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Definitional Functoriality for Dependent (Sub)Types

THÉO LAURENT, Inria, France
MEVEN LENNON-BERTRAND, University of Cambridge, United Kingdom
KENJI MAILLARD, Gallinette Project Team, Inria, France

Dependently-typed proof assistant rely crucially on a definitional equality, identifying the types and terms
that are automatically undistinguishable for the underlying type theory. This paper extends type theory with
definitional functor laws, two equations satisfied propositionally by a large class of container-like type con-
structors 𝐹:Type → Type, equipped with a map𝐹 : (𝐴 → 𝐵) → 𝐹 𝐴 → 𝐹 𝐵, such as lists or trees. Promot-
ing these equations to definitional ones strengthen the theory, enabling slicker proofs and more automation
for functorial type constructors. This extension is then used to justify modularly a structural form of coercive
subtyping, propagating subtyping through type formers. We show that the resulting notion of coercive sub-
typing, thanks to the extra definitional equations, is equivalent to a natural and implicit form of subsumptive
subtyping. The key result of decidability of type-checking in a dependent type system with functor laws for
lists has been entirely mechanized in Coq.
CCS Concepts: • Theory of computation → Type theory.
Additional Key Words and Phrases: Subtyping, Dependent type system, Bidirectional typing

1 INTRODUCTION
Dependent type theory is the foundation of many proof assistants [The Coq Development Team
2022; Moura and Ullrich 2021; Agda Development Team 2023; Brady 2021; Swamy et al. 2016], and
at its heart lies definitional equality, an equational theory that is automatically decided by the im-
plementation of these proof systems. For users, a type theory providing a rich definitional equality
means less work to prove that things can be identified. However, there is a fundamental tension at
play: making the equational theory too rich leads to both practical and theoretical issues, the most
prominent one being the undecidability of definitional equality.This default plagues the otherwise
appealing Extensional Type Theory (ETT) [Martin-Löf and Sambin 1984], a type theory which
makes every provable equality definitional, thus making ETT mostly impractical as a basis for a
proof assistant [Castellan et al. 2017]. As a result, to design usable proof assistants, a well-behaved
equational theory that strikes the right balance between expressivity and decidability needs to be
carved out. In this paper, we show that we can extend type theory with definitional equalities
for functor laws, while maintaining this subtle balance. We prove in particular, that definitional
equality and type-checking remain decidable in this extension.

Functors and their laws. The notion of functor is pervasive both in mathematics [MacLane 1971]
and functional programming [Lipovača 2010], abstracting the concept of a parametrized construc-
tion that whose elements can be transformed. In the setting of a rich type theory, a functor can be
seen as a type former 𝐹:Type → Type equipped with an operation map𝐹 : (𝐴 → 𝐵) → 𝐹 𝐴 →
𝐹 𝐵 propagating any function 𝑓: 𝐴 → 𝐵 between types 𝐴 and 𝐵 to a function from 𝐹 𝐴 to 𝐹 𝐵.
A functor should also respect the categorical structure exhibited by the category of Types and
functions, preserving identities and compositions:

map𝐹 id = id (id-eq)
map𝐹 𝑓 ∘ map𝐹 𝑔 = map𝐹 (𝑓 ∘ 𝑔) (comp-eq)

These two equations are known as the functor laws. For many container-like functors, such as
𝐋𝐢𝐬𝐭 𝐴, lists of elements taken in a type 𝐴, a map function can be defined such that these equations
can be shown propositionally, e.g. by induction inside the type theory. Such propositional equations
need however to be used explicitly while being careful that all identifications relying on them are
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made coherently. This is not acceptable from a user perspective: such structural and naturally
occurring identifications should hold on the nose, that is, definitionally!

Example 1.1 (Representation change). Consider a dataset of pairs of a number and a boolean,
represented as a list of numbers. For compatibility purpose, we may need to embed these pairs
into a larger dataset using
glue (𝑟 : {𝑎: 𝐍; 𝑏: 𝐁}): {𝑥: 𝐁; 𝑦: 𝐍; 𝑧: 𝐍} ≝ {𝑥 ≔ 𝑟.𝑏; 𝑦 ≔ 𝑟.𝑎; 𝑧 ≔ if 𝑟.𝑏 then 𝑟.𝑎 else 42}.

Going from one dataset to the other amounts to map either glue or its left inverse:
map𝐋𝐢𝐬𝐭 glue : 𝐋𝐢𝐬𝐭 {𝑎: 𝐍; 𝑏: 𝐁} → 𝐋𝐢𝐬𝐭 {𝑥: 𝐁; 𝑦: 𝐍; 𝑧: 𝐍},

map𝐋𝐢𝐬𝐭 glue_retr : 𝐋𝐢𝐬𝐭 {𝑥: 𝐁; 𝑦: 𝐍; 𝑧: 𝐍} → 𝐋𝐢𝐬𝐭 {𝑎: 𝐍; 𝑏: 𝐁}.
If the functor laws only hold propositionally, each consecutive simplification of back and forth
changes of representation needs to be explicitly lifted to lists, and applied. The uncontrolled accu-
mulation of repetitive proof steps, even as simple as these, can quickly burden proof development.
In presence of definitional functor laws, instead, any sequence of representation changes will re-
duce to a single map𝐋𝐢𝐬𝐭: the boilerplate of manipulating explicitly the functor laws is handled
directly and transparently by the type theory. Moreover, observe that in this example the retrac-
tion glue_retr∘glue ≅ id is definitional thanks to surjective pairing. Combined with definitional
functor laws, the following simplification step is discharged automatically by the type-checker:1

map𝐋𝐢𝐬𝐭 glue_retr (map𝐋𝐢𝐬𝐭 glue 𝑙) ≅ map𝐋𝐢𝐬𝐭 id 𝑙 ≅ 𝑙
Note that these equations are valid in any context, in particular under binders, whereas for

propositional identifications, rewriting under binders is only possible in presence of the additional
axiom of function extensionality.

Example 1.2 (Coherence of coercions). Proof assistants may provide the ability for users to de-
clare automatically-inserted functions acting as glue code (coercions in Coq, instance arguments
in Agda, has_coe typeclass in Lean). Working with natural (𝐍), integer (Z) and rational (Q) num-
bers, we may want every 𝐍 to be automatically coerced to an integer, and so declare a natToZ
coercion. Similarly, we can also declare a ZToQ coercion. If we write 0 (a 𝐍) where aQ is expected,
this is accepted, and 0 is silently transformed to ZToQ (natToZ 0).

Now, if we want the same mechanism to apply when we pass the list [0 :: 1 :: 2] to a function
expecting a 𝐋𝐢𝐬𝐭Q, we need to provide a way to propagate the coercions on lists. We can ex-
pect to solve this problem by declaring map𝐋𝐢𝐬𝐭 as a coercion, too: whenever there is a coercion
𝑓: 𝐴 → 𝐵, then map𝐋𝐢𝐬𝐭 𝑓 should be a coercion from 𝐋𝐢𝐬𝐭 𝐴 to 𝐋𝐢𝐬𝐭 𝐵. However, by doing so,
we actually caused more trouble than we solved, as there are now two coercions from 𝐋𝐢𝐬𝐭 𝐍 to
𝐋𝐢𝐬𝐭Q, map𝐋𝐢𝐬𝐭(ZToQ ∘ natToZ) and (map𝐋𝐢𝐬𝐭 ZToQ) ∘ (map𝐋𝐢𝐬𝐭 natToZ). In the absence of def-
initional functor laws for map𝐋𝐢𝐬𝐭, these two are not definitionally equal. To add insult to in-
jury, coercions are by default not printed to the user, yielding puzzling error messages like “𝑙
and 𝑙 are not convertible” (!), because one is secretly map𝐋𝐢𝐬𝐭(ZToQ ∘ natToZ) 𝑙 while the other is
map𝐋𝐢𝐬𝐭 ZToQ (map𝐋𝐢𝐬𝐭 natToZ 𝑙). This makes functorial operations like map virtually unusable
with coercions, because they are too dangerous.

Structural subtyping. This last example suggests a connection with subtyping. Subtyping equips
the collection of typewith a subtyping order ≼ that allows tomove seamlessly terms from a subtype
to a supertype, i.e. from 𝐴 to 𝐴′ when 𝐴 ≼ 𝐴′. An important aspect of subtyping is structural sub-
typing, e.g. how can we propagate an existing subtyping notion structurally through type formers.
1We formalize this example, showing that this conversion indeed holds in our system, in file Example_1_1.
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In the context of the F⋆ program verification platform that heavily uses refinement subtyping, the
inability to propagate subtyping on inductive datatypes has been a long-standing issue that never
got solved properly [Hrițcu 2014]. Structural subtyping also has a history of causing difficulties to
Agda [Cockx 2020; Escot, Poiret, et al. 2023].

Definitional equalities for subtyping. From the perspective of the users of interactive theorem
provers, subtyping should be as implicit as possible, transparently providing the expected glue to
smoothen the writing of complex statements. From a meta-theoretical perspective, on the other
hand, it is useful to explicitly represents all the necessary information of a typing derivation, in-
cluding where subtyping is used. The first approach is known as subsumptive subtyping, on the
left, whereas the latter is embodied by coercive subtyping, on the right:

Sub
Γ ⊢sub 𝑡 : 𝐴 Γ ⊢sub 𝐴 ≼ 𝐴′

Γ ⊢sub 𝑡 : 𝐴′ Coe
Γ ⊢coe 𝑡 : 𝐴 Γ ⊢coe 𝐴 ≼ 𝐴′

Γ ⊢coe coe𝐴,𝐴′ 𝑡 : 𝐴′

Ideally, we would like to present subsumptive subtyping to users, but ground the meta-theory
of the system on the better-behaved coercive subtyping. Informally, an application of Sub in the
subsumptive type theory MLTTsub should correspond to an application of Coe in the coercive
type theory MLTTcoe. Now, given a derivation 𝒟 of Γ ⊢sub 𝑡 : 𝐴 we can apply Sub together with a
reflexivity proof Γ ⊢sub 𝐴 ≼ 𝐴 to yield a new derivation 𝒟′ with the same conclusion Γ ⊢sub 𝑡 : 𝐴.
𝒟 and 𝒟′ correspond respectively to terms Γ ⊢coe 𝑡′ : 𝐴 and Γ ⊢coe coe𝐴,𝐴 𝑡′ : 𝐴 in MLTTcoe.
Since 𝑡′ and coe𝐴,𝐴 𝑡′ both correspond to the same MLTTsub term 𝑡, they need to be equated
if we want both type theories to be equivalent. Similarly, transitivity of subtyping implies that
coercions should compose definitionally, that is Γ ⊢coe coe𝐵,𝐶(coe𝐴,𝐵 𝑡′) ≅ coe𝐴,𝐶 𝑡′ : 𝐶 should
hold in MLTTcoe.

From structural subsumptive subtyping to functorial maps. Z. Luo and Adams [2008] showed
that the functorial composition law comp-eq is enough to make structural coercive subtyping
compose definitionally. Indeed, a structural coercion between lists coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐵 behaves exactly
as the function obtained by mapping coe𝐴,𝐵 on every element of the list. We investigate further
this bridge between coercive subtyping and functoriality of type formers, in particular the identity
functor law id-eq needed to handle reflexivity of subtyping.This understanding leads to a modular
design of subtyping: structural subtyping for a type former exhibits its functorial nature, and can be
considered independently of the other type formers of the theory. Moreover, definitional functors
laws are sufficient to make structural coercive subtyping for any type former flexible enough to
interpret subsumptive subtyping.

Concretely, we define three different type systems, corresponding to the three ideas encoun-
tered so far: MLTTmap, with map constructors for each type former, and their definitional functor
laws; MLTTcoe, with coercive subtyping; and MLTTsub, with subsumptive subtyping. All three
type theories extend a standard presentation of Martin-Löf Type Theory (MLTT) [Martin-Löf and
Sambin 1984] and are fully dependent, with universes and large eliminations—which Z. Luo and
Adams [2008] do not cover. We investigate their relationships, as pictured in fig. 1. Erasing coer-
cions induce an equivalence |−| from MLTTcoe to MLTTsub: erasure is type-preserving, and any
well-typed MLTTsub term can be annotated with coercions to yield back a well-typed MLTTcoe
term. Moreover, we provide a translation fromMLTTcoe to MLTTmap making explicit the modular
nature of coercions, and conjecture that it is an embedding.

Contributions. We make the following contributions:
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MLTT

MLTTsub MLTTcoe MLTTmap∼
| ⋅ | J⋅K

Fig. 1. Relation between MLTT, MLTTmap, MLTTcoe and MLTTsub

• we design MLTTmap, an extension of Martin-Löf Type Theory exhibiting the functorial
nature of standard type formers (Π,Σ, 𝐋𝐢𝐬𝐭, 𝐖, 𝐈𝐝) and satisfying definitional functor laws
(section 3);

• we mechanize the metatheory of a substantial fragment of MLTTmap in Coq, proving it is
normalizing and has decidable type-checking (section 4);

• we develop bidirectional presentations for MLTTsub and MLTTcoe, dependent types sys-
tems with respectively subsumptive and coercive subtyping, and leverage these to give
back and forth translations between the two systems (section 5);

• we showhow to compile the coercions ofMLTTcoe down to the functorialmaps ofMLTTmap
(section 5.5).

The remainder of the paper introduces the necessary technical background, notations and defini-
tions for MLTT in section 2, while section 6 details the related and future work.The supplementary
material contains an appendix with detailed proofs and complete typing rules, and the Coq formal-
ization.

2 TYPE THEORY AND ITS METATHEORY
Wework in the setting of dependent type theories à laMartin-Löf (MLTT) [Martin-Löf and Sambin
1984], an ideal abstraction of the type theories underlying existing proof assistants such as Agda,
Coq, F⋆ or Lean. The (declarative) typing rules describing MLTT use five categories of judgements,
characterizing the well-formed context, types and terms (fig. 2), and providing the equational the-
ory on types and terms (fig. 3). Two terms related by this equational theory are said to be defini-
tionally equal or convertible, to stress on the fact that these terms will be identified by the (kernel
of) any proof assistant implementing this theory, without any need for manual equational proofs.

Variables and substitution. Throughout the paper, we use named variables (𝑥, 𝑦 …) for readabil-
ity purposes, but follow the de Bruijn indices discipline employed in the Coq formalization. In
particular, we do not bother further with freshness conditions. A substitution 𝜎 consists of a list
of terms, and we write 𝑡[𝜎] for its parallel substitution in the term 𝑡. The substitution (id, 𝑢) re-
places the 0th de Bruijn index by the term 𝑢, leaving all other variables intact. By a slight abuse of
notation, we will sometimes write it simply 𝑢, so that if 𝑥 correspond to the 0th de Bruijn index
in 𝑡, 𝑡[𝑢] is what would be written 𝑡[𝑥 ≔ 𝑢] in more verbose notation. Typing in all systems is
extended pointwise to substitutions in the standard fashion, see appendix B.1 for the rules.

Negative types: dependent products and sums. Dependent function types Π𝑥: 𝐴.𝐵 are introduced
using a 𝜆-abstraction λ𝑥: 𝐴.𝑡 and eliminated with application 𝑡 𝑢. We use braces to indicate ar-
guments that will be left implicit, e.g. λ{𝑥: 𝐴}.𝑡 of type Π{𝑥: 𝐴}.𝐵. We also include dependent
(strong) sum types Σ𝑥: 𝐴.𝐵, introduced with pairs (𝑡, 𝑢)𝑥.𝐵 and eliminated through projections
𝜋1 𝑝 and 𝜋2 𝑝. Both of these come with an 𝜂-law beside their standard 𝛽-laws.

Universes of types. Rule SoRt introduce a countable hierarchy of universes Type𝑖, which are
types for types. Any inhabitant of a universe is a well-formed type by El and, in order to make
the presentation compact, we do not repeat rules applying both for universes and types, implicitly
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Γ ⊢ 𝑇 Type 𝑇 is well-formed under context Γ
Γ ⊢ 𝑡 : 𝑇 Term 𝑡 has type 𝑇 under context Γ

VaR
⊢ Γ (𝑥: 𝐴 ∈ Γ)

Γ ⊢ 𝑥 : 𝐴 SoRt
⊢ Γ

Γ ⊢ Type𝑖 :Type𝑖+1
El

Γ ⊢ 𝐴 :Type𝑖
Γ ⊢ 𝐴

Fun
Γ ⊢ 𝐴 :Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 :Type𝑖

Γ ⊢ Π𝑥: 𝐴.𝐵 :Type𝑖
List

Γ ⊢ 𝐴 :Type𝑖
Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 :Type𝑖

Abs
Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵

Γ ⊢ λ𝑥: 𝐴.𝑡 :Π𝑥: 𝐴.𝐵 App
Γ ⊢ 𝑡 :Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 : 𝐴

Γ ⊢ 𝑡 𝑢 : 𝐵[𝑢]

Nil
Γ ⊢ 𝐴

Γ ⊢ 𝜀𝐴 : 𝐋𝐢𝐬𝐭 𝐴 Cons
Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑙 : 𝐋𝐢𝐬𝐭 𝐴

Γ ⊢ 𝑎 ::A 𝑙 : 𝐋𝐢𝐬𝐭 𝐴

ListInd

Γ ⊢ 𝐴 Γ ⊢ 𝑠 : 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑙: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃 Γ ⊢ 𝑏𝜀 : 𝑃 [𝜀𝐴] Γ, 𝑎: 𝐴, 𝑙: 𝐋𝐢𝐬𝐭 𝐴, ℎ: 𝑃 [𝑙] ⊢ 𝑏:: : 𝑃 [𝑎 ::A 𝑙]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑙.𝑃 ; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::) : 𝑃 [𝑠]

Conv
Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝐴 ≅ 𝐵

Γ ⊢ 𝑡 : 𝐵

Fig. 2. Declarative typing for MLTT

assuming that a rule given for terms of some universe Type𝑖 has a counterpart as a type judgement
whenever it makes sense. Appendix B provides the full set of rules for reference. For instance, in
addition to Fun, we have a type-level equivalent

FunTy
Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵

Γ ⊢ Π𝑥: 𝐴.𝐵
Positive types: inductive types and families. As we wish to study the functorial status of type

formers, parametrized inductive types will be our main focus. Our running example is the type
of lists 𝐋𝐢𝐬𝐭 𝐴, parametrized by a single type 𝐴, and inhabited by the empty list 𝜀𝐴 and the
consing ℎ𝑑 ::A 𝑡𝑙 of a head ℎ𝑑 : 𝐴 onto a tail 𝑡𝑙 : 𝐋𝐢𝐬𝐭 𝐴. List are eliminated using the dependent
eliminator ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑙.𝑃 ; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::), which performs recursion on the scrutinee 𝑠, returning
a value in 𝑃 [𝑠], using the two branches 𝑏𝜀 and 𝑏:: corresponding to the two constructors 𝜀 and
::. 𝑏:: binds three variables corresponding to the head 𝑎, tail 𝑙 and the induction hypothesis ℎ on
the tail. More generally recursive datatypes are often encoded in MLTT via 𝐖 𝑥: 𝐴.𝐵, the type
of well-founded trees with nodes labelled by 𝑎 : 𝐴 of arity 𝐵 𝑎. Finally, Martin-Löf identity types
𝐈𝐝 𝐴 𝑥 𝑦 represents equalities between two elements 𝑥, 𝑦: 𝐴 and is introduced with the reflexivity
proof refl𝐴,𝑎: 𝐈𝐝 𝐴 𝑎 𝑎. A general indexed-inductive type scheme is outside the scope of this paper,
however 𝐖 and 𝐈𝐝 are enough to emulate the indexed-inductive types present in various proof
assistants together with dependent sums, and the empty 𝟎, unit 𝟏 and boolean 𝐁 types [Abbott
et al. 2005; Altenkirch, Ghani, et al. 2015; Hugunin 2020]. As the latter three are not parametrized,
their presentation in our setting is entirely standard.
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Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴 Terms 𝑢 and 𝑣 are convertible at type 𝐴 under context Γ
Γ ⊢ 𝐴 ≅ 𝐵 Types 𝐴 and 𝐵 are convertible under context Γ

βFun
Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵 Γ ⊢ 𝑢 : 𝐴

Γ ⊢ (λ𝑥: 𝐴.𝑡) 𝑢 ≅ 𝑡[𝑢] : 𝐵[𝑢] ηFun
Γ, 𝑥: 𝐴 ⊢ 𝑓 𝑥 ≅ 𝑔 𝑥 : 𝐵
Γ ⊢ 𝑓 ≅ 𝑔 :Π𝑥: 𝐴.𝐵

ιNil

Γ ⊢ 𝐴 Γ, 𝑙: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃
Γ ⊢ 𝑏𝜀 : 𝑃 [𝜀𝐴] Γ, 𝑎: 𝐴, 𝑙: 𝐋𝐢𝐬𝐭 𝐴, ℎ: 𝑃 [𝑙] ⊢ 𝑏:: : 𝑃 [𝑎 ::A 𝑙]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝜀𝐴; 𝑙.𝑃 ; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::) ≅ 𝑏𝜀 : 𝑃 [𝜀𝐴]

ιCons

Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑙 : 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑙: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃 Γ ⊢ 𝑏𝜀 : 𝑃 [𝜀𝐴] Γ, 𝑎: 𝐴, 𝑙: 𝐋𝐢𝐬𝐭 𝐴, ℎ: 𝑃 [𝑦] ⊢ 𝑏:: : 𝑃 [𝑎 ::A 𝑙]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑎 ::A 𝑙; 𝑙.𝑃 ; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::) ≅ 𝑏::[id, 𝑎, 𝑙, ind𝐋𝐢𝐬𝐭 𝐴(𝑙; 𝑙.𝑃 ; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::)] : 𝑃 [𝑎 ::A 𝑙]

FunCong
Γ ⊢ 𝐴 ≅ 𝐴′ :Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′ :Type𝑖

Γ ⊢ Π𝑥: 𝐴.𝐵 ≅ Π𝑥: 𝐴′.𝐵′ :Type𝑖
other congruences omitted

ConvConv
Γ ⊢ 𝑡 ≅ 𝑡′ : 𝐴 Γ ⊢ 𝐴 ≅ 𝐴′

Γ ⊢ 𝑡 ≅ 𝑡′ : 𝐴′ ElConv
Γ ⊢ 𝐴 ≅ 𝐴′ :Type𝑖

Γ ⊢ 𝐴 ≅ 𝐴′

Refl
Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝑡 ≅ 𝑡 : 𝐴 Sym
Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴
Γ ⊢ 𝑢 ≅ 𝑡 : 𝐴 TRans

Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴 Γ ⊢ 𝑢 ≅ 𝑣 : 𝐴
Γ ⊢ 𝑡 ≅ 𝑣 : 𝐴

Fig. 3. Declarative conversion for MLTT

Rules in the paper and in the appendix. To avoid cluttering the paper with too many rules, we
focus in the text on the most interesting ones, and on two types: dependent functions and lists. To-
gether, they cover the technically interesting points of our development: dependent product types
have a binder and come with an 𝜂-law; lists are a parametrized datatype, for which definitional
functor laws are challenging. Complete rules for reference are given in appendix B.

2.1 Metatheoretical properties
This section presents the meta-theoretical properties we seek to establish in this paper in order to
show that the extension of MLTT from fig. 1 are well-behaved and suitable for implementations.

Consistency and canonicity. In order to be employed as a logic, a type theory should not allow
to derive every statement. This is equivalent to showing that there is no closed term of the empty
type, i.e. that ⊢ 𝑡 : 𝟎 is not derivable for any term 𝑡. This consistency property is satisfied by all our
type theories and an easy consequence of the stronger canonicity results, which characterizes the
inhabitants of positive types in the empty context as those obtained by repeated applications of
constructors, up to conversion. Consistency follows from canonicity, because 𝟎 has no construc-
tors, and so it cannot have any inhabitant in the empty context.

Decidability of type-checking and conversion. A consistent proof assistant must also be able to
check whether a proof is valid or not. This corresponds to the problem of checking whether a
typing judgement is derivable in our type theory. In a dependent type system where terms encode
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𝑡 {1 𝑡′ Term 𝑡 weak-head reduces in one step to term 𝑡′

βRed (λ𝑥: 𝐴.𝑡) 𝑢 {1 𝑡[𝑢] ιRedNil
ind𝐋𝐢𝐬𝐭 𝐴(𝜀𝐴; 𝑥.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) {1 𝑏𝜀

ιRedCons
ind𝐋𝐢𝐬𝐭 𝐴(𝑎 ::A 𝑙; 𝑥.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) {1 𝑏::[id, 𝑎, 𝑙, ind𝐋𝐢𝐬𝐭 𝐴(𝑙; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::)]

RedApp
𝑡 {1 𝑡′

𝑡 𝑢 {1 𝑡′ 𝑢 RedInd
𝑡 {1 𝑡′

ind𝐋𝐢𝐬𝐭 𝐴(𝑡; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) {1 ind𝐋𝐢𝐬𝐭 𝐴(𝑡′; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::)

𝑡 {⋆ 𝑡′ Term 𝑡 weak-head reduces in multiple steps to term 𝑡′

RedBase 𝑡 {⋆ 𝑡 RedStep
𝑡 {⋆ 𝑡′ 𝑡′ {1 𝑡″

𝑡 {⋆ 𝑡″

nf 𝑓 ≝ 𝑛 ∣ Π𝑥: 𝑡1.𝑡2 ∣ Type𝑖 ∣ 𝐋𝐢𝐬𝐭 𝑡 ∣ λ𝑥: 𝐴.𝑡 ∣ 𝜀𝐴 ∣ 𝑡1 ::A 𝑡2 weak-head normal forms
ne 𝑛 ≝ 𝑥 ∣ 𝑛 𝑡 ∣ ind𝐋𝐢𝐬𝐭 𝐴(𝑡; 𝑛; 𝑡) weak-head neutrals

Fig. 4. Weak-head reduction and normal forms (𝑡 stands for an arbitrary term)

the essential structure of derivations, the main obstacle to decidability lie in the conversion of
types and terms.

