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Abstract 

This article studies the impact of intermediaries’ disappearance on firms’ access 

to the sterling money market during the first globalization era of 1880-1914. We 

propose a new methodology to assess intermediaries’ substitutability in financial 

networks featuring higher-order structures (credit intermediation chains). We 

represent the financial network as a hyperstructure and each credit intermediation 

chain as a hyperedge. This approach allows us to assess how the failure of 

intermediaries affects network connectivity. We apply this methodology to a 

unique dataset documenting the network structure of the sterling money market 

in the year 1906. Our results reveal that the failure of individual money market 

actors could only cause limited damage to the network as intermediaries were 

highly substitutable. These findings suggest that an international financial 

network without highly systemic nodes can emerge even at a time of global 

economic integration. 
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1. Introduction 

Financial networks are prone to systemic risk. Today’s global financial system is characterised by 

strong linkages between financial institutions and the presence of complex intermediation chains.1 While 

financial intermediation chains play an important role in the allocation of capital between investors and 

borrowers, disturbances in the functioning of these chains can also have significant consequences on 

liquidity and credit availability across the global financial system. In particular, the failure of central 

intermediaries in the world’s largest money markets can lead to severe credit disruptions at the network 

periphery.  

This article explores the impact of intermediaries’ disappearance on firms’ access to the sterling money 

market during the first globalization era of 1880-1914. During this period, international goods and financial 

markets were as integrated as in the late twentieth century (O’Rourke and Williamson, 2002). The City of 

London was the centre of the global financial system and its money market – the market for sterling bills 

of exchange – served as a global platform for short-term lending and borrowing (Accominotti and Ugolini, 

2020). Firms located anywhere in the world used this market to obtain short-term loans from international 

lenders with the guarantee of UK-based intermediaries. As in modern money markets, intermediaries 

played a key role on the sterling bill market as they allowed channelling liquidity from investors to 

borrowers.   

How damaging could the disappearance of individual intermediaries be for agents’ access to the money 

market? To answer this question, we exploit an original dataset of financial interlinkages between actors 

active on the London money market during the year 1906, which we assembled from archival sources. The 

dataset contains micro-level information on the 23,493 bills of exchange re-discounted by the Bank of 

England in 1906 and on the intermediaries involved in the underlying money market transactions (see 

Accominotti et al., 2021). Every bill of exchange transaction on the money market consisted of a credit 

chain involving three different actors: a. a borrowing firm located anywhere in the world (borrower); b. a 

 
1 On the concept of intermediation chain, see Adrian and Shin (2010), Poszar et al. (2010), Cetorelli et al. (2012) and Di Maggio and 
Tahbaz-Salehi (2015).  
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UK-based intermediary which guaranteed that firm’s debt (guarantor); and c. a bank or money market fund 

that lent cash to the borrowing firm (lender). Therefore, each transaction embraced both a “firm-bank” 

(borrower-guarantor) relationship and a “bank-bank” (guarantor-lender) relationship. Since each bill of 

exchange recorded the names of the borrower, guarantor and lender in the underlying transaction, we can 

reconstitute the precise nature of interlinkages between these actors and reconstruct the various chains of 

bank-bank and bank-firm relationships.  

To analyse the transmission of shocks along these credit intermediation chains, we depart from the 

standard dyadic approach in banking network research. Network science scholars have recently shown 

how this approach can be misleading when transactions involve more than two actors (Bonacich et al., 

2004; Estrada and Rodríguez-Velázquez, 2006; Battiston et al., 2020). In the presence of intermediation 

chains, any link between two nodes is conditional on the existence of other links relating each of these 

nodes to other ones (i.e. intermediaries). Thus, the existence of dyadic relationships between nodes 

depends on these nodes’ belonging to a same higher-order structure (or chain). For example, on the 

primary corporate bond market, investors and issuing firms are connected to each other through 

underwriters. Therefore, a link between an investor and an issuing firm can only be formed if both are 

connected to a same underwriter. Similarly, modern money markets and over-the-counter securities 

markets feature agents that act as intermediaries between investors and ultimate borrowers. If a few of 

these intermediaries are central to the network and cannot be replaced – for example, because they hold 

asymmetric information about borrowers – their failure might deprive numerous agents from market 

access.    

In a financial network featuring intermediation chains, a node’s disappearance results in the 

breakdown of all the chains to which it belongs and of all dyadic relationships that compose these chains 

(i.e. including the links that do not directly involve the node). Analysing the importance of individual nodes 

for the network requires departing from the dyadic approach to model the financial system as a higher-

order interaction network. We follow this approach here and explore interactions in the money market 

network using the concepts of hypergraph and hyperstructure. We represent the entire set of money market 
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actors as a hyperstructure (an association between adjacency and incidence matrices). We describe each 

sterling bill of exchange as a continuous intermediation chain or the hyperedge of a hypergraph that connects 

three different nodes, each playing one of the three roles (borrower, guarantor or lender) in the underlying 

credit transaction. This hyperstructure approach allows us to preserve each chain’s internal structure and unity 

(Criado et al., 2010; Lucena-Piquero et al., 2022). We propose a new method using a meso-level approach 

to analyse directed links between nodes within each intermediation chain. One advantage of this approach 

is that it allows us to consider the gatekeeping or bridging role that certain intermediaries play on the money 

market (Bonacich et al., 2004). Intermediaries which guaranteed borrowers’ debts in order to allow them 

to borrow from other financial institutions acted as gatekeepers or bridges on the London money market.  

We use simple simulation techniques in order to assess the systemicness of actors on the money 

market and draw implications for the resilience of the system. Our main focus is on intermediaries’ 

substitutability. A given intermediary is said to be substitutable if its presence is non-essential to other nodes’ 

connection to the network (or, in economic terms, if the intermediary’s presence is non-essential to other 

agents’ access to the money market). We therefore consider that a given node’s degree of substitutability 

is inversely related to the share of actors that would remain isolated in the network in the absence of this 

node. A given node will therefore be considered weakly (highly) substitutable if there is a relatively large 

(small) number of actors whose connection to the network is strictly dependent on the node’s presence. 

While most of the network literature has focused on the question of banks’ interconnectedness, 

regulators have recently paid increasing attention to the degree of substitutability of banks in the global 

financial system as an indicator of their systemicness, and they have attempted to measure their importance 

in the provision of financial services (Basel Committee on Banking Supervision, 2013, 2018).2 The Basel 

Committee considers that a financial institution’s degree of substitutability is negatively related to “the 

 
2 In 2013, the Basel Committee on Banking Supervision (2013) and the Financial Stability Board (FSB) jointly published new 
guidelines for the assessment of banks’ systemicness. The guidelines distinguished between five dimensions of systemicness: 1 . 
size (total size of the bank’s liabilities); 2. interconnectedness (network of contractual obligations which characterise the bank’s 
activities); 3. substitutability (the bank’s importance as a provider of client services); 4. complexity (business, structural, and 
operational complexity of the bank including its involvement in sophisticated activities such as derivatives or other off-balance-
sheet exposures); and 5. cross-jurisdictional activity (geographical dispersion of the bank’s activities). Assessing substitutability has 
proved particularly difficult (Benoit et al., 2019), leading regulators to revise their guidelines on this aspect of systemicness (Basel 
Committee on Banking Supervision, 2018). 
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extent to which the bank provides financial institution infrastructure” (Bank for International Settlements, 

2018, p. 6). For example, a financial institution acting as an underwriter (intermediary) for a large volume 

of transactions on financial markets is considered weakly substitutable because its disappearance would 

result in a large number of participants being deprived from access to these markets. While our definition 

of substitutability is narrower and more focused than the broader notion employed by the Basel Committee 

in its regulatory framework, it allows operationalizing this notion in the context of empirical network 

analysis.   

Our concept of substitutability can also be related to the notion of criticality, which has been used in 

various strands of the literature in dyadic network analysis to assess the impact a node’s failure on other 

nodes’ connection to the network. Although different definitions of criticality have been proposed in the 

literature (Jafino et al., 2020), they all revolve around the notion of betweenness centrality.3 However, the 

concepts of criticality and betweenness centrality cannot be directly operationalized to assess nodes’ systemicness 

in a higher-order network (for a discussion, see Appendix A1).   

Our results provide an upper-bound estimate of network fragility, as our methodology rests on the 

restrictive assumption that no other financial relationship between actors can be formed besides those 

actually observed. In other words, we assume that existing financial relationships cannot be replaced, so 

that an agent loses market access when the intermediaries to whom she is currently connected disappear. 

When applying similar node-removal methodologies to modern interbank markets, one typically finds that 

a few nodes are non-substitutable as removing them results in a complete breakdown of connectivity in 

the network (Pröpper et al., 2008). 

Our main finding is that systemic risk in the sterling money market was remarkably low at the 

beginning of the twentieth century. We find that the money market network was resilient even to the 

removal of central nodes. Although our assessment of intermediaries’ systemicness constitutes an upper-

bound estimate, we find that no single intermediary on the money market was highly systemic. Any node 

 
3 For example, Goyal (2018, p. 698): “A node is said to be critical if it lies on all paths between S [a source node] and D [a 
destination node]”. 
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removal could only generate limited damage to the network. The network’s various subsections were also 

all robust to the removal of individual nodes, as very few agents were strictly dependent on individual 

nodes for their money market access. Our data also allow documenting the location of money market 

borrowers at the city level. We study the network’s geographical systemicness and find that very few cities 

across the world would have been cut off from the market had individual nodes been removed. Therefore, 

in contrast to findings obtained on modern banking networks, our analysis of the historical sterling bill 

market reveals that an international financial network featuring low systemicness could emerge even during 

a period of high global economic and financial integration. 

Our article contributes to a large literature on financial network structure, going back to Allen and 

Gale (2000) and Freixas et al. (2000). Over the last decades, regulatory authorities have evolved from a 

microprudential approach focusing on the position of individual intermediaries to a macroprudential one 

where more attention is being paid to relational structures between banks (Basel Committee on Banking 

Supervision, 2013). Numerous studies have explored how links between banks are being formed and have 

analysed the importance of network structure for the resilience of financial systems (Allen and Babus, 2009; 

Glasserman and Young, 2016; Battiston and Martinez-Jaramillo, 2018; Caccioli et al., 2018; Iori and 

Mantegna, 2018). Most of these papers are based on data documenting bilateral relationships between 

financial institutions on individual countries’ interbank markets but a few studies have also analysed the 

network structure of international financial connections (Espinosa-Vega and Solé, 2010; Minoiu and Reyes, 

2013; Chinazzi et al., 2013; Minoiu et al., 2015; Hale et al., 2016; Cai et al., 2018). Similarly, our article 

explores the resilience of a major historical, global financial network. 

Empirical studies have generally found that financial networks exhibit a strong core-periphery structure 

(sometimes referred to as a scale-free structure)4 with a small group of highly-connected actors centralizing 

flows and playing the role of hubs (Craig and Von Peter, 2014). This structure, which can be identified by 

 
4 In theory, core-periphery and scale-free structures are not exactly equivalent. It is however difficult to distinguish between the two 
types of structures in empirical investigations (Iori and Mantegna, 2018, p. 645). 
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looking at several indicators such as the network’s degree distribution,5 has important implications for the 

vulnerability of financial systems. While core-periphery structures are generally robust to shocks on 

random individual actors, they become very fragile when these shocks affect actors who are playing the 

role of hub (Albert et al., 2000; Newman, 2003). This characteristic is known as the robust-yet-fragile property 

of financial networks (Gai and Kapadia, 2010). The presence of a hierarchical structure appears to be a 

common feature of all modern interbank networks and has been recently described as “a new ‘stylized 

fact’” (Fricke and Lux, 2015a, p. 391).6 Our article however provides evidence that alternative network 

structures can also emerge. We describe how a major historical financial network was characterised by the 

absence of highly systemic hubs. While the money market network we study exhibits a structure that in 

certain respects resembles that of scale-free networks, it also displays much stronger resilience to shocks 

than these typical networks.    

