.𝐵′

ListSub
Γ ⊢coe 𝐴 ≼ 𝐴′

Γ ⊢coe 𝐋𝐢𝐬𝐭 𝐴 ≼ 𝐋𝐢𝐬𝐭 𝐴′ SigSub

Γ ⊢coe 𝐴 ≼ 𝐴′

Γ, 𝑥: 𝐴 ⊢coe 𝐵 ≼ 𝐵′[coe𝐴,𝐴′ 𝑥]
Γ ⊢coe Σ𝑥: 𝐴.𝐵 ≼ Σ𝑥: 𝐴′.𝐵′

TReeSub
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ, 𝑥: 𝐴 ⊢coe 𝐵′[coe𝐴,𝐴′ 𝑥] ≼ 𝐵

Γ ⊢coe 𝐖 𝑥: 𝐴.𝐵 ≼ 𝐖 𝑥: 𝐴′.𝐵′

45

T. Laurent, M. Lennon-Bertrand, K. Maillard

IdSub
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe coe𝐴,𝐴′ 𝑡 ≅ 𝑡′ : 𝐴′ Γ ⊢coe coe𝐴,𝐴′ 𝑢 ≅ 𝑢′ : 𝐴′

Γ ⊢coe 𝐈𝐝𝐴 𝑡 𝑢 ≼ 𝐈𝐝𝐴′ 𝑡′ 𝑢′

SumSub
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe 𝐵 ≼ 𝐵′

Γ ⊢coe 𝐴 + 𝐵 ≼ 𝐴′ + 𝐵′

SubRefl
Γ ⊢coe 𝐴 ≅ 𝐴′

Γ ⊢coe 𝐴 ≼ 𝐴′ SubTRans
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe 𝐴′ ≼ 𝐴″

Γ ⊢coe 𝐴 ≼ 𝐴″

C PROOFS OF LEMMAS
This section contains additional lemmas and proofs omitted from the body of the paper.

C.1 From Section 3.2

mapΠ ((𝑔, 𝑓): homΠ((𝐴, 𝐵), (𝐴′, 𝐵′))) (ℎ:Π(𝑥: 𝐴)𝐵) ≝ λ𝑥: 𝐴′.𝑓 (ℎ (𝑔 𝑥))
mapΣ ((𝑔, 𝑓): homΠ((𝐴, 𝐵), (𝐴′, 𝐵′))) (𝑝:Σ(𝑥: 𝐴)𝐵) ≝ (𝑔 (𝜋1 𝑝), 𝑓 (𝜋2 𝑝))

Lemma C.1. mapΠ and mapΣ satisfy the functor laws MapId and MapComp.

PRoof. For the preservation of identities, we have:

mapΠ (id𝐴, λ{𝑥: 𝐴}. id𝐵 𝑥) ℎ ≅ λ𝑥: 𝐴. id𝐵 𝑥 (ℎ (id𝐴 𝑥)) ≅ λ𝑥: 𝐴.𝑔 𝑥 ≅ 𝑔
mapΣ (id𝐴, λ{𝑥: 𝐴}. id𝐵 𝑥) 𝑝 ≅ (id𝐴 (𝜋1 𝑝), id𝐵 (𝜋1 𝑝) (𝜋2 𝑝)) ≅ (𝜋1 𝑝, 𝜋2 𝑝) ≅ 𝑝

For (𝑔, 𝑓): homΠ((𝐴2, 𝐵2), (𝐴3, 𝐵3)), (𝑔′, 𝑓 ′): homΠ((𝐴1, 𝐵1), (𝐴2, 𝐵2)) and ℎ:Π𝑥: 𝐴1.𝐵1 𝑥 we
compute

mapΠ (𝑔, 𝑓) (mapΠ (𝑔′, 𝑓 ′) ℎ) ≅ λ𝑥: 𝐴.𝑓 ((λ𝑥′: 𝐴′.𝑓 ′ (ℎ (𝑔′ 𝑥′))) (𝑔 𝑥))
≅ λ𝑥: 𝐴, 𝑓 (𝑓 ′ (ℎ (𝑔′ (𝑔 𝑥))))
≅ λ𝑥: 𝐴, (𝑓 ∘ 𝑓 ′) (ℎ ((𝑔′ ∘ 𝑔) 𝑥)) ≅ mapΠ((𝑔, 𝑓) ∘ (𝑔′, 𝑓 ′))ℎ