Normal forms for terms and derivations. In order to establish both consistency and decidability
of type-checking, we exhibit a function computing normal forms for term. Inspecting the possible
normal forms in the empty context entails canonicity and consistency. Moreover, on these normal
forms, conversion is easily decidable, and so we can build on normalization to decide conversion.
Finally, we can go further, and use normalization to build canonical representatives of typing and
conversion derivations, which we rely on to relate our different systems.

Injectivity of type constructors. A more technical, but very important property is injectivity of
type constructors, for instance the fact that whenever Π𝑥: 𝐴.𝐵 ≅ Π𝑥: 𝐴′.𝐵′, then 𝐴 ≅ 𝐴 and
𝐵 ≅ 𝐵′.This property typically fails in ETTwhere the equational theory is too rich. For expressive
dependent type theories like ours, injectivity of type constructors is themain obstruction to subject
reduction, i.e. that reduction is type-preserving, and included in conversion on typed instances.

2.2 Neutrals, normals, and reduction
Before getting to the techniques we use to establish these properties, we must introduce a last
element that is missing from fig. 3: computations. Indeed, most of the rules in that figure can be
oriented, and thus seen not just as equalities but as computations to be performed. This leads to
the definition of weak-head reduction {⋆ in fig. 4, an evaluation strategy for open terms which
reduces just as much as needed in order to uncover the head constructor of a term. This means
reducing not just at top level, as rule RedApp shows: if our term is an application, we might need
to reduce the function in order to expose a 𝜆-abstraction and subsequently 𝛽-reduce the term
with the (call-by-name) rule βRed. However, we do not allow reduction in the argument of an
application, so that reduction remains deterministic: there is at most one possible reduct for any
term. Weak-head reduction is the only reduction that will be used throughout this article.
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Thenormal forms (nf) for weak-head reduction, i.e. the terms that cannot reduce, are inductively
characterized at the bottom of fig. 4, together with the companion notion of neutral forms (ne).
Normal forms can be either a canonical term, starting with a head constructor (for instance, a 𝜆-
abstraction or 𝜀), or a neutral term. Neutral terms are stuck computations, blocked by some head
variable, e.g. 𝑥 𝑢 cannot reduce further, and will be unstuck once 𝑥 is substituted by a λ-abstraction.

2.3 Proof methods
With these definitions in hand, we can now go through the main techniques that we will use to
establish the meta-theoretical properties we mentioned in section 2.1.

Logical relations. Logical relations are our main tool to establish normalization and canonicity
results. We follow the approach of Abel et al. [2017], who formalize a logical relation for MLTT
with a single universe in Agda. At a high-level, the logical relation is a model of MLTT ensuring
that every denoted term is reducible: it has a weak-head normal form with reducible subterms.
Combining this property with the fundamental lemma stating that every well-typed term is re-
ducible, we obtain a first technical property, weak-head normalization.

PRopeRty 2.1 (WeaK-head noRmalization). If Γ ⊢ 𝑡 : 𝑇 , then there exists a normal form 𝑡′ (i.e.
a term 𝑡′ such that nf 𝑡′), such that 𝑡 {⋆ 𝑡′.

Moreover, since the subterms of a weak-head normal form are reducible as well, we can iterate
this process, obtaining full normal forms for any well-typed term. We use the logical relation not
only to characterize the normal forms of the terms but also the conversion between them, showing
that a proof of convertibility between two terms can be reduced to a standard canonical shape
interleaving weak-head reduction sequences and congruence steps between weak-head normal
forms. While the technique is rather standard, it is also fairly involved, and adapting it to handle
our new type theory, in particular parametrized inductive types and their new definitional functor
laws, requires significant modifications.

Bidirectional typing and algorithmic conversion. Our second tool is a presentation of conversion
and typing that, while still inductively defined, is as close as possible to an actual implementation.
Typing is bidirectional [Pierce and Turner 2000; Lennon-Bertrand 2021], i.e. the declarative typing
predicate of fig. 2 is decomposed into type inference and type checking shown in fig. 5.2 We use
bidirectional typing for its rigid, canonical derivation structure, rather than for its ability to cut
down type annotations on terms. As a result, although we use bidirectional judgements, all of our
terms infer a type, in contrast to what is common in the bidirectional literature [Dunfield and
Krishnaswami 2021; McBride 2022], where some terms can only be checked.

The presentation of conversion in fig. 6 combines ideas from both bidirectional typing and the
presentation in Abel et al. [2017]. In particular, this presentation gets rid entirely of the generic
transitivity rule TRans, and instead uses term-directed reduction, intertwined with comparison of
the heads of weak-head normal forms. Algorithmic conversion is mutually defined with a second
relation, dedicated to comparing weak-head neutral forms, which is called when encountering
neutrals at positive types. We think of general conversion as “checking”, i.e. as taking a type as
input, while neutral comparison is “inferring”, i.e. the type is an output.

Using the consequences of the logical relation, we can show that this algorithmic presentation
has many desirable properties. For instance, while it does not have a dedicated rule for transitivity
of conversion, such a rule is nonetheless admissible. Collecting the properties derived from the

2Following Lennon-Bertrand [2021], to avoid clashing with Coq’s => in the formalization, we pick ▷ as the symbol for
inference, and ◁ as the one for checking, instead of the slightly more standard ⇒ and ⇐.
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Γ ⊢ 𝑡 ▷ 𝑇 Term 𝑡 infers type 𝑇 in context Γ

SoRt Γ ⊢ Type𝑖 ▷Type𝑖+1
VaR

(𝑥: 𝑇 ) ∈ Γ
Γ ⊢ 𝑥 ▷ 𝑇

PRod
Γ ⊢ 𝐴 ▷h Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ▷h Type𝑖

Γ ⊢ Π𝑥: 𝐴.𝐵 ▷ Type𝑖
List

Γ ⊢ 𝐴 ▷h Type𝑖
Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 ▷ Type𝑖

Abs
Γ ⊢ 𝐴 ▷h Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷𝐵

Γ ⊢ λ𝑥: 𝐴.𝑡 ▷ Π𝑥: 𝐴.𝐵 App
Γ ⊢ 𝑡 ▷h Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑢◁𝐴

Γ ⊢ 𝑡 𝑢 ▷𝐵[𝑢]

Nil
Γ ⊢ 𝐴 ▷h Type𝑖
Γ ⊢ 𝜀𝐴 ▷ 𝐋𝐢𝐬𝐭 𝐴 Cons

Γ ⊢ 𝐴 ▷h Type𝑖 Γ ⊢ 𝑎◁𝐴 Γ ⊢ 𝑙◁𝐋𝐢𝐬𝐭 𝐴
Γ ⊢ 𝑎 ::A 𝑙 ▷ 𝐋𝐢𝐬𝐭 𝐴

ListInd

Γ ⊢ 𝐴 ▷h Type𝑖 Γ ⊢ 𝑠◁𝐋𝐢𝐬𝐭 𝐴 Γ, 𝑥: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃 ▷h Type𝑗
Γ ⊢ 𝑏𝜀 ◁𝑃 [𝜀𝐴] Γ, 𝑥: 𝐴, 𝑦: 𝐋𝐢𝐬𝐭 𝐴, 𝑧: 𝑃 [𝑦] ⊢ 𝑏:: ◁𝑃 [𝑥 ::A 𝑦]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) ▷ 𝑃 [𝑠]

Γ ⊢ 𝑡◁𝑇 Term 𝑡 checks against type 𝑇 Γ ⊢ 𝑡 ▷h 𝑇 Term 𝑡 infers the reduced type 𝑇

ChecK
Γ ⊢ 𝑡 ▷ 𝑇 ′ Γ ⊢ 𝑇 ′ ≅ 𝑇 ◁

Γ ⊢ 𝑡◁𝑇 InfRed
Γ ⊢ 𝑡 ▷ 𝑇 ′ 𝑇 ′ {⋆ 𝑇

Γ ⊢ 𝑡 ▷h 𝑇

Fig. 5. Typing rules for algorithmic/bidirectional typing

logical relation, we can obtain our second main property: equivalence between the algorithmic
and declarative presentations.

PRopeRty 2.2 (Eivalence of the pResentations). If Γ ⊢ 𝑡 : 𝑇 , then Γ ⊢ 𝑡◁𝑇 . Conversely, if
⊢ Γ, Γ ⊢ 𝑇 and Γ ⊢ 𝑡◁𝑇 , then Γ ⊢ 𝑡 : 𝑇 .

Note that the implication from the bidirectional judgement to the declarative one is not absolute,
it only holds if the context and type are well-formed. In general, our algorithmic presentations are
“garbage-in, garbage-out”: they maintain well-formation of types and contexts, but do not enforce
them.Thus,most properties of the algorithmic derivations only hold if their inputs arewell-formed,
in the sense of fig. 7. Note that in checking and inference modes, while the term is certainly an
input of the judgement, it is of course not assumed to be well-formed, since said judgement fill that
role.This algorithmic presentation, being syntax directed, is well suited to design implementations
and establish relationships between MLTTmap, MLTTcoe and MLTTsub.

3 A FUNCTORIAL TYPE THEORY
The first extension of MLTT we develop is the type theory MLTTmap, which extends the former
with primitive map𝐹 operations for each parametrized type former 𝐹 of MLTT, that is Π, Σ, 𝐋𝐢𝐬𝐭,
𝐖, and 𝐈𝐝. These operations internalize the functorial character of the type formers. Crucially,
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Γ ⊢ 𝑡 ≈ 𝑡′ ▷ 𝑇 Neutrals 𝑡 and 𝑡′ are comparable, inferring the type 𝑇

NVaR
(𝑥: 𝑇 ∈ Γ)

Γ ⊢ 𝑥 ≈ 𝑥 ▷ 𝑇 NApp
Γ ⊢ 𝑛 ≈h 𝑛′ ▷ Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ≅ 𝑢′ ◁𝐴

Γ ⊢ 𝑛 𝑢 ≈ 𝑛′ 𝑢′ ▷𝐵[𝑢]

NListInd

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ ⊢ 𝑠 ≈ 𝑠′ ▷ 𝑆 Γ, 𝑙: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃 ≅ 𝑃 ′ ◁
Γ ⊢ 𝑏𝜀 ≅ 𝑏′

𝜀 ◁𝑃 [𝜀𝐴] Γ, 𝑎: 𝐴, 𝑙: 𝐋𝐢𝐬𝐭 𝐴, ℎ: 𝑃 [𝑦] ⊢ 𝑏:: ≅ 𝑏′
:: ◁𝑃 [𝑎 ::A 𝑙]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑙.𝑃 ; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::) ≈ ind𝐋𝐢𝐬𝐭 𝐴′(𝑠′; 𝑙.𝑃 ′; 𝑏′
𝜀, 𝑎.𝑙.ℎ.𝑏′

::) ▷ 𝑃 [𝑠]

Γ ⊢ 𝑇 ≅h 𝑇 ′ ◁ Reduced types 𝑇 and 𝑇 ′ are convertible

Γ ⊢ 𝑡 ≅h 𝑡′ ◁𝐴 Reduced terms 𝑡 and 𝑡′ are convertible at type 𝐴

CUni Γ ⊢ Type𝑖 ≅h Type𝑗 ◁Type𝑘
CList

Γ ⊢ 𝐴 ≅ 𝐴′ ◁Type𝑖
Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 ≅h 𝐋𝐢𝐬𝐭 𝐴′ ◁Type𝑖

CPRod
Γ ⊢ 𝐴 ≅ 𝐴′ ◁Type𝑖 Γ, 𝑥: 𝐴′ ⊢ 𝐵 ≅ 𝐵′ ◁Type𝑖

Γ ⊢ Π𝑥: 𝐴.𝐵 ≅h Π𝑥: 𝐴′.𝐵′ ◁Type𝑖
CFun

Γ, 𝑥: 𝐴 ⊢ 𝑓 𝑥 ≅ 𝑓 ′ 𝑥◁𝐵
Γ ⊢ 𝑓 ≅h 𝑓 ′ ◁Π𝑥: 𝐴.𝐵

CNil Γ ⊢ 𝜀𝐴 ≅h 𝜀𝐴′ ◁𝐋𝐢𝐬𝐭 𝐴″ CCons
Γ ⊢ 𝑎 ≅ 𝑎′ ◁𝐴″ Γ ⊢ 𝑙 ≅ 𝑙′ ◁𝐋𝐢𝐬𝐭 𝐴″

Γ ⊢ 𝑎 ::A 𝑙 ≅h 𝑎′ ::A' 𝑙′ ◁𝐋𝐢𝐬𝐭 𝐴″

NeuUni
Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑇

Γ ⊢ 𝑛 ≅h 𝑛′ ◁Type𝑖
NeuList

Γ ⊢ 𝑛 ≈h 𝑛′ ▷ 𝑆
Γ ⊢ 𝑛 ≅h 𝑛′ ◁𝐋𝐢𝐬𝐭 𝐴 NeuNeu

ne𝑀
Γ ⊢ 𝑛 ≈ 𝑛′ ▷𝑁
Γ ⊢ 𝑛 ≅h 𝑛′ ◁𝑀

Γ ⊢ 𝑇 ≅ 𝑇 ′ ◁ Types 𝑇 and 𝑇 ′ are convertible
Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝐴 Terms 𝑡 and 𝑡′ are convertible at type 𝑇
Γ ⊢ 𝑡 ≈h 𝑡′ ▷ 𝑇 Neutrals 𝑡 and 𝑡′ are comparable, inferring the reduced type 𝑇

TmRed

𝑡 {⋆ 𝑢 𝑡′ {⋆ 𝑢′

𝑇 {⋆ 𝑈 Γ ⊢ 𝑢 ≅h 𝑢′ ◁𝑈
Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝑇 NRed

Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑇 𝑇 {⋆ 𝑆
Γ ⊢ 𝑛 ≈h 𝑛′ ▷ 𝑆

Fig. 6. Algorithmic conversion and comparison of neutral terms

Judgement Input(s) Inputs are well-formed
Γ ⊢ 𝑡 ▷ 𝑇 Γ, 𝑡 ⊢ Γ
Γ ⊢ 𝑡◁𝑇 Γ, 𝑇 , 𝑡 ⊢ Γ and Γ ⊢ 𝑇

Γ ⊢ 𝑇 ≅ 𝑇 ′ ◁ Γ, 𝑇 and 𝑇 ′ ⊢ Γ, Γ ⊢ 𝑇 and Γ ⊢ 𝑇 ′

Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝑇 Γ, 𝑡, 𝑡′ and 𝑇 ⊢ Γ, Γ ⊢ 𝑇 , Γ ⊢ 𝑡 : 𝑇 and Γ ⊢ 𝑡′ : 𝑇
Γ ⊢ 𝑡 ≈ 𝑡′ ▷ 𝑇 Γ, 𝑡 and 𝑡′ ⊢ Γ, ne 𝑡, ne 𝑡′, and ∃𝐴, 𝐴′ s.t. Γ ⊢ 𝑡 : 𝐴, Γ ⊢ 𝑡′ : 𝐴′

Fig. 7. Well-formed inputs (for ≅h, ≈h, ▷h, similar to their non-reduced variants)
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Type former 𝐹 Domain dom(𝐹) Morphism type Hom𝐹 (⋅1, ⋅2)
𝐋𝐢𝐬𝐭 𝐴:Type 𝐴1 → 𝐴2
Π (𝐴, 𝐵):Σ(𝐴:Type) (𝐴 → Type) Σ(𝑓: 𝐴2 → 𝐴1)(Π{𝑎: 𝐴2}, 𝐵1 (𝑓 𝑎) → 𝐵2 𝑎)
Σ idem Σ(𝑓: 𝐴1 → 𝐴2)(Π{𝑎: 𝐴1}, 𝐵1 𝑎 → 𝐵2 (𝑓 𝑎))

𝐖 idem Σ(𝑓: 𝐴1 → 𝐴2)(Π{𝑎: 𝐴1}, 𝐵2 (𝑓 𝑎) → 𝐵1 𝑎)
𝐈𝐝 𝐴:Type 𝐴1 → 𝐴2

Fig. 8. Domain and categorical structure on type formers

map will by design satisfy definitionally the generic functor laws for each type former 𝐹 :
map𝐹 id ≅ id (id-eq)

map𝐹 𝑓 ∘ map𝐹 𝑔 ≅ map𝐹 (𝑓 ∘ 𝑔) (comp-eq)
Section 3.1 describes the structure needed on type formers to state their functoriality in MLTTmap.
Section 3.2 shows that definitionally functorial map𝐹 is definable in vanilla MLTT for type form-
ers with an 𝜂-law. Section 3.3 then introduces the main content of this paper, the extension of
the equational theory on neutral terms, required to enforce the functor laws on inductive type
formers. We explain the technical design choices needed to define and use the logical relations for
MLTTmap and obtain as a consequence that the theory is consistent, enjoys canonicity, decidable
conversion and type-checking. We implement these design choices in Coq for a simplified but rep-
resentative version of MLTTmap, with one universe and the Π, Σ, 𝐋𝐢𝐬𝐭 and 𝐍 type formers, with
their respective map operators. This formalization is detailed in the following section 4.

3.1 Functorial structure on type formers
In order to state the functor laws for various type formers, such as Π,Σ, 𝐋𝐢𝐬𝐭, 𝐖, 𝐈𝐝, we equip
these with the required categorical structure. To simplify the exposition we directly use our type
theory to present these structures. We thus consider type formers as functions 𝐹: dom(𝐹) →
cod(𝐹), with cod(𝐹) ≝ Type in most cases. In the case of Π,Σ or 𝐖, this means currying the
parameters of the type former as dependent sums.3

The domain dom (𝐹) of a type former is then equipped with the structure of a category, that is
with a type of morphisms Hom𝐹 (𝑔1, 𝑔2) for any two instance 𝑔1, 𝑔2 of dom (𝐹), together with as-
sociated notions of identity id:Hom𝐹 (𝑔, 𝑔) and composition ∘:Hom𝐹 (𝑔2, 𝑔3) → Hom𝐹 (𝑔1, 𝑔2) →
Hom𝐹 (𝑔1, 𝑔3), associative and unital definitionally. For instance, dependent products have dom(Π) =
Σ(𝐴:Type) (𝐴 → Type) and

HomΠ((𝐴1, 𝐵1), (𝐴2, 𝐵2)) ≝ Σ(𝑓: 𝐴2 → 𝐴1)(Π{𝑎: 𝐴2}, 𝐵1 (𝑓 𝑎) → 𝐵2 𝑎)
together with componentwise identity and composition:

idΠ : HomΠ((𝐴, 𝐵), (𝐴, 𝐵)) ≝ (id𝐴, λ{𝑥: 𝐴}. id𝐵 𝑥)
(𝑓, 𝑔) ∘Π (𝑓 ′, 𝑔′) : HomΠ((𝐴1, 𝐵1), (𝐴3, 𝐵3)) ≝ (𝑓 ∘ 𝑓 ′, λ{𝑥: 𝐴3}.𝑔 ∘ 𝑔′)

Thedomain and type ofmorphism of the type formers of interest are described in fig. 8. Identities
and compositions are given by the standard categorical structure on Type for 𝐋𝐢𝐬𝐭 and 𝐈𝐝, and
are defined similarly to Π for Σ and 𝐖. For all type formers but 𝐈𝐝, the codomain of the functor is
the category Type, again with its standard categorical structure. For identity types, the codomain
3An alternative presentation would use external notions of categorical structures type formers, expressed using a logical
framework.

11



T. Laurent, M. Lennon-Bertrand, K. Maillard

𝐴 → 𝐴 → Type depends on the given type 𝐴 :Type in the domain. The adequate structure for
the codomain is not that of a plain category, but of a (split) opfibration [Benabou 1985; Jacobs
2001] or displayed category [Ahrens and Lumsdaine 2019] that provide a notion of morphism in
the codomain dependent upon a morphism in the domain.

The operation map𝐹 associated to a type former 𝐹
map𝐹 : Π{𝑔1 𝑔2: Γ}, HomΓ(𝑔1, 𝑔2) → 𝐹 𝑔1 → 𝐹 𝑔2

witnesses the fact that 𝐹 is not just a type former, but also has a functorial action with respect to
the given category structures on its domain and codomain. Figure 9 presents the generic conver-
sion rules of MLTTmap, extending those of MLTT, and the rules specific to each type formers. For
each type former 𝐹 , map𝐹 is introduced using Map and represents the functorial action through
𝐹 of a morphism 𝑓:Hom𝐹 (𝑋, 𝑌 ) between two parameters 𝑋, 𝑌 of 𝐹 left implicit. These map-
ping operations obey the functor laws as stated by MapId and MapComp, and are congruent with
respect to both the morphism and mapped element (Map-Cong).

The computational behaviour of maps, as defined by weak-head reduction, depends on the type
former. OnΠ and Σ,map is defined by its observation, namely application for Π and first and second
projections for Σ. On inductive types such as 𝐋𝐢𝐬𝐭, 𝐖 and 𝐈𝐝, map is defined on constructors,
propagating by applying itself to recursive arguments and using the provided morphism on the
elements of the parameter types. As a result, we recover the usual notion of map on lists. On trees
described as 𝐖-types, the map operation relabels the nodes of the trees using its first component,
and reorganizes the subtrees according to its second component. On identity types, the reflexivity
proof refl𝐴,𝑎 at a point 𝑎: 𝐴 is mapped to the reflexivity proof at 𝑓 𝑎: 𝐴′ for 𝑓: 𝐴 → 𝐴′. Each
reduction rule has a corresponding conversion rule that can be found in appendix B.3.

3.2 Extensional types and map
A type 𝐴 has an 𝜂-law when every element 𝑎 : 𝐴 can be characterized by an 𝜂-expansion, i.e. as an
elimination followed by an introduction in an arbitrary context. For type formers with definitional
𝜂-laws, it is possible to define amap operation satisfying the functor laws. InMLTT andMLTTmap,
both (strong) dependent sums Σ and dependent products Π have such extensionality laws, and so
their map operations are definable.

mapΠ ((𝑔, 𝑓):HomΠ((𝐴, 𝐵), (𝐴′, 𝐵′))) (ℎ:Π(𝑥: 𝐴)𝐵) ≝ λ𝑥: 𝐴′.𝑓 (ℎ (𝑔 𝑥))
mapΣ ((𝑔, 𝑓):HomΠ((𝐴, 𝐵), (𝐴′, 𝐵′))) (𝑝:Σ(𝑥: 𝐴)𝐵) ≝ (𝑔 (𝜋1 𝑝), 𝑓 (𝜋2 𝑝))

Lemma 3.1. mapΠ and mapΣ satisfy the functor laws MapId and MapComp.

Appendix C.1 gives a direct proof and the accompanying artifact also contains 4 a proof that the
functor laws hold for Coq’s Π and Σ types. The specific rule of fig. 9 hold by 𝛽-reduction.

