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Degeneration at E2 of Certain Spectral Sequences

Dan Popovici

Abstract. We propose a Hodge theory for the spaces Ep, q
2 featuring at the second step either in the Frölicher

spectral sequence of an arbitrary compact complex manifold X or in the spectral sequence associated with

a pair (N, F ) of complementary regular holomorphic foliations on such a manifold. The main idea is to

introduce a Laplace-type operator associated with a given Hermitian metric on X whose kernel in every

bidegree (p, q) is isomorphic to Ep, q
2 in either of the two situations discussed. The surprising aspect is that

this operator is not a differential operator since it involves a harmonic projection, although it depends on

certain differential operators. We then use this Hodge isomorphism for Ep, q
2 to give sufficient conditions for

the degeneration at E2 of the spectral sequence considered in each of the two cases in terms of the existence

of certain metrics on X. For example, in the Frölicher case we prove degeneration at E2 if there exists an

SKT metric ω (i.e. such that ∂∂̄ω = 0) whose torsion is small compared to the spectral gap of the elliptic

operator ∆′ + ∆′′ defined by ω. In the foliated case, we obtain degeneration at E2 under a hypothesis

involving the Laplacians ∆′N and ∆′F associated with the splitting ∂ = ∂N + ∂F induced by the foliated

structure.

Key words: SKT metrics, Frölicher spectral sequence, pseudo-differential operators, Hodge theory,
commutation relations for Hermitian metrics.

Mathematics subject classification (2010): 53C55, 14C30, 14F40.

1 Introduction

This paper comprises two parts as it gives various sufficient conditions of a metric nature for the
degeneration at E2 of the Frölicher spectral sequence of compact complex manifolds (Part I) and for
the degeneration at E2 of the spectral sequence associated with a complementary pair of foliations
(N, F ) on a compact complex manifold (Part II). The first part is meant to serve as a blueprint for
the second part. We briefly describe in this introduction the main results and ideas in each of the
two parts.

Part I. Let X be a compact complex manifold of dimension n. For every Hermitian metric ω
on X and every bidegree (p, q), we denote by p′′ = p′′p, q : C∞p, q(X, C) −→ ker ∆′′ the orthogonal
projection of the space of smooth (p, q)-forms onto the kernel of the ∂̄-Laplacian ∆′′ := ∂̄∂̄? + ∂̄?∂̄
associated with ω and acting on (p, q)-forms. Clearly, p′′ depends on the metric ω.

We observe (cf. part (i) of Theorem 5.6) that the commutation of ∂ with p′′ in all bidegrees
(p, q) suffices to ensure the degeneration at E2 of the Frölicher spectral sequence of X (a property
that will be denoted throughout by E2(X) = E∞(X)).

We introduce and use as our main tool in Part I the Laplace-type operator

∆̃ := ∂p′′∂? + ∂?p′′∂ + ∂̄∂̄? + ∂̄?∂̄ : C∞p, q(X, C) −→ C∞p, q(X, C), p, q = 0, . . . , n,

which is not a differential operator since p′′ isn’t. However, ∆̃ is a pseudo-differential operator since
the projector p′′ is even a smoothing such operator of finite rank. (Indeed, ker ∆′′ is finite-dimensional
thanks to ∆′′ being elliptic.) We put ∆′p′′ := ∂p′′∂? + ∂?p′′∂ ≥ 0.
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The introduction of ∆̃ is justified by the following Hodge Isomorphism Theorem (cf. also
Theorem 3.4) that constitutes the main result in Part I of this work.

Theorem 1.1 Let (X, ω) be a compact Hermitian manifold with dimCX = n. For every p, q ∈
{0, . . . , n}, the linear map

ker

(
∆̃ : C∞p, q(X, C) −→ C∞p, q(X, C)

)
−→ Ep, q

2 , α 7→
[
[α]∂̄

]
d1

, (1)

is an isomorphism, where Ep, q
2 stands for the space of type (p, q) featuring at the second page of the

Frölicher spectral sequence of X, while [ ]∂̄ and [ ]d1 stand for the Dolbeault cohomology classes and,
respectively, for the cohomology classes of the differentials d1 : Hp, q

∂̄
(X, C) → Hp, q

∂̄
(X, C) induced

by ∂ at the first page of the spectral sequence.