Our article also makes an important methodological contribution. While most studies of financial 

networks have focused on interactions between financial intermediaries (bank-bank networks), a handful 

of papers have also analysed bank-firm links alongside bank-bank links (De Masi et al., 2011; De Masi and 

Gallegati, 2012; Lux, 2016; Silva et al., 2018). These studies have however represented bank-bank and 

bank-firm relationships as different types of dyadic links within a multilayer network and have therefore 

treated the two types of relationships as different (albeit interconnected) networks. By contrast, our 

approach, which consists in analysing interactions within chains of actors, allows us to model bank-bank-

firm relationships as part of a single, higher-order network. While hypergraphs have been used before in 

network science, our article is the first to our knowledge to apply this approach to financial networks. It is 

also the first to our knowledge to model the direction of links between nodes in a hyperstructure. This 

 
5 The distribution of the nodes’ degrees in a network defines its hierarchy. A network is hierarchical if a small number of nodes 
have a significantly higher degree than most other nodes in the network. 
6 The core-periphery structure has been identified empirically in the case of various countries’ domestic interbank networks 
such as Austria (Boss et al., 2004), Belgium (Degryse and Gregory, 2004), Germany (Upper and Worms, 2004), Switzerland 
(Sheldon and Maurer, 1998; Müller, 2006), the United Kingdom (Wetherilt et al., 2010), or the United States (Soramäki et al., 
2007), as well as for country-to-country networks (Minoiu and Reyes, 2013; Chinazzi et al., 2013). Only a minority of empirical 
studies have found evidence of less hierarchical structures with a weaker core-periphery structure. This is the case of the 
domestic interbank networks of Italy (Iori et al., 2008; Fricke and Lux, 2015a, 2015b), the Netherlands (Blasques et al., 2015), 
and Mexico (Martinez-Jaramillo et al., 2014). 
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approach allows us to preserve the chains’ internal configuration and unity and explore how the failure of 

various types of intermediaries could impact actors’ access to the money market. Recently, scholars have 

documented and proposed explanations for the increasing length of credit intermediation chains in the 

modern financial system (Adrian and Shin, 2009, 2010; Poszar et al., 2010; Cetorelli et al., 2012; Colliard 

and Demange, 2014; Di Maggio and Tahbaz-Salehi, 2015; Glode and Opp, 2016; Shen et al., 2021; He and 

Li, 2021; Aymanns et al., 2023). The methodology we develop here could be adapted to study the resilience 

of intermediaries’ networks underpinning the present-day, market-based financial system. It could also be 

used to study the resilience of other non-financial directed networks characterised by the presence of chains 

of actors such as, for example, global supply chains (Lucena-Piquero et al., 2022).  

The remainder of the article is organised as follows. Section 2 describes our data and details our 

empirical strategy. Section 3 presents descriptive statistics on the structure of the sterling money market 

network. Section 4 presents our main results on intermediaries’ substitutability as well as several robustness 

checks. Section 5 concludes. 

 

2. Data and methodology 

2.1. Data 

Our empirical analysis is based on an original dataset of international financial interlinkages during the 

first globalization (1880-1914). At that time, London was the unrivalled global financial centre and the 

sterling-denominated bill of exchange was the staple international money market instrument (Accominotti 

and Ugolini, 2020). Our dataset was hand-collected from one archival source (the Bank of England’s 

Discount Ledgers) and includes information on 23,493 bills of exchange issued on the sterling money market 

and discounted by the Bank of England during the calendar year 1906. A detailed discussion of the nature 

and representativeness of these data can be found in our historical companion paper (Accominotti et al., 

2021).7  

 
7 The sterling bill market was an over-the-counter market and no systematic information was collected on transactions taking 
place on that market. However, archival records allow reconstituting all relationships between actors involved in the origination 
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Figure 1 here 

 

The market for sterling bills of exchange was the world’s dominant money market in the early 

twentieth century. As illustrated in Figure 1, any sterling bill transaction involved three actors: a borrower 

(called the drawer), a guarantor (called the acceptor), and a lender (called the discounter). Borrowing firms 

located anywhere in the world and willing to obtain short-term sterling funds could draw a bill on a UK-

based agent (an acceptor) with whom they had a relationship. The agent accepted the bill by putting its 

signature on it and, in so doing, agreed to repay the bill at maturity (typically, after three months) in the 

expectation that she would herself have received payment from the borrower in the meantime. After 

obtaining the signature of a guarantor (acceptor), the borrower (drawer) could discount the bill to another 

UK financial institution willing to lend funds on the money market (the discounter). For each sterling bill 

originated, our archival source provides information on the identity of the borrower, guarantor, and lender. 

We are therefore able to document all borrower-guarantor (“firm-bank”) and guarantor-lender (“bank-

bank”) relationships and reconstruct the complete network of interlinkages between agents operating on 

the money market. Our static network for the year 1906 contains 4,970 nodes, of which only roughly one 

third were located in the UK. The other nodes consisted of borrowing firms spread across the entire world.  

Given the still opaque nature of most interbank connections today, empirical financial network 

research is often based on estimated rather than observed data. Relationships between banks are typically 

inferred from balance sheet or payments data (Furfine, 1999; Upper and Worms, 2004; Allen and Babus, 

2009; Upper, 2011).8 One advantage of our historical database is that it is solely based on observed and 

systematically recorded links between money market participants. Our approach therefore does not require 

making any assumption to reconstruct interactions between money market actors. One limitation of our 

 
and distribution of bills purchased (re-discounted) by the Bank of England. Bills rediscounted by the Bank of England 
represented only a small minority of all sterling bills issued. However, Accominotti et al. (2021) perform a series of cross-checks 
and do not identify any serious bias in this sample. 
8 The Italian interbank network is one of the only networks for which complete transaction data have been available. See Iori 
et al. (2008), Fricke and Lux (2015b), Iori et al. (2015), and Temizsoy et al. (2015). Although researchers have produced 
interesting results based on estimated data, several scholars have also questioned the reliability of this method (Upper, 2011; 
Mistrulli, 2011; Anand et al., 2018). 
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archival source however is that it does not allow measuring the extent of cross-balance-sheet exposure 

between actors. Nevertheless, balance sheet data are not strictly necessary for our analysis. Indeed, our 

approach consists in assessing a given intermediary’s substitutability by looking at the number of nodes 

which are strictly dependent on that intermediary for their money market access. When a given 

intermediary disappears from the network, we consider that all agents that are strictly dependent on this 

intermediary will lose market access regardless of the size of their financial exposure.     

 

2.2. Hyperstructures 

Financial transactions often take the form of an intermediation chain involving three or more actors. 

For example, in the modern financial system, credit is often channelled from investors to ultimate 

borrowers through a chain of intermediaries involving commercial banks, asset-backed security issuers, 

and money market funds (Adrian and Shin, 2010). Similarly, on securities markets, individual investors are 

related to issuers through one or multiple underwriters and dealers (Glode and Opp, 2016; Shen et al. 

2021). Financial intermediation implies that the different bilateral relationships between actors involved in 

a transaction cannot exist independently of the transaction itself. This was the case for sterling bill 

transactions where the borrower-guarantor and guarantor-lender relationships were the indissociable 

components of one same intermediation chain, which was designed as one single contract – i.e., as an 

organic whole.  

In a network featuring such intermediation chains, the disappearance of a given node results in the 

breakdown of all chains to which the node belongs and of all dyadic links that compose these chains. For 

example, in our network, a borrower and lender can only be linked together through a guarantor. Thus, 

unless these actors are linked to each other through another chain in the network, the disappearance of 

one of them results in the collapse of all dyadic links between them. For example, the disappearance of a 

lender in the borrower-guarantor-lender chain results in the breakdown not only of the guarantor-lender 

but also of the borrower-guarantor relationship featured in the chain. This means that, even if the guarantor 

remains in the network, the borrower will lose market access (unless she has access to a different lender 
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through another intermediation chain). At the same time, within each chain, the dyadic links between a 

borrower and a guarantor (on the one hand) and between a guarantor and a lender (on the other hand) are 

not of the same economic nature, and intermediaries playing various roles might therefore have different 

degrees of systemicness in the network. In order to assess the systemicness of various types of 

intermediaries, it is necessary to adopt an empirical methodology that allows taking account of a. the fact 

that dyadic links between nodes are embedded within higher-order structures (chains), and b. the fact that 

although in any given chain each node plays one given role (borrower, guarantor, or lender), the role played 

by a given node is not necessarily the same in all the chains it participates to.    

The traditional dyadic approach is not suitable to analyse intermediation chains, because it does not 

allow explicitly modelling the fact that dyadic interactions between nodes take place at a higher-order level 

(i.e. within chains) while preserving the internal structure of the chains in which dyadic relationships are 

embedded. Since this approach does not account for the fact that the existence of dyadic links between 

nodes is conditional on these nodes’ belonging to a same higher-order structure, it does not allow 

simulating the implications of a chain’s breakdown on the network and measuring the comprehensive 

effect of nodes’ disappearance on network connectivity. In order to account for this, we rely on the concept 

of hyperstructure. 

Following Criado et al. (2010), we define a hyperstructure as a combination of an adjacency matrix (a 

matrix recording the presence or absence of a dyadic link between each pair of nodes) and an incidence 

matrix (a matrix recording the hyperedges to which each node belongs). To present their intuition, Criado 

et al. (2010) give the example of a subway network. Such a network is composed of a set of subway stations 

(the nodes) and a set of trunks connecting pairs of stations (the edges). Stations and trunks are grouped 

into subway lines (the hyperedges). A passenger travelling between two stations separated by the same 

number of trunks will face substantially different situations if these two stations are located on the same 

line or if they are on two different lines. For instance, if each subway ticket is valid on one line only, 

interchange will not be an option, and a passenger holding a ticket will only be able to reach stations located 

on the corresponding line. Similarly, a money market borrower might only be able to reach investors via 
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certain credit intermediation chains. Our analysis builds on Criado et al. (2010)’s intuition and extends it 

to analyse non-symmetrical (directed) relationships within hyperstructures. 

More formally, let us represent the money market network as a finite set of individuals 𝑉 =

{𝑖1, 𝑖2, 𝑖3 … 𝑖𝑛}. Each bill can be represented as a chain 𝐶𝑘 ∈ {𝐶1, 𝐶2, 𝐶3 … 𝐶𝑚}, defined as a non-empty 

set {𝑎, 𝑏, 𝑐} ∈ 𝑉 in which there exist both a borrower-guarantor relationship (𝑎𝑇𝑏) and a guarantor-lender 

relationship (𝑏𝑈𝑐) so that 𝐶𝑘 = (𝑎𝑇𝑏𝑈𝑐) ∀ {𝑎, 𝑏, 𝑐} ∈ 𝑉 ∧ {𝑇, 𝑈} ∈ 𝑅, where: 𝑎, 𝑏, and 𝑐 indicate the 

roles of (respectively) borrower, guarantor, and lender; 𝑇 and 𝑈 indicate (respectively) the borrower-

guarantor and guarantor-lender relationship; and 𝑅 is the full set of relationships in the network. For any 

node 𝑖, we indicate the chains to which 𝑖 belongs as 𝐶𝑘
𝑖 = (𝑎𝑇𝑏𝑈𝑐) ∀ {𝑎, 𝑏, 𝑐} ∈ 𝑉 ∧ 𝑖 ∈ {𝑎, 𝑏, 𝑐}.9 We 

represent the network of chains as a hypergraph 𝐻 = (𝑉, 𝐸): ∀ 𝐶𝑘 ∃ 𝐸𝑘, where 𝐸𝑘 ∈ {𝐸1, 𝐸2, 𝐸3 … 𝐸𝑚} is 

a set of hyperedges. Our hyperstructure 𝑆 will therefore be composed of the chains 𝐶𝑘 (each of which 

associates three linked nodes (𝑎, 𝑏, 𝑐)) and of the hyperedges 𝐸𝑘 that integrate them. Representing the 

entire set of chains as a hyperstructure allows preserving these chains’ unity (captured by their affiliation 

to a given hyperedge) and the specific ordering of nodes within each of them (captured by the dyadic links 

between nodes). In addition, the concept of hyperstructure provides a flexible analytical framework and 

allows characterising networks’ structural properties through simple social network measures such as, for 

example, degree centrality measures.  

An alternative to the methodology we develop here would have consisted in transposing the supra-

dyadic structures featured in our observed higher-order network into dyadic ones and analyse them 

through a traditional dyadic approach. However, as shown by Faccin (2022), in the case of directed 

hypergraphs such transpositions (generally referred to as graph expansions of hypergraphs) cannot be performed 

without a substantial loss of information about the network’s properties. For example, one possible 

transposition is the so-called star expansion of a hypergraph. While this approach would have allowed 

 
9 Note that nodes’ specialization was not absolute. Each actor could play different roles in the various transactions in which it 
was involved. In our data, however, such nodes playing more than one role are relatively rare (see Table 1 below).  
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simulating the impact of an individual node’s disappearance on overall network connectivity, it would not 

have allowed distinguishing between the substitutability of intermediaries playing various roles, as any 

transposition of higher-order interactions into dyadic ones results in losing information about the roles 

played by each node in the different chains to which it belongs. We discuss in more detail the differences 

between our methodology and the star expansion approach in Appendix A2.   