Similarly, for (𝑔, 𝑓): homΣ((𝐴2, 𝐵2), (𝐴3, 𝐵3)), (𝑔′, 𝑓 ′): homΣ((𝐴1, 𝐵1), (𝐴2, 𝐵2)) and 𝑝:Σ𝑥: 𝐴1.
𝐵1 𝑥 :

mapΣ (𝑔, 𝑓) (mapΣ (𝑔′, 𝑓 ′) 𝑝) ≅ (𝑔 (𝜋1 mapΣ (𝑔′, 𝑓 ′) 𝑝), 𝑓 (𝜋2 mapΣ (𝑔′, 𝑓 ′) 𝑝))
≅ (𝑔 (𝑔′ (𝜋1 𝑝)), 𝑓 (𝑓 ′ (𝜋2 𝑝)))
≅ ((𝑔 ∘ 𝑔′) (𝜋1 𝑝)), (𝑓 ∘ 𝑓 ′) (𝜋2 𝑝)))
≅ mapΣ ((𝑔, 𝑓) ∘ (𝑔′, 𝑓 ′)) 𝑝

□

C.2 From Section 5.3
Lemma C.2 (Catch up, function type (Lemma 5.7)). If Γ ⊢coe 𝑓 𝑎 : 𝐵 and |𝑓| = λ𝑥: 𝐴′. 𝑡′, then

there exists 𝑡 such that |𝑡| = 𝑡′ and 𝑓 𝑎 {⋆ 𝑡[𝑎].
PRoof. We must have that 𝑓 = (coe𝑇1,…,𝑇𝑛

(λ𝑥: 𝐴.𝑡0))15 for some 𝐴, 𝑡0 such that |𝐴| = 𝐴′

and |𝑡0| = 𝑡′. Moreover, by well-typing we know that there exists some 𝐵0 such that Γ, 𝑥: 𝐴 ⊢coe

15That is, a string of coercions coe𝑇𝑛−1,𝑇𝑛 (… coe𝑇1,𝑇2 (λ𝑥: 𝐴.𝑡0)).

46

Definitional Functoriality for Dependent (Sub)Types

𝑡0 ▷ 𝐵0, Γ ⊢coe Π𝑥: 𝐴.𝐵0 ≅ 𝑇1 ≼ 𝑇2 ≅ … ≼ 𝑇𝑛 ◁. By inversions, we must have 𝑇𝑖 {
⋆ Π𝑥: 𝐴𝑖.

𝐵𝑖, with the 𝐴𝑖 and 𝐵𝑖 again related. But now we can use the reduction rule of coe on product
types, and get

𝑓 𝑎 {⋆ coe𝐵′
0,𝐵′

1,…,𝐵′𝑛
((λ𝑥: 𝐴.𝑡0) (coe𝐴𝑛,…,𝐴1,𝐴 𝑎))

where the 𝐵′
𝑖 are obtained by adequately substituting coercions in the 𝐵𝑖. Now all the 𝐵′

𝑖 are well-
typed by subject reduction, so they must have weak-head normal forms 𝐵″

𝑖 , and once all of them
have been reduced to weak-head normal form by a combination of CoeL, CoeR and CoeTm, we
can finally reduce the inner 𝛽-redex, obtaining

𝑓 𝑎 {⋆ coe𝐵″
0 ,𝐵″

1 ,…,𝐵″𝑛
(𝑡0[coe𝐴𝑛,…,𝐴1,𝐴 𝑎])