3.3 New equations for neutral terms in dependent type theory
Recursive inductive types such as 𝐋𝐢𝐬𝐭,𝐖, or 𝐈𝐝 cannot be endowed with a definitional extension-
ality principle while retaining decidability of the equational theory [Castellan et al. 2017; McBride
2009]. The result of the previous section hence do not apply, and it is instructive to look at the
actual obstruction. Consider the case of 𝐋𝐢𝐬𝐭, and the equation for preservation of identities:

Γ ⊢map map𝐋𝐢𝐬𝐭 id𝐴 𝑙 ≅ 𝑙 : 𝐋𝐢𝐬𝐭 𝐴. (⋆)
If we were to define map𝐋𝐢𝐬𝐭 by induction on lists as is standard, we would get

map𝐋𝐢𝐬𝐭(𝑓: 𝐴 → 𝐵) (𝑙: 𝐋𝐢𝐬𝐭 𝐴) ≝ ind𝐋𝐢𝐬𝐭(𝐋𝐢𝐬𝐭 𝐵; 𝑙; 𝜀𝐵, ℎ𝑑.𝑡𝑙.𝑖ℎ𝑡𝑙.(𝑓 ℎ𝑑) ::B 𝑖ℎ𝑡𝑙)
4In file mapPiSigmaFunctorLaws.
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For each type former 𝐹 (Π, Σ, 𝐋𝐢𝐬𝐭, 𝐖, 𝐈𝐝)

Map

Γ ⊢map 𝑋, 𝑌 : dom(𝐹)
Γ ⊢map 𝑓 :Hom𝐹 (𝑋, 𝑌 ) Γ ⊢map 𝑡 : 𝐹 𝑋

Γ ⊢map map𝐹 𝑓 𝑡 : 𝐹 𝑌 MapId

Γ ⊢map 𝑋 : dom(𝐹)
Γ ⊢map 𝑡 : 𝐹 𝑋

Γ ⊢map map𝐹 id𝐹 𝑋 𝑡 ≅ 𝑡 : 𝐹 𝑋

MapComp

Γ ⊢map 𝑋, 𝑌 , 𝑍 : dom(𝐹)
Γ ⊢map 𝑔 :Hom𝐹 (𝑋, 𝑌 ) Γ ⊢map 𝑓 :Hom𝐹 (𝑌 , 𝑍) Γ ⊢map 𝑡 : 𝐹 𝑋

Γ ⊢map map𝐹 𝑓 (map𝐹 𝑔 𝑡) ≅ map𝐹 (𝑓 ∘ 𝑔) 𝑡 : 𝐹 𝑍

Map-Cong
Γ ⊢map 𝑋, 𝑌 : dom(𝐹) Γ ⊢map 𝑓 ≅ 𝑓 ′ :Hom𝐹 (𝑋, 𝑌 ) Γ ⊢map 𝑡 ≅ 𝑡′ : 𝐹 𝑋

Γ ⊢map map𝐹 𝑓 𝑡 ≅ map𝐹 𝑓 ′ 𝑡′ : 𝐹 𝑌

Specific rules
map𝐋𝐢𝐬𝐭 𝑓 (ℎ𝑑 :: 𝑡𝑙) {1 𝑓 ℎ𝑑 ::map𝐋𝐢𝐬𝐭 𝑓 𝑡𝑙 map𝐋𝐢𝐬𝐭 𝑓 𝜀 {1 𝜀

𝜋1 (mapΣ 𝑓 𝑝) {1 𝜋1 𝑓 (𝜋1 𝑝) 𝜋2 (mapΣ 𝑓 𝑝) {1 𝜋2 𝑓 (𝜋2 𝑝)

mapΠ 𝑓 ℎ 𝑡 {1 (𝜋2 𝑓) (ℎ ((𝜋1 𝑓) 𝑡))

map𝐖{𝑇 }{𝑇 ′}𝑓 (sup 𝑎 𝑘) {1 sup𝑥.𝜋2 𝑇 ′(𝜋1 𝑓 𝑎) (λ𝑥: (𝜋2 𝑇 ′ (𝜋1 𝑓 𝑎)).map𝐖 𝑓 (𝑘 (𝜋2 𝑔 𝑥)))

map𝐈𝐝 𝑓 refl𝐴,𝑎 {
1 refl𝐵,𝑓 𝑎 RedMapComp

ne 𝑛
map𝐋𝐢𝐬𝐭 𝑓 (map𝐋𝐢𝐬𝐭 𝑔 𝑛) {1 map𝐋𝐢𝐬𝐭(𝑓 ∘ 𝑔) 𝑛

Fig. 9. MLTTmap, conversion rules and reduction rules for each type former (extends figs. 2 to 4)

We can observe that eq. (⋆) is validated on closed canonical terms of type 𝐋𝐢𝐬𝐭:

map𝐋𝐢𝐬𝐭 id𝐴 𝜀𝐴 ≅ 𝜀𝐴 map𝐋𝐢𝐬𝐭 id𝐴 (ℎ𝑑 ::A 𝑡𝑙) ≅ (id𝐴 ℎ𝑑) ::A map𝐋𝐢𝐬𝐭 id𝐴 𝑡𝑙
ind. hyp.

≅ ℎ𝑑 ::A 𝑡𝑙
However, on neutral terms, typically variables, we are stuck as long as we stay within the equa-
tional theory of MLTT:

𝐴:Type, 𝑙: 𝐋𝐢𝐬𝐭 𝐴 ⊬ map𝐋𝐢𝐬𝐭 id𝐴 𝑙 ≅ 𝑙 : 𝐋𝐢𝐬𝐭 𝐴
In order to validate eq. (⋆), MLTTmap must thus at the very least extend the equational theory

on neutral terms. Allais et al. [2013] show in the simply-typed case that these equations between
neutral terms are actually the only obstruction to functor laws, and in the remainder of this section
we discuss design choices needed for this extension in the dependently-typed world.

Map composition and compacted neutrals. The first step in order to validate the functor laws
is to get as close as possible to a canonical representation for each term. In order to deal with
composition of maps, we extend weak head reduction with RedMapComp to fuse consecutive
stuck maps. This rule only applies to consecutive map𝐹 for the same type former, which is the
only possible case for well-typed terms. Moreover, in order to preserve the deterministic nature
of weak-head reduction, map compaction should only apply when no other rule does. To achieve
this, the type former 𝐹 should be an inductive type, because mapΠ is already handled through
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nf 𝑓 ≝ ⋯ ∣ 𝑐 weak-head normal forms
ne 𝑛 ≝ ⋯ ∣ ind𝐋𝐢𝐬𝐭 𝐴(𝑡; 𝑐; 𝑡) weak-head neutrals
cne 𝑐 ≝ 𝑛 ∣ map𝐋𝐢𝐬𝐭 𝑓 𝑛 compacted neutrals

Fig. 10. Weak-head normal and neutrals for MLTTmap (extends fig. 4)

the 𝜂-expansion of CFun, and similarly for mapΣ. Moreover, the mapped term should be neither
a canonical form where map already has a computational behaviour, nor a map itself that could
fire the same rule. The mapped element is hence required to be a weak-head neutral term. To
separate weak-head normal forms which might contain a map as their head from those which
cannot, we split the usual neutral forms from the compacted neutrals, see fig. 10. Allais et al. [2013]
also feature a decomposition of normal forms into three different classes rather than two akin to
this one, although their normal forms for lists are more complex than ours as they validate more
definitional equations than functorial laws.

Maps on identities. For identities, a similar reduction-based approach is difficult: turning the
equation Γ ⊢map map𝐋𝐢𝐬𝐭 id𝐴 𝑙 ≅ 𝑙 : 𝐋𝐢𝐬𝐭 𝐴 into a reduction raises issues similar to those en-
countered with 𝜂-laws. Orienting it as an expansion 𝑙 {⋆ map𝐋𝐢𝐬𝐭 id𝐴 𝑙 requires knowledge of
the type to ensure the expansion only applies to lists, and is potentially non-terminating. But us-
ing a typed reduction would require a deep reworking of the structure of our systems, proofs and
decision algorithms.

As a result, just like for 𝜂 on functions in rule CFun, we implement this rule as part of the
conversion, rather than as a reduction. We also incorporate it carefully in the notion of reducible
conversion in the logical relation, where we do have access to enough properties of the type the-
ories. Since the equation is always validated by canonical forms, we only need to enforce it on
compacted neutrals. The logical relation for an inductive type 𝐼 (𝐋𝐢𝐬𝐭, 𝐖, 𝐈𝐝) thus specifies that a
neutral 𝑛 is reducibly convertible to a compacted neutral map𝐼 𝑓 𝑚, whenever the neutrals 𝑛 and
𝑚 are convertible and 𝑓 agree with the identity of dom (𝐼) on any neutral term. See MapNeCon-
vRedL in the next section for the exact rule.

Eliminators: fusion or not fusion? When considering the interaction between map and the elimi-
nator ind𝐋𝐢𝐬𝐭, arises a design choice: should we also fuse them, i.e. implement the following reduc-
tion rule, which pushes the map from the scrutinee into the branches?

ind𝐼(map𝐋𝐢𝐬𝐭 𝑓 𝑛; 𝑙.𝑃 ; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::) {1 ind𝐼(𝑛; 𝑙.𝑃 [map𝐋𝐢𝐬𝐭 𝑓 𝑙]; 𝑏𝜀, 𝑎.𝑙.ℎ.𝑏::[id, 𝑓 𝑎,map𝐋𝐢𝐬𝐭 𝑓 𝑙, ℎ])
From the point of view of functorial equations, this is not necessary. In fig. 10, and the rest of this
paper, we thus take the most conservative approach, and do not add this reduction rule.

However, from the point of view of a subsumptive bidirectional subtyping, this fusion is neces-
sary if we wish to infer the parameters of the inductive types from the scrutinee (as in Fus below),
rather than store them in the induction node (as in NoFus).

Fus

Γ ⊢sub 𝑠 ▷h 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑙: 𝐋𝐢𝐬𝐭 𝐴 ⊢sub 𝑃 ▷h Type …
Γ ⊢sub ind𝐋𝐢𝐬𝐭(𝑠; 𝑙.𝑃 ; … ) ▷ 𝑃 [𝑠] NoFus

Γ ⊢sub 𝐴◁ Γ ⊢sub 𝑠◁𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑙: 𝐋𝐢𝐬𝐭 𝐴 ⊢sub 𝑃 ▷h Type …
Γ ⊢sub ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑙.𝑃 ; … ) ▷ 𝑃 [𝑠]

Rule Fus is more appealing, as it removes an unnecessary conversion test between the type of 𝑠
and that stored in the node. Yet, elaborating it to a coercive system requires this target to have
the extra fusion law above. Intuitively, this is because rule Fus does not fix the parameter type
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at which the eliminator is typed, and so this parameter can change, which in a coercive system
corresponds to pushing coercions into the branches, as in the fusion equation above.

4 FORMALIZING NEW EQUATIONS FOR NEUTRAL LISTS
In this sectionwe expose themain components of the accompanying Coq formalization, which cov-
ers normalization, equivalence of declarative and algorithmic typing, decidability of type-checking
and canonicity for a subset of MLTTmap with 𝟎, 𝐍,Π,Σ, 𝐋𝐢𝐬𝐭5 and a single universe. As it is
heavily inspired by a previous Agda formalization [Abel et al. 2017], which has already been ex-
tended multiple times [Gilbert et al. 2019; Pujet and Tabareau 2022, 2023], we only give a high level
overview of our main adaptations here, and direct the reader either to the Coq code or the original
paper [Abel et al. 2017] for more details. The formalization spans ~25k lines of code, approximately
8k of which are specific to our extension with lists and definitionally functorial maps.

4.1 A logical relation with functor laws on list
TheCoq development defines both the declarative and algorithmic presentations of MLTTmap and
proves their equivalence through a logical relation parametrized by a generic typing interface6 in-
stantiated by both presentations. Beyond generic variants of the typing and conversion judgement,
the interface uses two extra judgements: Γ ⊢map 𝑡 {⋆ 𝑡′ : 𝐴 stating that 𝑡 reduces to 𝑡′ and that
they are both well typed at type 𝐴 in context Γ; and Γ ⊢map 𝑛 ≈ 𝑛′ : 𝐴 stating that 𝑛 and 𝑛′ are
convertible neutral terms.

Definition of the logical relation. Because we are dealingwith dependent types, the usual strategy
of logical relations to define reducibility of terms by induction on their types fails. Rather, we need
to define reducibility of types and of terms mutually, the latter depending on a witness of the
former. To do so, Abel et al. [2017] first define for each type former 𝐹 what it means to be a type
reducible as 𝐹 , and what it means to be a reducible term and reducibly convertible terms at such
a type reducible as 𝐹 . A type is then reducible if it is reducible as 𝐹 for some 𝐹 . As we extend the
logical relation to handle 𝐋𝐢𝐬𝐭 and map𝐋𝐢𝐬𝐭, we focus on a high level description of the reducibility
of types as lists and the reducible convertibility of terms of type 𝐋𝐢𝐬𝐭.7

A type 𝑋 is reducible as a list in context Γ, noted Γ ⊩𝐋𝐢𝐬𝐭 𝑋, if it weak-head reduces to 𝐋𝐢𝐬𝐭 𝐴
for some parameter type 𝐴, itself reducible in any context Δ extending Γ through a weakening
𝜌 : Wk(Δ, Γ). If ℒ : Γ ⊩𝐋𝐢𝐬𝐭 𝑋 is a witness that 𝑋 is reducible as a list, let us write ℙ(ℒ) for the
parameter type 𝐴 of this witness, and ℙ⊩(ℒ) :Π{𝜌: Wk(Δ, Γ)}.Δ ⊩ ℙ(ℒ)[𝜌] for its witness of
reducibility.

Reducible convertibility of terms as lists Γ ⊩ 𝑡 ≅ 𝑡′: 𝐋𝐢𝐬𝐭 𝐴 ∣ ℒ is defined in fig. 11. Two
terms 𝑡 and 𝑡′ are reducibly convertible as lists according to ℒ : Γ ⊩𝐋𝐢𝐬𝐭 𝑋 (ListRed) if they
reduce to normal forms 𝑣, 𝑣′ that are reducibly convertible as normal forms of type list Γ ⊩nf 𝑣 ≅
𝑣′: 𝐋𝐢𝐬𝐭 𝐴 ∣ ℒ. Straightforwardly, two canonical forms are convertible if they are both 𝜀 (NilRed)
or both − :: − (ConsRed) with reducibly convertible heads and tails.

For compacted neutral forms, we need to consider four cases according to whether each of the
left or the right hand-side term is a map𝐋𝐢𝐬𝐭. NeRed provides the easy case where both terms
are actually neutral, with a single premise requiring that these are convertible as neutrals for the
generic typing interface. MapMapConvRed gives the congruence rule for stuck map𝐋𝐢𝐬𝐭, relating
map𝐋𝐢𝐬𝐭 𝑓 𝑛 and map𝐋𝐢𝐬𝐭 𝑓 ′ 𝑛′ when the mapped list 𝑛 and 𝑛′ are convertible as neutrals and

5The formalization does not provide the eliminator for lists, but does provide it for 𝐍, another inductive type with recursive
occurrences.
6Defined in GenericTyping
7Available in file LogicalRelation.
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ListRed

Γ ⊢map 𝑡 {⋆ 𝑣 : 𝐋𝐢𝐬𝐭 ℙ(ℒ) Γ ⊢map 𝑡′ {⋆ 𝑣′ : 𝐋𝐢𝐬𝐭 ℙ(ℒ)
Γ ⊩nf 𝑣 ≅ 𝑣′: 𝐋𝐢𝐬𝐭 𝐴 ∣ ℒ
Γ ⊩ 𝑡 ≅ 𝑡′: 𝐋𝐢𝐬𝐭 𝐴 ∣ ℒ

NeRed
Γ ⊢map 𝑛 ≈ 𝑛′ : 𝐋𝐢𝐬𝐭 𝐴

Γ ⊩nf 𝑛 ≅ 𝑛′: 𝐋𝐢𝐬𝐭 𝐴 ∣ ℒ NilRed
Γ ⊩ 𝐴 ≅ 𝑃 ∣ ℙ⊩(ℒ) Γ ⊩ 𝐴 ≅ 𝑃 ′ ∣ ℙ⊩(ℒ)

Γ ⊩nf 𝜀𝑃 ≅ 𝜀𝑃 ′ : 𝐋𝐢𝐬𝐭 𝐴 ∣ ℒ

ConsRed

Γ ⊩ 𝐴 ≅ 𝑃 ∣ ℙ⊩(ℒ) Γ ⊩ 𝐴 ≅ 𝑃 ′ ∣ ℙ⊩(ℒ)
Γ ⊩ ℎ𝑑 ≅ ℎ𝑑′ : 𝐴 ∣ ℙ⊩(ℒ) Γ ⊩ 𝑡𝑙 ≅ 𝑡𝑙′: 𝐋𝐢𝐬𝐭 𝐴 ∣ ℙ⊩(ℒ)

Γ ⊩nf ℎ𝑑 ::P 𝑡𝑙 ≅ ℎ𝑑′ ::P' 𝑡𝑙′: 𝐋𝐢𝐬𝐭 𝐴 ∣ ℒ

MapNeConvRedL

Γ ⊢map 𝑛 ≈ 𝑛′ : 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑥: 𝑋 ⊩ 𝑓 𝑥 ≅ 𝑥 : 𝐴 ∣ ℙ⊩(ℒ)

Γ ⊩nf map𝐋𝐢𝐬𝐭 𝑓 𝑛 ≅ 𝑛′: 𝐋𝐢𝐬𝐭 𝐴 ∣ ℒ NeMapConvRedR …

MapMapConvRed
Γ ⊢map 𝑛 ≈ 𝑛′ : 𝐋𝐢𝐬𝐭 𝑋 Γ, 𝑥: 𝑋 ⊩ 𝑓 𝑥 ≅ 𝑓 ′ 𝑥 : 𝐴 ∣ ℙ⊩(ℒ)

Γ ⊩nf map𝐋𝐢𝐬𝐭 𝑓 𝑛 ≅ map𝐋𝐢𝐬𝐭 𝑓 ′ 𝑛′: 𝐋𝐢𝐬𝐭 𝐴 ∣ ℒ

Fig. 11. Reducible convertibility of lists

the bodies 𝑓 𝑥 and 𝑓 ′ 𝑥 of the functions are reducibly convertible. Note that at this point of the
logical relation, we do not know that the domain of the functions 𝑓 and 𝑓 ′ is reducible, only that
their codomain is, as provided by ℙ⊩(ℒ). This constraint motivates both the 𝜂-expansion of the
functions on the fly before comparing them, and the necessity of a Kripke-style quantification
on larger contexts for the reducibility of the parameter type ℙ⊩(ℒ), together ensuring that the
recursive reducible conversion happens at a reducible type, namely a weakened instance of 𝐴.
Finally, the symmetric rules NeMapConvRedR and MapNeConvRedL deal with the comparison
of a map𝐋𝐢𝐬𝐭 against a neutral 𝑛, that can be morally thought as map𝐋𝐢𝐬𝐭 id 𝑛, and indeed the
premises correspond to what one would obtain with MapMapConvRed in that case, up to an
inlined 𝛽-reduction step.

Validity of the functor laws. All the expected properties extend to this new logical relation: reflex-
ivity, symmetry, transitivity, irrelevance with respect to reducible conversion, stability by weak-
ening and anti-reduction8. These properties are essential in order to show that the logical relation
validates the functor laws on any reducible term. The proof proceeds through a usual argument
for logical relations: on canonical forms, the functor laws hold as observed already in section 3.3;
on compacted neutrals and neutral forms, we need to show that any compositions of map𝐋𝐢𝐬𝐭 re-
duce to a single map of a function with a reducible body, which amounts to show that composing
reducible functions produces reducible outputs on reducible inputs. This last step in the proof re-
flect our assumption that the categorical structure equipping domains of type formers should be
definitionally associative and unital.

8Available in the directory LogicalRelation.
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4.2 Equivalence between declarative and algorithmic typing
Instantiating the generic typing interface of the logical relation with declarative typing provides as
consequences metatheoretical properties exhibiting the existence of normal forms, among which
(weak-head) normalization, injectivity of type constructors and subject reduction. Using those, we
can show that algorithmic typing is sound directly by induction, and also that it fits the generic
typing interface of the logical relation, which lets us derive that it is complete with respect to
declarative typing.

This part of the proof is close to that of Abel et al. [2017], with two important differences. First,
reflecting the addition of compacted neutrals in our definition of normal forms, we must adapt
algorithmic conversion accordingly, and introduce a third mutually defined relation to compare
compacted neutrals. The main idea is presented in rules ListNeConv and NeMapListL below:
when we need to compare compacted neutrals, we use the new relation ≈map, which simulates
the behaviour of the logical relation from fig. 11 on compacted neutrals. Second, Abel et al. [2017]
stop at conversion, while we also provide algorithmic typing, which is necessary both to show
decidability of type-checking and provide the necessary structure for sections 5.3 and 5.5.

ListNeConv
Γ ⊢map 𝑐 ≈map 𝑐′ ◁𝐋𝐢𝐬𝐭 𝐴
Γ ⊢map 𝑐 ≅h 𝑐′ ◁𝐋𝐢𝐬𝐭 𝐴 NeMapListL

Γ ⊢map 𝑛 ≈h 𝑛′ ▷ 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑥: 𝐴 ⊢map 𝑓 𝑥 ≅ 𝑥◁𝐵

Γ ⊢map map𝐋𝐢𝐬𝐭 𝑓 𝑛 ≈map 𝑛′ ◁𝐋𝐢𝐬𝐭 𝐵

4.3 Practical algorithms to decide conversion and typing
Our final result is decidability of type checking.9 This is not merely a theorem obtained by work-
ing in a constructive meta-theory. Rather, the Coq formalization defines implementations of type-
checking and conversion10 well-suited for extraction using the Eations plugin [Sozeau and
Mangin 2019]. To separate the definition of these functions from their correctness, we define them
as partial functions, building upon a Coq development by Winterhalter [2023] implementing the
free recursion monad of McBride [2015]. Then, in a second phase, we separately show soundness,
completeness and termination using the structure of algorithmic typing derivations, culminating
in the decidability result.

5 SUBTYPING, COERCIVE AND SUBSUMPTIVE
The main application we develop for our definitional functor laws is structural subtyping. More
precisely, we describe two extensions of MLTT. The first is MLTTsub, whose subtyping is sub-
sumptive: whenever ⊢sub 𝑡 : 𝐴 ≼ 𝐴′, then also ⊢sub 𝑡 : 𝐴′, leaving the use of subtyping implicit.
The second is MLTTcoe, which features coercive subtyping, in the form of an operator coe𝐴,𝐴′ 𝑡,
well-typedwhenever⊢coe 𝑡 : 𝐴 ≼ 𝐴′ as before, but now explicitlymarkingwhere subtyping is used.
The computational behaviour of coe on type formers coincides with that of map in MLTTmap.

In section 5.1, we give both an algorithmic and declarative presentation of MLTTcoe, but only
an algorithmic presentation of MLTTsub. The idea is that the declarative version of MLTTcoe
should serves as a specification for MLTTsub, with the algorithmic MLTTcoe as an intermedi-
ate step to relate the two. In the context of a proof assistant or dependently typed programming
language, MLTTsub should serve as the flexible, user-facing system while MLTTcoe would be its
well-behaved foundation, making it easier to build meta-theory and semantics.

9See file Decidability for the high-level function/theorem.
10In file Decidability/Functions.
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Γ ⊢sub 𝑇 ≼h 𝑇 ′ ◁ Reduced type 𝑇 is a subtype of reduced type 𝑇 ′

UniSub Γ ⊢sub Type𝑖 ≼h Type𝑖 ◁
PRodSub

Γ ⊢sub 𝐴′ ≼ 𝐴◁ Γ, 𝑥: 𝐴′ ⊢sub 𝐵 ≼ 𝐵′ ◁

Γ ⊢sub Π𝑥: 𝐴.𝐵 ≼h Π𝑥: 𝐴′.𝐵′ ◁

ListSub
Γ ⊢sub 𝐴 ≼ 𝐴′ ◁

Γ ⊢sub 𝐋𝐢𝐬𝐭 𝐴 ≼h 𝐋𝐢𝐬𝐭 𝐴′ ◁
NeuSub

Γ ⊢sub 𝑛 ≈h 𝑛′ ▷ 𝑇
Γ ⊢sub 𝑛 ≼h 𝑛′ ◁

Fig. 12. Algorithmic subtyping between reduced types (extends fig. 6)

We then explain in section 5.2 how to adapt the theoretic work on MLTTmap to MLTTcoe, and
in particular the logical relation. Section 5.3 relates MLTTcoe and MLTTsub: there is a straightfor-
ward erasure |⋅| from the former to the latter which removes coercions, and we show it is type-
preserving; conversely, we show any well-typed MLTTsub term can be elaborated to a well-typed
MLTTcoe term. The extra definitional functor laws are essential at this stage, to ensure that all
equalities valid in MLTTsub still hold in MLTTcoe. Since we are in a dependently-typed system, if
equations valid in MLTTsub failed to hold in MLTTcoe, elaboration could not be type-preserving.

Finally, section 5.4 discuss the implications of this equivalence for coherence and section 5.5
present the correspondence between MLTTcoe and MLTTmap.

5.1 The type systems MLTTsub and MLTTcoe
5.1.1 Algorithmic MLTTsub. MLTTsub replaces ChecK in MLTT from fig. 5 with the following
rule, which uses subtyping ≼ instead of conversion:

ChecKSub
Γ ⊢sub 𝑡 ▷ 𝑇 ′ Γ ⊢sub 𝑇 ′ ≼ 𝑇 ◁

Γ ⊢sub 𝑡◁𝑇
Subtyping, defined in fig. 12, orients type-level conversion from fig. 6, taking into account co- and
contravariance. It relies on neutral comparison and term-level conversion, both of which are not
altered compared to fig. 6: subtyping is a type-level concept only.

5.1.2 A type of labels to model records. While the rule of fig. 12 let us propagate subtyping struc-
turally through type formers, for the resulting system to be any different from MLTT, we need
some base non-trivial subtyping. Its exact choice is largely orthogonal to the focus of this paper
on the structural aspect of subtyping, and indeed the development of this section is relatively
independent of that choice. Still, for our subtyping to be of any interest, we must fix something.

We thus choose a rather simple example, presented in fig. 13. We fix a countable set of labels Lbl,
and for each finite subset 𝐿 ∈ 𝒫f(Lbl) introduce a type 𝑳, with inclusion as subtyping between
these. For each 𝑙 ∈ Lbl, there is a term 𝑙 : {{{𝒍}}}.11 Finally, 𝑳 has a dependent eliminator ind𝑳 which
behaves like that of an inductive enumeration: if we can construct an inhabitant of 𝑃 : 𝑳 → Type
for every 𝑙 ∈ 𝐿, then we can construct some inhabitant of Π𝑥: 𝑳.𝑃 𝑥.