In particular, we introduce in this paper a Hodge theory for the second step of the Frölicher spec-
tral sequence by means of an operator belonging to a class of operators involving partial derivatives
that is larger than the class of differential operators.

On the other hand, with every Hermitian metric ω on X we associate the following zero-order
operators of type (0, 0) depending only on the torsion of ω: S̄ω := [∂̄ω ∧ ·, (∂̄ω ∧ ·)?] ≥ 0,

Zω := [τω, τ
?
ω] + [∂ω ∧ ·, (∂ω ∧ ·)?] ≥ 0 and R̄ω := [τ̄ω, τ̄

?
ω]− [∂̄ω ∧ ·, (∂̄ω ∧ ·)?], (2)

where the notation is the standard one: [A, B] := AB − (−1)a bBA denotes the graded commutator
of any pair of endomorphisms A,B of respective degrees a, b of the graded algebra C∞•, •(X, C) of
smooth differential forms on X, while τ = τω := [Λ, ∂ω ∧ ·] is the torsion operator of order zero and
bidegree (1, 0) associated with ω (cf. [Dem97, VII, §.1.]) and Λ = Λω is the formal adjoint of the
Lefschetz operator L := ω ∧ · w.r.t. the L2 inner product induced by ω on differential forms.

One of the sufficient conditions of a metric nature for the degeneration at E2 of the Frölicher
spectral sequence of X that we give is the existence on X of an SKT metric ω (i.e. a Hermitian
metric ω such that ∂∂̄ω = 0) whose torsion is small in the sense that the upper bound of the torsion
operator Zω (which is bounded) is dominated by a certain fixed multiple of the smallest positive
eigenvalue of the non-negative self-adjoint elliptic operator ∆′ + ∆′′ in every bidegree (p, q).

Theorem 1.2 Let X be a compact complex n-dimensional manifold. If X carries an SKT metric
ω whose torsion satisfies the condition

sup
u∈C∞p, q(X,C), ||u||=1

〈〈Zωu, u〉〉 ≤
1

3
min

(
Spec (∆′ + ∆′′)p, q ∩ (0, +∞)

)
(3)

for all p, q ∈ {0, . . . , n}, then the Frölicher spectral sequence of X degenerates at E2.

By (∆′ + ∆′′)p, q we mean the operator ∆′ + ∆′′ acting on (p, q)-forms, while Spec (∆′ + ∆′′)p, q

stands for its spectrum and || · ||, 〈〈·, ·〉〉 denote the L2-norm, resp. the L2-inner product induced by
ω on differential forms. Thus, the r.h.s. in (3) is a third of the size of the spectral gap of ∆′ + ∆′′,
an important quantity standardly associated with a given metric ω.
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We give yet another sufficient condition of a metric nature for the degeneration at E2 of the
Frölicher spectral sequence of X in part (ii) of Theorem 5.6: the existence of an SKT metric whose
torsion satisfies the condition 〈〈R̄ω u, u〉〉 = 0 for all (p, q)-forms u ∈ ker ∆′p′′ ∩ ker ∆′′ and all p, q.

It is tempting to propose the following

Conjecture 1.3 If a compact complex manifold X carries an SKT metric, the Frölicher spectral
sequence of X degenerates at E2.

This is true on all the examples of compact complex manifolds that we are aware of 1.
Meanwhile, we shall see that if X carries an SKT metric ω for which R̄ω = 0 as an operator in

all bidegrees, then the Frölicher spectral sequence of X degenerates even at E1 (cf. Remark 5.7).