 

2.3. Shock simulations 

In order to measure the resilience of the money market network to shocks, we perform a simple node 

removal simulation analysis.10 We adopt a straightforward approach for our shock simulations, which 

consists in measuring to what extent the removal of individual nodes causes damage to network 

connectivity.11 This approach allows us to assess the degree of substitutability of the various intermediaries 

in the network. According to our definition above, an intermediary is considered substitutable if other 

nodes are not strictly dependent on it for their access to the money market (or connection to the network). 

More precisely, one given node A is said to be substitutable with respect to another given node B if A does 

not appear in all chains to which B belongs. In that case, A’s removal from the network does not leave B 

isolated, as node B can still connect to the network through other chains that do not involve A. One given 

actor’s degree of substitutability is therefore inversely proportional to the share of nodes that would remain 

isolated if the actor was removed from the network.  

 
10 Following Allen and Gale (2000), shock simulations have become a standard method to assess the fragility of financial 
networks (Gai and Kapadia, 2010). 
11 The literature has generally estimated financial network resilience by simulating default cascades on the basis of interbank 
exposures. In that case, each node receives a shock from its incoming links and spreads it to its outcoming links. In these types 
of simulations, the effect of one bank’s default on another bank is generally assumed to be proportional to the bilateral exposure 
between the two banks (Eisenberg and Noe, 2001; Müller, 2006; Battiston et al., 2012a, 2012b; Acemoglu et al., 2015; 
Glasserman and Young, 2015). This approach requires obtaining information on the magnitude of bilateral interbank exposures, 
or reconstructing this information based on partial data. Our data do not allow constructing weighted links between nodes in 
the network. An alternative approach to measuring resilience consists of estimating the damage to network connectivity 
generated by the removal of individual nodes. This method has been used extensively in network analysis (Albert et al., 2000; 
Newman, 2003; Cohen and Havlin, 2010; Li et al., 2015; Jafino et al., 2020) and has also been applied to financial networks 
(Pröpper et al., 2008). One advantage of this method with respect to the fictitious default algorithm initially developed by Eisenberg 
and Noe (2001) is that it does not require making any assumption about how shocks propagate from bank to bank (Allen and 
Babus, 2009; Upper, 2011).  
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In any chain of our network, there is one node situated in position 1 (borrower), one node situated in 

position 2 (guarantor) and one node situated in position 3 (lender). We simulate the removal of individual 

nodes situated in position 2 or 3 of each chain (and thus playing the role of either guarantor or lender) and 

assess how many actors would lose market access in case of their removal. A given node 𝑖’s structural 

relevance is therefore measured through the number of money market actors that are strictly dependent 

on 𝑖 for their market access. A node is considered independent from 𝑖 if it is connected to other nodes 

that can grant it market access; or, in other words, if it has access to other paths allowing it to participate 

into a full borrower-guarantor-lender chain. The number of nodes losing market access when 𝑖 is removed 

is an indicator of 𝑖’s degree of substitutability.  

 

Figure 2 here 

 

The hypothetical example presented in Figure 2 illustrates our methodology. The figure represents 

four different chains corresponding to groups of agents involved in four different bills of exchange: 

(A,B,C), (D,B,C), (D,B,F), and (D,E,F). Each chain involves a borrower (in position 1), a guarantor (in 

position 2) and a lender (in position 3). For example, in the chain (A,B,C), A plays the role of borrower, B 

the role of guarantor and C the role of lender. Each combination of two same-coloured arrows constitutes 

a hyperedge that integrates the three nodes and their links included in the corresponding chain.  

Let us now suppose that node C (a lender) is removed from the network. This would result in the 

suppression of chains (A, B, C) and (D, B, C) and of all dyadic links that compose these chains. As a result, 

node A (a borrower) would remain isolated and be cut off the money market as the only path through 

which that node can access a lender is path (A, B, C). C’s disappearance results in the breakdown of not 

only the B-C but also the A-B dyadic link, and A’s connexion to the network is therefore strictly dependent 

on the existence of C. By contrast, node D (another borrower) would still be able to borrow from the 

money market even if lender C disappeared, as there exist two alternative paths (D, B, F) and (D, E, F) 

connecting that borrower to another lender (node F). This example illustrates the importance of preserving 
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the integrity of observed chains when performing our shock simulation analysis. Ignoring the compound 

nature of relationships in the network would lead us to erroneous conclusions about the impact of 

individual node removals. For example, a standard dyadic approach would have led us to conclude that 

the suppression of node C has no impact on node A’s connectivity. This would have been inaccurate, as 

there exists in reality no chain (A, B, F) that could connect borrower A to the other lender (node F) in the 

network.  

When simulating the impact of a given node 𝑖’s removal, we first identify all chains in which 𝑖 plays 

the role of guarantor or lender and single out all nodes involved in these chains (the reference set). We 

then check whether these individual nodes are involved in other chains in the network. If an individual 

node 𝑗 is present in at least one other chain that does not involve 𝑖, it means that an alternative path exists 

allowing 𝑗 to access the money market even in the absence of 𝑖; in other words, 𝑗 is not strictly dependent 

on 𝑖 for its market access. By contrast, if all chains to which node 𝑗 belongs also include node 𝑖, then 𝑗 

loses market access and becomes isolated when 𝑖 is removed. Formally, consider a node 𝑖 ∈ (𝑏𝑈𝑐) of the 

chain 𝐶𝑘
𝑖 = (𝑎𝑇𝑏𝑈𝑐). Any node 𝑗 ∈ 𝐶𝑘

𝑖 ∧  𝑗 ≠ 𝑖 has an alternative access to the money market if ∃𝐶𝑘
𝑗
: 𝑖 ∉

𝐶𝑘
𝑗

∧ 𝑗 ∈ 𝐶𝑘
𝑖 . 

Our methodology assumes that an actor remaining isolated as a consequence of another node’s 

removal cannot build new, alternative paths to access the market. This assumption leads us to bias our 

results towards finding higher systemicness for lenders and guarantors, and against our hypothesis that the 

sterling money market network featured few highly systemic intermediaries.   

 

 

3. Descriptive statistics 

3.1. Network demography 

In this section, we provide descriptive statistics to characterise the money market network’s topology. 

We start with its demography. On the sterling bill market, borrowers (bill drawers) could be located 
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anywhere in the world, while it was a legal requirement for guarantors (bill acceptors) and lenders (bill 

discounters) to reside in the UK.  

 

Table 1 here 

 

Intermediaries were most often specialized in one of these three roles, but a few agents were hybrid, 

i.e., they played different roles in the different bills in which they were involved. Table 1 shows the 

distribution of money market actors according to their role and location. Borrowers were by far the most 

numerous group, followed by guarantors and lenders.12 While a large majority of borrowers (61.71%) 

appear in one single chain of the network, this is only the case of 40.47% of the guarantors and of 17.93% 

of the lenders. This distribution resembles a funnel-shaped structure in which the number of potential 

individuals playing a given role is reduced at every stage of the transaction. 

 

 

3.2. Network topology: method 

To describe the network’s topology, we follow the standard approach consisting in measuring its node 

degree distribution and in comparing it with that of null models, expressly simulated to display specific 

properties (Craig and Von Peter, 2014; Martinez-Jaramillo et al., 2014). We compare the node degree 

distribution of the observed network to that of 250 simulated random (Erdös-Renyi) networks and 250 

simulated scale-free networks, each displaying the same number of nodes and hyperedges (and, thus, the 

same number of agents and chains) as the observed network. To ensure comparability, we constrain our 

simulations so that each individual borrower in simulated networks appears in the same number of chains 

as in the observed network. We also ensure that the simulated and observed networks feature the same 

number of borrowers, guarantors, and lenders.  

 
12 Note that the lenders (or discounters) in our dataset were mainly financial institutions (commercial banks, investment banks, 
money market funds) which purchased bills of exchange and re-sold them to other investors. They were therefore wholesale 
lenders and played an intermediary role on the money market (Accominotti et al., 2021). 



 
 

16 

In a random network, every group of three nodes has the exact same probability of being connected 

through a hyperedge. Comparing the observed network’s topology with that of simulated random networks 

allows assessing whether link creation in the observed network is guided by any kind of non-random 

relational dynamics (Iori et al., 2015; Chinazzi et al., 2013). In a scale-free network, by contrast, link creation 

is governed by a specific process known as preferential attachment dynamics. When simulating scale-free 

networks, we assume that individual actors have a greater tendency to establish links with well-connected 

nodes than with weakly-connected ones. This relational dynamic is conducive to the core-periphery 

network structure characteristic of most modern interbank systems (Martinez-Jaramillo et al., 2014; Iori 

and Mantegna, 2018). Applied to our network, this structure would involve that a large number of 

borrowers (forming the network’s periphery) are connected to a small number of lenders (forming the 

network’s core) through the intermediation of guarantors. Simulated scale-free networks provide a useful 

baseline to assess whether the sterling money market exhibited such a topology. 

 

3.3. Network topology: metrics 

We compare nodes’ degree centralities in the observed and simulated networks. In a hypergraph, a 

node will be considered central if it has many hyperedges (i.e. belongs to a large number of chains) and/or 

if it is connected to many other actors through its hyperedges (Kapoor et al., 2013; Battiston et al., 2020). 

Any hyperedge (or chain) to which a given node belongs is said to be incident to that node. All nodes sharing 

a same hyperedge (belonging to a same chain) are said to be hyperedge-adjacent. Hence, we define a node 𝑖’s 

degree centrality in terms of:  

1) its in-degree 𝐼𝑑𝑖: the number of nodes to which it is connected through an input-arc (i.e., an 

incoming link):13 

𝐼𝑑𝑖 = ∑ |{(𝑗, 𝑖) ∈ 𝑅}| ∀ {𝑖, 𝑗} ∈ 𝑉

𝑖𝑛

𝑖,𝑗=𝑖1

 

 
13 By construction, a node playing the role of borrower in all its chains is always situated at the beginning of these 
chains and has an in-degree of zero. 
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2) its hyperedge degree 𝐻𝑑𝑖: the number of its incident hyperedges (i.e., the number of chains to which 

it belongs): 

𝐻𝑑𝑖 = |{𝐶𝑘
𝑖 ∈ 𝐸 ∶  𝑖 ∈ 𝐶𝑘

𝑖 }| ∀ 𝐶𝑘
𝑖 ∈ 𝐸 

3) and its hyperedge-adjacent nodes degree 𝐻𝐴𝑁𝑑𝑖 : the number of its hyperedge-adjacent nodes (i.e., the 

number of actors to which node 𝑖 is linked through a hyperedge): 

𝐻𝐴𝑁𝑑𝑖 = | {{𝑗 ∈ 𝐸𝑘
𝑖 ∶ 𝑗 ∈ 𝑉}\{𝑖}} | ∀ 𝐸𝑘

𝑖 ∶  𝑖 ∈ 𝐸𝑘
𝑖  

 

The hypothetical example presented in Figure 2 can be used to illustrate the three network degree 

centrality metrics. In the case of node B in Figure 2 (a guarantor), 𝐼𝑑𝐵 = 2 (B is connected with two 

different nodes, A and D, by incoming links), 𝐻𝑑𝐵 = 3 (B has three incident hyperedges or, in other 

words, belongs to three different chains), and 𝐻𝐴𝑁𝑑𝐵 = 4 (B is connected to four different actors through 

its hyperedges). For the six nodes represented in Figure 2, Table 2 reports the value of each of the three 

network degree centrality metrics. 

 

Table 2 here 

 

3.4. Network topology: evidence 

Using the three above-defined degree metrics, we now compare the topology of the observed network 

to that of simulated benchmark networks. For each of the three metrics, Figure 3 shows the degree 

distribution of the observed network versus that of the 250 simulated random networks and of the 250 

simulated scale-free networks. The observed network’s degree distributions significantly differ from those 

of simulated random networks. Therefore, we can rule out that link creation between actors on the money 

market followed a random or near-random process. At the same time, the observed network’s nodes degree 
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distributions look much closer to those of simulated scale-free networks.14 While the large majority of 

nodes only appear in a small number of chains and are connected to a few actors only, the network also 

contains a very small number of intermediaries (lenders and guarantors) that appear in a very large number 

of chains and are connected to many other nodes through these chains. 