Thanks to this eliminator, a function 𝑅: 𝑳 → Type can be viewed as a (non-dependent) record
type, with 𝑅 𝑙 the type of the field labelled by 𝑙. A term 𝑟 :Π𝑥: 𝑳.𝑅 𝑥 is then a record of that type,
with field 𝑙 given by 𝑟 𝑙. Finally, the eliminator lets us construct a record by giving a value for each

11{𝑙} denotes a singleton set. Via subtyping, whenever 𝑙 ∈ 𝐿 wewill be able to construct an inhabitant of 𝑳 corresponding
to 𝑙, either 𝑙 itself in MLTTsub, or coe{{{ 𝒍 }}},𝑳 𝑙 in MLTTcoe. We abbreviate the latter as coe𝑳 𝑙.
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LblTy
𝐿 ∈ 𝒫f(Lbl)

Γ ⊢sub 𝑳 ▷ Type0
LblSub

𝐿 ⊆ 𝐿′

Γ ⊢sub 𝑳 ≼h 𝑳′ ◁
LblTm

𝑙 ∈ Lbl
Γ ⊢sub 𝑙 ▷ {{{𝒍}}}

LblTmConv Γ ⊢sub 𝑙 ≅h 𝑙◁𝑳 LblElim

Γ ⊢sub 𝑠◁𝑳 Γ, 𝑥: 𝑳 ⊢sub 𝑃 ▷h Type𝑖
Γ ⊢sub 𝑏𝑙 ◁𝑃 [𝑙] for all 𝑙 ∈ 𝐿

Γ ⊢sub ind𝑳(𝑠; 𝑥.𝑃 ; ⃗⃗⃗ ⃗⃗𝑏𝑙) ▷ 𝑃 [𝑠]

NLblInd
Γ ⊢sub 𝑛 ≈ 𝑛′ ▷ 𝑆 Γ, 𝑧: 𝑳 ⊢sub 𝑃 ≅ 𝑃 ′ ◁ Γ ⊢sub 𝑏𝑙 ≅ 𝑏′

𝑙 ◁𝑃 [𝑙] for all 𝑙 ∈ 𝐿
Γ ⊢sub ind𝑳(𝑛; 𝑧.𝑃 ; ⃗⃗⃗ ⃗⃗𝑏𝑙) ≈ ind𝑳(𝑛′; 𝑧.𝑃 ′; ⃗⃗⃗ ⃗⃗𝑏𝑙) ▷ 𝑃 [𝑛]

LblRed
ind{{{ 𝒍}}}(𝑙; 𝑥.𝑃 ; ⃗⃗⃗ ⃗⃗𝑏𝑙) {1 𝑏𝑙

Fig. 13. Labels, typing and conversion (extends figs. 5, 6 and 12)

field. In this reading, structural subtyping on the domain of function types gives width subtyping
of record types, and subtyping on the codomain induces depth subtyping, for free.

5.1.3 Algorithmic MLTTcoe. In contrast with MLTTsub, in MLTTcoe rule ChecK is crucially not
altered. Instead, subtyping is only allowed when explicitly marked by coe, as follows:

Coe
Γ ⊢coe 𝐴◁ Γ ⊢coe 𝐴′ ◁ Γ ⊢coe 𝑡◁𝐴 Γ ⊢coe 𝐴 ≼ 𝐴′ ◁

Γ ⊢coe coe𝐴,𝐴′ 𝑡 ▷𝐴′

Inference rules for all other type and term formers are similar to those of figs. 5 and 13.
Reduction must of course be extended to give an operational behaviour to coe, and is given

in fig. 14, together with normal forms. Operationally, coe𝐴,𝐴′ 𝑡 reduces the types 𝐴 and 𝐴′ to
head normal forms, then behaves like map according to these, propagating coe recursively on
subterms. Since coe𝐴,𝐴′ 𝑡 is well-typed only when 𝐴 is a subtype of 𝐴′, the type formers of their
head normal forms cannot differ, ensuring that we can always rely on such a map-like behaviour
to enact structural subtyping. At base type 𝑳, coe{{{ 𝒍}}},𝑳 𝑙 works as canonical constructors for the
type 𝑳. Finally, just as for map, rule CoeCoe let us compact a succession of stuck coe.

Neutral conversion is described at the top of fig. 15 and features an additional comparison be-
tween compacted neutrals similar to MLTTmap (ListNeConv). Rule NCoe is the “congruence rule”
for coercions, where the source and target types necessarily agree by typing invariants. Rules
NCoeL and NCoeR handle identity coercions.

Accordingly, ≈coe is carefully used whenever normal forms can be compacted neutrals, i.e. at
neutral and list types, as shown at the bottom of fig. 15. Apart from this change, conversion at the
term and type level and subtyping are similar to those of MLTTsub.

5.1.4 DeclarativeMLTTcoe. Thedeclarative presentation ofMLTTcoe, noted⊢coe, straightforwardly
extends MLTT (figs. 2 and 3) with typing rules for labels and coe similar to the inference rules
from the algorithmic presentation, as well as reduction and conversion rules for ind𝑳 and coe
from fig. 14. Most importantly, it satisfies the following two equations of identity and composition
of coercions, definitionally.

CoeId
Γ ⊢coe 𝑡 : 𝐴

Γ ⊢coe coe𝐴,𝐴 𝑡 ≅ 𝑡 : 𝐴 CoeTRans
Γ ⊢coe 𝑡 : 𝐴 Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe 𝐴′ ≼ 𝐴″

Γ ⊢coe coe𝐴′,𝐴″ coe𝐴,𝐴′ 𝑡 ≅ coe𝐴,𝐴″ 𝑡 : 𝐴″
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𝑡 {1 𝑡′
coeΠ𝑥:𝐴′.𝐵′,Π𝑥:𝐴.𝐵(λ𝑥: 𝐴″.𝑡) {1 λ𝑥: 𝐴. coe𝐵′[coe𝐴,𝐴′ 𝑥],𝐵[𝑥](𝑡[coe𝐴,𝐴′ 𝑥])

RedCoeFunNe
ne 𝑓

(coeΠ𝑥:𝐴′.𝐵′,Π𝑥:𝐴.𝐵 𝑓) 𝑎 {1 coe𝐵′[coe𝐴,𝐴′ 𝑎],𝐵[𝑎](𝑓 (coe𝐴,𝐴′ 𝑎))

coeType𝑖,Type𝑖
𝑡 {1 𝑡 coe𝑳,𝑳′ coe𝑳 𝑙 {1 coe𝑳′ 𝑙 coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′ 𝜀 {1 𝜀

coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′(ℎ :: 𝑡) {1 coe𝐴,𝐴′ ℎ :: coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′ 𝑡 CoeL
𝐴 {1 𝐴′

coe𝐴,𝐵 𝑡 {1 coe𝐴′,𝐵 𝑡

CoeR
nf𝐴 𝐵 {1 𝐵′

coe𝐴,𝐵 𝑡 {1 coe𝐴,𝐵′ 𝑡 CoeTm
nf𝐴 nf𝐵 𝑡 {1 𝑡′

coe𝐴,𝐵 𝑡 {1 coe𝐴,𝐵 𝑡′

CoeCoe
nf𝑈 nf𝑈 ′ nf𝑇 nf𝑇 ′ ne𝑛

coe𝑈,𝑈′ coe𝑇 ,𝑇 ′ 𝑛 {1 coe𝑇 ,𝑈′ 𝑛

Fig. 14. Weak-head reduction rules for coercion (extends fig. 4)

Γ ⊢coe 𝑡 ≈coe 𝑡′ ◁𝑇 Compacted neutrals 𝑡 and 𝑡′ are comparable at type 𝑇

NCoe
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe coe𝑆,𝑇 𝑛 ≈coe coe𝑆′,𝑇 ′ 𝑛′ ◁𝑇 ″ NCoeL
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe coe𝑆,𝑇 𝑛 ≈coe 𝑛′ ◁𝑇 ″

NCoeR
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe 𝑛 ≈coe coe𝑆′,𝑇 ′ 𝑛′ ◁𝑇 ″ NNoCoe
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝑇 ″

Γ ⊢coe 𝑡 ≅h 𝑡′ ◁𝑇

NeuList
Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝐋𝐢𝐬𝐭 𝐴
Γ ⊢coe 𝑛 ≅h 𝑛′ ◁𝐋𝐢𝐬𝐭 𝐴 NeuNeu

Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝑀 ne𝑀
Γ ⊢coe 𝑛 ≅h 𝑛′ ◁𝑀

Fig. 15. Algorithmic comparison of neutrals, with explicit coercions (extends/replaces fig. 6)

5.2 Equivalence of algorithmic and declarative typing
In order to prove properties of correspondence between MLTTcoe and MLTTsub, we must first
study MLTTcoe. All the meta-theoretic properties of MLTTmap proved in section 4 carry over to
MLTTcoe. We highlight the following two.

TheoRem 5.1 (WeaK-head noRmalization). If Γ ⊢coe 𝑡 : 𝑇 , then there exists a weak-head normal
form 𝑡′ such that 𝑡 {⋆ 𝑡′.

TheoRem 5.2 (Soundness and completeness of algoRithmic typing). If ⊢coe Γ and Γ ⊢coe
𝑡 ▷ 𝑇 then Γ ⊢coe 𝑡 : 𝑇 , and similarly for the other judgements. Conversely, if Γ ⊢coe 𝑡 : 𝑇 , then
Γ ⊢coe 𝑡◁𝑇 , and similarly for the other judgements.
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Most proof ideas from MLTTmap carry over to MLTTcoe, and we did not mechanize this part
of the paper, focusing our formalization effort on the most challenging aspect of the theory. Still,
we give a sketch of how to extend the logical relation for MLTTmap to MLTTcoe – the proofs of
equivalence between the declarative and algorithmic systems from the logical relation then remain
mostly unchanged.

pRoof sKetch (extending the logical Relation to MLTTcoe). MLTTcoe has three main dif-
ferences compared to MLTTmap, so let us treat them in order.

First, we need to extend reducible type-level conversion to handle subtyping. As the structure of
the two judgements is exactly the same, apart from the base subtyping case, rather than defining
two separate judgement we can factor the two together by using a single judgement parametrized
by a conversion problem,12 a three-valued variant indicating conversion, subtyping, or supertyping,
the latter being needed to handle contravariance and the left bias of reducible conversion, which
is defined on a proof of reducibility of its left type.

Second, we need to show that coe𝐴,𝐴′ 𝑡 is reducible whenever 𝐴 is a reducible subtype of 𝐴′,
and 𝑡 is reducible at 𝐴. Because 𝐴 is a reducible subtype of 𝐴′, both must have normal forms which
are either constructed with the same type former 𝐹 , both label types, or both neutrals. In the first
case, coe𝐴,𝐴′ 𝑡 behaves like map𝐹 , and so the reducibility proofs from section 4 carry over. In case
𝐴 and 𝐴′ are both neutral, coe𝐴,𝐴′ 𝑡 might compact if 𝑡 is a coercion itself, but this is also similar
to the case of a neutral map in MLTTmap, and so the proof from section 4 carries over again.

We are left with the type formers 𝑳, that behave like enumeration types. The formalized proof
for 𝐍 adapts, up to an additional case for compacted neutrals of shape coe𝑳,𝑳′ 𝑛. The reducibility
of coe𝑳,𝑳′ 𝑡 uses CoeCoe on the compacted neutral case and follows that of the definable term
ind𝑳(𝑡; 𝑥.𝑳′; (coe𝑳′ 𝑙)𝑙∈𝐿) on other canonical forms. □

5.3 Elaboration and erasure
We can now turn to the correspondence between MLTTsub and MLTTcoe. The translation in the
forward direction, erasure |⋅|, simply removes coercions ∣coe𝐴,𝐴′ 𝑡∣ = 𝑡 and is otherwise a congru-
ence. It is lifted pointwise to contexts.We first show that erasure is sound,meaning that it preserves
typing, and then that it is also invertible, i.e. that any well-typed MLTTsub term 𝑡′ elaborates to a
well-typed MLTTcoe term 𝑡 whose erasure is 𝑡′ = |𝑡|.
5.3.1 Soundness of erasure. Erasure translates from a constrained system to a more liberal one.
Establishing its soundness is relatively easy but requires setting up reduction in the right way
in fig. 14 so that the lemmas stated in this section hold. The key point is that reduction rules for
coe do not change the structure of the erased term, and erase to exactly zero steps of reduction.

coeΠ𝑥:𝐴′.𝐵′,Π𝑥:𝐴.𝐵 𝑓 {1 λ𝑥: 𝐴. coe𝐵′[coe𝐴,𝐴′ 𝑥],𝐵(𝑓 coe𝐴,𝐴′ 𝑥)
For instance, the above rule is inadequate, as it would 𝜂-expand terms at function types more in
MLTTcoe than in MLTTsub. It remains nonetheless admissible, as a conversion.

Lemma 5.3 (ERasuRe of Reduction). If 𝑡 {⋆ 𝑢, then also |𝑡| {⋆ |𝑢|.
PRoof. By induction on the number of steps, and then on the derivation of one-step reduction.

Coercion reduction in MLTTcoe map to zero steps on the erased terms, while other reduction steps
(𝛽, 𝜄, etc.) map to their counterpart after erasure, using that erasure commutes to substitution. □

TheoRem 5.4 (ERasuRe pReseRves subtyping). The following implications hold whenever the
inputs of the first hypothesis are well-formed:
12This technique is borrowed from the way cumulativity is handled in MetaCoq [Sozeau, Forster, et al. 2023].
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(1) if Γ ⊢coe 𝑡 ≈coe 𝑢◁𝑇 then there exists 𝑇 ′ such that Γ ⊢coe 𝑇 ′ ≼ 𝑇 ◁ and |Γ| ⊢sub |𝑡| ≈
|𝑢| ▷ |𝑇 ′|;

(2) if Γ ⊢coe 𝑇 ≼h 𝑈 ◁, then |Γ| ⊢sub |𝑇 | ≼h |𝑈|◁;
(3) and similarly for the other subtyping and conversion judgements.

PRoof. By mutual induction, each rule being mapped to their counterpart. Rules for Γ ⊢coe
𝑛 ≈coe 𝑛′ ◁𝑇 are simply dropped, as that judgement is replaced by Γ ⊢sub 𝑛 ≈ 𝑛′▷𝑆 in MLTTsub.
Lemma 5.3 is employed whenever terms and types are reduced to normal forms. □

TheoRem 5.5 (Soundness of eRasuRe – induction). The following implications hold, whenever
the inputs of the premise are well-formed:

• if Γ ⊢coe 𝑡 ▷ 𝑇 , then there exists 𝑇 ′ such that Γ ⊢coe 𝑇 ′ ≼ 𝑇 ◁ and |Γ| ⊢sub |𝑡| ▷ |𝑇 ′|;
• if Γ ⊢coe 𝑡 ▷h 𝑇 , then there exists 𝑇 ′ such that Γ ⊢coe 𝑇 ′ ≼h 𝑇 ◁ and |Γ| ⊢sub |𝑡| ▷h |𝑇 ′|;
• if Γ ⊢coe 𝑡◁𝑇 , then there exists 𝑇 ′ such that Γ ⊢coe 𝑇 ′ ≼ 𝑇 ◁ and |Γ| ⊢sub |𝑡| ▷ |𝑇 ′|.

PRoof. By mutual induction. Checking needs transitivity of ≼. Reduced inference relies on
lemma 5.3 to handle reduction. Finally, each rule for inference can be mapped to its counter-
part, noting that Γ ⊢coe 𝑇 ′ ≼ 𝑇 ◁ and |Γ| ⊢sub |𝑡| ▷ |𝑇 ′| together imply, by theorem 5.4,
|Γ| ⊢sub |𝑡|◁ |𝑇 |, so that induction hypothesis on checking premises in MLTTcoe can be turned
into checking premises in MLTTsub. Finally, for the introduction of coe𝐴,𝐵 𝑡, subtyping between
𝐴 and 𝐵 is combined with the subtyping derivation obtained by induction hypothesis on 𝑡. □

In the end, we obtain the following high-level corollary, that erasure preserves typing.

CoRollaRy 5.6 (Soundness of eRasuRe). If Γ ⊢coe 𝑡 : 𝑇 , then |Γ| ⊢sub |𝑡|◁ |𝑇 |.
5.3.2 Elaboration. This direction is more challenging: as we add annotations, we must show that
these do not hinder conversion checking.We follow the proof strategy of a similar proof of elabora-
tion soundness in Lennon-Bertrand et al. [2022]. The core of the argument are so-called “catch-up
lemmas”, which ensure that annotations never block redexes.

Lemma 5.7 (Catch up, function type). If Γ ⊢coe 𝑓 𝑎 : 𝐵 and |𝑓| = λ𝑥: 𝐴′. 𝑡′, then there exists
𝑡 such that |𝑡| = 𝑡′ and 𝑓 𝑎 {⋆ 𝑡[𝑎].

Lemma 5.8 (Catch up, label type). If Γ ⊢coe 𝑡 : 𝑳 and |𝑡| = 𝑙, then 𝑡 {⋆ 𝑙 or 𝑡 {⋆ coe𝑳 𝑙.
Lemma 5.9 (Catch up, positive types). If 𝑇 is a positive type (i.e. it is Type𝑖, 𝐍, 𝐋𝐢𝐬𝐭) and

Γ ⊢coe 𝑡 : 𝑇 is such that |𝑡| is a canonical form, then 𝑡 reduces to a term with the same head constructor,
and arguments which erase to those of |𝑡|.

PRoof. The idea is always the same: because 𝑡 erases to a canonical form, it must be that same
canonical form, surrounded by coercions. Because all types in these coercions are related by sub-
typing to the type of 𝑡, which is canonical as 𝑡 is, all these coercions must reduce away. A detailed
proof for the most challenging case, that of functions, is given in appendix C.2. □

From these catch-up lemmas it follows that erasure is a backward simulation, and therefore that
it preserves subtyping and finally that it is type-preserving. Proofs are all by induction, and are
given in appendix C.2.

Lemma 5.10 (ERasuRe is a bacKwaRd simulation). Assume that Γ ⊢coe 𝑡 : 𝑇 . If |𝑡| {⋆ 𝑢′, with
𝑢′ a weak-head normal form, then 𝑡 {⋆ 𝑢, with 𝑢 a weak-head normal form such that |𝑢| = 𝑢′.

Lemma 5.11 (ElaboRation pReseRves subtyping). The following implications hold whenever the
inputs of the conclusions are well-formed:
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(1) if |Γ| ⊢sub |𝑇 | ≼ |𝑈|◁, then Γ ⊢coe 𝑇 ≼ 𝑈 ◁;
(2) if |Γ| ⊢sub |𝑡| ≅ |𝑢|◁ |𝑇 |, then Γ ⊢coe 𝑡 ≅ 𝑢◁𝑇 ;
(3) if |Γ| ⊢sub |𝑡| ≈ |𝑢| ▷ 𝑇 , then Γ ⊢coe 𝑡 ≈ 𝑢 ▷ 𝑇 ;
(4) and similarly for the other judgements.

Finally, the main theorem states that we can elaborate terms using implicit subtyping to explicit
coercions, in a type-preserving way.

TheoRem 5.12 (ElaboRation – Induction). The following implications hold, whenever inputs to
the conclusion are well-formed:

(1) if |Γ| ⊢sub 𝑡′ ▷ 𝑇 ′, then there exists 𝑡 and 𝑇 such that 𝑡′ = |𝑡|, 𝑇 ′ = |𝑇 |, and Γ ⊢coe 𝑡 ▷ 𝑇 ;
(2) if |Γ| ⊢sub 𝑡′ ▷h 𝑇 ′, then there exists 𝑡 and 𝑇 such that 𝑡′ = |𝑡|, 𝑇 ′ = |𝑇 |, and Γ ⊢coe 𝑡 ▷h 𝑇 ;
(3) if |Γ| ⊢sub 𝑡′ ◁ |𝑇 |, then there exists 𝑡 such that 𝑡′ = |𝑡| and Γ ⊢coe 𝑡◁𝑇 .

PRoof. Once again, by mutual induction. Each rule is mapped to its counterpart, but for ChecK-
Sub, where we need to insert a coercion in the elaborated term. This coercion is well-typed by
lemma 5.11. □

We can unfold the assumption of input well-formation, to get the following high-level corollary.

CoRollaRy 5.13 (ElaboRation). If Γ ⊢coe 𝑇 and |Γ| ⊢sub 𝑡′ ◁ |𝑇 |, then there exists 𝑡 such that
Γ ⊢coe 𝑡 : 𝑇 , and |𝑡| = 𝑡′.

Note that, to establish this equivalencewe did not need to develop anymeta-theory forMLTTsub:
having the meta-theory of MLTTcoe was enough! Nonetheless, now that the equivalence between
the two systems has been established, we can use it to transport meta-theoretic properties, such
as normalization, from MLTTcoe to MLTTsub.

5.4 Coherence
An important property of elaboration is coherence, stating that the elaboration of a well-typed term
should not depend on their typing derivation. In our algorithmic setting, a term has at most one
typing derivation and so at most one elaboration. However, multiple well-typed terms in MLTTcoe
can still erase to the same MLTTsub term. While only one of them is the result of elaboration
as defined in corollary 5.13, coherence means in our setting that all these distinct terms should
behave similarly.The following is a direct consequence of lemma 5.11, and shows that the equations
imposed on coe are enough to give us a very strong form of coherence: it holds up to definitional
equality, rather than in a weaker, semantic way.

TheoRem 5.14 (CoheRence). If 𝑡, 𝑢 are such that Γ ⊢coe 𝑡◁𝑇 and Γ ⊢coe 𝑢◁𝑇 , and moreover
|𝑡| = |𝑢| (i.e. 𝑡 and 𝑢 are both “elaborations” of the same MLTTsub term), then Γ ⊢coe 𝑡 ≅ 𝑢◁𝑇 .

PRoof. By reflexivity (obtained through the equivalence with the declarative system), Γ ⊢coe
𝑡 ≅ 𝑡◁𝑇 . Using theorem 5.5 (soundness of erasure), we get |Γ| ⊢sub |𝑡| ≅ |𝑡|◁ |𝑇 |, and so also
|Γ| ⊢sub |𝑡| ≅ |𝑢|◁ |𝑇 |. But then by lemma 5.11 (elaboration preserving conversion), we can come
back, and obtain Γ ⊢coe 𝑡 ≅ 𝑢◁𝑇 . □

5.5 From Coercions To Functorial Maps
MLTTcoe terms contain enough information to capture entirely the subtyping derivations. Fig-
ure 16 exploits this information to define a relation J𝑡K ≃ 𝑡′ relating a MLTTcoe term 𝑡 and a
MLTTmap term 𝑡′ that makes explicit the functorial nature of coercions. Most cases of the trans-
lation are left to appendix C.3, keeping only the key cases translating of coe on lists. This relation
is a partial function containing well-typed terms in its domain. The definition of J𝑡K ≃ 𝑡′ employs

23



T. Laurent, M. Lennon-Bertrand, K. Maillard

TslCoeId
J𝐴 ⇝ 𝐵K ≃ ⋆ J𝑡K ≃ 𝑡′Jcoe𝐴,𝐵 𝑡K ≃ 𝑡′ TslCoe

J𝐴 ⇝ 𝐵K ≃ 𝑓 J𝑡K ≃ 𝑡′Jcoe𝐴,𝐵 𝑡K ≃ 𝑓 𝑡′

TslCoeNf
𝐴 {⋆ 𝐴′ nf 𝐵 {⋆ 𝐵′ nf J𝐴′ ⇝ 𝐵′K ≃ 𝑥J𝐴 ⇝ 𝐵K ≃ 𝑥

TslCoeListId
J𝐴 ⇝ 𝐵K ≃ ⋆J𝐋𝐢𝐬𝐭 𝐴 ⇝ 𝐋𝐢𝐬𝐭 𝐵K ≃ ⋆ TslCoeList

J𝐴 ⇝ 𝐵K ≃ 𝑓J𝐋𝐢𝐬𝐭 𝐴 ⇝ 𝐋𝐢𝐬𝐭 𝐵K ≃ map𝐋𝐢𝐬𝐭 𝑓

Fig. 16. Translation from MLTTcoe to MLTTmap

an auxiliar relation J𝐴 ⇝ 𝐵K ≃ 𝑥 to translate coercions from 𝐴 to 𝐵, where 𝑥 is either the special
value ⋆ or a MLTTmap term 𝑓 . The value ⋆ arises in the case of an identity coercion that should
be erased by the translation.

Since both MLTTcoe and MLTTmap share similar conversion rules, we conjecture that the trans-
lation not only preserves typing and conversion but also reflects it.

ConjectuRe 5.15 (Embedding). J−K embeds MLTTcoe into MLTTmap.

This embedding can be combined with the algorithm deciding type-checking for MLTTmap,
producing an alternative decision procedure for MLTTcoe. In practice, this means that a proof
assistant could reuse parts of an implementation of MLTTmap in its kernel to provide support for
structural coercive subtyping.

6 RELATED AND FUTURE WORK
Logical relations, new equations for neutral terms. Allais et al. [2013] propose to add a variety

of fusion laws for lists, including our functor laws, but only in a simply-typed setting, although
they sketch how their work could be extended to handle dependency. While we depart from their
normalization by evaluation approach, we retain some traces of it, typically in the presence of
three classes of normal forms (see figs. 10 and 14) instead of the usual normal/neutral forms.

Formalizing logical relations for MLTT is a difficult exercise, pioneered by Abel et al. [2017]
in Agda using inductive-recursive definitions, and Wieczorek and Biernacki [2018] in Coq using
impredicativity. We build upon and extend a Coq reimplementation of the former. In particular, we
provide an effective algorithm to decide type-checking directly on syntactic terms, getting closer
to an actual implementation.