Part II. This is an extension of the ideas and techniques of Part I to a different context. Let X be
a compact complex manifold of dimension n. Suppose the holomorphic tangent bundle T 1, 0X splits
into the direct sum of two holomorphic subbundles N,F both of which are Frobenius integrable.
This means that

(i) T 1, 0X = N ⊕ F and (ii) [N, N ] ⊂ N, [F, F ] ⊂ F, (4)

where [·, ·] stands for the Lie bracket. We may call such a splitting an integrable holomorphic almost
product structure on X by analogy with the real counterpart (see e.g. [Rei58]). By definition, it
consists in a pair of complementary regular holomorphic foliations (N, F).

Let r, n − r denote the ranks of N , resp. F . The splitting of T 1, 0X induces, for each k ∈
{0, 1, . . . , n}, a splitting of Λk, 0T ?X := Λk(T 1, 0X)? as

Λk, 0T ?X =
⊕
p+q=k

ΛpN? ⊗ ΛqF ?. (5)

The sections of ΛpN? ⊗ ΛqF ? will be called (k, 0)-forms (or simply k-forms) of (N, F )-type (p, q).
The space of smooth global such forms on X will be denoted by Ep, q(X) = Ep, qN, F (X). This is a

subspace of the space Ek(X) of all smooth global (k, 0)-forms (w.r.t. the complex structure of X).
Thanks to the integrability assumption on both N and F , the operator ∂ : Ek(X) −→ Ek+1(X)

splits as ∂ = ∂N + ∂F , where ∂N : Ep, q(X) −→ Ep+1, q(X) differentiates in the N -directions and
∂F : Ep, q(X) −→ Ep, q+1(X) differentiates in the F -directions while both ∂N and ∂F are integrable
(i.e. ∂2

N = 0 and ∂2
F = 0). We are interested here in finding sufficient conditions under which the

spectral sequence associated in the usual way with such an integrable holomorphic almost product
structure (N, F ) on X degenerates at E2. The degeneration at E2 is the best we can hope for since
the spaces Ep, q

1 are not even finite-dimensional due to the lack of ellipticity of ∆′F , one of the two
Laplace-type operators associated with ∂N , resp. ∂F and with a given Hermitian metric ω on X:

∆′N = ∂N∂
?
N + ∂?N∂N : Ep, q(X) −→ Ep, q(X) and ∆′F = ∂F∂

?
F + ∂?F∂F : Ep, q(X) −→ Ep, q(X).

1The author is grateful to L. Ugarte for informing him that in the special class of nilmanifolds X of complex
dimension 3, E2(X) = E∞(X) whenever an SKT metric exists on X. Thanks are also due to A. Tomassini for
pointing out to the author that the Calabi-Eckmann manifold X = S3 × S3, known to admit SKT metrics, also has
the property E2(X) = E∞(X).
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However, the sum of these two Laplacians ∆′N + ∆′F : Ep, q(X) −→ Ep, q(X) is an elliptic operator
and this feature will be exploited in Part II.

By analogy with the discussion in Part I, for every p, q we consider the orthogonal projection
p′F : Ep, q(X) −→ ker ∆′F and introduce the Laplace-type operator

∆̃′ := ∂Np
′
F∂

?
N + ∂?Np

′
F∂N + ∂F∂

?
F + ∂?F∂F : Ep, q(X) −→ Ep, q(X)

that will be our main tool in Part II. Unlike its analogue ∆̃ of Part I, ∆̃′ is not a pseudo-differential
operator since p′F is a projector onto an infinite-dimensional space. Our hope, to be investigated in
future work, is that p′F will be, at least under certain conditions, a Fourier integral operator (FIO)
with a complex phase in the sense of Melin-Sjöstrand [MS74] and Boutet de Monvel-Sjöstrand [BS76].
We put ∆′N, p′F

:= ∂Np
′
F∂

?
N + ∂?Np

′
F∂N ≥ 0.