Now we can conclude, as indeed

∣coe𝐵″
0 ,𝐵″

1 ,…,𝐵″𝑛
(𝑡0[coe𝐴𝑛,…,𝐴1,𝐴 𝑥])∣ = ∣𝑡0[coe𝐴𝑛,…,𝐴1,𝐴 𝑥]∣

= |𝑡0| [∣coe𝐴𝑛,…,𝐴1,𝐴 𝑥∣]
= |𝑡0| [|𝑥|] = |𝑡0| = 𝑡′

□

Lemma C.3 (ERasuRe is a bacKwaRd simulation (Lemma 5.10)). Assume that Γ ⊢coe 𝑡 : 𝑇 . If
|𝑡| {⋆ 𝑢′, with 𝑢′ a weak-head normal form, then 𝑡 {⋆ 𝑢, with 𝑢 a weak-head normal form such
that |𝑢| = 𝑢′.

PRoof. First, if |𝑡| {⋆ 𝑢′, then there exists 𝑢 such that 𝑡 {⋆ 𝑢 and |𝑢| = 𝑢′. Indeed, the
previous catch-up lemmas ensure that redexes never get blocked by coercions. On function types,
the lemma exactly says that a term erasing to a 𝛽-redex is able to simulate the 𝛽-reduction. On
positive types, by the catch-up lemma again, coercions on a constructor reduce away until the
constructor is exposed directly to the destructor, and so the reduction can kick in.

Second, if |𝑢| is a weak-head normal form, then there exists a weak-head normal form 𝑣 such
that 𝑢 {⋆ 𝑣 and |𝑣| = |𝑢|. Indeed, if |𝑢| is a weak-head normal form but 𝑢 is not, it must be
because either |𝑢| is a constructor of a positive type, or a neutral. In the first case, the catch-up
lemmas let us conclude. In the second, we can iterate CoeCoe to fuse coercions until 𝑢 reduces to
a compacted neutral, which is a weak-head normal form. □

Lemma C.4 (ElaboRation pReseRves subtyping (Lemma 5.11)). The following implications hold
whenever the inputs of the conclusions are well-formed:

(1) if |Γ| ⊢sub |𝑇 | ≼m
h |𝑈|◁, then Γ ⊢coe 𝑇 ≼m

h 𝑈 ◁;
(2) if |Γ| ⊢sub |𝑇 | ≼m |𝑈|◁, then Γ ⊢coe 𝑇 ≼ 𝑈 ◁;
(3) if |Γ| ⊢sub |𝑡| ≅h |𝑢|◁ |𝑇 |, then Γ ⊢coe 𝑡 ≅h 𝑢◁𝑇 ;
(4) if |Γ| ⊢sub |𝑡| ≅ |𝑢|◁ |𝑇 |, then Γ ⊢coe 𝑡 ≅ 𝑢◁𝑇 ;
(5) if |Γ| ⊢sub |𝑡| ≈ |𝑢| ▷ 𝑇 , then Γ ⊢coe 𝑡 ≈ 𝑢 ▷ 𝑇 ;
(6) if |Γ| ⊢sub |𝑡| ≈h |𝑢| ▷ 𝑇 , then Γ ⊢coe 𝑡 ≈ 𝑢 ▷ 𝑇 .

PRoof. Lemma 5.10 ensures we can always match reductions to weak-head normal forms in
MLTTsub with reductions to weak-head normal forms in MLTTcoe. As for conversion itself, the
key cases are those where the term in MLTTcoe is a coercion, that gets erased in MLTTsub. Given
the structure of normal forms from Figure 14, this can happen in three situations. If the coercions
are between function types or record types, we do not inspect the terms, and instead eagerly 𝜂-
expand in a type-directed fashion (which triggers further reduction of the now applied coercions).
The third case is compacted neutrals. They can appear exactly in the places where MLTTcoe uses

47

T. Laurent, M. Lennon-Bertrand, K. Maillard

the comparison of the compacted neutrals, which strips away the possibly present coercions, as
expected. □

Finally, the main theorem states that we can elaborate terms using implicit subtyping to explicit
coercions, in a type-preserving way.