Cast and coercion operators. Pujet and Tabareau [2022, 2023] extend Abel et al. [2017] to establish
themetatheory of observational type theory [Altenkirch, McBride, et al. 2007].Their work features
a cast operator behaving similarly to coe, guarded by an internal proof of equality.Their cast does
not satisfy a definitional transitivity law, andwe give some evidence in appendix A showing that an
extension in that direction would be difficult. Another primitive with a rather similar operational
behaviour also appears in cast calculi for gradual typing [Siek et al. 2015], and indeed our proof
that elaboration is type preserving in section 5.3 is inspired by a similar one for GCIC, which
combines gradual and dependent types [Lennon-Bertrand et al. 2022].

Functorial maps for inductive type schemes. Z. Luo and Adams [2008] describe the construction
ofmap for a class of strictly positive operators on paper, but do not implement it. Derivingmap-like
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construction is a typical example of metaprogramming frameworks for proof assistants, e.g. Coq-
Elpi [Tassi 2018; Dunchev et al. 2015] in Coq, and the generics Agda library [Escot and Cockx 2022]
derives a fold operation, from which map can be easily obtained. In a simply typed setting, Barral
and Soloviev [2006] employ rewriting techniques, in particular rewriting postponement, to show
that an oriented variant of the functor laws are confluent and normalizing. These techniques rely
on normalization, and could not be easily adapted to the dependent setting, however the idea of
postponing the reduction step for identity appear in our logical relation as well. In a short abstract,
McBride and Nordvall Forsberg [2021] investigate a notion of functorial adapters that generalizes
and unifies both the ChecK rule from bidirectional typing and the Coe rule from MLTTcoe.

Subtyping, dependent types and algorithmic derivations. Aspinall and Compagnoni [2001] inves-
tigate the relationship between subtyping and dependent types using algorithmic derivations to
control the subtyping derivations for a variant of 𝜆𝑃 , a logically rather weak type system.

Coherence of coercions in presence of structural subtyping is a challenging problem. To ad-
dress the issue, Z. Luo and Y. Luo [2005] introduce a notion of weak transitivity, weakening the
coherence of the transitivity up to propositional equality. This solution does not interact well with
dependency, forcing them to restrict structural subtyping to a class of non-dependent inductives,
e.g. excluding Σ. Z. Luo and Adams [2008] show that the transitivity of coercions is admissible in
presence of definitional compositions – called 𝜒-rules there – for inductive schemata. They rely
on and conjecture that injectivity of type constructors hold in presence of 𝜒-rules, a result that we
prove and formalize for 𝐋𝐢𝐬𝐭. Both of these papers employ a strict order for subtyping and do not
consider the functor law for the identity, nor tackle decidability of type-checking.

Lungu and Z. Luo [2018] study an elaboration of a subsumptive presentation into coercive one
in presence of a coherent signature of subtyping relations between base types. Assuming normal-
ization, they show that subtyping extends to Π types, setting aside other parametrized types.

Integration with other forms of subtyping. As we mentioned in section 5, our design of base
subtyping was guided by simplicity. Our work on structural subtyping should integrate mostly
seamlessly with other, more ambitious forms of subtyping. Coercions between dependent records
form the foundation of hierarchical organizations of mathematical structures [Cohen et al. 2020;
Affeldt et al. 2020; Wieser 2023] and should be a simple extension of our framework. Refinement
subtyping are heavily used in F⋆ but also in Russel [Sozeau 2007] to specify the behaviour of pro-
grams. Relativizing any result of decidability of type-checking to that of the chosen fragment of
refinements, an implementation of refinement subtyping using definitionally irrelevant13 proposi-
tions [Gilbert et al. 2019] to preserve coherence should be within reach.

Our techniques for structural subtyping should also apply well in the context of algebraic ap-
proaches to cumulativity between universes [Sterling 2019; Kovács 2022]. Cumulativity goes be-
yond mere subtyping, as it also involves definitional isomorphisms between two copies of the
same type at different universe levels. Our definitional functor laws already allow these to inter-
act well with map operations, but it would be interesting to investigate whether extra definitional
equations are needed—and can be realized—to make structural cumulativity work seamlessly.
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A INTERNAL SUBTYPING AND UNDECIDABILITY OF CONVERSION
The goal of the coercive approach is to reflect all the potential ambiguities present in a subtyping
derivation. As such, wouldn’t it be easier to just internalize the notion of subtype and let type
theory deal with it? The following observation shows that there exists a big obstruction to any
decidability result for conversion as long as we want to stay equivalent to the subsumptive pre-
sentation of subtyping.

ObseRvation A.1 (No-go of inteRnal subtyping). Suppose that 𝒯 is a type theory with a
family sub𝐴 𝐵 for any two types 𝐴 and 𝐵, equipped with reflexivity witnesses refl𝐴 : sub𝐴 𝐴 and
transitivity witnesses trans𝑤 𝑤′ : sub𝐴 𝐶 for 𝑤 : sub𝐴 𝐵 and 𝑤′ : sub𝐵 𝐶 , as well as a coercion
function coe𝐴,𝐵 : sub𝐴 𝐵 → 𝐴 → 𝐵, such that coe𝐴,𝐴 refl𝐴 ≅ id𝐴 and coe𝐵,𝐶 𝑤∘coe𝐴,𝐵 𝑤′ ≅
coe𝐴,𝐶(trans𝑤𝐴,𝐵 𝑤𝐵,𝐶). Then 𝒯 embeds definitional models of the untyped 𝜆-calculus, and in
particular divergent terms.

Indeed, whenever a context provides inhabitants of both sub𝐴 𝐵 and sub𝐵 𝐴, coe𝐴,𝐵 and
coe𝐵,𝐴 provide a definitional isomorphism𝐴 ≅ 𝐵. In particular any context inhabiting sub𝐴 𝐴 →
𝐴 and sub𝐴 → 𝐴 𝐴, for instance an inconsistent one, provides a definitional retraction of 𝐴 → 𝐴
onto 𝐴, hence a non-trivial model of the untyped 𝜆-calculus with a divergent element Ω𝐴: 𝐴. This
observation motivates our external approach to subtyping with a specific judgement of subtyping
that cannot be abstracted upon.

B COMPLETE TYPING RULES
B.1 Declarative MLTT

⊢ Γ Context Γ is well-formed

⊢ ⋅
⊢ Γ Γ ⊢ 𝐴 :Type𝑖

⊢ Γ, 𝑥: 𝐴

Γ ⊢ 𝜎 : Δ 𝜎 is a well-typed substitution between contexts Γ and Δ

Γ ⊢ ⋅ : ⋅
Γ ⊢ 𝜎 : Δ Γ ⊢ 𝑡 : 𝐴[𝜎]

Γ ⊢ (𝜎, 𝑡) : Δ, 𝑥: 𝐴

Γ ⊢ 𝑇 Type 𝑇 is well-formed in context Γ

El
Γ ⊢ 𝐴 :Type𝑖

Γ ⊢ 𝐴 FunTy
Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵

Γ ⊢ Π𝑥: 𝐴.𝐵 ListTy
Γ ⊢ 𝐴

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴

SigTy
Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵

Γ ⊢ Σ𝑥: 𝐴.𝐵 TReeTy
Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵

Γ ⊢ 𝐖 𝑥: 𝐴.𝐵

IdTy
Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑎′ : 𝐴

Γ ⊢ 𝐈𝐝𝐴 𝑎 𝑎′
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Γ ⊢ 𝑡 : 𝑇 Term 𝑡 has type 𝑇 under context Γ

Conv
Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝐴 ≅ 𝐵

Γ ⊢ 𝑡 : 𝐵 VaR
⊢ Γ (𝑥: 𝐴 ∈ Γ)

Γ ⊢ 𝑥 : 𝐴 SoRt
⊢ Γ

Γ ⊢ Type𝑖 :Type𝑖+1

FunUni

Γ ⊢ 𝐴 :Type𝑖
Γ, 𝑥: 𝐴 ⊢ 𝐵 :Type𝑖

Γ ⊢ Π𝑥: 𝐴.𝐵 :Type𝑖
Abs

Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵
Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵

Γ ⊢ λ𝑥: 𝐴.𝑡 :Π𝑥: 𝐴.𝐵 App

Γ ⊢ 𝑡 :Π𝑥: 𝐴.𝐵
Γ ⊢ 𝑢 : 𝐴

Γ ⊢ 𝑡 𝑢 : 𝐵[𝑢]

ListUni
Γ ⊢ 𝐴 :Type𝑖

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 :Type𝑖
Nil

Γ ⊢ 𝐴
Γ ⊢ 𝜀𝐴 : 𝐋𝐢𝐬𝐭 𝐴 Cons

Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴
Γ ⊢ 𝑙 : 𝐋𝐢𝐬𝐭 𝐴

Γ ⊢ 𝑎 ::A 𝑙 : 𝐋𝐢𝐬𝐭 𝐴

ListInd

Γ ⊢ 𝐴 Γ ⊢ 𝑠 : 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑥: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃 Γ ⊢ 𝑏𝜀 : 𝑃 [𝜀𝐴] Γ, 𝑥: 𝐴, 𝑦: 𝐋𝐢𝐬𝐭 𝐴, 𝑧: 𝑃 [𝑦] ⊢ 𝑏:: : 𝑃 [𝑥 ::A 𝑦]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) : 𝑃 [𝑠]

EmptyUni Γ ⊢ 𝟎 :Type0
UnitUni Γ ⊢ 𝟏 :Type0

UnitTm Γ ⊢ () : 𝟏

EmptyInd
Γ ⊢ 𝑠 : 𝟎 Γ ⊢ 𝑃
Γ ⊢ ind𝟎(𝑠; 𝑃 ) : 𝑃 UnitInd

Γ ⊢ 𝑠 : 𝟏 Γ, 𝑧: 𝟏 ⊢ 𝑃 Γ ⊢ 𝑏() : 𝑃 [()]
Γ ⊢ ind𝟏(𝑠; 𝑧.𝑃 ; 𝑏()) : 𝑃 [𝑠]

SigUni
Γ ⊢ 𝐴 :Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 :Type𝑖

Γ ⊢ Σ𝑥: 𝐴.𝐵 :Type𝑖
PaiR

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑢 : 𝐵[𝑡]
Γ ⊢ (𝑡, 𝑢)𝑥.𝐵 :Σ𝑥: 𝐴.𝐵

PRoj1
Γ ⊢ 𝑝 :Σ𝑥: 𝐴.𝐵

Γ ⊢ 𝜋1 𝑝 : 𝐴 PRoj2
Γ ⊢ 𝑝 :Σ𝑥: 𝐴.𝐵
Γ ⊢ 𝜋2 𝑝 : 𝐵[𝑢]

TReeUni
Γ ⊢ 𝐴 :Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 :Type𝑖

Γ ⊢ 𝐖 𝑥: 𝐴.𝐵 :Type𝑖
Sup

Γ, 𝑥: 𝐴 ⊢ 𝐵
Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑘 : 𝐵[𝑎] → 𝐖 𝑥: 𝐴.𝐵

Γ ⊢ sup𝑥.𝐵 𝑎 𝑘 : 𝐖 𝑥: 𝐴.𝐵

TReeInd

Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵 Γ ⊢ 𝑠 : 𝐖 𝑥: 𝐴.𝐵 Γ, 𝑧: 𝐖 𝑥: 𝐴.𝐵 ⊢ 𝑃
Γ, 𝑥: 𝐴, 𝑦: 𝐵[𝑥] → 𝑊𝑥: 𝐴.𝐵, ℎ:Π 𝑧: 𝐵[𝑥].𝑃 [𝑦 𝑧] ⊢ 𝑏 : 𝑃 [sup𝑥.𝐵 𝑥 𝑦]

Γ ⊢ ind𝐖 𝑥:𝐴.𝐵(𝑠; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏) : 𝑃 [𝑠]

BoolUni Γ ⊢ 𝐁 :Type0
TRue Γ ⊢ tt : 𝐁 False Γ ⊢ ff : 𝐁

BoolInd
Γ ⊢ 𝑠 : 𝐁 Γ, 𝑧: 𝐁 ⊢ 𝑃 Γ ⊢ 𝑏tt : 𝑃 [tt] Γ ⊢ 𝑏ff : 𝑃 [ff]

Γ ⊢ ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏tt, 𝑏ff) : 𝑃 [𝑠]
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IdTy
Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑎′ : 𝐴

Γ ⊢ 𝐈𝐝𝐴 𝑎 𝑎′ ReflTm
Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴
Γ ⊢ refl𝐴,𝑎 : 𝐈𝐝𝐴 𝑎 𝑎

IdInd

Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑎′ : 𝐴
Γ ⊢ 𝑠 : 𝐈𝐝𝐴 𝑎 𝑎′ Γ, 𝑥: 𝐴, 𝑦: 𝐴, 𝑧: 𝐈𝐝𝐴 𝑥 𝑦 ⊢ 𝑃 Γ, 𝑥: 𝐴 ⊢ 𝑏 : 𝑃[id, 𝑥, 𝑥, refl𝐴,𝑥]

Γ ⊢ ind𝐈𝐝𝐴
(𝑠; 𝑥.𝑦.𝑧.𝑃 ; 𝑥.𝑏) : 𝑃 [id, 𝑎, 𝑎′, 𝑠]

Γ ⊢ 𝑇 ≅ 𝑇 ′ Types 𝑇 and 𝑇 ′ are convertible in context Γ

ReflTy
Γ ⊢ 𝐴

Γ ⊢ 𝐴 ≅ 𝐴 TRansTy
Γ ⊢ 𝐴 ≅ 𝐵 Γ ⊢ 𝐵 ≅ 𝐶

Γ ⊢ 𝐴 ≅ 𝐶 ElC
Γ ⊢ 𝐴 ≅ 𝐴′ :Type𝑖

Γ ⊢ 𝐴 ≅ 𝐴′

FunTyC
Γ ⊢ 𝐴 ≅ 𝐴′ Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′

Γ ⊢ Π𝑥: 𝐴.𝐵 ≅ Π𝑥: 𝐴′.𝐵′ ListTyC
Γ ⊢ 𝐴 ≅ 𝐴′

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 ≅ 𝐋𝐢𝐬𝐭 𝐴′

SigTyC
Γ ⊢ 𝐴 ≅ 𝐴′ Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′

Γ ⊢ Σ𝑥: 𝐴.𝐵 ≅ Σ𝑥: 𝐴′.𝐵′ TReeTyC
Γ ⊢ 𝐴 ≅ 𝐴′ Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′

Γ ⊢ 𝐖 𝑥: 𝐴.𝐵 ≅ 𝐖 𝑥: 𝐴′.𝐵′

IdTy

Γ ⊢ 𝐴 ≅ 𝐴′ Γ ⊢ 𝑡 ≅ 𝑡′ : 𝐴
Γ ⊢ 𝑢 ≅ 𝑢′ : 𝐴

Γ ⊢ 𝐈𝐝𝐴 𝑡 𝑢 ≅ 𝐈𝐝𝐴′ 𝑡′ 𝑢′

Γ ⊢ 𝑡 ≅ 𝑡′ : 𝑇 Terms 𝑡 and 𝑡′ are convertible at type 𝑇 in context Γ

Refl
Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝑡 ≅ 𝑡 : 𝐴 TRans
Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴 Γ ⊢ 𝑢 ≅ 𝑣 : 𝐴

Γ ⊢ 𝑡 ≅ 𝑣 : 𝐴 Conv

Γ ⊢ 𝑡 ≅ 𝑡′ : 𝐴
Γ ⊢ 𝐴 ≅ 𝐵

Γ ⊢ 𝑡 ≅ 𝑡′ : 𝐵

βFun

Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵
Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ (λ𝑥: 𝐴.𝑡) 𝑢 ≅ 𝑡[𝑢] : 𝐵[𝑢] ηFun

Γ, 𝑥: 𝐴 ⊢ 𝑓 𝑥 ≅ 𝑔 𝑥 : 𝐵
Γ ⊢ 𝑓 ≅ 𝑔 :Π𝑥: 𝐴.𝐵

βSig1

Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵
Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑢 : 𝐵[𝑡]
Γ ⊢ 𝜋1 (𝑡, 𝑢)𝑥.𝐵 ≅ 𝑡 : 𝐴 βSig2

Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵
Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑢 : 𝐵[𝑡]
Γ ⊢ 𝜋2 (𝑡, 𝑢)𝑥.𝐵 ≅ 𝑢 : 𝐵[𝑡]

ηSig
Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵 Γ ⊢ 𝑝 :Σ𝑥: 𝐴.𝐵

Γ ⊢ 𝑝 ≅ (𝜋1 𝑝, 𝜋2 𝑝)𝑥.𝐵 :Σ𝑥: 𝐴.𝐵

ιNil

Γ ⊢ 𝐴 Γ, 𝑥: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃
Γ ⊢ 𝑏𝜀 : 𝑃 [𝜀𝐴] Γ, 𝑥: 𝐴, 𝑦: 𝐋𝐢𝐬𝐭 𝐴, 𝑧: 𝑃 [𝑦] ⊢ 𝑏:: : 𝑃 [𝑥 ::A 𝑦]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝜀𝐴; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) ≅ 𝑏𝜀 : 𝑃 [𝜀𝐴]
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ιCons

Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑙 : 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑥: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃 Γ ⊢ 𝑏𝜀 : 𝑃 [𝜀𝐴] Γ, 𝑥: 𝐴, 𝑦: 𝐋𝐢𝐬𝐭 𝐴, 𝑧: 𝑃 [𝑦] ⊢ 𝑏:: : 𝑃 [𝑥 ::A 𝑦]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑎 ::A 𝑙; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) ≅ 𝑏::[id, 𝑎, 𝑙, ind𝐋𝐢𝐬𝐭 𝐴(𝑙; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::)] : 𝑃 [𝑎 ::A 𝑙]

ιTRue

Γ, 𝑧: 𝐁 ⊢ 𝑃
Γ ⊢ 𝑏tt : 𝑃 [tt] Γ ⊢ 𝑏ff : 𝑃 [ff]

Γ ⊢ ind𝐁(tt; 𝑧.𝑃 ; 𝑏tt, 𝑏ff) ≅ 𝑏tt : 𝑃 [𝑠] ιFalse

Γ, 𝑧: 𝐁 ⊢ 𝑃
Γ ⊢ 𝑏tt : 𝑃 [tt] Γ ⊢ 𝑏ff : 𝑃 [ff]

Γ ⊢ ind𝐁(ff; 𝑧.𝑃 ; 𝑏tt, 𝑏ff) ≅ 𝑏ff : 𝑃 [𝑠]

ιTRee

Γ, 𝑥: 𝐴 ⊢ 𝐵 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑘 : 𝐵[𝑎] → 𝐖 𝑥: 𝐴.𝐵 Γ, 𝑧: 𝐖 𝑥: 𝐴.𝐵 ⊢ 𝑃
Γ, 𝑥: 𝐴, 𝑦: 𝐵[𝑥] → 𝑊𝑥: 𝐴.𝐵, ℎ:Π 𝑧: 𝐵[𝑥].𝑃 [𝑦 𝑧] ⊢ 𝑏 : 𝑃 [sup𝑥.𝐵 𝑥 𝑦]
Γ ⊢ ind𝐖 𝑥:𝐴.𝐵(sup𝑥.𝐵 𝑎 𝑘; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏) ≅

𝑏[id, 𝑎, 𝑘, (λ 𝑧: 𝐵[𝑥]. ind𝐖 𝑥:𝐴.𝐵(𝑘 𝑧; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏))] : 𝑃 [𝑠]

ιRefl
Γ ⊢ 𝐴 Γ ⊢ 𝑎 : 𝐴 Γ, 𝑥: 𝐴, 𝑦: 𝐴, 𝑧: 𝐈𝐝𝐴 𝑥 𝑦 ⊢ 𝑃 Γ, 𝑥: 𝐴 ⊢ 𝑏 : 𝑃[id, 𝑥, 𝑥, refl𝐴,𝑥]

Γ ⊢ ind𝐈𝐝𝐴
(refl𝐴,𝑎; 𝑥.𝑦.𝑧.𝑃 ; 𝑥.𝑏) ≅ 𝑏[𝑎] : 𝑃 [id, 𝑎, 𝑎, refl𝐴,𝑎]

FunCong
Γ ⊢ 𝐴 ≅ 𝐴′ :Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′ :Type𝑖

Γ ⊢ Π𝑥: 𝐴.𝐵 ≅ Π𝑥: 𝐴′.𝐵′ :Type𝑖
other congruences omitted

B.2 Algorithmic MLTT

𝑡 {1 𝑡′ Term 𝑡 weak-head reduces in one step to term 𝑡′

βFun (λ𝑥: 𝐴.𝑡) 𝑢 {1 𝑡[𝑢] βSig1 𝜋1 (𝑡, 𝑢)𝑥.𝐵 {
1 𝑡 βSig2 𝜋2 (𝑡, 𝑢)𝑥.𝐵 {

1 𝑢

ιRedNil
ind𝐋𝐢𝐬𝐭 𝐴(𝜀𝐴; 𝑥.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) {1 𝑏𝜀

ιRedCons
ind𝐋𝐢𝐬𝐭 𝐴(𝑎 ::A 𝑙; 𝑥.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) {1 𝑏::[id, 𝑎, 𝑙, ind𝐋𝐢𝐬𝐭 𝐴(𝑙; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::)]

ιTRee
ind𝐖 𝑥:𝐴.𝐵(sup𝑥.𝐵 𝑎 𝑘; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏) {1 𝑏[id, 𝑎, 𝑘, (λ 𝑧: 𝐵[𝑥]. ind𝐖 𝑥:𝐴.𝐵(𝑘 𝑧; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏))]

ιTRue
ind𝐁(tt; 𝑧.𝑃 ; 𝑏tt, 𝑏ff) {1 𝑏tt

ιFalse
ind𝐁(ff; 𝑧.𝑃 ; 𝑏tt, 𝑏ff) {1 𝑏ff

ιRefl
ind𝐈𝐝𝐴

(refl𝐴,𝑎; 𝑥.𝑧.𝑃 ; 𝑥.𝑏) {1 𝑏[𝑎] RedApp
𝑡 {1 𝑡′

𝑡 𝑢 {1 𝑡′ 𝑢 RedSig1
𝑡 {1 𝑡′

𝜋1 𝑡 {1 𝜋1 𝑡′

RedSig2
𝑡 {1 𝑡′

𝜋2 𝑡 {1 𝜋2 𝑡′ RedInd
𝑡 {1 𝑡′

ind𝑇 (𝑡; 𝑃 ; ⃗𝑏) {1 ind𝑇 (𝑡′; 𝑃 ; ⃗𝑏)
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𝑡 {⋆ 𝑡′ Term 𝑡 weak-head reduces in multiple steps to term 𝑡′

RedBase 𝑡 {⋆ 𝑡 RedStep
𝑡 {⋆ 𝑡′ 𝑡′ {1 𝑡″

𝑡 {⋆ 𝑡″

nf 𝑓 ≝ 𝑛 ∣ Type𝑖 ∣ Π𝑥: 𝑡.𝑡 ∣ λ𝑥: 𝑡.𝑡 ∣ 𝐋𝐢𝐬𝐭 𝑡 ∣ 𝜀𝑡 ∣ 𝑡 ::t 𝑡 ∣ weak-head normal forms
Σ𝑥: 𝑡.𝑡 ∣ 𝜋1 𝑡 ∣ 𝜋2 𝑡 ∣ 𝐖 𝑥: 𝑡.𝑡 ∣ sup𝑡 𝑡 𝑡 ∣ 𝟎 ∣ 𝟏 ∣ () ∣
𝐁 ∣ tt ∣ ff ∣ 𝐈𝐝𝑡 𝑡 𝑡′ ∣ refl𝑡,𝑡

ne 𝑛 ≝ 𝑥 ∣ 𝑛 𝑡 ∣ ind𝑇 (𝑡; 𝑛; 𝑡) ∣ 𝜋1 𝑛 ∣ 𝜋2 𝑛 weak-head neutrals

Γ ⊢ 𝑇 ◁ 𝑇 is a type in Γ

FunTy
Γ ⊢ 𝐴◁ Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁

Γ ⊢ Π𝑥: 𝐴.𝐵 ◁ ListTy
Γ ⊢ 𝐴◁

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴◁

SigTy
Γ ⊢ 𝐴◁ Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁

Γ ⊢ Σ𝑥: 𝐴.𝐵 ◁ TReeTy
Γ ⊢ 𝐴◁ Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁

Γ ⊢ 𝐖 𝑥: 𝐴.𝐵 ◁ EmptyTy Γ ⊢ 𝟎◁

UnitTy Γ ⊢ 𝟏◁ BoolTy Γ ⊢ 𝐁◁ IdTy
Γ ⊢ 𝐴◁ Γ ⊢ 𝑎◁𝐴 Γ ⊢ 𝑎′ ◁𝐴

Γ ⊢ 𝐈𝐝𝐴 𝑎 𝑎′ ◁

El
Γ ⊢ 𝐴 ▷h Type𝑖 𝐴 is not a canonical form

Γ ⊢ 𝐴◁

Γ ⊢ 𝑡 ▷ 𝑇 Term 𝑡 infers type 𝑇 in context Γ

SoRt Γ ⊢ Type𝑖 ▷Type𝑖+1
VaR

(𝑥: 𝑇 ) ∈ Γ
Γ ⊢ 𝑥 ▷ 𝑇 Fun

Γ ⊢ 𝐴 ▷h Type𝑖
Γ, 𝑥: 𝐴 ⊢ 𝐵 ▷h Type𝑖
Γ ⊢ Π𝑥: 𝐴.𝐵 ▷ Type𝑖

Abs
Γ ⊢ 𝐴◁ Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷𝐵

Γ ⊢ λ𝑥: 𝐴.𝑡 ▷ Π𝑥: 𝐴.𝐵 App
Γ ⊢ 𝑡 ▷h Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑢◁𝐴