Compared to the situation discussed in Part I, the main difference and new difficulty involved in
Part II is that ∆′F is not elliptic (unlike ∆′′), so the trivial inequality ∆̃′ ≥ ∆′F does not reduce us to

an elliptic operator whose Gårding inequality can induce a similar inequality for ∆̃′. Unless a notion
of ellipticity can be satisfactorily defined for ∆̃′ under certain conditions and subsequently used to
infer that under those conditions ker ∆̃′ is finite-dimensional and Im ∆̃′ is closed (our goal for future
work), the only option available to us in this work is to ensure that under a certain hypothesis (see
(88)) we have

∆′N, p′F ≥ (1− ε) ∆′N , hence ∆̃′ ≥ (1− ε) (∆′N + ∆′F )

for some constant 0 < ε < 1. We then use the ellipticity of ∆′N + ∆′F to deduce a Gårding-type

inequality for ∆̃′ from the Gårding inequality satisfied by ∆′N + ∆′F .
The main results obtained in Part II can be summed up as follows.

Theorem 1.4 Let X be a compact complex manifold endowed with a pair of complementary regular
holomorphic foliations (N, F ). Suppose X carries a Hermitian metric ω such that [∂N , ∂

?
F ] = 0 and

ker(∆′N : Ep, q(X)→ Ep, q(X)) + ker(∆′F : Ep, q(X)→ Ep, q(X)) = Ep, q(X) (6)

for all p, q. Then

(a) the following Hodge isomorphism holds:

Hp, q

∆̃′
(N, F ) := ker

(
∆̃′ : Ep, q(X) −→ Ep, q(X)

)
' Ep, q

2 (N, F ), α 7−→
[
[α]∂F

]
d1

, (7)

where the Ep, q
2 (N, F ) are the spaces of (N, F )-type (p, q) featuring at step 2 in the spectral se-

quence induced by (N, F ). Thus, every class [[α]∂F ]d1 ∈ E
p, q
2 (N, F ) contains a unique ∆̃′-harmonic

representative α. In particular, dimCE
p, q
2 (N, F ) < +∞ for all p, q.

(b) the spectral sequence induced by (N, F ) degenerates at E2.

We end Part II with the study of a sufficient condition ensuring the anti-commutation identity
[∂N , ∂

?
F ] = 0 (i.e. ∂N∂

?
F = −∂?F∂N) that is one of the two hypotheses we make in Theorem 1.4.

Theorem 8.1 asserts that this anti-commutation holds if we work with a product metric ω = ωN +ωF
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that is bundle-like (cf. Definition 6.1 borrowed from Reinhart’s work [Rei59] and meant for our
complex setting) and if ∂NωN = 0 (i.e. ω is Kähler in the N -directions).

The sufficient degeneration conditions obtained in this paper can be looked at in the context of
Deligne’s classical work [Del68] giving degeneration criteria in terms of Lefschetz isomorphisms.

Acknowledgments. This work was carried out at the UMI CNRS-CRM in Montréal, specifically
at the CIRGET and the Department of Mathematics of the UQÀM. The author is grateful to the
CNRS for making his six-month stay here possible. He is also grateful to V. Apostolov and S. Lu
for their hospitality and interest in many mathematical topics within and without the scope of this
work, as well as to E. Giroux and C. Mourougane for stimulating discussions. Many thanks are also
due to J. Sjöstrand for his interest in some of the matters discussed in this work.

This work has grown from a problem about the cohomology of nilmanifolds that was brought
to the author’s attention by S. Rollenske and the interest in it was later entertained by discussions
with J. Ruppenthal. The author wishes to thank them both for stimulating discussions.

Part I: E2 degeneration of the Frölicher spectral sequence

2 Review of standard material

Let X be a compact complex manifold of dimension n. Recall that the Frölicher spectral sequence of
X is associated with the double complex C∞•, •(X, C) defined by the total differential d = ∂+ ∂̄. This

means that at step 0 we put Ep, q
0 := C∞p, q(X, C) and consider the differentials d0 := ∂̄ : Ep, q