TheoRem C.5 (ElaboRation – Induction). The following implications hold, whenever inputs to
the conclusion are well-formed:

(1) if |Γ| ⊢sub 𝑡′ ▷ 𝑇 ′, then there exists 𝑡 and 𝑇 such that 𝑡′ = |𝑡|, 𝑇 ′ = |𝑇 |, and Γ ⊢coe 𝑡 ▷ 𝑇 ;
(2) if |Γ| ⊢sub 𝑡′ ▷h 𝑇 ′, then there exists 𝑡 and 𝑇 such that 𝑡′ = |𝑡|, 𝑇 ′ = |𝑇 |, and Γ ⊢coe 𝑡 ▷h 𝑇 ;
(3) if |Γ| ⊢sub 𝑡′ ◁ |𝑇 |, then there exists 𝑡 such that 𝑡′ = |𝑡| and Γ ⊢coe 𝑡◁𝑇 .

PRoof. Once again, by mutual induction. Each rule is mapped to its counterpart, but for ChecK-
Sub, where we need to insert a coercion in the elaborated term. This coercion is well-typed by
Lemma 5.11. □

C.3 Translation from MLTTcoe to MLTTmap
MLTTcoe terms contain enough information to entirely capture the subtyping derivations. We
exploit this information to define a relation J𝑡K ≃ 𝑡′ between a MLTTcoe term 𝑡 and a MLTTmap
term 𝑡′, that makes explicit the functorial nature of coercions. The definition of J𝑡K ≃ 𝑡′ employs
an auxiliary relation J𝐴 ⇝ 𝐵K ≃ 𝑥 to translate coercions from 𝐴 to 𝐵, where 𝑥 is either the
special value ⋆ or a MLTTmap term 𝑓 . The value ⋆ arises in the case of an identity coercion that
should be erased by the translation. In order to translate records, we assume that we have access
to an (effective, decidable) total order on the countable set Lbl of labels, so that we can order in a
canonical fashion every finite subsets ℒ ⊆ Lbl as ℒ = {𝑙1 < … < 𝑙𝑛}.

TslTy JType𝑖K ≃ Type𝑖
TslList

J𝐴K ≃ 𝐴′J𝐋𝐢𝐬𝐭 𝐴K ≃ 𝐋𝐢𝐬𝐭 𝐴′ TslPi
J𝐴K ≃ 𝐴′ J𝐵K ≃ 𝐵′JΠ𝑥: 𝐴.𝐵K ≃ Π𝑥: 𝐴′.𝐵′

TslSig
J𝐴K ≃ 𝐴′ J𝐵K ≃ 𝐵′JΣ𝑥: 𝐴.𝐵K ≃ Σ𝑥: 𝐴′.𝐵′ TslRec

∀𝑙 ∈ ℒ.J𝐴𝑙K ≃ 𝐴′
𝑙 ℒ = {𝑙1 < … < 𝑙𝑛}J{𝑙: 𝐴𝑙}𝑙∈ℒK ≃ Σ𝑥𝑙1

: 𝐴′
𝑙1

. … 𝐴′
𝑙𝑛

TslVaR J𝑥K ≃ 𝑥 TslLam
J𝐴K ≃ 𝐴′ J𝑡K ≃ 𝑡′Jλ𝑥: 𝐴.𝑡K ≃ λ𝑥: 𝐴′.𝑡′ TslApp

J𝑢K ≃ 𝑢′ J𝑣K ≃ 𝑣′J𝑢 𝑣K ≃ 𝑢′ 𝑣′

TslPaiR
J𝑢K ≃ 𝑢′ J𝑣K ≃ 𝑣′J(𝑢, 𝑣)K ≃ (𝑢′, 𝑣′) TslFst

J𝑝K ≃ 𝑝′J𝜋1 𝑝K ≃ 𝜋1 𝑝′ TslSnd
J𝑝K ≃ 𝑝′J𝜋2 𝑝K ≃ 𝜋2 𝑝′

TslRecTm
∀𝑙 ∈ ℒ.J𝑢𝑙K ≃ 𝑢′

𝑙 ℒ = {𝑙1 < … < 𝑙𝑛}J{𝑙 ≔ 𝑢𝑙}K ≃ (𝑢′
𝑙1

, … 𝑢′
𝑙𝑛

)