 

Figure 3 and Table 3 here 

 

Despite apparent similarities in degree distributions, the observed network differs from the scale-free 

model in that its degree distribution is lighter-tailed. Table 3 shows that the most central node exhibits 

lower degree centrality in the observed network than in simulated, scale-free networks. For each of the 

three degree metrics, the table reports descriptive statistics on the maximum degree values in the 250 

simulated random networks and 250 scale-free networks, and compares them with the maximum degree 

value in the observed network. The results indicate that simulated random networks did not feature any 

node that was as central as the observed network’s most central node. However, in all but one of the 250 

simulated scale-free networks, the maximum values of 𝐼𝑑𝑖, 𝐻𝑑𝑖 and 𝐻𝐴𝑁𝑑𝑖 are greater than the 

corresponding maximum values in the observed network. Therefore, the observed money market network 

does not feature as highly central nodes (so-called mega-hubs) as typical scale-free networks.  

 

 

 

 

 
14 Note that the distribution of 𝐻𝐴𝑁𝑑𝑖  is significantly different in the observed and simulated networks. This is because, by 

construction, in simulated networks, 𝐻𝐴𝑁𝑑𝑖   tends to mostly take even values. In random networks, the probability that a link 
is formed is equal for each pair of nodes. Hence, a given actor is unlikely to be connected to the same node through more than 
one chain. As a result, actors will tend to be connected to twice as many nodes as the number of chains to which they belong. 
For example, any actor belonging to one single chain will be connected to exactly two nodes while most actors belonging to 
two different chains will be connected to exactly four other nodes. In scale-free networks, by construction, a large majority of 
nodes have a very low degree value and those actors are unlikely to belong to two different chains featuring the same nodes. 
Only the small minority of actors exhibiting high degree values are likely to be connected to a given node through more than 

one chain and to exhibit an odd 𝐻𝐴𝑁𝑑𝑖  value. 
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4. Results 

4.1. Absolute and local systemicness 

We now explore the resilience of the sterling money market network through a more detailed analysis 

of actors’ systemicness. In order to assess the absolute systemicness of money market intermediaries (i.e., nodes 

playing the role of guarantor or lender), we perform shock simulations and remove them one by one from 

the network. We then identify the chains impacted and count how many nodes remain isolated from the 

network when a given intermediary is removed. We define a node 𝑖’s absolute systemicness 𝐴𝑆𝑖 as the 

percentage of the total number of nodes that lose market access when 𝑖 is removed. We also compare each 

node’s 𝐴𝑆𝑖 to its market share 𝑀𝑆𝑖, defined as the percentage of nodes in the network which belong to a 

hyperedge in which  𝑖 is present (i.e., the percentage of nodes which are hyperedge-adjacent to 𝑖). The 

formal definitions of 𝐴𝑆𝑖 and 𝑀𝑆𝑖 are provided in Algorithm 1. 

 

Algorithm 1 here and Table 4 here 

 

In Table 4, we first compare the maximum values of absolute systemicness (max (𝐴𝑆𝑖)) and market 

share (max (𝑀𝑆𝑖)) in the observed network and in the simulated random and scale-free networks. For 

each of the two variables, the maximum value is higher in the observed network than in any of the 250 

simulated random networks but lower than in all but one of the 250 simulated scale-free networks. This 

indicates that all simulated scale-free networks but one featured at least one node that was more systemic 

than the observed network’s most systemic node. Interestingly, the ratio between the median 

max (𝐴𝑆𝑖) and median max (𝑀𝑆𝑖) appears to be higher for simulated scale-free networks than for the 

observed one. This invites a more detailed analysis of the actual distribution of 𝐴𝑆𝑖 and 𝑀𝑆𝑖 in the 

different networks. 

 

Figure 4 here 
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Figure 4 presents a scatter plot of the two variables for all actors playing the role of guarantor and/or 

lender on the money market. We report the comparison for nodes in the observed network as well as in 

one representative simulated random network and one representative simulated scale-free network.15 Two 

main features emerge from the figure. First, 𝐴𝑆𝑖 is low for all individual actors 𝑖 in the observed network. 

Out of the 1,535 actors playing the role of guarantor or lender in the observed network, there are only two 

whose removal impacts more than 4% of market participants.16 At the other end of the spectrum, 597 

actors have no impact at all. Second, 𝐴𝑆𝑖 rises less than proportionately with 𝑀𝑆𝑖. Actors are situated on 

the 45-degree line on the figure when their removal impacts 100% of their hyperedge-adjacent nodes. 

Thus, the further to the right intermediaries are from the 45-degree line, the less dependent other nodes 

are on them for their market access. The figure reveals that the most central nodes in the observed network 

are situated well below the 45-degree line. This means that even the most highly systemic nodes in the 

observed network were relatively substitutable as few actors depended exclusively on them for accessing 

money market facilities. By contrast, in the simulated scale-free network, nodes with a high 𝐴𝑆 are also 

situated closer to the 45-degree line, indicating that they are much less substitutable. Overall, these results 

indicate that the observed money market network featured less systemic actors than corresponding scale-

free networks with the same demography. 

 

Figure 5 here 

 

 
15 These two representative simulated networks have been generated using the same procedure as for the previous 250 random 

and 250 scale-free networks. In the representative random network, max
 

(𝐼𝑑𝑖)=81, max
 

(𝐻𝑑𝑖)=105, and max
 

(𝐻𝐴𝑁𝑑𝑖)=196; 

in the representative scale-free network, max
 

(𝐼𝑑𝑖)=1,667, max
 

(𝐻𝑑𝑖)=3,334, and max
 

(𝐻𝐴𝑁𝑑𝑖)=2,200: compare this with 

mean and median values in Table 3. In the representative random network, max
 

(𝐴𝑆𝑖)=0.543 and max
 

(𝑀𝑆𝑖)=3.219; in the 

representative scale-free network, max
 

(𝐴𝑆𝑖)=26.685 and max
 

(𝑀𝑆𝑖)=43.514: compare this with mean and median values in 

Table 4. 
16 These two actors are Union Discount Company (7.83%), a large money market fund of the City of London at the beginning 
of the twentieth century, and Anglo-Foreign Banking Corporation (5.41%), a commercial bank specialised in foreign lending 
through its activities as guarantor and lender for overseas firms and banks.  
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For each node 𝑖, we also measure its local systemicness 𝐿𝑆𝑖 = 𝐴𝑆𝑖 𝑀𝑆𝑖⁄ , i.e., the share of 𝑖’s hyperedge-

adjacent nodes which lose market access when 𝑖 is removed (see Algorithm 1). Figure 5 plots the frequency 

distribution of 𝐿𝑆𝑖 across all nodes playing the role of guarantor and all nodes playing the role of lender in 

the observed network. A large number of guarantors exhibit intermediate levels of local systemicness. For 

48.64% of guarantors, 𝐿𝑆𝑖 is situated between 20% and 50%. By contrast, only 36.55% of lenders display 

such intermediate levels of local systemicness and 17.24% of them exhibit a 𝐿𝑆𝑖 higher than 50%.17 Overall, 

these results shed light on the differences between various types of intermediaries on the money market. 

While lenders displayed on average higher absolute systemicness than guarantors, they exhibited relatively 

lower levels of local systemicness.  

 

Algorithm 2 here 

 

While the removal of individual nodes could not cause significant damage to the network, the 

cumulative disappearance of the most systemic intermediaries might nonetheless have led to its rapid 

breakdown. Removing any actor from the network results in the disappearance of all chains in which it is 

involved. To estimate the damage potentially caused by cumulative shocks, we present a measure of spare-

chain connectivity obtained by sequentially removing nodes from the network in the order of their absolute 

systemicness (𝐴𝑆𝑖). Figure 6 reports the percentage of chains 𝐶𝑘 of the original observed network that are 

preserved following the sequential removal of various numbers of nodes. Algorithm 2 formally details this 

procedure. We also compare how the sequential removal of systemic nodes affects the number of chains 

in the observed network versus in one simulated random network and one simulated scale-free network 

(selected as in Figure 4).  

 

Figure 6 here 

 
17 Note that these locally-systemic lenders were small on average. The mean and median hyperedge degrees 𝐻𝑑𝑖  are equal to 

6.36 and 2.00, respectively, for the 25 lenders whose local systemicness 𝐿𝑆𝑖  is greater than 50%. 
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Removing the four most systemic nodes altogether from the observed network results in the 

disappearance of 26.7% of its chains. The observed network still conserves 49.6% of its original chains 

after the ten most systemic actors are removed and 6.9% after the removal of the fifty most systemic 

intermediaries. By contrast, the removal of the four most systemic nodes from the simulated scale-free 

network leads to the disappearance of as many as 82.9% of its chains and this network breaks down 

completely after the seven most systemic actors are removed. The random network is (unsurprisingly) 

much more resilient to the removal of its most systemic nodes than both the observed and scale-free 

networks. However, while the random network collapses completely following the removal of its 158 most 

systemic nodes, it takes the removal of 1,421 nodes for the observed network’s chains to all disappear. 

This pattern indicates the presence on the money market of a significant number of intermediation chains 

featuring agents weakly connected to the rest of the network.   

Overall, these results indicate that the sterling money market network was much more resilient to 

shocks than typical scale-free networks. It is also worth noting that, as stated above, our shock simulation 

methodology assumes that money market actors cannot build alternative paths to access the money market 

when the chains in which they are involved disappear. This assumption leads us to overestimate individual 

nodes’ systemicness. Despite this upwards bias however, we find that the money market network was not 

subject to the robust-yet-fragile feature characteristic of most modern interbank networks (Gai and Kapadia, 

2010). In the remainder of this section, we perform a number of robustness checks to corroborate this 

finding. 

 

4.2. Sampling bias 

The entire set of links within a financial network is rarely observable in full. Our historical dataset 

records information on a large sample of sterling money market transactions for the year 1906 and 

documents all links between actors involved in these transactions. Yet, given the over-the-counter nature 

of money market dealings, not all transactions were being recorded and links between money market actors 
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are therefore not all observable. Using incomplete data to infer the structure of a true network can result 

in sampling biases as recently emphasized by the literature on ecosystems (Fründ et al., 2016; Henriksen et 

al., 2018). How do these sampling effects affect our conclusions about systemic risk on the sterling money 

market? 

In the absence of complete data, empirical network analysis is often based on a random sample of 

nodes drawn from the true network. This method can however lead to underestimate the true network’s 

resilience, as highly systemic nodes are generally very few and the likelihood of randomly selecting them is 

therefore low (Stumpf et al., 2005). By contrast, our observed money market network was built from a 

sample of bills of exchange (money market transactions) each involving three different nodes. In other 

words, the network was constructed from the sampling of chains rather than nodes. Since highly systemic 

nodes are by definition present in a large number of chains, the likelihood of selecting those nodes is much 

higher when the network is constructed from a sample of chains than from a sample of nodes. Hence, it 

is plausible that our sampling method leads us to overestimate rather than underestimate the true money 

market network’s resilience to shocks.      

 

Figure 7 here 

 

In order to verify this intuition, we perform two types of checks. We first assess how maximum 

absolute systemicness in the observed network evolves with sample size. We randomly select subsections 

of our observed network of various sizes and compute for each of them max (𝐴𝑆𝑖) – i.e., the absolute 

systemicness of the most systemic node in the network. We start with a sample that consists of 1,000 

chains randomly selected from the observed network. We then add 1,000 additional (randomly-selected) 

chains to the previous sample and repeat this procedure until all chains are included in the sampled 

network. This leads us to generate eight sampled networks, whose size varies from 1,000 to 8,000 chains. 

For each sampled network, we compute max (𝐴𝑆𝑖). The procedure is then reproduced 100 times. Figure 

7 reports max (𝐴𝑆𝑖) for each of the eight sampled networks included in each of the 100 simulations. Each 
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black line corresponds to a set of eight sampled networks of increasing size. For any given sample size, the 

red line reports the mean value of max (𝐴𝑆𝑖) observed across all 100 sampled networks.  

By construction, as the number of chains increases, the maximum absolute systemicness in sampled 

networks converges towards its actual value in the entire observed network (7.83%). In line with the 

intuition presented above, we also find that max (𝐴𝑆𝑖) tends to decrease when sample size increases. This 

finding is due to the fact that an incomplete network constructed from randomly sampling chains will tend 

to disproportionately feature highly systemic actors. Hence, our sampling method leads us to overestimate 

rather than underestimate actors’ systemicness on the money market.  