0 → Ep, q+1
0

for all p, q ∈ {0, 1, . . . , n}, so the groups Ep, q
1 at step 1 in the spectral sequence are defined as the

cohomology groups of the complex

· · · d0−→ Ep, q−1
0

d0−→ Ep, q
0

d0−→ Ep, q+1
0

d0−→ · · · , (8)

i.e. the Ep, q
1 := Hq(Ep, •

0 , d0) = Hp, q

∂̄
(X, C) are the Dolbeault cohomology groups of X. The

differentials d1 are induced by ∂:

· · · d1−→ Ep−1, q
1

d1−→ Ep, q
1

d1−→ Ep+1, q
1

d1−→ · · · , (9)

i.e. for any form α ∈ Ep, q
0 such that ∂̄α = 0, the class [α]∂̄ ∈ Ep, q

1 is mapped by d1 to the class
[∂α]∂̄ ∈ E

p+1, q
1 . Thus d1([α]∂̄) = [∂α]∂̄. This is meaningful since ∂∂̄+∂̄∂ = 0, so ∂̄(∂α) = −∂(∂̄α) = 0

and thus ∂α defines indeed a cohomology class in Hp+1, q

∂̄
(X, C) = Ep+1, q

1 . Moreover, the differential
d1 is well defined since d1([α]∂̄) is independent of the choice of representative α of the ∂̄-class [α]∂̄
as can be checked at once. Furthermore, d2

1 = 0 (because ∂2 = 0), so (9) is indeed a complex. The
groups Ep, q

2 at step 2 in the spectral sequence are defined as the cohomology groups of the complex
(9), i.e.

Ep, q
2 := Hp(E•, q1 , d1) =

{[
[α]∂̄

]
d1

/
α ∈ C∞p, q(X, C) ∩ ker ∂̄ and ∂α ∈ Im ∂̄

}
, p, q ∈ {0, 1, . . . , n},

(10)
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so the elements of Ep, q
2 are d1-classes of ∂̄-classes. The process continues inductively by defining

the groups Ep, q
r+1 at step r + 1 as the cohomology groups of the complex dr : Ep, q

r −→ Ep+r, q−r+1
r

already obtained at step r. At each step r in the spectral sequence, the differentials dr are of type
(r, −r + 1). We end up with C-vector spaces Ep, q

∞ and canonical isomorphisms

Hk
DR(X, C) '

⊕
p+q=k

Ep, q
∞ , k = 0, 1, . . . , 2n, (11)

relating the differential structure of X encoded in the De Rham cohomology to its complex structure.
The spectral sequence is said to degenerate at Er if Ep, q

r = Ep, q
r+1 for all p, q (hence then also

Ep, q
r = Ep, q

r+l = Ep, q
∞ for all l ≥ 0). This is a purely numerical property equivalent to the identities∑

p+q=k dimEp, q
r = bk := dimHk

DR(X, C) for all k ∈ {0, . . . , 2n} and also to the inequalities∑
p+q=k

dimEp, q
r ≤ bk for all k ∈ {0, . . . , 2n} (12)

since the reverse inequalities always hold thanks to (11) and to the obvious inequalities dimEp, q
1 ≥

· · · ≥ dimEp, q
r ≥ dimEp, q

r+1 ≥ . . . . All these dimensions are, of course, always finite by compactness
of X and, for example, ellipticity of ∆′′. The degeneracy at Er of the spectral sequence will be
denoted by Er(X) = E∞(X). For further details, see e.g. [Dem96].

3 Pseudo-differential Laplacian and Hodge isomorphism for

Ep, q
2

Let ω be an arbitrary Hermitian metric on X. Consider the formal adjoints ∂?, ∂̄? of ∂, resp.
∂̄ w.r.t. the L2 inner product defined by ω and the usual Laplace-Beltrami operators ∆′,∆′′ :
C∞p, q(X, C) −→ C∞p, q(X, C) defined as ∆′ = ∂∂? + ∂?∂ and ∆′′ = ∂̄∂̄? + ∂̄?∂̄. It is standard that
they are elliptic, self-adjoint and non-negative differential operators of order 2 that induce 3-space
orthogonal decompositions