TslPRoj
J𝑝K ≃ 𝑝′ Γ ⊢coe 𝑝{𝑙: 𝐴𝑙}𝑙∈ℒ ℒ = {𝑙1 < … < 𝑙𝑛}J𝑝.𝑙𝑖K ≃ 𝜋1 ∘ 𝜋𝑖−1

2 (𝑝′)

TslCoeId
J𝐴 ⇝ 𝐵K ≃ ⋆ J𝑡K ≃ 𝑡′Jcoe𝐴,𝐵 𝑡K ≃ 𝑡′ TslCoe

J𝐴 ⇝ 𝐵K ≃ 𝑓 J𝑡K ≃ 𝑡′Jcoe𝐴,𝐵 𝑡K ≃ 𝑓 𝑡′

48

Definitional Functoriality for Dependent (Sub)Types

TslCoeNf
𝐴 {⋆ 𝐴′ nf 𝐵 {⋆ 𝐵′ nf J𝐴′ ⇝ 𝐵′K ≃ 𝑥 𝐴 ≠ 𝐴′ or 𝐵 ≠ 𝐵′J𝐴 ⇝ 𝐵K ≃ 𝑥

TslCoeListId
J𝐴 ⇝ 𝐵K ≃ ⋆J𝐋𝐢𝐬𝐭 𝐴 ⇝ 𝐋𝐢𝐬𝐭 𝐵K ≃ ⋆ TslCoeList

J𝐴 ⇝ 𝐵K ≃ 𝑓J𝐋𝐢𝐬𝐭 𝐴 ⇝ 𝐋𝐢𝐬𝐭 𝐵K ≃ map𝐋𝐢𝐬𝐭 𝑓

TslCoePiIdBoth
J𝐴2 ⇝ 𝐴1K ≃ ⋆ J𝐵1 ⇝ 𝐵2K ≃ ⋆JΠ𝑥: 𝐴1.𝐵1 ⇝ Π𝑥: 𝐴2.𝐵2K ≃ ⋆

TslCoePiIdDom
J𝐴2 ⇝ 𝐴1K ≃ ⋆ J𝐵1 ⇝ 𝐵2K ≃ 𝑔 J𝐴1K ≃ 𝐴′

1JΠ𝑥: 𝐴1.𝐵1 ⇝ Π𝑥: 𝐴2.𝐵2K ≃ mapΠ (id𝐴′
1
, 𝑔)

TslCoePiIdCod
J𝐴2 ⇝ 𝐴1K ≃ 𝑓 J𝐵1[coe𝐴2,𝐴1

𝑥] ⇝ 𝐵2K ≃ ⋆ J𝐵2K ≃ 𝐵′
2JΠ𝑥: 𝐴1.𝐵1 ⇝ Π𝑥: 𝐴2.𝐵2K ≃ mapΠ(𝑓, id𝐵′

2
)

TslCoePi
J𝐴2 ⇝ 𝐴1K ≃ 𝑓 J𝐵1[coe𝐴2,𝐴1

𝑥] ⇝ 𝐵2K ≃ 𝑔JΠ𝑥: 𝐴1.𝐵1 ⇝ Π𝑥: 𝐴2.𝐵2K ≃ mapΠ(𝑓, 𝑔) and similarly for Σ

TslCoeRecId
𝒦 = ℒ ∀𝑘 ∈ 𝒦.J𝐴𝑘 ⇝ 𝐵𝑘K ≃ ⋆J{𝑙: 𝐴𝑙}𝑙∈ℒ ⇝ {𝑘: 𝐵𝑘}𝑘∈𝒦K ≃ ⋆

TslCoeRec
𝒦 ⊆ ℒ ∀𝑘 ∈ 𝒦.J𝐴𝑘 ⇝ 𝐵𝑘K ≃ 𝑓𝑘 𝒦 = {𝑘1 < … < 𝑘𝑛}J{𝑙: 𝐴𝑙}𝑙∈ℒ ⇝ {𝑘: 𝐵𝑘}𝑘∈𝒦K ≃ λ 𝑝.(𝑓𝑘1

(𝜋1 𝑝), … 𝑓𝑘𝑛
(𝜋𝑛−1

2 𝑝))

TslCoeTy JType𝑖 ⇝ Type𝑖K ≃ ⋆ TslCoeNe
ne𝑁 ne𝑀J𝑁 ⇝ 𝑀K ≃ ⋆

The translation is extended to contexts pointwise.