 

Figure 8 here 

 

Second, we check whether this finding obtained on the observed network also holds when considering 

larger sample sizes and alternative network structures. We simulate 10 random networks and 10 scale-free 

networks featuring three times as many nodes and chains as the observed network (14,910 nodes and 

26,664 chains). We then construct sampled subsections of these simulated networks as described above; 

first, by randomly selecting 2,000 chains; and then, by successively adding 2,000 randomly-selected chains 

to each sampled network until all 26,664 chains of the simulated network are included in the sample. We 

repeat this procedure five different times for each of the 10 simulated network in order to obtain 50 

simulations. At every stage, we compute max (𝐴𝑆𝑖) for each sampled network. 

Figure 8 reports the results. They reveal that, for both types of simulated networks, maximum 

systemicness tends to decrease as sample size increases. These results confirm that sampling biases lead us 

to overestimate systemicness in the true network and can therefore not affect our main conclusion that 

systemicness was relatively low on the sterling money market at the start of the twentieth century.    
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4.3. Group systemicness 

We then investigate whether the sterling money market was resilient to shocks affecting specific 

groups of money market intermediaries. For that purpose, we identify four different groups of 

intermediaries in our network whose role has been described by contemporaries and financial historians 

alike: 

1. Discount houses: these 20 institutions were comparable to modern money market funds and 

specialized in investing on the money market by purchasing large amounts of sterling bills 

of exchange (King, 1936; Accominotti et al., 2021).  

2. Anglo-foreign banks: these 45 institutions were UK-based multinational commercial banks 

that intermediated credit through their many overseas branches (Jones, 1993); 

3. Merchant banks (or acceptance houses): this group is composed of the top-10, globally-

renowned investment banks (merchant banks) of the City of London. These banks 

specialized in guaranteeing (accepting) bills of exchange on account of their domestic and 

overseas clients (Chapman, 1984).    

4. Clearing banks: This group is composed of the 11 banks that dominated domestic 

commercial banking in the UK (Sykes, 1926). 

 

Table 5 here 

 

To analyse the significance of these four groups for agents’ access to the sterling money market, we 

remove each group 𝐺𝑥 ∈ 𝑉 from the network and compute their absolute systemicness 𝐴𝑆𝐺𝑥
 and their market 

share 𝑀𝑆𝐺𝑥
. 

The procedure is similar to that described in Algorithm 1, except that we now measure the joint 

absolute systemicness of all nodes that belong to a given group 𝐺𝑥 rather than the systemicness of 
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individual nodes.18 The results of these computations are shown in Table 5. It is evident that discount 

houses (money market funds) were the overly dominant lenders on the money market with a combined 

market share of 65.65%. If all these intermediaries had failed at the same time, 42.1% of agents would have 

lost access to the sterling money market. While this would have represented significant damage for the 

financial network, this also suggests that there existed alternative routes that allowed accessing London’s 

financial facilities without going through these institutions. Absolute systemicness was lower for other 

groups of intermediaries ranging from 5.7% for the UK clearing banks (domestic commercial banks) to 

21.2% for the Anglo-foreign banks (UK-based multinational commercial banks). The relatively higher 

systemicness of the latter group of banks arises from their joint activity as guarantors and lenders of short-

term funds for their overseas clients. Nevertheless, while the removal of each of these various groups 

would have caused significant disruptions to the money market, no group of intermediaries was sufficiently 

systemic for its removal to cause a complete collapse of the financial network and cut off all agents’ access 

to that market. 

 

4.4. Geographic systemicness 

Borrowers on the London money market were located everywhere in the world and UK financial 

intermediaries often specialized along geographic lines (Accominotti et al., 2021). Therefore, it is possible 

that certain geographic regions were strongly dependent on specific actors for their access to short-term 

sterling credit facilities. For example, if all borrowers from a certain region accessed the money market 

through the intermediation of one single UK guarantor or lender, the failure of these intermediaries would 

have resulted in an entire region being cut off from the London money market. 

 

Figure 9 here 

 

 
18 Note that a given group 𝐺𝑥 ’s absolute systemicness differs from the sum of absolute systemicness values of all individual 
nodes that compose it. This is because all nodes of a given group are removed at the same time and these nodes often appear 
in the same chains. 



 
 

27 

We thus exploit our data on money market borrowers’ geographic location to assess how dependent 

individual cities were on specific UK intermediaries. Our dataset includes 617 cities. In Figure 9, we report 

the frequency distribution of these cities according to the number of borrowers they comprise. Money 

market borrowers were scattered across the world and many of them were located in relatively small cities. 

Hence, 53.65% of cities in the network featured only one borrower, while only 21.1% had five or more 

borrowers. Table 6 reports the list of all cities in the network classified according to the number of 

borrowers they featured. 

 

Table 6 here 

 

For each node 𝑖 playing the role of guarantor or/and lender in the network, and for each city 𝑐 in our 

database, we compute a city market loss rate 𝐶𝑀𝐿𝑟𝑐𝑖 corresponding to the share of borrowers of city 𝑐 that 

lose market access when 𝑖 is removed from the network. 𝐶𝑀𝐿𝑟𝑐𝑖 is formally defined in Algorithm 3. 

 

Algorithm 3 here 

 

We consider that a money market intermediary 𝑖 is geographically systemic with respect to a given city 

𝑐 when 𝐶𝑀𝐿𝑟𝑐𝑖  is equal or higher than 50% or, in other words, when more than half of that city’s borrowers 

lose market access as a result of the intermediary’s failure. Out of the 1,535 guarantors and lenders in our 

dataset, only 63 were geographically systemic for at least one city. Of course, cities featuring one borrower 

who only appears in one chain in the network are by definition fully dependent on one guarantor and one 

lender for their market access. For those cities therefore, the lender’s and guarantor’s city market loss rates 

are both equal to 100% by construction. 

 

Figure 10 here 
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In Figure 10, we focus on cities that comprise at least two borrowers. We represent relationships 

between all these cities and intermediaries in a matrix form. A dot on the graph indicates that a given 

intermediary is geographically systemic for a given city. The dot’s size varies according to the number of 

borrowers present in that city while its color varies according to the intermediary’s level of systemicness 

with regards to the city (measured through its city market loss rate). For example, looking at the interaction 

of the first column and bottom line in the graph, we see that Boston featured 23 different borrowers on 

the London money market and that 61% of them were dependent on one London intermediary (the 

discount house Union Discount Company) for their market access. 

Several UK intermediaries that specialized in intermediating credit for borrowers located in specific 

regions of the world were geographically systemic for specific cities in these regions. This is the case, for 

example, of the Canadian Bank of Commerce (a multinational bank that specialized in the financing of 

North American trade), on which borrowers in San Francisco, Pensacola, Toronto, Wilmington, Paris 

(Texas), Vancouver, and Navasota were strongly dependent. Similarly, C Murdoch & Co. (a merchant bank 

that specialized in guaranteeing bills for customers located in Africa) was a key intermediary for most 

borrowers in Casablanca, Mogador, Tangier, and Saffi. At the same time, even the largest discount houses 

or money market funds of the City of London (Union Discount Company, National Discount Company, 

Alexanders & Co.) did not exhibit much geographic systemicness with regard to any city in the world. 

Overall, the results reveal that, except for a few of them, cities did not depend on one single intermediary 

for accessing the London money market. 

 

4.5. City vulnerability 

Last, we measure to what extent each city in the network was vulnerable to shocks on UK 

intermediaries. A money market borrower was particularly vulnerable if its market access depended 

exclusively on one single guarantor or lender. For example, a borrower might have been involved in five 

different chains featuring five different lenders but only one guarantor. In that case, the borrower was 

strictly dependent on one guarantor for its market access but did not depend on any specific lender. We 



 
 

29 

consider that a given borrower is vulnerable when its market access depends on one single guarantor or 

lender. We also distinguish between guarantor-vulnerable borrowers (i.e., borrowers that depend on one single 

guarantor) and lender-vulnerable borrowers (i.e., borrowers that depend on one single lender).  

For each city 𝑐, we compute both a guarantor-vulnerability rate 𝑉𝑈𝐿𝐺𝑐 (defined as the share of borrowers 

of that city that depend on one single guarantor) and a lender-vulnerability rate 𝑉𝑈𝐿𝐿𝑐 (defined as the share 

of borrowers of the city that depend on one single guarantor). The formal definitions of 𝑉𝑈𝐿𝐺𝑐 and 𝑉𝑈𝐿𝐿𝑐 

are provided in Algorithm 4.19  

 

Algorithm 4 here 

 

Figure 11, Panel A, presents a scatter plot of cities’ 𝑉𝑈𝐿𝐺𝑐 against their overall number of borrowers. 

Then, 40.0% of the cities appearing in at least two chains exhibit a guarantor-vulnerability rate of 100%, 

indicating that each of their borrowers is dependent on one single guarantor. All of these highly guarantor-

vulnerable locations were however small cities comprising 10 borrowers or less. At the same time, not all 

small cities exhibited a high 𝑉𝑈𝐿𝐺𝑐. Out of the 296 cities that featured 10 borrowers or less, 16.9% had no 

guarantor-vulnerable borrower and 29.7% had less than half of their borrowers that were guarantor-

vulnerable. At the other end of the spectrum, no single city with more than 10 borrowers exhibited a 

guarantor-vulnerability rate of 100%. 

 

Figure 11 here 

 

Figure 11, Panel B, scatters cities’ 𝑉𝑈𝐿𝐿𝑐 against their overall number of borrowers. On average, cities 

appear to have been less exposed to the removal of lenders than guarantors. The share of cities with a 

 
19 Cities that appear in one single bill of the network have, by construction, a vulnerability score of 100%. Hence, we restrict 
our sample to the 360 cities that appear in at least two bills. 
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vulnerability rate of 100% is lower for lenders (31.9%) than for guarantors (40.0%).20 In addition, while 

16.7% of cities in the network feature no lender-vulnerable borrowers, only 13.9% of cities have no 

guarantor-vulnerable borrower.   

Overall, these findings indicate that lenders were on average more substitutable money market 

intermediaries than guarantors. Borrowers obtained funds from a relatively diverse pool of lenders but had 

their debts guaranteed by a more limited number of guarantors. At the same time, the 20 biggest lenders 

on the money market had a significantly higher market share (85.35%) than the 20 biggest guarantors 

(37.52%). Therefore, despite the greater market concentration in lending than in guaranteeing, 

intermediaries playing the role of guarantors were less substitutable. This apparent paradox can be 

explained by the specific nature of these two types of activities, which were performed by different types 

of money market intermediaries (Accominotti et al., 2021). One implication of this market structure is that 

the sterling money market did not feature very large and systemic hubs, and was less prone to the robust-

yet-fragile property characteristic of most present-day interbank networks.  

 

5. Conclusions 

We rely on a new dataset assembled from archival records in order to reconstruct the network of 

financial interlinkages in the dominant global money market of the first globalization era. This dataset 

covers both “bank-bank” (lender-guarantor) and “bank-firm” (guarantor-borrower) relationships. We 

represent the network of borrower-guarantor-lender intermediation chains as a hyperstructure and assess 

financial network resilience through an original methodology that allows preserving the unity of these 

higher-order structures. We apply simple shock simulation techniques and measure the effect of removing 

individual nodes (or intermediaries) on the overall network. This allows us to measure to what extent 

money market intermediaries were substitutable and to what extent borrowers across the world were 

dependent on a few UK agents for their access to the dominant global money market.  

 
20 It is worth noting however that two out of the 115 cities (Port Said and Amsterdam) that exhibit a vulnerability rate of 100% 
with respect to lenders are middle-sized cities, that featured 15 and 20 borrowers respectively. 
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In modern interbank networks, shock simulations involving the removal of central nodes generally 

result in a complete breakdown of network connectivity. This is because present-day networks are generally 

characterised by the presence of a few systemic and non-substitutable actors. Our findings however 

indicate that the sterling money market of the first globalization era did not feature any highly-systemic 

intermediaries, whose failure could have caused major damage to the network. These findings indicate that 

a global financial network with a low level of actors’ systemicness can and did actually exist even at a time 

of high international financial integration. 