Γ ⊢ 𝑡 𝑢 ▷𝐵[𝑢]

List
Γ ⊢ 𝐴 ▷h Type𝑖

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 ▷ Type𝑖
Nil

Γ ⊢ 𝐴◁
Γ ⊢ 𝜀𝐴 ▷ 𝐋𝐢𝐬𝐭 𝐴 Cons

Γ ⊢ 𝐴◁
Γ ⊢ 𝑎◁𝐴 Γ ⊢ 𝑙◁𝐋𝐢𝐬𝐭 𝐴

Γ ⊢ 𝑎 ::A 𝑙 ▷ 𝐋𝐢𝐬𝐭 𝐴

ListInd

Γ ⊢ 𝐴◁ Γ ⊢ 𝑠◁𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑥: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃▷ Γ ⊢ 𝑏𝜀 ◁𝑃 [𝜀𝐴] Γ, 𝑥: 𝐴, 𝑦: 𝐋𝐢𝐬𝐭 𝐴, 𝑧: 𝑃 [𝑦] ⊢ 𝑏:: ◁𝑃 [𝑥 ::A 𝑦]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) ▷ 𝑃 [𝑠]

Empty Γ ⊢ 𝟎▷Type0
EmptyInd

Γ ⊢ 𝑠◁𝟎 Γ ⊢ 𝑃 ◁
Γ ⊢ ind𝟎(𝑠; 𝑃 ) ▷ 𝑃 UnitUni Γ ⊢ 𝟏▷Type0
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UnitTm Γ ⊢ ()▷𝟏 UnitInd
Γ ⊢ 𝑠◁𝟏 Γ, 𝑧: 𝟏 ⊢ 𝑃 ◁ Γ ⊢ 𝑏() ◁𝑃 [()]

Γ ⊢ ind𝟏(𝑠; 𝑧.𝑃 ; 𝑏()) ▷ 𝑃 [𝑠]

Sig
Γ ⊢ 𝐴 ▷h Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ▷h Type𝑖

Γ ⊢ Σ𝑥: 𝐴.𝐵 ▷ Type𝑖
PaiR

Γ ⊢ 𝑡 ▷𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁
Γ ⊢ 𝑢◁𝐵[𝑡]

Γ ⊢ (𝑡, 𝑢)𝑥.𝐵 ▷ Σ𝑥: 𝐴.𝐵

PRoj1
Γ ⊢ 𝑝 ▷h Σ𝑥: 𝐴.𝐵

Γ ⊢ 𝜋1 𝑝 ▷𝐴 PRoj2
Γ ⊢ 𝑝 ▷ Σ𝑥: 𝐴.𝐵
Γ ⊢ 𝜋2 𝑝 ▷𝐵[𝑢]

TRee
Γ ⊢ 𝐴 ▷h Type𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ▷h Type𝑖

Γ ⊢ 𝐖 𝑥: 𝐴.𝐵 ▷ Type𝑖

Sup
Γ ⊢ 𝑎 ▷𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁ Γ ⊢ 𝑘◁𝐵[𝑎] → 𝐖 𝑥: 𝐴.𝐵

Γ ⊢ sup𝑥.𝐵 𝑎 𝑘 ▷𝐖 𝑥: 𝐴.𝐵

TReeInd

Γ ⊢ 𝐴◁ Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁ Γ ⊢ 𝑠◁𝐖 𝑥: 𝐴.𝐵 Γ, 𝑧: 𝐖 𝑥: 𝐴.𝐵 ⊢ 𝑃 ◁
Γ, 𝑥: 𝐴, 𝑦: 𝐵[𝑥] → 𝑊𝑥: 𝐴.𝐵, ℎ:Π 𝑧: 𝐵[𝑥].𝑃 [𝑦 𝑧] ⊢ 𝑏◁𝑃[sup𝑥.𝐵 𝑥 𝑦]

Γ ⊢ ind𝐖 𝑥:𝐴.𝐵(𝑠; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏) ▷ 𝑃 [𝑠]

BoolUni Γ ⊢ 𝐁▷Type0
TRue Γ ⊢ tt▷𝐁 False Γ ⊢ ff▷𝐁

BoolInd
Γ ⊢ 𝑠◁𝐁 Γ, 𝑧: 𝐁 ⊢ 𝑃 ◁ Γ ⊢ 𝑏tt ◁𝑃 [tt] Γ ⊢ 𝑏ff ◁𝑃 [ff]

Γ ⊢ ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏tt, 𝑏ff) ▷ 𝑃 [𝑠]

IdTy
Γ ⊢ 𝐴 ▷h Type𝑖 Γ ⊢ 𝑎◁𝐴 Γ ⊢ 𝑎′ ◁𝐴

Γ ⊢ 𝐈𝐝𝐴 𝑎 𝑎′ ▷ Type𝑖
ReflTm

Γ ⊢ 𝐴◁ Γ ⊢ 𝑎◁𝐴
Γ ⊢ refl𝐴,𝑎 ▷ 𝐈𝐝𝐴 𝑎 𝑎

IdInd

Γ ⊢ 𝐴◁
Γ ⊢ 𝑠 ▷h 𝐈𝐝𝐴′ 𝑎 𝑎′ Γ, 𝑥, 𝑦: 𝐴, 𝑧: 𝐈𝐝𝐴 𝑥 𝑦 ⊢ 𝑃 ◁ Γ, 𝑥: 𝐴 ⊢ 𝑏◁𝑃[id, 𝑥, 𝑥, refl𝐴,𝑥]

Γ ⊢ ind𝐈𝐝𝐴
(𝑠; 𝑥.𝑦.𝑧.𝑃 ; 𝑥.𝑏) ▷ 𝑃 [id, 𝑎, 𝑎′, 𝑠]

Γ ⊢ 𝑡◁𝑇 Term 𝑡 checks against type 𝑇

ChecK
Γ ⊢ 𝑡 ▷ 𝑇 ′ Γ ⊢ 𝑇 ′ ≅ 𝑇 ◁

Γ ⊢ 𝑡◁𝑇

Γ ⊢ 𝑡 ▷h 𝑇 Term 𝑡 infers the reduced type 𝑇

InfRed
Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑇 {⋆ 𝑇 ′

Γ ⊢ 𝑡 ▷h 𝑇 ′
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Γ ⊢ 𝑇 ≅ 𝑇 ′ ◁ Types 𝑇 and 𝑇 ′ are convertible

TyRed
𝑇 {⋆ 𝑈 𝑇 ′ {⋆ 𝑈 ′ Γ ⊢ 𝑈 ≅h 𝑈 ′ ◁

Γ ⊢ 𝑇 ≅ 𝑇 ′ ◁

Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝐴 Terms 𝑡 and 𝑡′ are convertible at type 𝑇

TmRed
𝑡 {⋆ 𝑢 𝑡′ {⋆ 𝑢′ 𝑇 {⋆ 𝑈 Γ ⊢ 𝑢 ≅h 𝑢′ ◁𝑈

Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝑇

Γ ⊢ 𝑇 ≅h 𝑇 ′ ◁ Reduced types 𝑇 and 𝑇 ′ are convertible

CUniTy Γ ⊢ Type𝑖 ≅h Type𝑖 ◁
CPRodTy

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ, 𝑥: 𝐴′ ⊢ 𝐵 ≅ 𝐵′ ◁

Γ ⊢ Π𝑥: 𝐴.𝐵 ≅h Π𝑥: 𝐴′.𝐵′ ◁

CListTy
Γ ⊢ 𝐴 ≅ 𝐴′ ◁

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 ≅h 𝐋𝐢𝐬𝐭 𝐴′ ◁
CSigTy

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′ ◁

Γ ⊢ Σ𝑥: 𝐴.𝐵 ≅h Σ𝑥: 𝐴′.𝐵′ ◁

CTReeTy

Γ ⊢ 𝐴 ≅ 𝐴′ ◁
Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′ ◁

Γ ⊢ 𝐖 𝑥: 𝐴.𝐵 ≅h 𝐖 𝑥: 𝐴′.𝐵′ ◁
CIdTy

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ ⊢ 𝑡 ≅ 𝑡′ ◁𝐴
Γ ⊢ 𝑢 ≅ 𝑢′ ◁𝐴

Γ ⊢ 𝐈𝐝𝐴 𝑡 𝑢 ≅h 𝐈𝐝𝐴′ 𝑡′ 𝑢′ ◁

CReflTy
𝑇 is 𝟎, 𝟏 or 𝐁
Γ ⊢ 𝑇 ≅h 𝑇 ◁ NeuTy

Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑇
Γ ⊢ 𝑛 ≅h 𝑛′ ◁

Γ ⊢ 𝑡 ≅h 𝑡′ ◁𝐴 Reduced terms 𝑡 and 𝑡′ are convertible at type 𝐴

CUni Γ ⊢ Type𝑖 ≅h Type𝑗 ◁Type𝑘
CFun

Γ ⊢ 𝐴 ≅ 𝐴′ ◁Type𝑖
Γ, 𝑥: 𝐴′ ⊢ 𝐵 ≅ 𝐵′ ◁Type𝑖

Γ ⊢ Π𝑥: 𝐴.𝐵 ≅h Π𝑥: 𝐴′.𝐵′ ◁Type𝑖

CFunEta
Γ, 𝑥: 𝐴 ⊢ 𝑓 𝑥 ≅ 𝑓 ′ 𝑥◁𝐵
Γ ⊢ 𝑓 ≅h 𝑓 ′ ◁Π𝑥: 𝐴.𝐵 CSig

Γ ⊢ 𝐴 ≅ 𝐴′ ◁Type𝑖
Γ, 𝑥: 𝐴′ ⊢ 𝐵 ≅ 𝐵′ ◁Type𝑖

Γ ⊢ Σ𝑥: 𝐴.𝐵 ≅h Σ𝑥: 𝐴′.𝐵′ ◁Type𝑖

CSigEta

Γ ⊢ 𝜋1 𝑝 ≅ 𝜋1 𝑝′ ◁𝐴
Γ ⊢ 𝜋2 𝑝 ≅ 𝜋2 𝑝′ ◁𝐵[𝜋1 𝑝]

Γ ⊢ 𝑝 ≅h 𝑝′ ◁Σ𝑥: 𝐴.𝐵 CList
Γ ⊢ 𝐴 ≅ 𝐴′ ◁Type𝑖

Γ ⊢ 𝐋𝐢𝐬𝐭 𝐴 ≅h 𝐋𝐢𝐬𝐭 𝐴′ ◁Type𝑖

CNil Γ ⊢ 𝜀𝐴 ≅h 𝜀𝐴′ ◁𝐋𝐢𝐬𝐭 𝐴″ CCons
Γ ⊢ 𝑎 ≅ 𝑎′ ◁𝐴″ Γ ⊢ 𝑙 ≅ 𝑙′ ◁𝐋𝐢𝐬𝐭 𝐴″

Γ ⊢ 𝑎 ::A 𝑙 ≅h 𝑎′ ::A' 𝑙′ ◁𝐋𝐢𝐬𝐭 𝐴″

CReflUni
𝑇 is 𝟎, 𝟏 or 𝐁

Γ ⊢ 𝑇 ≅h 𝑇 ◁Type0
CUnitK Γ ⊢ () ≅h ()◁𝟏 CReflBool

𝑡 is tt or ff
Γ ⊢ 𝑡 ≅h 𝑡◁𝐁
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CSup
Γ ⊢ 𝑎 ≅ 𝑎′ ◁𝐴″ Γ ⊢ 𝑘 ≅ 𝑘′ ◁𝐵″[𝑎] → 𝐖 𝑥: 𝐴″.𝐵″

Γ ⊢ sup𝑥.𝐵 𝑎 𝑘 ≅h sup𝑥.𝐵′ 𝑎′ 𝑘′ ◁𝐖 𝑥: 𝐴″.𝐵″

ReflRefl Γ ⊢ refl𝐴,𝑎 ≅ refl𝐴′,𝑎′ ◁ 𝐈𝐝𝐴″ 𝑡 𝑢 NeuNeu
Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑆 ne𝑀

Γ ⊢ 𝑛 ≅h 𝑛′ ◁𝑀

NeuPos
Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑆 𝑇 is Type𝑖, 𝟎, 𝟏, 𝐁, 𝐋𝐢𝐬𝐭 𝐴, 𝐖 𝑥: 𝐴.𝐵 or 𝐈𝐝𝐴 𝑎 𝑎′

Γ ⊢ 𝑛 ≅h 𝑛′ ◁𝑇

Γ ⊢ 𝑡 ≈h 𝑡′ ▷ 𝑇 Neutrals 𝑡 and 𝑡′ are comparable, inferring the reduced type 𝑇

NRed
Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑇 𝑇 {⋆ 𝑆

Γ ⊢ 𝑛 ≈h 𝑛′ ▷ 𝑆

Γ ⊢ 𝑡 ≈ 𝑡′ ▷ 𝑇 Neutrals 𝑡 and 𝑡′ are comparable, inferring the type 𝑇

NVaR
(𝑥: 𝑇 ∈ Γ)

Γ ⊢ 𝑥 ≈ 𝑥 ▷ 𝑇 NApp
Γ ⊢ 𝑛 ≈h 𝑛′ ▷ Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ≅ 𝑢′ ◁𝐴

Γ ⊢ 𝑛 𝑢 ≈ 𝑛′ 𝑢′ ▷𝐵[𝑢]

NListInd

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ ⊢ 𝑠 ≈ 𝑠′ ▷ 𝑆 Γ, 𝑧: 𝐋𝐢𝐬𝐭 𝐴 ⊢ 𝑃 ≅ 𝑃 ′ ◁
Γ ⊢ 𝑏𝜀 ≅ 𝑏′

𝜀 ◁𝑃 [𝜀𝐴] Γ, 𝑥: 𝐴, 𝑦: 𝐋𝐢𝐬𝐭 𝐴, 𝑧: 𝑃 [𝑦] ⊢ 𝑏:: ≅ 𝑏′
:: ◁𝑃 [𝑥 ::A 𝑦]

Γ ⊢ ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) ≈ ind𝐋𝐢𝐬𝐭 𝐴′(𝑠′; 𝑧.𝑃 ′; 𝑏′
𝜀, 𝑥.𝑦.𝑧.𝑏′

::) ▷ 𝑃 [𝑠]

NEmptyInd
Γ ⊢ 𝑠 ≈h 𝑠′ ▷ 𝟎 Γ ⊢ 𝑃 ≅ 𝑃 ′ ◁

Γ ⊢ ind𝟎(𝑠; 𝑃 ) ≈ ind𝟎(𝑠′; 𝑃 ′) ▷ 𝑃

NUnitInd
Γ ⊢ 𝑠 ≈h 𝑠′ ▷ 𝟏 Γ, 𝑧: 𝟏 ⊢ 𝑃 ≅ 𝑃 ′ ◁ Γ ⊢ 𝑏 ≅ 𝑏′ ◁𝑃 [()]

Γ ⊢ ind𝟏(𝑠; 𝑧.𝑃 ; 𝑏) ≈ ind𝟎(𝑠′; 𝑧.𝑃 ′; 𝑏′) ▷ 𝑃 [𝑠]

NSig1
Γ ⊢ 𝑛 ≈h 𝑛′ ▷ Σ𝑥: 𝐴.𝐵
Γ ⊢ 𝜋1 𝑛 ≈ 𝜋1 𝑛′ ▷𝐴 NSig2

Γ ⊢ 𝑛 ≈h 𝑛′ ▷ Σ𝑥: 𝐴.𝐵
Γ ⊢ 𝜋2 𝑛 ≈ 𝜋2 𝑛′ ▷𝐵[𝜋1 𝑛]

NTReeInd

Γ ⊢ 𝐴 ≅ 𝐴′ ◁
Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′ ◁ Γ ⊢ 𝑠 ≈ 𝑠′ ▷ 𝑆 Γ, 𝑧: 𝐖 𝑥: 𝐴.𝐵 ⊢ 𝑃 ≅ 𝑃 ′ ◁

Γ, 𝑥: 𝐴, 𝑦: 𝐵[𝑥] → 𝑊𝑥: 𝐴.𝐵, ℎ:Π 𝑧: 𝐵[𝑥].𝑃 [𝑦 𝑧] ⊢ 𝑏 ≅ 𝑏′ ◁𝑃[sup𝑥.𝐵 𝑥 𝑦]
Γ ⊢ ind𝐖 𝑥:𝐴.𝐵(𝑠; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏) ≈ ind𝐖 𝑥:𝐴′.𝐵′(𝑠′; 𝑧.𝑃 ′; 𝑥.𝑦.𝑧.𝑏′) ▷ 𝑃 [𝑠]

NBoolInd

Γ ⊢ 𝑠 ≈h 𝑠′ ▷𝐁
Γ, 𝑧: 𝐁 ⊢ 𝑃 ≅ 𝑃 ′ ◁ Γ ⊢ 𝑏tt ≅ 𝑏′

tt ◁𝑃 [tt] Γ ⊢ 𝑏ff ≅ 𝑏ff ◁𝑃 [ff]
Γ ⊢ ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏tt, 𝑏ff) ≈ ind𝐁(𝑠′; 𝑧.𝑃 ′; 𝑏′

tt, 𝑏′
ff) ▷ 𝑃 [𝑠]

IdInd

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ ⊢ 𝑠 ≈h 𝑠′ ▷ 𝐈𝐝𝐴″ 𝑎 𝑎′

Γ, 𝑥: 𝐴, 𝑦: 𝐴, 𝑧: 𝐈𝐝𝐴 𝑥 𝑦 ⊢ 𝑃 ≅ 𝑃 ′ ◁ Γ, 𝑥: 𝐴 ⊢ 𝑏 ≅ 𝑏′ ◁𝑃[id, 𝑥, 𝑥, refl𝐴,𝑥]
Γ ⊢ ind𝐈𝐝𝐴

(𝑠; 𝑥.𝑦.𝑧.𝑃 ; 𝑥.𝑏) ≈ ind𝐈𝐝𝐴′ (𝑠′; 𝑥.𝑦.𝑧.𝑃 ′; 𝑥.𝑏′) ▷ 𝑃 [id, 𝑎, 𝑎′, 𝑠]
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B.3 Declarative MLTTmap
Extend the rules of appendix B.1.
For each type former 𝐹 (Π, Σ, 𝐋𝐢𝐬𝐭, 𝐖, 𝐈𝐝)

Map

Γ ⊢map 𝑋, 𝑌 : dom(𝐹)
Γ ⊢map 𝑓 :Hom𝐹 (𝑋, 𝑌 ) Γ ⊢map 𝑡 : 𝐹 𝑋

Γ ⊢map map𝐹 𝑓 𝑡 : 𝐹 𝑌 MapId

Γ ⊢map 𝑋 : dom(𝐹)
Γ ⊢map 𝑡 : 𝐹 𝑋

Γ ⊢map map𝐹 id𝐹 𝑋 𝑡 ≅ 𝑡 : 𝐹 𝑋

MapComp

Γ ⊢map 𝑋, 𝑌 , 𝑍 : dom(𝐹)
Γ ⊢map 𝑔 :Hom𝐹 (𝑋, 𝑌 ) Γ ⊢map 𝑓 :Hom𝐹 (𝑌 , 𝑍) Γ ⊢map 𝑡 : 𝐹 𝑋

Γ ⊢map map𝐹 𝑓 (map𝐹 𝑔 𝑡) ≅ map𝐹 (𝑓 ∘ 𝑔) 𝑡 : 𝐹 𝑍

Map-Cong
Γ ⊢map 𝑋, 𝑌 : dom(𝐹) Γ ⊢map 𝑓 ≅ 𝑓 ′ :Hom𝐹 (𝑋, 𝑌 ) Γ ⊢map 𝑡 ≅ 𝑡′ : 𝐹 𝑋

Γ ⊢map map𝐹 𝑓 𝑡 ≅ map𝐹 𝑓 ′ 𝑡′ : 𝐹 𝑌

Γ ⊢map 𝑡 ≅ 𝑢 : 𝐴

mapFun
Γ ⊢map (𝑓, 𝑔) :HomΠ((𝐴, 𝐵), (𝐴′, 𝐵′)) Γ ⊢map ℎ :Π𝑥: 𝐴.𝐵 Γ ⊢map 𝑎 : 𝐴′

Γ ⊢map mapΠ (𝑓, 𝑔) ℎ 𝑎 ≅ 𝑔 (ℎ (𝑓 𝑎)) : 𝐵′

mapSig1
Γ ⊢map (𝑓, 𝑔) :HomΣ((𝐴, 𝐵), (𝐴′, 𝐵′)) Γ ⊢map 𝑝 :Σ𝑥: 𝐴.𝐵

Γ ⊢map 𝜋1 (mapΣ (𝑓, 𝑔) 𝑝) ≅ 𝑓 (𝜋1 𝑝) : 𝐴′

mapSig2
Γ ⊢map (𝑓, 𝑔) :HomΣ((𝐴, 𝐵), (𝐴′, 𝐵′)) Γ ⊢map 𝑝 :Σ𝑥: 𝐴.𝐵

Γ ⊢map 𝜋2 (mapΣ (𝑓, 𝑔) 𝑝) ≅ 𝑔 (𝜋2 𝑝) : 𝐵′[𝑓 (𝜋1 𝑝)]

mapListNil
Γ ⊢map 𝑓 :Hom𝐋𝐢𝐬𝐭(𝐴, 𝐴′)

Γ ⊢map map𝐋𝐢𝐬𝐭 𝑓 𝜀𝐴 ≅ 𝜀𝐴′ : 𝐋𝐢𝐬𝐭 𝐴′

mapListCons
Γ ⊢map 𝑓 :Hom𝐋𝐢𝐬𝐭(𝐴, 𝐴′) Γ ⊢map ℎ𝑑 : 𝐴 Γ ⊢map 𝑡𝑙 : 𝐋𝐢𝐬𝐭 𝐴

Γ ⊢map map𝐋𝐢𝐬𝐭 𝑓 (ℎ𝑑 ::A 𝑡𝑙) ≅ (𝑓 ℎ𝑑) ::A'(map𝐋𝐢𝐬𝐭 𝑓 𝑡𝑙) : 𝐋𝐢𝐬𝐭 𝐴′

mapW

Γ ⊢map (𝑓, 𝑔) :Hom𝐖((𝐴, 𝐵), (𝐴′, 𝐵′))
Γ ⊢map 𝑎 : 𝐴 Γ ⊢map 𝑘 : 𝐵 𝑎 → 𝐖 𝑥: 𝐴.𝐵

Γ ⊢map map𝐖(𝑓, 𝑔) (sup𝑥.𝐵 𝑎 𝑘) ≅ sup𝑥.𝐵′(𝑓 𝑎) (λ𝑥: 𝐵′[𝑓 𝑎].map𝐖(𝑓, 𝑔) (𝑘 (𝑔 𝑥))) : 𝐖 𝑥: 𝐴′.𝐵′

mapId
Γ ⊢map 𝑓 :Hom𝐈𝐝(𝐴, 𝐴′) Γ ⊢map 𝑎 : 𝐴

Γ ⊢map map𝐈𝐝 𝑓 refl𝐴,𝑎 ≅ refl𝐴′,𝑓 𝑎 : 𝐈𝐝 𝐴′ (𝑓 𝑎) (𝑓 𝑎)
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B.4 Algorithmic MLTTmap
Extend appendix B.2. Replaces the rules already named with the same name in appendix B.2.