J⋅K ≃ ⋅
JΓK ≃ Γ′ J𝐴K ≃ 𝐴′JΓ, 𝑥: 𝐴K ≃ Γ′, 𝑥: 𝐴′

We note J𝑡K↓ when 𝑡 is in the domain of the relation and J𝑡K for the image of 𝑡 when it is defined.

Lemma C.6 (DeteRminism of tRanslation). The translation relation J𝑡K ≃ 𝑡′ is a partial func-
tion, i.e. it is deterministic: for any 𝑡 𝑡′

1 𝑡′
2, if J𝑡K ≃ 𝑡′

1 and J𝑡K ≃ 𝑡′
2 then 𝑡′

1 = 𝑡′
2.

PRoof. We show by mutual induction on a derivation that J𝐴 ⇝ 𝐵K ≃ 𝑥 is a partial function as
well from pairs of MLTTcoe types to either ⋆ or a MLTTmap term. In the key case TslCoeNf, note
that the reduction relation{⋆ is deterministic as well, so we can conclude by induction hypothesis.
All other cases are immediate or simple applications of the inductive hypothesis, using the fact that
at each step, at most one rule apply. □

LemmaC.7 (Stability of tRanslation byweaKening). If 𝜌 is a substitution thatmaps variables
to variables then J𝑡K[𝜌] = J𝑡[𝜌]K.

PRoof. Immediate by induction on 𝑡, the only case interesting case being the translation of
variables, with a similar lemma for J𝐴 ⇝ 𝐵K ≃ 𝑥 using that neutrals are preserved. □

49

T. Laurent, M. Lennon-Bertrand, K. Maillard

Lemma C.8 (Well-typed teRms tRanslate). If Γ ⊢coe 𝑡 : 𝐴 then JΓK↓, J𝐴K↓ and J𝑡K↓.
PRoof. We prove by a straightforward mutual induction on an algorithmic typing derivation

that:
• If ⊢coe Γ then JΓK↓;
• If Γ ⊢coe 𝐴◁ and JΓK↓ then J𝐴K↓;
• If Γ ⊢coe 𝑡◁𝐴 and JΓK↓ then J𝑡K↓;
• If Γ ⊢coe 𝑡 ▷𝐴 and JΓK↓ thenJ𝑡K↓;
• If Γ ⊢coe 𝐴 ≼ 𝐵 ◁ or Γ ⊢coe 𝐴 ≼h 𝐵 ◁ then there exists 𝑥 such that J𝐴 ⇝ 𝐵K ≃ 𝑥.

□

Lemma C.9 (Identity coeRcions). If Γ ⊢coe 𝐴 ≅ 𝐵 ◁ or Γ ⊢coe 𝐴 ≅h 𝐵 ◁ then J𝐴 ⇝ 𝐵K ≃ ⋆.
PRoof. Straightforward mutual induction on the bidirectional conversion derivation. □

Lemma C.10 (Stability of tRanslation by substitution). If Γ ⊢coe 𝑡 : 𝐴 and Δ ⊢coe 𝜎 : Γ thenJ𝑡K[J𝜎K] = J𝑡[𝜎]K and similarly for typing.
If Γ ⊢coe 𝐴 ≼ 𝐵 ◁, Δ ⊢coe 𝜎 : Γ and

• J𝐴 ⇝ 𝐵K ≃ ⋆ then J𝐴[𝜎] ⇝ 𝐵[𝜎]K ≃ ⋆;
• J𝐴 ⇝ 𝐵K ≃ 𝑓 then J𝐴[𝜎] ⇝ 𝐵[𝜎]K ≃ 𝑓[𝜎].