Our article makes a methodological contribution. To the best of our knowledge, we are the first to 

apply the hyperstructure approach to the study of financial networks. The methodology we develop here 

could be applied to study the resilience of any directed network in which certain nodes are non-

substitutable and can potentially cause severe damage to connectivity. This is the case, for example, of 

global supply chains or transportation networks (Lucena-Piquero et al., 2022). One limitation of our 

analysis is that it is based on data representing a snapshot in time. Extending the hyperstructure approach 

we develop here to study a dynamic financial network is beyond the scope of this article, but would 

constitute an avenue for future research.   

Our results also have implications for financial regulators. The low systemicness of intermediaries on 

the sterling money market at the beginning of the twentieth century arose from the specific characteristics 

of the financial instruments (bills of exchange) used for money market transactions. These instruments 

created incentives for money market agents to produce information on borrowers and discouraged the 

emergence of too large intermediaries (Accominotti et al., 2021). Nineteenth-century regulators were 

adamant about the superiority of the bill of exchange from a supervisory viewpoint (Ugolini, 2017). This 

suggests that supervisors aiming to improve the robustness of financial networks should pay close attention 

to the microstructure of financial markets and encourage the use of instruments whose design provides 

disincentives to concentration. 
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Figure 1. Links encompassed in a bill of exchange 

 

 

 

 

 

Notes: This figure presents a schematic representation of the relationships between actors involved in the 
origination and distribution of a bill of exchange. See Accominotti et al. (2021) for a detailed description of the 
functioning of bills of exchange. 
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Figure 2. Representation of chains  

 

 

Notes: This figure presents a hypothetical example of a higher-order network involving four chains and six nodes. 
The four chains are (A,B,C), (D,B,C), (D,B,F) and (D,E,F). Each combination of two same-coloured arrows 
constitutes a hyperedge that associates the three nodes and their links in a given chain.  
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Figure 3. Node degree distribution: observed versus null model networks 

 

 

 

Notes: For each of the three network degree centrality metrics, the figure shows the frequency distribution of nodes according to 
their degree in the observed network (black line), in 250 simulated random networks (blue lines), and in 250 simulated scale-free 

networks (red lines). Panel A reports the frequency distribution of nodes according to their in-degree (𝐼𝑑𝑖). Panel B reports the 

frequency distribution of nodes according to their hyperedge degree (𝐻𝑑𝑖). Panel C reports the frequency distribution of nodes 

according to their hyperedge-adjacent nodes degree (𝐻𝐴𝑁𝑑𝑖). The x-axis is in logarithmic scale. Nodes that only played the role of 

borrower are excluded from panel A as, by construction, 𝐼𝑑𝑖 = 0 for those nodes. See text.    
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Figure 4. Absolute systemicness 

 

Notes: The figure reports the absolute systemicness (𝐴𝑆𝑖) and market share (𝑀𝑆𝑖) of each intermediary (guarantor or lender) in 
the observed network as well as in one simulated random network and one simulated scale-free network. On the y-axis, a 

node 𝑖’s absolute systemicness corresponds to the percentage of all nodes in the network that remain isolated when 𝑖 is removed. 

On the x-axis, a node 𝑖’s market share corresponds to the percentage of nodes in the network which are hyperedge-adjacent 

to 𝑖. See text for a more detailed definition of these variables. Actors of the observed, random, and scale-free networks are 
represented in black, blue, and red, respectively. In each network, nodes that only played the role of guarantor are represented 
by a dot, nodes that only played the role of lender are represented by a square, and nodes that played the role of both 
guarantor and lender are represented by a triangle. Both axes are in logarithmic scale. See text.  
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Figure 5. Local systemicness: guarantors and lenders  

 

  

 

Notes: The figure reports the frequency distribution of guarantors (left panel) and lenders (right panel) according to their 

local systemicness (𝐿𝑆𝑖). Values on the y-axis correspond to the percentage of guarantors/lenders whose 𝐿𝑆𝑖  falls within any 
given value range reported on the x-axis. See text.   
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Figure 6. Spare Chain Connectivity 

 

 

Notes: For each of the three networks (observed network, simulated random network, and simulated scale-free 
network), the y-axis reports the percentage of original chains that are preserved after sequentially removing a certain 

number of nodes. Nodes are sequentially removed in the order of their absolute systemicness (𝐴𝑆𝑖). The x-axis is in 
logarithmic scale. See text. 
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Figure 7. Sampling effects and systemicness in the observed network 

 

Notes: The figure reports the outcome of simulations performed to assess the effect of sampling biases on maximum absolute 

systemicness in the observed network. Each of the 100 black lines reports the maximum absolute systemicness (max(𝐴𝑆𝑖)) recorded 
in eight randomly-sampled portions of the observed network. Sampled networks are increasing in size from 1,000 to 8,000 
chains. The observed network contains 8,888 chains. The number of chains included in each sampled portion of the observed 

network is reported on the x-axis and max(𝐴𝑆𝑖) is reported on the y-axis. For any given sample size, the red line corresponds 

to the mean of max(𝐴𝑆𝑖) across all 100 sampled networks. The horizontal blue line crosses the y-axis at 7.83% (i.e., the 

maximum value of 𝐴𝑆𝑖 in the observed network). See text.  
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Figure 8. Sampling effects and systemicness in random and scale-free networks 

 

 

 

 

Notes: The figure reports the outcome of simulations performed to assess the effect of sampling biases on maximum absolute 
systemicness in random and scale-free networks. Each of the 50 blue (green) lines reports the maximum absolute systemicness 

(max(𝐴𝑆𝑖)) recorded in fourteen randomly-sampled portions of ten simulated random (scale-free) networks. Sampled networks 
are increasing in size from 2,000 to 26,664 chains. Each of the ten simulated networks contains 26,664 chains. The x-axis reports 

the number of chains included in each sample of the simulated random (scale-free) network. The y-axis reports max(𝐴𝑆𝑖) for 

each sample. For any given sample size, the red line corresponds to the mean of max(𝐴𝑆𝑖) across all 50 sampled networks. See 
text. 

 

 

  



 
 

46 

 

Figure 9. Frequency distribution of cities according to their number of borrowers  

 

 

Notes: The figure reports the frequency distribution of cities according to the number of borrowers they feature. 
Values on the y-axis correspond to the percentage of cities that comprise a number of borrowers falling within any 
given value range reported on the x-axis. See text. 
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Figure 10. Geographically systemic intermediaries  

 

 

Notes: The figure represents all intermediaries (guarantors and lenders) that were geographically systemic with 
respect to cities that appear on the x-axis. All cities featuring at least two borrowers are included. An intermediary 
is considered geographically systemic for a given city if more than 50% of borrowers of that city lose market access 
as a consequence of its removal. For every city, geographically systemic intermediaries are represented by a blue 
dot. The dot’s size varies according to the number of borrowers located in the city and its darkness varies according 

to the intermediary’s city market loss rate (𝐶𝑀𝐿𝑟𝑐) with regards to that city. On the x-axis, cities are ranked (from left 
to right) according to their overall number of borrowers. On the y-axis, intermediaries are ranked (from bottom to 

top) according to their absolute systemicness (𝐴𝑆𝑖). See text.    
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Figure 11. City vulnerability 

Panel A. Guarantor-vulnerability 

 

Panel B. Lender-vulnerability 

 

Notes: For each city with at least two bills in the network, the figure reports its overall number of borrowers (x-axis) and 
the percentage of these borrowers that are guarantor-vulnerable (Panel A) and lender-vulnerable (Panel B) (y-axis). A borrower 
is considered guarantor- (lender-)vulnerable if it is dependent on one single guarantor (lender) for her market access. Cities 
that appeared in one single chain in the network are removed from the analysis as, by construction, 100% of their 
borrowers were vulnerable. Each dot on the figure corresponds to one city. Several cities exhibit the exact same number 
of overall and vulnerable borrowers, in which case their dots are superimposed. Superimposed dots appear darker on the 
figure. See text. 
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Algorithm 1: Absolute systemicness, market share, and local systemicness 

Input: 

Data as an edgelist 𝐸 where each row is a chain (a bill in our case) and each column is a 

role (three columns in our case). The set of chains (rows) in 𝐸 is 𝐶, each row is unique in 

𝐸 (no two chains are alike), and 𝑉 is the set of agents in 𝐸. 

Procedure: 

1. Identify all agents 𝑖 in guarantor and/or lender role (subset 𝑉𝐺𝐿 ∈ 𝑉): {𝑖} ∈
𝑉𝐺𝐿 ∀ {𝑖} ∈ 𝑉 ∶ 𝐼𝑑𝑖 > 0  

2. FOR 𝑖 in 𝑉𝐺𝐿, subset from 𝐸 all rows where the agent 𝑖 has the guarantor and/or 

lender role. The result is the edgelist  𝐸𝑖 

3. Obtain the edgelist 𝑅𝑖 via the subtraction of the edgelist 𝐸𝑖 from 𝐸, so 𝑅𝑖 = 𝐸 \ 𝐸𝑖 

4. Obtain the subset 𝑉𝑝𝑖 of agents included in 𝐸𝑖 excluding 𝑖: 𝑉𝑝𝑖 = {𝑗 ∈ 𝑉 ∶ 𝑗 ∈
𝐸𝑖} \ {𝑖} 

5. Obtain the subset 𝑉𝑠𝑖 of agents who are included in 𝑉𝑝𝑖 but not in 𝑅𝑖 (i.e., the agents 

who depend on 𝑖 for market access): 𝑉𝑠𝑖 = 𝑉𝑝𝑖 \ {𝑗 ∈ 𝑉 ∶ 𝑗 ∈ 𝑅𝑖} 

6. Compute the absolute systemicness of an agent 𝑖 (𝐴𝑆𝑖) as the proportion of agents of 𝑉𝑠𝑖 

in 𝑉 less one (the agent 𝑖): 𝐴𝑆𝑖 = (|𝑉𝑠𝑖| (|𝑉| − 1)⁄ ) 

7. Compute the market share of an agent 𝑖 (𝑀𝑆𝑖) as the proportion of agents of 𝑉𝑝𝑖 in 𝑉 

less one (the agent 𝑖): 𝑀𝑆𝑖 = (|𝑉𝑝𝑖| (|𝑉| − 1)⁄ ) 

8. Compute the local systemicness of an agent 𝑖 (𝐿𝑆𝑖) as the proportion of agents of 𝑉𝑠𝑖 in 

𝑉𝑝𝑖: 𝐿𝑆𝑖 = (𝐴𝑆𝑖 𝑀𝑆𝑖⁄ ) = (|𝑉𝑠𝑖| |𝑉𝑝𝑖|⁄ ) 
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Algorithm 2: Spare chain connectivity 

 

Input: 

Data as an edgelist 𝐸 where each row is a chain (a bill in our case) and each column is a 

role (three columns in our case). The set of chains (rows) in 𝐸 is 𝐶, each row is unique in 

𝐸 (no two chains are alike), and 𝑉 is the set of agents in 𝐸. 

The absolute systemicness  𝐴𝑆 for all guarantors and lenders 𝑉𝐺𝐿 

Procedure: 

1. Order (permute) 𝑉𝐺𝐿 elements by decreasing absolute systemicness. The result is the 

sequence of agents 𝑉𝐴𝑆. 

2. FOR 𝑖 = 1 to |𝑉𝐴𝑆| 

3. IF 𝑖 = 1 : 𝐸𝑅 ==  𝐸; 𝐶𝑅 == 𝐶; 𝑉𝑅 == 𝑉 

4. Obtain from 𝐸𝑅 all rows where 𝑖 has the guarantor and/or lender roles. The result is 

the edgelist 𝐸𝑖. 

5. Redefine 𝐸𝑅 as 𝐸𝑅 without 𝐸𝑖 : 𝐸𝑅 = 𝐸𝑅 / 𝐸𝑖 

6. Obtain the set of chains 𝐶𝑅𝑖 from the edgelist 𝐸𝑅. 
7. Compute the spare chain connectivity 𝑆𝐶𝐶 as the proportion of chains remaining in the 

network after removing the agent 𝑖 and all its predecessors in the 𝑉𝐴𝑆 sequence. So, 

𝑆𝐶𝐶𝑖= |𝐶𝑅𝑖| / |𝐶| 
8. IF 𝐸𝑅 = {} ENDFOR 
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Algorithm 3: City market loss rate 

Input: 

Data as an edgelist 𝐸 where each row is a chain (a bill in our case) and each column is a 

role (three columns in our case). The set of chains (rows) in 𝐸 is 𝐶, each row is unique in 

𝐸 (no two chains are alike), and 𝑉 is the set of agents in 𝐸. 