Γ ⊢map 𝑡 ≅h 𝑡′ ◁𝑇

NeuPosMap
Γ ⊢map 𝑛 ≈map 𝑛′ ◁𝑇 𝑇 is Type𝑖, 𝐋𝐢𝐬𝐭 𝐴, 𝐖 𝑥: 𝐴.𝐵 or 𝐈𝐝𝐴 𝑎 𝑎′

Γ ⊢map 𝑛 ≅h 𝑛′ ◁𝑇

Γ ⊢map 𝑛 ≈ 𝑛′ ▷ 𝑇

NListInd

Γ ⊢map 𝐴 ≅ 𝐴′ ◁ Γ ⊢map 𝑠 ≈map 𝑠′ ◁𝐋𝐢𝐬𝐭 𝐴 Γ, 𝑧: 𝐋𝐢𝐬𝐭 𝐴 ⊢map 𝑃 ≅ 𝑃 ′ ◁
Γ ⊢map 𝑏𝜀 ≅ 𝑏′

𝜀 ◁𝑃 [𝜀𝐴] Γ, 𝑥: 𝐴, 𝑦: 𝐋𝐢𝐬𝐭 𝐴, 𝑧: 𝑃 [𝑦] ⊢map 𝑏:: ≅ 𝑏′
:: ◁𝑃 [𝑥 ::A 𝑦]

Γ ⊢map ind𝐋𝐢𝐬𝐭 𝐴(𝑠; 𝑧.𝑃 ; 𝑏𝜀, 𝑥.𝑦.𝑧.𝑏::) ≈ ind𝐋𝐢𝐬𝐭 𝐴′(𝑠′; 𝑧.𝑃 ′; 𝑏′
𝜀, 𝑥.𝑦.𝑧.𝑏′

::) ▷ 𝑃 [𝑠]

NTReeInd

Γ ⊢map 𝐴 ≅ 𝐴′ ◁ Γ, 𝑥: 𝐴 ⊢map 𝐵 ≅ 𝐵′ ◁
Γ ⊢map 𝑠 ≈map 𝑠′ ◁𝐖 𝑥: 𝐴.𝐵 Γ, 𝑧: 𝐖 𝑥: 𝐴.𝐵 ⊢map 𝑃 ≅ 𝑃 ′ ◁

Γ, 𝑥: 𝐴, 𝑦: 𝐵[𝑥] → 𝑊𝑥: 𝐴.𝐵, ℎ:Π 𝑧: 𝐵[𝑥].𝑃 [𝑦 𝑧] ⊢map 𝑏 ≅ 𝑏′ ◁𝑃[sup𝑥.𝐵 𝑥 𝑦]
Γ ⊢map ind𝐖 𝑥:𝐴.𝐵(𝑠; 𝑧.𝑃 ; 𝑥.𝑦.𝑧.𝑏) ≈ ind𝐖 𝑥:𝐴′.𝐵′(𝑠′; 𝑧.𝑃 ′; 𝑥.𝑦.𝑧.𝑏′) ▷ 𝑃 [𝑠]

IdInd

Γ ⊢map 𝐴 ≅ 𝐴′ ◁ Γ ⊢map 𝑠 ≈map 𝑠′ ◁ 𝐈𝐝𝐴 ▷ 𝑎, 𝑎′

Γ, 𝑥, 𝑦: 𝐴, 𝑧: 𝐈𝐝𝐴 𝑥 𝑦 ⊢map 𝑃 ≅ 𝑃 ′ ◁ Γ, 𝑥: 𝐴 ⊢map 𝑏 ≅ 𝑏′ ◁𝑃[id, 𝑥, 𝑥, refl𝐴,𝑥]
Γ ⊢map ind𝐈𝐝𝐴

(𝑠; 𝑥.𝑧.𝑃 ; 𝑏) ≈ ind𝐈𝐝𝐴′ (𝑠′; 𝑥.𝑧.𝑃 ′; 𝑏′) ▷ 𝑃 [id, 𝑎, 𝑎′, 𝑠]

unmap, unmapfun, unmapfunW1, unmapfunW2
unmap(map𝐹 𝑓 𝑡) ≝ 𝑡 unmap(𝑡) ≝ 𝑡 otherwise

unmapfun(map𝐹 𝑓 𝑡, 𝑥) ≝ 𝑓 𝑥 unmapfun(𝑡, 𝑥) ≝ 𝑥 otherwise
unmapfunW1(map𝐹 𝑓 𝑡, 𝑥) ≝ 𝜋1 𝑓 𝑥 unmapfunW1(𝑡, 𝑥) ≝ 𝑥 otherwise
unmapfunW2(map𝐹 𝑓 𝑡, 𝑦) ≝ 𝜋2 𝑓 𝑦 unmapfunW2(𝑡, 𝑦) ≝ 𝑦 otherwise

Γ ⊢map 𝑛 ≈map 𝑛′ ◁𝑇

UnmapList

Γ ⊢map unmap(𝑛) ≈h unmap(𝑛′) ▷ 𝐋𝐢𝐬𝐭 𝐴
Γ, 𝑥: 𝐴 ⊢map unmapfun(𝑛, 𝑥) ≅ unmapfun(𝑛′, 𝑥)◁𝐵

Γ ⊢map 𝑛 ≈map 𝑛′ ◁𝐋𝐢𝐬𝐭 𝐵

UnmapTRee

Γ ⊢map unmap(𝑛) ≈h unmap(𝑛′) ▷𝐖 𝑥: 𝐴.𝐵
Γ, 𝑥: 𝐴 ⊢map unmapfunW1(𝑛, 𝑥) ≅ unmapfunW1(𝑛′, 𝑥)◁𝐴′

Γ, 𝑥: 𝐴, 𝑦: 𝐵′[unmapfunW1(𝑛, 𝑥)] ⊢map unmapfunW2(𝑛, 𝑦) ≅ unmapfunW2(𝑛′, 𝑦)◁𝐵 𝑥
Γ ⊢map 𝑛 ≈map 𝑛′ ◁𝐖 𝑥: 𝐴.𝐵

UnmapId

Γ ⊢map unmap(𝑛) ≈h unmap(𝑛′) ▷ 𝐈𝐝𝐴 𝑎 𝑎′

Γ, 𝑥: 𝐴 ⊢map unmapfun(𝑛, 𝑥) ≅ unmapfun(𝑛′, 𝑥)◁𝐴′

Γ ⊢map 𝑠 ≈map 𝑠′ ◁ 𝐈𝐝𝐴′ ▷ 𝑎, 𝑎′
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𝑡 {1 𝑡′

mapΠ 𝑓 ℎ 𝑡 {1 (𝜋2 𝑓) (ℎ ((𝜋1 𝑓) 𝑡)) 𝜋1 (mapΣ 𝑓 𝑝) {1 𝜋1 𝑓 (𝜋1 𝑝)

𝜋2 (mapΣ 𝑓 𝑝) {1 𝜋2 𝑓 (𝜋2 𝑝) map𝐋𝐢𝐬𝐭 𝑓 𝜀 {1 𝜀

map𝐋𝐢𝐬𝐭 𝑓 (ℎ𝑑 :: 𝑡𝑙) {1 𝑓 ℎ𝑑 ::map𝐋𝐢𝐬𝐭 𝑓 𝑡𝑙

map𝐖{𝑇 }{𝑇 ′}𝑓 (sup 𝑎 𝑘) {1 sup𝑥.𝜋2 𝑇 ′(𝜋1 𝑓 𝑎) (λ𝑥: (𝜋2 𝑇 ′ (𝜋1 𝑓 𝑎)).map𝐖 𝑓 (𝑘 (𝜋2 𝑔 𝑥)))

map𝐈𝐝 𝑓 refl𝐴,𝑎 {
1 refl𝐵,𝑓 𝑎 RedMapComp

ne 𝑛
map𝐋𝐢𝐬𝐭 𝑓 (map𝐋𝐢𝐬𝐭 𝑔 𝑛) {1 map𝐋𝐢𝐬𝐭(𝑓 ∘ 𝑔) 𝑛

B.5 Declarative label types
Extend appendix B.1.

LblTy
𝐿 ∈ 𝒫f(Lbl)

Γ ⊢ 𝑳 LblUni
𝐿 ∈ 𝒫f(Lbl)
Γ ⊢ 𝑳 :Type0

LblTm
𝑙 ∈ Lbl

Γ ⊢ 𝑙 :{{{𝒍}}}

LblElim
Γ ⊢ 𝑠 : 𝑳 Γ, 𝑥: 𝑳 ⊢ 𝑃 Γ ⊢ 𝑏𝑙 : 𝑃 [𝑙] for all 𝑙 ∈ 𝐿

Γ ⊢ ind𝑳(𝑠; 𝑥.𝑃 ; ⃗⃗⃗ ⃗⃗𝑏𝑙) : 𝑃 [𝑠]

NLblInd
Γ ⊢ 𝑡 ≅ 𝑡′ : 𝑳 Γ, 𝑧: 𝑳 ⊢ 𝑃 ≅ 𝑃 ′ Γ ⊢ 𝑏𝑙 ≅ 𝑏′

𝑙 : 𝑃 [𝑙] for all 𝑙 ∈ 𝐿
Γ ⊢ ind𝑳(𝑡; 𝑧.𝑃 ; ⃗⃗⃗ ⃗⃗𝑏𝑙) ≅ ind𝑳(𝑡′; 𝑧.𝑃 ′; ⃗⃗⃗ ⃗⃗ ⃗𝑏′

𝑙) : 𝑃 [𝑡]

βLbl
𝑙 ∈ 𝐿 Γ ⊢ 𝑠 : 𝑳 Γ, 𝑥: 𝑳 ⊢ 𝑃 Γ ⊢ 𝑏𝑙 : 𝑃 [𝑙] for all 𝑙 ∈ 𝐿

Γ ⊢ ind{{{ 𝒍}}}(𝑙; 𝑥.𝑃 ; ⃗⃗⃗ ⃗⃗𝑏𝑙) ≅ 𝑏𝑙 : 𝑃 [𝑙]

B.6 Algorithmic label types
Extend appendix B.2. The term 𝑙 is a normal form, and ind𝑳(𝑛; 𝑥.𝑃 ; ⃗𝑏) is neutral whenever 𝑛 is.

LblTy
𝐿 ∈ 𝒫f(Lbl)

Γ ⊢ 𝑳 ▷ Type0
LblTm

𝑙 ∈ Lbl
Γ ⊢ 𝑙 ▷ {{{𝒍}}} LblTmConv Γ ⊢ 𝑙 ≅h 𝑙◁𝑳

LblElim
Γ ⊢ 𝑠◁𝑳 Γ, 𝑥: 𝑳 ⊢ 𝑃 ▷h Type𝑖 Γ ⊢ 𝑏𝑙 ◁𝑃 [𝑙] for all 𝑙 ∈ 𝐿

Γ ⊢ ind𝑳(𝑠; 𝑥.𝑃 ; ⃗⃗⃗ ⃗⃗𝑏𝑙) ▷ 𝑃 [𝑠]

NLblInd
Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑆 Γ, 𝑧: 𝑳 ⊢ 𝑃 ≅ 𝑃 ′ ◁ Γ ⊢ 𝑏𝑙 ≅ 𝑏′

𝑙 ◁𝑃 [𝑙] for all 𝑙 ∈ 𝐿
Γ ⊢ ind𝑳(𝑛; 𝑧.𝑃 ; ⃗⃗⃗ ⃗⃗𝑏𝑙) ≈ ind𝑳(𝑛′; 𝑧.𝑃 ′; ⃗⃗⃗ ⃗⃗𝑏𝑙) ▷ 𝑃 [𝑛]

LblRed
ind{{{ 𝒍}}}(𝑙; 𝑥.𝑃 ; ⃗⃗⃗ ⃗⃗𝑏𝑙) {1 𝑏𝑙
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B.7 Algorithmic MLTTsub
Extend appendices B.2 and B.6, with rule ChecKSub replacing ChecK.

Γ ⊢sub 𝑡◁𝑇

ChecKSub
Γ ⊢sub 𝑡 ▷ 𝑇 ′ Γ ⊢sub 𝑇 ′ ≼ 𝑇 ◁

Γ ⊢sub 𝑡◁𝑇

Γ ⊢sub 𝑇 ≼ 𝑇 ′ ◁ Type 𝑇 is a subtype of type 𝑇 ′

TyRed
𝑇 {⋆ 𝑈 𝑇 ′ {⋆ 𝑈 ′ Γ ⊢sub 𝑈 ≼h 𝑈 ′ ◁

Γ ⊢sub 𝑇 ≼ 𝑇 ′ ◁

Γ ⊢sub 𝑇 ≼h 𝑇 ′ ◁ Reduced type 𝑇 is a subtype of reduced type 𝑇 ′

LblSub
𝐿 ⊆ 𝐿′

Γ ⊢sub 𝑳 ≼ 𝑳′ ◁
PRodSub

Γ ⊢sub 𝐴′ ≼ 𝐴◁ Γ, 𝑥: 𝐴′ ⊢sub 𝐵 ≼ 𝐵′ ◁

Γ ⊢sub Π𝑥: 𝐴.𝐵 ≼h Π𝑥: 𝐴′.𝐵′ ◁

ListSub
Γ ⊢sub 𝐴 ≼ 𝐴′ ◁

Γ ⊢sub 𝐋𝐢𝐬𝐭 𝐴 ≼h 𝐋𝐢𝐬𝐭 𝐴′ ◁
SigSub

Γ ⊢sub 𝐴 ≼ 𝐴′ ◁
Γ, 𝑥: 𝐴 ⊢sub 𝐵 ≼ 𝐵′ ◁

Γ ⊢sub Σ𝑥: 𝐴.𝐵 ≼h Σ𝑥: 𝐴′.𝐵′ ◁

TReeSub

Γ ⊢sub 𝐴 ≼ 𝐴′ ◁
Γ, 𝑥: 𝐴 ⊢sub 𝐵′ ≼ 𝐵 ◁

Γ ⊢sub 𝐖 𝑥: 𝐴.𝐵 ≼h 𝐖 𝑥: 𝐴′.𝐵′ ◁
IdSub

Γ ⊢sub 𝐴 ≼ 𝐴′ ◁ Γ ⊢sub 𝑡 ≅ 𝑡′ ◁𝐴′

Γ ⊢sub 𝑢 ≅ 𝑢′ ◁𝐴′

Γ ⊢sub 𝐈𝐝𝐴 𝑡 𝑢 ≼h 𝐈𝐝𝐴′ 𝑡′ 𝑢′ ◁

SubRefl
𝑇 is Type𝑖, 𝟎, 𝟏 or 𝐁

Γ ⊢sub 𝑇 ≼h 𝑇 ◁ NeuSub
Γ ⊢sub 𝑛 ≈h 𝑛′ ▷ 𝑇
Γ ⊢sub 𝑛 ≼h 𝑛′ ◁

Admissible

ConvSub
Γ ⊢sub 𝐴 ≅ 𝐴′ ◁

Γ ⊢sub 𝐴 ≼ 𝐴′ ◁
SubAntiSym

Γ ⊢sub 𝐴 ≼ 𝐴′ ◁ Γ ⊢sub 𝐴′ ≼ 𝐴◁
Γ ⊢sub 𝐴 ≅ 𝐴′ ◁

SubTRans
Γ ⊢sub 𝐴 ≼ 𝐴′ ◁ Γ ⊢sub 𝐴′ ≼ 𝐴″ ◁

Γ ⊢sub 𝐴 ≼ 𝐴″ ◁

B.8 Algorithmic MLTTcoe
Extend appendix B.2 and appendix B.6.

Γ ⊢coe 𝑡 ▷ 𝑇

Coe
Γ ⊢coe 𝐴◁ Γ ⊢coe 𝐴′ ◁ Γ ⊢coe 𝑡◁𝐴 Γ ⊢coe 𝐴 ≼ 𝐴′ ◁

Γ ⊢coe coe𝐴,𝐴′ 𝑡 ▷𝐴′
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𝑡 {1 𝑡′

coeΠ𝑥:𝐴.𝐵,Π𝑥:𝐴′.𝐵′(λ𝑥: 𝐴″.𝑡) {1 λ𝑥: 𝐴′. coe𝐵[coe𝐴′,𝐴 𝑥],𝐵′[𝑥](𝑡[coe𝐴′,𝐴 𝑥])

RedCoeFunNe
ne 𝑓

(coeΠ𝑥:𝐴.𝐵,Π𝑥:𝐴′.𝐵′ 𝑓) 𝑎 {1 coe𝐵[coe𝐴′,𝐴 𝑎],𝐵′[𝑎](𝑓 (coe𝐴′,𝐴 𝑎))

coeΣ𝑥:𝐴.𝐵,Σ𝑥:𝐴′.𝐵′(𝑡, 𝑢) {1 ((coe𝐴,𝐴′ 𝑡), (coe𝐵[𝑡],𝐵′[coe𝐴,𝐴′ 𝑡] 𝑢))𝑥.𝐵′

RedCoeSigNe1
ne 𝑝

𝜋1 (coeΣ𝑥:𝐴.𝐵,Σ𝑥:𝐴′.𝐵′ 𝑝) {1 coe𝐴,𝐴′(𝜋1 𝑝)

RedCoeSigNe2
ne 𝑝

𝜋2 (coeΣ𝑥:𝐴.𝐵,Σ𝑥:𝐴′.𝐵′ 𝑝) {1 coe𝐵[𝜋1 𝑝],𝐵′[coe𝐴,𝐴′ (𝜋1 𝑝)](𝜋2 𝑝)

CoeRedId
𝑇 is Type𝑖, 𝟎, 𝟏 or 𝐁

coe𝑇 ,𝑇 𝑡 {1 𝑡 coe𝑳,𝑳′ coe𝑳 𝑙 {1 coe𝑳′ 𝑙 coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′ 𝜀 {1 𝜀𝐴′

coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′(ℎ :: 𝑡) {1 coe𝐴,𝐴′ ℎ ::A' coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′ 𝑡

coe𝐖 𝑥:𝐴.𝐵,𝐖 𝑥:𝐴.𝐵′(sup 𝑎 𝑙) {1

sup𝑥.𝐵′(coe𝐴,𝐴′ 𝑎) (λ𝑥: 𝐵′[coe𝐴,𝐴′ 𝑎]. coe𝐖 𝑥:𝐴.𝐵,𝐖 𝑥:𝐴.𝐵′(𝑘 (coe𝐵′[coe𝐴,𝐴′ 𝑎],𝐵[𝑎] 𝑥)))

coe𝐈𝐝𝐴 𝑎 𝑏,𝐈𝐝𝐴′ 𝑎′ 𝑏′ refl𝐴,𝑎 {
1 refl𝐴′,(coe𝐴,𝐴′ 𝑎)

CoeL
𝐴 {1 𝐴′

coe𝐴,𝐵 𝑡 {1 coe𝐴′,𝐵 𝑡 CoeR
nf𝐴 𝐵 {1 𝐵′

coe𝐴,𝐵 𝑡 {1 coe𝐴,𝐵′ 𝑡

CoeTm
nf𝐴 nf𝐵 𝑡 {1 𝑡′

coe𝐴,𝐵 𝑡 {1 coe𝐴,𝐵 𝑡′ CoeCoe
nf𝑈 nf𝑈 ′ nf𝑇 nf𝑇 ′ ne𝑛

coe𝑈,𝑈′ coe𝑇 ,𝑇 ′ 𝑛 {1 coe𝑇 ,𝑈′ 𝑛

nf 𝑓 ≝ ⋯ ∣ 𝑐 ∣ 𝑙 ∣ coe𝑳 𝑙 weak-head normal forms
ne 𝑛 ≝ ⋯ ∣ ind𝑳(𝑡; 𝑐; ⃗𝑡) weak-head neutrals
cne 𝑐 ≝ ⋯ ∣ coe𝑓,𝑓 𝑛 compacted neutrals

Γ ⊢coe 𝑡 ≈coe 𝑡′ ◁𝑇 Compacted neutrals 𝑡 and 𝑡′ are comparable at type 𝑇

NCoe
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe coe𝑆,𝑇 𝑛 ≈coe coe𝑆′,𝑇 ′ 𝑛′ ◁𝑇 ″ NCoeL
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe coe𝑆,𝑇 𝑛 ≈coe 𝑛′ ◁𝑇 ″

NCoeR
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe 𝑛 ≈coe coe𝑆′,𝑇 ′ 𝑛′ ◁𝑇 ″ NNoCoe
Γ ⊢coe 𝑛 ≈ 𝑛′ ▷ 𝑆″

Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝑇 ″
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Γ ⊢coe 𝑡 ≅h 𝑡′ ◁𝑇

LblTmConv Γ ⊢coe coe𝑳 𝑙 ≅h coe𝑳 𝑙◁𝑳 NeuList
Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝐋𝐢𝐬𝐭 𝐴
Γ ⊢coe 𝑛 ≅h 𝑛′ ◁𝐋𝐢𝐬𝐭 𝐴

NeuTRee
Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝐖 𝑥: 𝐴.𝐵
Γ ⊢coe 𝑛 ≅h 𝑛′ ◁𝐖 𝑥: 𝐴.𝐵 NeuId

Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁ 𝐈𝐝𝐴 𝑎 𝑎′

Γ ⊢coe 𝑛 ≅h 𝑛′ ◁ 𝐈𝐝𝐴 𝑎 𝑎′

NeuNeu
Γ ⊢coe 𝑛 ≈coe 𝑛′ ◁𝑀 ne𝑀

Γ ⊢coe 𝑛 ≅h 𝑛′ ◁𝑀

Γ ⊢coe 𝑇 ≼ 𝑇 ′ ◁

TyRed
𝑇 {⋆ 𝑈 𝑇 ′ {⋆ 𝑈 ′ Γ ⊢coe 𝑈 ≼h 𝑈 ′ ◁

Γ ⊢coe 𝑇 ≼ 𝑇 ′ ◁

Γ ⊢coe 𝑇 ≼h 𝑇 ′ ◁

LblSub
𝐿 ⊆ 𝐿′

Γ ⊢coe 𝑳 ≼h 𝑳′ ◁
PRodSub

Γ ⊢coe 𝐴′ ≼ 𝐴◁ Γ, 𝑥: 𝐴′ ⊢coe 𝐵[coe𝐴′,𝐴 𝑥] ≼ 𝐵′ ◁

Γ ⊢coe Π𝑥: 𝐴.𝐵 ≼h Π𝑥: 𝐴′.𝐵′ ◁

ListSub
Γ ⊢coe 𝐴 ≼ 𝐴′ ◁

Γ ⊢coe 𝐋𝐢𝐬𝐭 𝐴 ≼h 𝐋𝐢𝐬𝐭 𝐴′ ◁
SigSub

Γ ⊢coe 𝐴 ≼ 𝐴′ ◁
Γ, 𝑥: 𝐴 ⊢coe 𝐵 ≼ 𝐵′[coe𝐴,𝐴′ 𝑥]◁
Γ ⊢coe Σ𝑥: 𝐴.𝐵 ≼h Σ𝑥: 𝐴′.𝐵′ ◁

TReeSub
Γ ⊢coe 𝐴 ≼ 𝐴′ ◁ Γ, 𝑥: 𝐴 ⊢coe 𝐵′[coe𝐴,𝐴′ 𝑥] ≼ 𝐵 ◁

Γ ⊢coe 𝐖 𝑥: 𝐴.𝐵 ≼h 𝐖 𝑥: 𝐴′.𝐵′ ◁

IdSub
Γ ⊢coe 𝐴 ≼ 𝐴′ ◁ Γ ⊢coe coe𝐴,𝐴′ 𝑡 ≅ 𝑡′ ◁𝐴′ Γ ⊢coe coe𝐴,𝐴′ 𝑢 ≅ 𝑢′ ◁𝐴′

Γ ⊢coe 𝐈𝐝𝐴 𝑡 𝑢 ≼h 𝐈𝐝𝐴′ 𝑡′ 𝑢′ ◁

SubRefl
𝑇 is Type𝑖, 𝟎, 𝟏 or 𝐁

Γ ⊢coe 𝑇 ≼ 𝑇 ◁

B.9 Declarative MLTTcoe
Extend appendix B.1 and appendix B.5.