PRoof. Straightforward mutual induction on the bidirectional derivation. □

Forward simulation. Following the proof strategy employed for the equivalence between sub-
sumptive and coercive subtyping, the nest step would require to prove that the translation is a
forward simulate, i.e. if Γ ⊢coe 𝑡 : 𝐴 and 𝑡 {1 𝑡′ then J𝑡K {⋆ J𝑡′K. As stated, this lemma does
not hold. Indeed, the rule CoeCoe leads to reductions of coercions with type annotations which
may be convertible but not reduce correctly. We conjecture that a weaker version of the simula-
tion with respect to conversion in MLTTmap should hold, that is if Γ ⊢coe 𝑡 : 𝐴 and 𝑡 {1 𝑡′ thenJΓK ⊢map J𝑡K ≅ J𝑡′K :J𝐴K. Such statement should be proved mutually with other properties stating
that the translation preserves typing, as follows.

ConjectuRe C.11 (TRanslation pReseRves typing).
(1) If ⊢coe Γ then ⊢map JΓK
(2) If Γ ⊢coe 𝐴 then JΓK ⊢map J𝐴K
(3) If Γ ⊢coe 𝑡 : 𝐴 then JΓK ⊢map J𝑡K :J𝐴K
(4) If Γ ⊢coe 𝐴 ≅ 𝐵 then JΓK ⊢map J𝐴K ≅ J𝐵K
(5) If Γ ⊢coe 𝑡 ≅ 𝑢 : 𝐴 then JΓK ⊢map J𝑡K ≅ J𝑢K :J𝐴K
(6) If Γ ⊢coe 𝐴 ≼ 𝐵 then either

(a) J𝐴 ⇝ 𝐵K ≃ ⋆ and JΓK ⊢map J𝐴K ≅ J𝐵K
(b) J𝐴 ⇝ 𝐵K ≃ 𝑓 and JΓK ⊢map 𝑓 :J𝐴K → J𝐵K

Preservation of typing, together with catch up lemmas, and a backward simulation lemma,
would then allow to lift bidirectional conversion derivations in MLTTmap between the transla-
tion of terms from MLTTcoe. The use of bidirectional conversion is essential here to remain at
each step within the translation of MLTTcoe terms.

ConjectuRe C.12 (Embedding). J−K embedsMLTTcoe intoMLTTmap: well-typedMLTTcoe terms
translate to well-typed MLTTmap terms, preserving and reflecting conversion.

50

	Abstract
	1 Introduction
	2 Type Theory and Its Metatheory
	2.1 Metatheoretical properties
	2.2 Neutrals, normals, and reduction
	2.3 Proof methods

	3 A Functorial Type Theory
	3.1 Functorial structure on type formers
	3.2 Extensional types and map
	3.3 New equations for neutral terms in dependent type theory

	4 Formalizing New Equations for Neutral Lists
	4.1 A logical relation with functor laws on list
	4.2 Deciding conversion and typechecking for MLTTmap

	5 Subtyping, coercive and subsumptive
	5.1 The type systems MLTTsub and MLTTcoe
	5.2 Equivalence of algorithmic and declarative typing
	5.3 Elaboration and erasure
	5.4 Coherence

	6 Related and Future Work
	A Internal subtyping and undecidability of conversion
	B Complete typing rules
	B.1 Declarative MLTT
	B.2 Algorithmic MLTT
	B.3 Declarative MLTTmap
	B.4 Algorithmic MLTTmap
	B.5 Declarative record types
	B.6 Algorithmic record types
	B.7 Algorithmic MLTTsub
	B.8 Reduction rules and normal forms for MLTTcoe
	B.9 Algorithmic MLTTcoe
	B.10 Declarative MLTTcoe

	C Proofs of lemmas
	C.1 From sec:map-ext
	C.2 From sec:elab-eras
	C.3 Translation from MLTTcoe to MLTTmap