Data frame of borrowers by city. The set of borrowers is 𝐷𝑅 and the set of cities is 𝐶𝑇. 

Procedure: 

1. FOR 𝑐 in 𝐶𝑇, subset from 𝐸 all rows (chains) whose agents playing the role of 

borrowers are located in city 𝑐. The result is the subset of agents and chains 𝐸𝑐 , where 

𝐶𝑐 is the subset of chains in 𝐸𝑐 and 𝐷𝑅𝑐 is the subset of agents in borrower role in 𝐸𝑐 

2. IF |𝐶𝑐| > 1 :  

3. Identify all actors  𝑖 with guarantor and/or lender role in 𝐸𝑐 . The result is the subset 

𝑉𝐺𝐿𝑐
 

4. FOR 𝑖 in 𝑉𝐺𝐿𝑐
, subset from 𝐸𝑐 all rows (chains) where 𝑖 has the guarantor and/or 

lender role. The result is the subset of chains and agents 𝐸𝑐𝑖 

5. Obtain the subset of chains and agents 𝑅𝑐𝑖 which are not included in 𝐸𝑐𝑖 : 𝑅𝑐𝑖 =
 𝐸𝑐  \ 𝐸𝑐𝑖 

6. Obtain the subset 𝐷𝑅𝑐𝑖 of agents (borrowers) of 𝐸𝑐𝑖 who are not included in 𝑅𝑐𝑖 (i.e., 

the agents who depend on 𝑖 for market access): 𝐷𝑅𝑐𝑖 = 𝐸𝑐𝑖 \ 𝑅𝑐𝑖  

7. Compute the city market loss rate of a city 𝑐 for an agent 𝑖 (𝐶𝑀𝐿𝑟𝑐𝑖) as the proportion 

of the borrowers in city 𝑐 (i.e., of 𝐷𝑅𝑐) who depend on agent 𝑖 for market access: 

𝐶𝑀𝐿𝑟𝑐𝑖 = (|𝐷𝑅𝑐𝑖| |𝐷𝑅𝑐|⁄ ) 
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Algorithm 4: City vulnerability 

Input: 

Same as Algorithm 3. 

Procedure: 

1. FOR 𝑐 in 𝐶𝑇, subset from 𝐸 all rows (chains) whose agents playing the role of 

borrowers are located in city 𝑐. The result is the edgelist 𝐸𝑐 , where 𝐶𝑐 is the subset of 

chains in 𝐸𝑐 and 𝐷𝑅𝑐 is the subset of agents in borrower role in 𝐸𝑐  

2. IF |𝐶𝑐| > 1 :   

3. FOR 𝑖 in 𝐷𝑅𝑐 identify both subsets of agents in guarantor role 𝑉𝐺𝑐
 and in lender role 

𝑉𝐿𝑐
.  If |𝑉𝐺𝑐

| = 1, the borrower 𝑖 is guarantor-vulnerable. If |𝑉𝐺𝐿
| = 1, the borrower 𝑖 

is lender-vulnerable. 

4.  Define 𝐷𝑅𝐺𝑐 ∈ 𝐷𝑅𝑐 as the set of guarantor-vulnerable borrowers in city 𝑐. Define 

𝐷𝑅𝐿𝑐 ∈ 𝐷𝑅𝑐 as the set of lender-vulnerable borrowers in city 𝑐. 

5. Compute city 𝑐’s guarantor-vulnerability 𝑉𝑈𝐿𝐺𝑐 as the proportion of the borrowers in 

city 𝑐 who are guarantor-vulnerable: 𝑉𝑈𝐿𝐺𝑐 = (|𝐷𝑅𝐺𝑐| |𝐷𝑅𝑐|⁄ ). Compute city 𝑐’s 

lender-vulnerability 𝑉𝑈𝐿𝐿𝑐 as the part of the borrowers in city 𝑐 who are lender-

vulnerable: 𝑉𝑈𝐿𝐿𝑐 = (|𝐷𝑅𝐿𝑐| |𝐷𝑅𝑐|⁄ ) 
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Table 1: Profiles of agents on the sterling money market 

Profile Number 
% of all 
agents 

Pure Borrower (outside London) 3,290 66.20 

Pure Borrower (in London) 145 2.92 

Pure Guarantor 1,326 26.68 

Hybrid (Borrower+Guarantor) 64 1.29 

Pure Lender 61 1.23 

Hybrid (Borrower+Lender) 35 0.70 

Hybrid (Guarantor+Lender) 29 0.58 

Hybrid (Borrower+Guarantor+Lender) 20 0.40 

Total 4,970 100.00 

Notes: This table presents the number of agents of different profiles on the sterling money market as well as their 
share in the total population of agents. “Pure” refers to nodes playing only one role (borrower or guarantor or 
lender) in the various bills in which they are involved. “Hybrid” refers to nodes that play different roles in the 
various bills on which they appear. Note that any agent playing the role of guarantor or lender had to be located in 
the UK. See text.    
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Table 2: Degree centrality measures in a hyperstructure: an example 

Node 

(𝒊) 

In-degree 

(𝑰𝒅𝒊) 

Hyperedge degree 

(𝑯𝒅𝒊) 

Hyperedge-adjacent 
nodes degree 

(𝑯𝑨𝑵𝒅𝒊) 

A 0 1 2 

B 2 3 4 

C 1 2 3 

D 0 3 4 

E 1 1 2 

F 2 2 3 

Notes: This table illustrates three network degree centrality metrics for nodes in a hyperstructure. 
For each node A, B, C, D, E, F, in the hypothetical network represented in Figure 2, the table 
reports their in-degree, hyperedge degree and hyperedge-adjacent degree. See text for the three degree 
definitions.  
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Table 3. Maximum node degree value in observed and simulated networks 

Measure 
Network 

type 

Nb of 
networks Min Max Mean Median 

Maximum In-
degree 

(max(𝐼𝑑𝑖)) 

Observed 1 357 357 357 357 

Random 250 77 97 85 84 

Scale-Free 250 895 3555 2192 2020 

Maximum 
Hyperedge 
degree 

(max(𝐻𝑑𝑖)) 

Observed 1 900 900 900 900 

Random 250 89 127 108 108 

Scale-Free 250 896 7666 3434 3100 

Maximum 
Hyperedge-
Adjacent Nodes 
degree 

(max(𝐻𝐴𝑁𝑑𝑖)) 

Observed 1 1055 1055 1055 1055 

Random 250 171 239 204 203 

Scale-Free 250 1218 4417 2684 2566 

Notes: This table presents descriptive statistics (minimum, maximum, mean and median) on the maximum degree 
values observed in a. the observed network, b. the 250 simulated random networks, and c. the 250 simulated scale-free 
networks. See text for the definition of the three degree values and for details on the simulations. 
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Table 4. Maximum absolute systemicness and maximum market share in observed and 
simulated networks 

Measure 
Network 

type 

Nb of 
networks Min Max Mean Median 

Maximum 
Absolute 
Systemicness 

(max(𝐴𝑆𝑖)) 

Observed 1 7.828% 7.828% 7.828% 7.828% 

Random 250 0.442% 0.684% 0.530% 0.523% 

Scale-Free 250 9.297% 68.554% 31.967% 29.070% 

Maximum 
Market Share 

(max(𝑀𝑆𝑖)) 

Observed 1 21.231% 21.231% 21.231% 21.231% 

Random 250 3.099% 4.004% 3.399% 3.380% 

Scale-Free 250 16.312% 76.533% 53.815% 53.547% 

Notes: This table presents descriptive statistics (minimum, maximum, mean and median) on the maximum values of 
absolute systemicness and market share observed in a. the observed network, b. the 250 simulated random networks, 
and c. the 250 simulated scale-free networks. See text for the definition of the two variables and for details on the 
simulations.  
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Table 5. Group systemicness 

Group of 
intermediaries 

Number of 
impacted nodes 

(|𝑉𝑠𝐺𝑥
|) 

Absolute 
systemicness 

(𝐴𝑆𝐺𝑥
) 

Market share 

(𝑀𝑆𝐺𝑥
) 

Discount houses  
(N=20) 

2094 42.1% 65.7% 

Anglo-Foreign Banks 
(N=45) 

1053 21.2% 40.6% 

Top-10 Merchant Banks 
(N=10) 

569 11.5% 22.3% 

Clearing Banks  
(N=11) 

281 5.7% 11.6% 

Notes: For each of the four historical groups of intermediaries (discount houses, Anglo-foreign banks, top-10 
merchant banks, and clearing banks), the table reports the number of nodes that remain isolated when the 

entire group is removed from the network (|𝑉𝑠𝐺𝑥
|), the group’s absolute systemicness (𝐴𝑆𝐺𝑥

), as well as the group’s 

market share (𝑀𝑆𝐺𝑥
). See text and Algorithm 1 for the formal definition of each indicator.  
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Table 6. Demography of cities 

Number of 
borrowers 
per city 

Number of 
cities in that 

category 
City names 

200+ 2 London; New York. 

101-200 1 Calcutta. 

51-100 9 Alexandria; Bombay; Buenos Aires; Colombo; Hamburg; Manchester; Memphis; New Orleans; Yokohama. 

11-50 52 

Amsterdam; Antwerp; Bahia; Barmen; Batavia; Belfast; Berlin; Bordeaux; Boston; Bradford; Bremen; Cairo; Chicago; Constantinople; 
Copenhagen; Dallas; Galveston; Glasgow; Havana; Hong Kong; Houston; Iquique; Karachi; Kobe; Lima; Liverpool; Madras; Malaga; 
Manila; Melbourne; Montevideo; Montreal; Norfolk; Para; Paris; Pernambuco; Philadelphia; Port Said; Rangoon; Riga; Rio de Janeiro; 

San Francisco; Santos; Sao Paulo; Savannah; Shanghai; Singapore; Smyrna; St Petersburg; Stockholm; Sydney; Valparaiso. 

6-10 50 

Antofagasta; Arequipa; Augusta; Baghdad; Barbados; Beyrouth; Bilbao; Brussels; Bucharest; Casablanca; Dundee; Foochow; Fort Worth; 
Frankfurt; Genoa; Goteborg; Guatemala; Guayaquil; Hankow; La Paz; Leeds; Leipzig; Lisbon; Manaus; Marseille; Montgomery; 

Moscow; Oporto; Oruro; Paris (Texas); Patras; Penang; Pensacola; Port Elizabeth; Port of Spain; Punta Arenas; Rosario; Rotterdam; 
Salonica; San Jose; Santiago; Shimonoseki; St Louis; Surabaya; Tientsin; Toronto; Valencia; Waco; Wilmington; Zurich. 

2-5 172 

Adelaide; Aden; Algiers; Alicante; Almeria; Amoy; Amritsar; Athens; Atlanta; Auckland; Baltimore; Bangkok; Barcelona; Bari; Basle; 
Bassora; Birmingham (Alabama); Bogota; Braila; Brisbane; Brooklyn; Budapest; Campinas; Canton; Carrara; Cartagena; Castries; Cavalla; 
Ceara; Cedar Rapids; Ceylon; Charleroi; Charlotte; Chiasso; Christchurch; Christiania; Cienfuegos; Cochabamba; Coimbatore; Cologne; 
Como; Concepcion; Corfu; Corsicana; Crefeld; Curacao; Daitotei; Danzig; Demerara; Denia; Dunedin; Dusseldorf; Epernay; Fazilka; 

Florence; Fremantle; Gainesville; Galatz; Gefle; Greenville; Grenada; Halifax; Hamilton; Helena (Arkansas); Herisau; Hiogo; Invercargill; 
Iquitos; Jerez; Johannesburg; Jumet; Kalymnos; Kansas City; Keighley; Kristiansand; Labuan; Ladysmith; Laguna; Lahore; Langerfeld; 

Las Palmas; Le Havre; Leghorn; Leicester; Little Rock; Lodz; Lyon; Macassar; Macon; Malmoe; Managua; Mangalore; Maracaibo; 
Maranhao; Mauritius; Mayaguez; Mazagan; Medellin; Messina; Mexico; Milan; Minneapolis; Mobile; Mogador; Mosgiel; Muroran; 
Nagasaki; Naples; Navasota; Neckarau; Newcastle; Newport; Nuremberg; Odessa; Oklahoma City; Orizaba; Palermo; Panama; 

Parahyba; Paris (Arkansas); Passaic; Perth; Pforzheim; Ponce; Portland; Porto Alegre; Potosi; Prague; Puerto Gallegos; Quebec; Rio 
Grande; Rustchuk; Saffi; San Antonio; San Juan; San Salvador; Sandakan; Seattle; Sevilla; Sherman; Sorata; St Etienne; St Gall; St 

Vincent; Stanley; Sunderland; Syra; Tacna; Tangier; Teheran; Temple; Tenerife; The Hague; Townsville; Trieste; Tripoli; Troy; Tupiza; 
Turin; Vancouver; Venice; Veracruz; Verviers; Vicksburg; Victoria; Vienna; Vostizza; Warsaw; Wellington; Yazoo City; Zante; Zanzibar. 