Γ ⊢coe 𝑡 : 𝑇

Coe
Γ ⊢coe 𝐴 Γ ⊢coe 𝐴′ Γ ⊢coe 𝑡 : 𝐴 Γ ⊢coe 𝐴 ≼ 𝐴′

Γ ⊢coe coe𝐴,𝐴′ 𝑡 : 𝐴′
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Γ ⊢coe 𝑡 ≅ 𝑡′ : 𝑇

CoeId
Γ ⊢coe 𝑡 : 𝐴

Γ ⊢coe coe𝐴,𝐴 𝑡 ≅ 𝑡 : 𝐴 CoeTRans
Γ ⊢coe 𝑡 : 𝐴 Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe 𝐴′ ≼ 𝐴″

Γ ⊢coe coe𝐴′,𝐴″ coe𝐴,𝐴′ 𝑡 ≅ coe𝐴,𝐴″ 𝑡 : 𝐴″

CoeCong
Γ ⊢coe 𝑡 ≅ 𝑡′ : 𝐴 Γ ⊢coe 𝐴 ≅ 𝐴′ Γ ⊢coe 𝐵 ≅ 𝐵′

Γ ⊢coe coe𝐴,𝐵 𝑡 ≅ coe𝐴′,𝐵′ 𝑡′ : 𝐵

CoeFun

Γ ⊢coe 𝐴′ ≼ 𝐴 Γ, 𝑥: 𝐴′ ⊢coe 𝐵[coe𝐴′,𝐴 𝑥] ≼ 𝐵′

Γ ⊢coe 𝑓 :Π𝑥: 𝐴.𝐵 Γ ⊢coe 𝑎 : 𝐴′

Γ ⊢coe (coeΠ𝑥:𝐴.𝐵,Π𝑥:𝐴′.𝐵′ 𝑓) 𝑎 ≅ coe𝐵[coe𝐴′,𝐴 𝑎],𝐵′[𝑥](𝑓 (coe𝐴′,𝐴 𝑎)) :Π𝑥: 𝐴′.𝐵′

CoeSig1
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ, 𝑥: 𝐴 ⊢coe 𝐵 ≼ 𝐵′[coe𝐴,𝐴′ 𝑥] Γ ⊢coe 𝑝 :Σ𝑥: 𝐴.𝐵

Γ ⊢coe 𝜋1 (coeΣ𝑥:𝐴.𝐵,Σ𝑥:𝐴′.𝐵′ 𝑝) ≅ coe𝐴,𝐴′(𝜋1 𝑝) :Σ𝑥: 𝐴′.𝐵′

CoeSig2
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ, 𝑥: 𝐴 ⊢coe 𝐵 ≼ 𝐵′[coe𝐴,𝐴′ 𝑥] Γ ⊢coe 𝑝 :Σ𝑥: 𝐴.𝐵

Γ ⊢coe 𝜋2 (coeΣ𝑥:𝐴.𝐵,Σ𝑥:𝐴′.𝐵′ 𝑝) ≅ coe𝐵[𝜋1 𝑝],𝐵′[coe𝐴,𝐴′ (𝜋1 𝑝)](𝜋2 𝑝) :Σ𝑥: 𝐴′.𝐵′

CoeNil
Γ ⊢coe 𝐴 ≼ 𝐴′

Γ ⊢coe coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′ 𝜀𝐴 ≅ 𝜀𝐴′ : 𝐋𝐢𝐬𝐭 𝐴′

CoeCons
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe 𝑎 : 𝐴 Γ ⊢coe 𝑙 : 𝐋𝐢𝐬𝐭 𝐴

Γ ⊢coe coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′(𝑎 ::A 𝑙) ≅ (coe𝐴,𝐴′ 𝑎) ::A'(coe𝐋𝐢𝐬𝐭 𝐴,𝐋𝐢𝐬𝐭 𝐴′ 𝑙) : 𝐋𝐢𝐬𝐭 𝐴′

CoeTRee

Γ ⊢coe 𝐴 ≼ 𝐴′

Γ, 𝑥: 𝐴 ⊢coe 𝐵′[coe𝐴,𝐴′ 𝑥] ≼ 𝐵 Γ ⊢coe 𝑎 : 𝐴 Γ ⊢coe 𝑘 : 𝐵 𝑎 → 𝐖 𝑥: 𝐴.𝐵
Γ ⊢coe coe𝐖 𝑥:𝐴.𝐵,𝐖 𝑥:𝐴.𝐵′(sup𝑥.𝐵 𝑎 𝑙) ≅
sup𝑥.𝐵′(coe𝐴,𝐴′ 𝑎) (λ𝑥: 𝐵′[coe𝐴,𝐴′ 𝑎]. coe𝐖 𝑥:𝐴.𝐵,𝐖 𝑥:𝐴.𝐵′(𝑘 (coe𝐵′[coe𝐴,𝐴′ 𝑎],𝐵[𝑎] 𝑥)))

: 𝐖 𝑥: 𝐴′.𝐵′

CoeId
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe 𝑎 : 𝐴

Γ ⊢coe coe𝐈𝐝𝐴 𝑎 𝑎,𝐈𝐝𝐴′ (coe𝐴,𝐴′ 𝑎) (coe𝐴,𝐴′ 𝑎) refl𝐴,𝑎 ≅ refl𝐴′,(coe𝐴,𝐴′ 𝑎) : 𝐈𝐝𝐴 (coe𝐴,𝐴′ 𝑎) (coe𝐴,𝐴′ 𝑎)

Γ ⊢coe 𝑇 ≼ 𝑇 ′ 𝑇 is a subtype of 𝑇 ′ in context Γ

LblSub
𝐿 ⊆ 𝐿′

Γ ⊢coe 𝑳 ≼ 𝑳′ PRodSub
Γ ⊢coe 𝐴′ ≼ 𝐴 Γ, 𝑥: 𝐴′ ⊢coe 𝐵[coe𝐴′,𝐴 𝑥] ≼ 𝐵′

Γ ⊢coe Π𝑥: 𝐴.𝐵 ≼ Π𝑥: 𝐴′.𝐵′

ListSub
Γ ⊢coe 𝐴 ≼ 𝐴′

Γ ⊢coe 𝐋𝐢𝐬𝐭 𝐴 ≼ 𝐋𝐢𝐬𝐭 𝐴′ SigSub

Γ ⊢coe 𝐴 ≼ 𝐴′

Γ, 𝑥: 𝐴 ⊢coe 𝐵 ≼ 𝐵′[coe𝐴,𝐴′ 𝑥]
Γ ⊢coe Σ𝑥: 𝐴.𝐵 ≼ Σ𝑥: 𝐴′.𝐵′
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TReeSub
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ, 𝑥: 𝐴 ⊢coe 𝐵′[coe𝐴,𝐴′ 𝑥] ≼ 𝐵

Γ ⊢coe 𝐖 𝑥: 𝐴.𝐵 ≼ 𝐖 𝑥: 𝐴′.𝐵′

IdSub
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe coe𝐴,𝐴′ 𝑡 ≅ 𝑡′ : 𝐴′ Γ ⊢coe coe𝐴,𝐴′ 𝑢 ≅ 𝑢′ : 𝐴′

Γ ⊢coe 𝐈𝐝𝐴 𝑡 𝑢 ≼ 𝐈𝐝𝐴′ 𝑡′ 𝑢′

SubRefl
Γ ⊢coe 𝐴 ≅ 𝐴′

Γ ⊢coe 𝐴 ≼ 𝐴′ SubTRans
Γ ⊢coe 𝐴 ≼ 𝐴′ Γ ⊢coe 𝐴′ ≼ 𝐴″

Γ ⊢coe 𝐴 ≼ 𝐴″

C PROOFS OF LEMMAS
This section contains additional lemmas and proofs omitted from the body of the paper.

C.1 From section 3.2

mapΠ ((𝑔, 𝑓):HomΠ((𝐴, 𝐵), (𝐴′, 𝐵′))) (ℎ:Π(𝑥: 𝐴)𝐵) ≝ λ𝑥: 𝐴′.𝑓 (ℎ (𝑔 𝑥))
mapΣ ((𝑔, 𝑓):HomΠ((𝐴, 𝐵), (𝐴′, 𝐵′))) (𝑝:Σ(𝑥: 𝐴)𝐵) ≝ (𝑔 (𝜋1 𝑝), 𝑓 (𝜋2 𝑝))

Lemma C.1. mapΠ and mapΣ satisfy the functor laws MapId and MapComp.

PRoof. For the preservation of identities, we have:

mapΠ (id𝐴, λ{𝑥: 𝐴}. id𝐵 𝑥) ℎ ≅ λ𝑥: 𝐴. id𝐵 𝑥 (ℎ (id𝐴 𝑥)) ≅ λ𝑥: 𝐴.𝑔 𝑥 ≅ 𝑔
mapΣ (id𝐴, λ{𝑥: 𝐴}. id𝐵 𝑥) 𝑝 ≅ (id𝐴 (𝜋1 𝑝), id𝐵 (𝜋1 𝑝) (𝜋2 𝑝)) ≅ (𝜋1 𝑝, 𝜋2 𝑝) ≅ 𝑝

For (𝑔, 𝑓):HomΠ((𝐴2, 𝐵2), (𝐴3, 𝐵3)), (𝑔′, 𝑓 ′):HomΠ((𝐴1, 𝐵1), (𝐴2, 𝐵2)) andℎ:Π𝑥: 𝐴1.𝐵1 𝑥we
compute

mapΠ (𝑔, 𝑓) (mapΠ (𝑔′, 𝑓 ′) ℎ) ≅ λ𝑥: 𝐴.𝑓 ((λ𝑥′: 𝐴′.𝑓 ′ (ℎ (𝑔′ 𝑥′))) (𝑔 𝑥))
≅ λ𝑥: 𝐴, 𝑓 (𝑓 ′ (ℎ (𝑔′ (𝑔 𝑥))))
≅ λ𝑥: 𝐴, (𝑓 ∘ 𝑓 ′) (ℎ ((𝑔′ ∘ 𝑔) 𝑥)) ≅ mapΠ((𝑔, 𝑓) ∘ (𝑔′, 𝑓 ′))ℎ

Similarly, for (𝑔, 𝑓):HomΣ((𝐴2, 𝐵2), (𝐴3, 𝐵3)), (𝑔′, 𝑓 ′):HomΣ((𝐴1, 𝐵1), (𝐴2, 𝐵2)) and 𝑝:Σ𝑥: 𝐴1.
𝐵1 𝑥 :

mapΣ (𝑔, 𝑓) (mapΣ (𝑔′, 𝑓 ′) 𝑝) ≅ (𝑔 (𝜋1 mapΣ (𝑔′, 𝑓 ′) 𝑝), 𝑓 (𝜋2 mapΣ (𝑔′, 𝑓 ′) 𝑝))
≅ (𝑔 (𝑔′ (𝜋1 𝑝)), 𝑓 (𝑓 ′ (𝜋2 𝑝)))
≅ ((𝑔 ∘ 𝑔′) (𝜋1 𝑝)), (𝑓 ∘ 𝑓 ′) (𝜋2 𝑝)))
≅ mapΣ ((𝑔, 𝑓) ∘ (𝑔′, 𝑓 ′)) 𝑝

□

C.2 From section 5.3
Lemma C.2 (Catch up, function type (lemma 5.7)). If Γ ⊢coe 𝑓 𝑎 : 𝐵 and |𝑓| = λ𝑥: 𝐴′. 𝑡′, then

there exists 𝑡 such that |𝑡| = 𝑡′ and 𝑓 𝑎 {⋆ 𝑡[𝑎].
PRoof. We must have that 𝑓 = (coe𝑇1,…,𝑇𝑛

(λ𝑥: 𝐴.𝑡0))14 for some 𝐴, 𝑡0 such that |𝐴| = 𝐴′

and |𝑡0| = 𝑡′. Moreover, by well-typing we know that there exists some 𝐵0 such that Γ, 𝑥: 𝐴 ⊢coe

14That is, a string of coercions coe𝑇𝑛−1,𝑇𝑛 (… coe𝑇1,𝑇2 (λ𝑥: 𝐴.𝑡0)).
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𝑡0 ▷ 𝐵0, Γ ⊢coe Π𝑥: 𝐴.𝐵0 ≅ 𝑇1 ≼ 𝑇2 ≅ … ≼ 𝑇𝑛 ◁. By inversions, we must have 𝑇𝑖 {
⋆ Π𝑥: 𝐴𝑖.

𝐵𝑖, with the 𝐴𝑖 and 𝐵𝑖 again related. But now we can use the reduction rule of coe on product
types, and get

𝑓 𝑎 {⋆ coe𝐵′
0,𝐵′

1,…,𝐵′𝑛
((λ𝑥: 𝐴.𝑡0) (coe𝐴𝑛,…,𝐴1,𝐴 𝑎))

where the 𝐵′
𝑖 are obtained by adequately substituting coercions in the 𝐵𝑖. Now all the 𝐵′

𝑖 are well-
typed by subject reduction, so they must have weak-head normal forms 𝐵″

𝑖 , and once all of them
have been reduced to weak-head normal form by a combination of CoeL, CoeR and CoeTm, we
can finally reduce the inner 𝛽-redex, obtaining

𝑓 𝑎 {⋆ coe𝐵″
0 ,𝐵″

1 ,…,𝐵″𝑛
(𝑡0[coe𝐴𝑛,…,𝐴1,𝐴 𝑎])

Now we can conclude, as indeed

∣coe𝐵″
0 ,𝐵″

1 ,…,𝐵″𝑛
(𝑡0[coe𝐴𝑛,…,𝐴1,𝐴 𝑥])∣ = ∣𝑡0[coe𝐴𝑛,…,𝐴1,𝐴 𝑥]∣

= |𝑡0| [∣coe𝐴𝑛,…,𝐴1,𝐴 𝑥∣]
= |𝑡0| [|𝑥|] = |𝑡0| = 𝑡′

□

Lemma C.3 (ERasuRe is a bacKwaRd simulation (lemma 5.10)). Assume that Γ ⊢coe 𝑡 : 𝑇 . If
|𝑡| {⋆ 𝑢′, with 𝑢′ a weak-head normal form, then 𝑡 {⋆ 𝑢, with 𝑢 a weak-head normal form such
that |𝑢| = 𝑢′.

PRoof. First, if |𝑡| {⋆ 𝑢′, then there exists 𝑢 such that 𝑡 {⋆ 𝑢 and |𝑢| = 𝑢′. Indeed, the
previous catch-up lemmas ensure that redexes never get blocked by coercions. On function types,
the lemma exactly says that a term erasing to a 𝛽-redex is able to simulate the 𝛽-reduction. On
positive types, by the catch-up lemma again, coercions on a constructor reduce away until the
constructor is exposed directly to the destructor, and so the reduction can kick in.

Second, if |𝑢| is a weak-head normal form, then there exists a weak-head normal form 𝑣 such
that 𝑢 {⋆ 𝑣 and |𝑣| = |𝑢|. Indeed, if |𝑢| is a weak-head normal form but 𝑢 is not, it must be
because either |𝑢| is a constructor of a positive type, or a neutral. In the first case, the catch-up
lemmas let us conclude. In the second, we can iterate CoeCoe to fuse coercions until 𝑢 reduces to
a compacted neutral, which is a weak-head normal form. □

Lemma C.4 (ElaboRation pReseRves subtyping (lemma 5.11)). The following implications hold
whenever the inputs of the conclusions are well-formed:

(1) if |Γ| ⊢sub |𝑇 | ≼m
h |𝑈|◁, then Γ ⊢coe 𝑇 ≼m

h 𝑈 ◁;
(2) if |Γ| ⊢sub |𝑇 | ≼m |𝑈|◁, then Γ ⊢coe 𝑇 ≼ 𝑈 ◁;
(3) if |Γ| ⊢sub |𝑡| ≅h |𝑢|◁ |𝑇 |, then Γ ⊢coe 𝑡 ≅h 𝑢◁𝑇 ;
(4) if |Γ| ⊢sub |𝑡| ≅ |𝑢|◁ |𝑇 |, then Γ ⊢coe 𝑡 ≅ 𝑢◁𝑇 ;
(5) if |Γ| ⊢sub |𝑡| ≈ |𝑢| ▷ 𝑇 , then Γ ⊢coe 𝑡 ≈ 𝑢 ▷ 𝑇 ;
(6) if |Γ| ⊢sub |𝑡| ≈h |𝑢| ▷ 𝑇 , then Γ ⊢coe 𝑡 ≈ 𝑢 ▷ 𝑇 .

PRoof. Lemma 5.10 ensures we can always match reductions to weak-head normal forms in
MLTTsub with reductions to weak-head normal forms in MLTTcoe. As for conversion itself, the
key cases are those where the term in MLTTcoe is a coercion, that gets erased in MLTTsub. Given
the structure of normal forms from fig. 14, this can happen in three situations. If the coercions are
between label types, then rule LblTmConv applies. If the coercions are between function types, we
do not inspect the terms, and instead eagerly 𝜂-expand in a type-directed fashion (which triggers
further reduction of the now applied coercions). Finally, compacted neutrals can appear exactly in
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the places where MLTTcoe uses the comparison of the compacted neutrals, which strips away the
possibly present coercions, as expected. □

Finally, the main theorem states that we can elaborate terms using implicit subtyping to explicit
coercions, in a type-preserving way.

TheoRem C.5 (ElaboRation – Induction). The following implications hold, whenever inputs to
the conclusion are well-formed:

(1) if |Γ| ⊢sub 𝑡′ ▷ 𝑇 ′, then there exists 𝑡 and 𝑇 such that 𝑡′ = |𝑡|, 𝑇 ′ = |𝑇 |, and Γ ⊢coe 𝑡 ▷ 𝑇 ;
(2) if |Γ| ⊢sub 𝑡′ ▷h 𝑇 ′, then there exists 𝑡 and 𝑇 such that 𝑡′ = |𝑡|, 𝑇 ′ = |𝑇 |, and Γ ⊢coe 𝑡 ▷h 𝑇 ;
(3) if |Γ| ⊢sub 𝑡′ ◁ |𝑇 |, then there exists 𝑡 such that 𝑡′ = |𝑡| and Γ ⊢coe 𝑡◁𝑇 .

PRoof. Once again, by mutual induction. Each rule is mapped to its counterpart, but for ChecK-
Sub, where we need to insert a coercion in the elaborated term. This coercion is well-typed by
lemma 5.11. □

C.3 Translation from MLTTcoe to MLTTmap

TslTy JType𝑖K ≃ Type𝑖
TslLbl J𝑳K ≃ 𝑳 TslList

J𝐴K ≃ 𝐴′J𝐋𝐢𝐬𝐭 𝐴K ≃ 𝐋𝐢𝐬𝐭 𝐴′

TslPi
J𝐴K ≃ 𝐴′ J𝐵K ≃ 𝐵′JΠ𝑥: 𝐴.𝐵K ≃ Π𝑥: 𝐴′.𝐵′ TslVaR J𝑥K ≃ 𝑥 TslLam

J𝐴K ≃ 𝐴′ J𝑡K ≃ 𝑡′Jλ𝑥: 𝐴.𝑡K ≃ λ𝑥: 𝐴′.𝑡′

TslApp
J𝑢K ≃ 𝑢′ J𝑣K ≃ 𝑣′J𝑢 𝑣K ≃ 𝑢′ 𝑣′

TslCoeId
J𝐴 ⇝ 𝐵K ≃ ⋆ J𝑡K ≃ 𝑡′Jcoe𝐴,𝐵 𝑡K ≃ 𝑡′ TslCoe

J𝐴 ⇝ 𝐵K ≃ 𝑓 J𝑡K ≃ 𝑡′Jcoe𝐴,𝐵 𝑡K ≃ 𝑓 𝑡′

TslCoeNf
𝐴 {⋆ 𝐴′ nf 𝐵 {⋆ 𝐵′ nf J𝐴′ ⇝ 𝐵′K ≃ 𝑥 𝐴 ≠ 𝐴′ or 𝐵 ≠ 𝐵′J𝐴 ⇝ 𝐵K ≃ 𝑥

TslCoeLblId J𝑳 ⇝ 𝑳K ≃ ⋆ TslCoeLbl
𝐿 ⊊ 𝐿′J𝑳 ⇝ 𝑳′K ≃ inj𝑳,𝑳′

TslCoeListId
J𝐴 ⇝ 𝐵K ≃ ⋆J𝐋𝐢𝐬𝐭 𝐴 ⇝ 𝐋𝐢𝐬𝐭 𝐵K ≃ ⋆ TslCoeList

J𝐴 ⇝ 𝐵K ≃ 𝑓J𝐋𝐢𝐬𝐭 𝐴 ⇝ 𝐋𝐢𝐬𝐭 𝐵K ≃ map𝐋𝐢𝐬𝐭 𝑓

TslCoePiIdBoth
J𝐴2 ⇝ 𝐴1K ≃ ⋆ J𝐵1 ⇝ 𝐵2K ≃ ⋆JΠ𝑥: 𝐴1.𝐵1 ⇝ Π𝑥: 𝐴2.𝐵2K ≃ ⋆

TslCoePiIdDom
J𝐴2 ⇝ 𝐴1K ≃ ⋆ J𝐵1 ⇝ 𝐵2K ≃ 𝑔 J𝐴1K ≃ 𝐴′

1JΠ𝑥: 𝐴1.𝐵1 ⇝ Π𝑥: 𝐴2.𝐵2K ≃ mapΠ (id𝐴′
1
, λ{𝑥: 𝐴′

1}.𝑔)
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TslCoePiIdCod

J𝐴2 ⇝ 𝐴1K ≃ 𝑓J𝐵1[coe𝐴2,𝐴1
𝑥] ⇝ 𝐵2K ≃ ⋆ J𝐴2K ≃ 𝐴′

2 J𝐵2K ≃ 𝐵′
2JΠ𝑥: 𝐴1.𝐵1 ⇝ Π𝑥: 𝐴2.𝐵2K ≃ mapΠ(𝑓, λ{𝑥: 𝐴′

2}. id𝐵′
2
)

TslCoePi
J𝐴2 ⇝ 𝐴1K ≃ 𝑓 J𝐵1[coe𝐴2,𝐴1

𝑥] ⇝ 𝐵2K ≃ 𝑔 J𝐴2K ≃ 𝐴′
2JΠ𝑥: 𝐴1.𝐵1 ⇝ Π𝑥: 𝐴2.𝐵2K ≃ mapΠ(𝑓, λ{𝑥: 𝐴′

2}.𝑔)

TslCoeTy JType𝑖 ⇝ Type𝑖K ≃ ⋆ TslCoeNe
ne𝑁 ne𝑀J𝑁 ⇝ 𝑀K ≃ ⋆

The translation is extended to contexts pointwise.

J⋅K ≃ ⋅
JΓK ≃ Γ′ J𝐴K ≃ 𝐴′JΓ, 𝑥: 𝐴K ≃ Γ′, 𝑥: 𝐴′

We note J𝑡K↓ when 𝑡 is in the domain of the relation and J𝑡K for the image of 𝑡 when it is defined.

Lemma C.6 (DeteRminism of tRanslation). The translation relation J𝑡K ≃ 𝑡′ is a partial func-
tion, i.e. it is deterministic: for any 𝑡 𝑡′

1 𝑡′
2, if J𝑡K ≃ 𝑡′

1 and J𝑡K ≃ 𝑡′
2 then 𝑡′

1 = 𝑡′
2.

PRoof. We show by mutual induction on a derivation that J𝐴 ⇝ 𝐵K ≃ 𝑥 is a partial function as
well from pairs of MLTTcoe types to either ⋆ or a MLTTmap term. In the key case TslCoeNf, note
that the reduction relation{⋆ is deterministic as well, so we can conclude by induction hypothesis.
All other cases are immediate or simple applications of the inductive hypothesis, using the fact that
at each step, at most one rule apply. □

LemmaC.7 (Stability of tRanslation byweaKening). If 𝜌 is a substitution thatmaps variables
to variables then J𝑡K[𝜌] = J𝑡[𝜌]K.

PRoof. Immediate by induction on 𝑡, the only case interesting case being the translation of
variables, with a similar lemma for J𝐴 ⇝ 𝐵K ≃ 𝑥 using that neutrals are preserved. □

Lemma C.8 (Well-typed teRms tRanslate). If Γ ⊢coe 𝑡 : 𝐴 then JΓK↓, J𝐴K↓ and J𝑡K↓.
PRoof. We prove by a straightforward mutual induction on an algorithmic typing derivation

that:
• If ⊢coe Γ then JΓK↓;
• If Γ ⊢coe 𝐴◁ and JΓK↓ then J𝐴K↓;
• If Γ ⊢coe 𝑡◁𝐴 and JΓK↓ then J𝑡K↓;
• If Γ ⊢coe 𝑡 ▷𝐴 and JΓK↓ thenJ𝑡K↓;
• If Γ ⊢coe 𝐴 ≼ 𝐵 ◁ or Γ ⊢coe 𝐴 ≼h 𝐵 ◁ then there exists 𝑥 such that J𝐴 ⇝ 𝐵K ≃ 𝑥.

□

Lemma C.9 (Identity coeRcions). If Γ ⊢coe 𝐴 ≅ 𝐵 ◁ or Γ ⊢coe 𝐴 ≅h 𝐵 ◁ then J𝐴 ⇝ 𝐵K ≃ ⋆.
PRoof. Straightforward mutual induction on the bidirectional conversion derivation. □

Lemma C.10 (Stability of tRanslation by substitution). If Γ ⊢coe 𝑡 : 𝐴 and Δ ⊢coe 𝜎 : Γ thenJ𝑡K[J𝜎K] = J𝑡[𝜎]K and similarly for typing.
If Γ ⊢coe 𝐴 ≼ 𝐵 ◁, Δ ⊢coe 𝜎 : Γ and

• J𝐴 ⇝ 𝐵K ≃ ⋆ then J𝐴[𝜎] ⇝ 𝐵[𝜎]K ≃ ⋆;
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• J𝐴 ⇝ 𝐵K ≃ 𝑓 then J𝐴[𝜎] ⇝ 𝐵[𝜎]K ≃ 𝑓[𝜎].
PRoof. Straightforward mutual induction on the bidirectional derivation. □

Forward simulation. Following the proof strategy employed for the equivalence between sub-
sumptive and coercive subtyping, the nest step would require to prove that the translation is a
forward simulate, i.e. if Γ ⊢coe 𝑡 : 𝐴 and 𝑡 {1 𝑡′ then J𝑡K {⋆ J𝑡′K. As stated, this lemma does
not hold. Indeed, the rule CoeCoe leads to reductions of coercions with type annotations which
may be convertible but not reduce correctly. We conjecture that a weaker version of the simula-
tion with respect to conversion in MLTTmap should hold, that is if Γ ⊢coe 𝑡 : 𝐴 and 𝑡 {1 𝑡′ thenJΓK ⊢map J𝑡K ≅ J𝑡′K :J𝐴K. Such statement should be proved mutually with other properties stating
that the translation preserves typing, as follows.

ConjectuRe C.11 (TRanslation pReseRves typing).
(1) If ⊢coe Γ then ⊢map JΓK
(2) If Γ ⊢coe 𝐴 then JΓK ⊢map J𝐴K
(3) If Γ ⊢coe 𝑡 : 𝐴 then JΓK ⊢map J𝑡K :J𝐴K
(4) If Γ ⊢coe 𝐴 ≅ 𝐵 then JΓK ⊢map J𝐴K ≅ J𝐵K
(5) If Γ ⊢coe 𝑡 ≅ 𝑢 : 𝐴 then JΓK ⊢map J𝑡K ≅ J𝑢K :J𝐴K
(6) If Γ ⊢coe 𝐴 ≼ 𝐵 then either

(a) J𝐴 ⇝ 𝐵K ≃ ⋆ and JΓK ⊢map J𝐴K ≅ J𝐵K
(b) J𝐴 ⇝ 𝐵K ≃ 𝑓 and JΓK ⊢map 𝑓 :J𝐴K → J𝐵K

Preservation of typing, together with catch up lemmas, and a backward simulation lemma,
would then allow to lift bidirectional conversion derivations in MLTTmap between the transla-
tion of terms from MLTTcoe. The use of bidirectional conversion is essential here to remain at
each step within the translation of MLTTcoe terms.

ConjectuRe C.12 (Embedding). J−K embedsMLTTcoe intoMLTTmap: well-typedMLTTcoe terms
translate to well-typed MLTTmap terms, preserving and reflecting conversion.
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