1 331 
Aarau; Abilene; Abo (Turku); Ada (Oklahoma); Aguadilla; Akyab; Albany (Australia); Albany (Georgia); Americus; Amotfors; Andros; 

Ansbach; Antigua; Ardmore (Oklahoma); Arecibo; Arica; Ashgabat; Asuncion; Athens (Georgia); Aymeries; Bahama; Bamberg; 
Barnaul; Barrow in Furness; Barry; Bassein; Bayonne; Bergen; Bermondsey; Bielefeld; Binche; Birmingham; Blackburn; Bocholt; 
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Bochum; Bolivar; Bonham; Botosani; Bradford (New Zealand); Brenham; Brighouse; Broe; Brooketon; Broome; Brownwood; 
Brunswick; Burslem; Cadiz; Cairns; Calicut; Canaveral; Candia; Cape Town; Caracas; Cassel; Castlebar; Catacaos; Catania; Cathcart; 

Cawnpore; Cephalonia; Cernobbio; Charleston; Charlottetown; Chemainus; Chemnitz; Chickasha (Oklahoma); Church (Lancashire); 
Cincinnati; Cochin; Colonne; Colquechaca; Columbus (Georgia); Comber; Coquimbo; Cordele; Corocoro; Corumba; Costa Rica; 

Cuiaba; Cuthbert; Danville; Darwin; Dawson; Deerlijk; Denderleeuw; Denton; Derby; Dewsbury; Dison; Dixon; Dordrecht; Dothan; 
Drogheda; Dublin (Georgia); Dumbarton; Durban; Dyersburg; Emelghem; Enkhuizen; Espinho; Falkirk; Farmersville; Faro; Fortin; 
Frangsund; Fray Bentos; Frederiksberg; Fredneks; Fredrikstadt; Funchal; Gais; Galle; Gamleby; Gandia; Gibraltar; Gisborne; Goor; 

Gourdon; Govan; Granada (Nicaragua); Greenock; Greenwood; Grenada (Mississippi); Grimsby; Guerville; Guiria; Halberstadt; 
Hanmore; Harlingen; Heilbronn; Helsingborg; Henderson; Herberton; Hodeidah; Holstebro; Holzheim; Hoogezand; Hoorn; Howrah; 
Huddersfield; Humacao; Indianapolis; Jacksonville; Jaffna; Jaragua; Jersey; Jesselton; Johanngeorgenstadt; Jonkoping; Kalmar; Kazan; 

Keelung; Kerassunde; Kidderminster; Killik Aike; Kimberley; Kingston; Kirkcaldy; Klingenthal; Koenigsberg; Kuching; La Coruna; La 
Plata; La Salada; Langesund; Larnaca; Launceston; Lawrencetown; Leigh on Sea; Lerwick; Limon; Llagostera; Lodelinsart; Lulea; 
Lurgan; Maarssen; Maceio; Madeira; Madrid; Maffersdorf; Malta; Mantua; Marin; Marshalltown; Massena; Masterton; Matanzas; 

Medan; Merida; Middlesbrough; Mirzapur; Mistley; Moji; Moltann; Monro; Mossel Bay; Mulheim; Munich; Muscat; Napier; Narva; 
Natal; Nepal; Nessonvaux; Neustadt; Newbury; Newton; Norrkoping; Nuwara Eliya; Ollioules; Ootacamund; Opobo; Orlando; Otaru; 

Ottignies; Ottumwa; Oude Pekela; Padang; Pahepe; Palafrugell; Partick; Paysandu; Peking; Pepinster; Petit-Goave; Piacenza; Pictou; 
Pine Bluff; Pireus; Pisagua; Plano; Port Antonio; Puerto Cabello; Pyrgos; Quilon; Ravilloles; Rebstein; Remscheid; Reutlingen; Reval; 
Risano; Rochdale; Rockhampton; Rome; Rouen; Roux; Roxburgh; Sacile; Saigon; Sains du Nord; Saint Martin; Salina; Samsoun; Santa 

Ana; Santa Fe; Santander; Saxon; Scheemda; Schiedam; Schomberg; Schonheide; Semarang; Seraing; Sfax; Shreveport; Simla; Sioux 
City; Siveveghem; Skelleftea; Skive; Soderhamn; St Anne’s Bay; St Avold; St Feliu de Guixols; St Fiden; St John (New Brunswick); 

Strasbourg; Stromstad; Suakin; Sucre; Sulina; Sundsvall; Svendborg; Swansea; Sybadah; Szechwan; Szeged; Taipei; Tananarive; 
Tandragee; Tarija; Taylor; Tellicherry; Terrell; Therezina; Thomasville; Thorn; Tiflis; Timaru; Tocopilla; Tokyo; Toowoomba; Tossa; 
Traben; Trapani; Travancore; Trelleborg; Tsingtau; Uddevalla; Ulrichstal; Union Beach; Vevey; Vigevano; Villers; Vilvorde; Vyborg; 

Wandesbek; Wanganui; Wantage; Werdohl; West Hartlepool; Whiteinch; Wiesbaden; Wilhelmsburg; Wilkes Barre; Winschoten; 
Winterthur; Xanthi; Zaandam; Zofingen. 

Notes: This table lists all cities in the network. Cities are classified into different categories according to the number of borrowers they feature. See text. 
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Online Appendix 

“Intermediaries’ Substitutability and Financial Network Resilience: A 

Hyperstructure Approach” 

 

 

A.1. The concepts of substitutability and criticality 

 

In this appendix, we clarify the difference between our concept of substitutability and the concept of criticality 

often used in dyadic network analysis in order to measure the impact of a node’s disappearance on other 

nodes’ network connectivity.  

 

In the paper, we define substitutability as follows (p. 13): “An intermediary is considered substitutable if other nodes are 

not strictly dependent on it for their access to the money market (or connection to the network). More precisely, one given node A 

is said to be substitutable with respect to another given node B if A does not appear in all chains to which B belongs. In that case, 

A’s removal from the network does not leave B isolated, as node B can still connect to the network through other chains that do 

not involve A. One given actor’s degree of substitutability is therefore inversely proportional to the number of nodes that would 

remain isolated if the actor was removed from the network” 

 

The concept of criticality has been used with a variety of definitions in the network literature, all of which being 

related to the notion of betweenness centrality. We refer here to the popular definition provided by Goyal (2018, 

p. 698): “A node is said to be critical if it lies on all paths between S [a source node] and D [a destination node].” 

 

This definition of criticality has been developed to study dyadic networks and, as we show below, cannot be 

directly operationalized in the context of a network featuring higher-order structures. This is because the 

notion of betweenness centrality cannot be easily transposed to a network featuring supra-dyadic entities, 

since the presence of such entities imposes constraints on the paths available to connect the various pairs of 

nodes featured in the network. 

 

In order to see this concretely, consider the example below of a network featuring three borrower-guarantor-

lender chains: 1) A-B-C (red chain); 2) B-A-D (blue chain); and 3) D-C-B (green chain). Figure A.1.1. provides 

a hypergraph representation of this network.  
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Figure A.1.1 Hypergraph representation of a network featuring chains 

 

 
 

Notes: This figure represents a higher-order network featuring three chains of three actors: 1) A-

B-C (red chain); 2) B-A-D (blue chain); and 3) D-C-B (green chain). Each combination of two 

same-coloured arrows constitutes a hyperedge that associates the three nodes and their links in a 

given chain. 

 

 

 

Directly applying the definition of criticality presented above while ignoring the presence of higher-order 

structures would lead us to conclude that node B is not critical as it does not lie on all paths between A and C. 

However, if we now consider that nodes can only be connected to each other if they belong to a common 

higher-order structure (a chain), we can see that A can only reach C through B (red chain). In the absence of 

B, the source node A can therefore not reach the destination node C.  

 

More generally, in our empirical setup, B’s disappearance would result in the breakdown of all chains to which 

it belongs (and of all the dyadic links embedded in these chains). This would consequently leave all other 

nodes (A, D and C) isolated in the network. Our concept of substitutability as defined above allows accounting 

for this phenomenon and for B’s true systemicness in the network. According to our definition, node B is not 

substitutable as its presence is essential to all other nodes’ connection to the network. Our definition of 

substitutability can therefore be easily operationalized to study the impact of a given actor’s disappearance on 

other nodes’ connection to the network in a network in which nodes interact within higher-order structures.    

 

It must be noted that being based on the concept of betweenness centrality, the notion of criticality necessarily 

implies that only nodes that are situated on a path connecting two other nodes can be “critical”. This is in 

stark contrast with our notion of substitutability: as we show in the paper, nodes located at the very end of 

intermediation chains (i.e., lenders) could indeed be “non-substitutable” in the provision of market access to 

other nodes. 
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A.2. Hypergraph versus star expansion representation of higher-order networks 

 

In this appendix, we aim to clarify the value-added of a hyperstructure approach comparted to a mere star 

expansion approach for the purpose of the empirical analysis conducted in the paper. We do this through a 

simple illustrative example.   

 

On the sterling money market, each bill of exchange transaction involved three different actors which each 

played one of three possible roles in the transaction (borrower, guarantor or lender). Each observed bill of 

exchange transaction consists of a chain involving three different actors (a borrower, a guarantor and a 

lender) and two dyadic links (a borrower-guarantor link and a guarantor-lender link). Since any bill of 

exchange transaction required the presence of three actors, the disappearance of any node in the borrower-

guarantor-lender chain results in the breakdown of all dyadic links that compose that chain.  

 

Consider the example of a network composed of four different chains featured in the paper’s figure 2. Figure 

A.2.1 reproduces the hypergraph representation of that network presented in Figure 2 (left panel) and also 

displays the star expansion of the same hypergraph (right panel).  

    

 

Figure A.2.1 Hypergraph and star expansion representations of a network featuring 

chains 

Hypergraph representation                                     Star expansion 

  

Notes: This figure presents two representations of the illustrative higher-order network presented in Figure 2. The 

network featured involves four chains and six nodes. The four chains are (A,B,C), (D,B,C), (D,B,F) and (D,E,F). The 

left panel presents the hypergraph representation of the network, while the right panel presents the star expansion of 

the same hypergraph. In the hypergraph representation, each combination of two same-coloured arrows constitutes a 

hyperedge that associates the three nodes and their links in a given chain. The star expansion representation does not 

preserve information on chains but only on the dyadic links between nodes.  

 

 



63 

The main difference between the network’s hypergraph representation and its star expansion is that the latter 

does not preserve the internal structure of the network’s supra-dyadic entities. In particular, the star expansion 

representation does not preserve information about the roles (borrower, guarantor or lender) played by each 

individual node within each of the chains (bill transactions) in which they are involved. It is not possible to 

infer from this representation whether nodes A-F are playing the role of borrower, guarantor and lender in 

each of the chains to which they belong.  

 

This difference has implications for our empirical analysis. While the star expansion approach allows simulating 

the impact of an individual node’s disappearance on overall network connectivity, it does not allow 

distinguishing between the substitutability of intermediaries playing various roles on the money market– 

especially in view of the fact that, as shown in Table 1 of the paper, a non-negligible number of nodes were 

“hybrid”, i.e. they played more than one role on the money market. Such an analysis necessitates having information 

on the roles played by the different nodes in the various chains featured in the network. Since the star expansion 

representation does not provide that information, it cannot be used to assess the various degrees of 

substitutability of different types of intermediaries (borrowers, guarantors, lenders).   

 

Preserving information about the internal structure of supra-dyadic entities can be important in order to assess 

the systemicness of various types of intermediaries in financial networks featuring higher-order structures. For 

example, on the underwriting market, lenders and underwriters might not be equally systemic and this is why 

it can be important to distinguish between the roles played by each intermediary in such a network.  
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