C∞p, q(X, C) = ker ∆′ ⊕ Im ∂ ⊕ Im ∂? and C∞p, q(X, C) = ker ∆′′ ⊕ Im ∂̄ ⊕ Im ∂̄? (13)

where the harmonic spaces ker ∆′ := Hp, q
∆′ (X, C), ker ∆′′ := Hp, q

∆′′(X, C) are finite dimensional while

ker ∂ = ker ∆′ ⊕ Im ∂ and ker ∂̄ = ker ∆′′ ⊕ Im ∂̄. (14)

We denote by

p′ = p′p, q : C∞p, q(X, C) −→ ker ∆′ and p′′ = p′′p, q : C∞p, q(X, C) −→ ker ∆′′ (15)

the orthogonal projections defined by the orthogonal splittings (13) onto the ∆′-harmonic, resp. the
∆′′-harmonic spaces in bidegree (p, q). Similarly, let

p′⊥ : C∞p, q(X, C) −→ Im ∆′ = Im ∂ ⊕ Im ∂? and p′′⊥ : C∞p, q(X, C) −→ Im ∆′′ = Im ∂̄ ⊕ Im ∂̄? (16)
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denote the orthogonal projections onto (ker ∆′)⊥ = Im ∆′, resp. onto (ker ∆′′)⊥ = Im ∆′′. Note that
the operators p′, p′′, p′⊥, p

′′
⊥ are not differential operators and depend on the metric ω. They clearly

satisfy the properties:

p′ = (p′)? = (p′)2, p′′ = (p′′)? = (p′′)2, p′⊥ = (p′⊥)? = (p′⊥)2, p′′⊥ = (p′′⊥)? = (p′′⊥)2. (17)

We start by giving a metric interpretation of the spaces Ep, q
2 in the Frölicher spectral sequence

of X.

Proposition 3.1 For every p, q = 0, 1, . . . , n, define the ω-dependent C-vector space

H̃p, q(X, C) := ker(p′′ ◦ ∂) ∩ ker ∂̄

/(
Im ∂̄ + Im (∂| ker ∂̄)

)
(18)

in which all the kernels and images involved are understood as subspaces of C∞p, q(X, C). For every C∞

(p, q)-form α ∈ ker(p′′◦∂)∩ker ∂̄, let [̃α] ∈ H̃p, q(X, C) denote the class of α modulo Im ∂̄+Im (∂| ker ∂̄).
Then, for every p, q, the following linear map

T = T p, q : H̃p, q(X, C) −→ Ep, q
2 , [̃α] 7−→

[
[α]∂̄

]
d1

, (19)

is well defined and an isomorphism.

Proof. First note that the inclusion Im ∂̄ + Im (∂| ker ∂̄) ⊂ ker(p′′ ◦ ∂) ∩ ker ∂̄ does hold, so the space

H̃p, q(X, C) is meaningful. Indeed, Im ∂̄ ⊂ ker ∂̄ trivially and Im ∂̄ ⊂ ker(p′′ ◦ ∂) because for every
form u, p′′(∂∂̄u) = −p′′∂̄∂u = 0 since Im ∂̄ is orthogonal onto ker ∆′′ (see (13)), so p′′∂̄ = 0. Thus
Im ∂̄ ⊂ ker(p′′ ◦∂)∩ker ∂̄. Moreover, Im (∂| ker ∂̄) ⊂ ker(p′′ ◦∂) because ∂2 = 0 and Im (∂| ker ∂̄) ⊂ ker ∂̄

because for any form v ∈ ker ∂̄, we have ∂̄(∂v) = −∂(∂̄v) = 0. Thus Im (∂| ker ∂̄) ⊂ ker(p′′ ◦ ∂)∩ ker ∂̄.

Then note that for any [̃α] ∈ H̃p, q(X, C), we do have [α]∂̄ ∈ ker d1, so the d1-class [[α]∂̄]d1 is
a meaningful element of Ep, q

2 . Indeed, d1([α]∂̄) = [∂α]∂̄, ∂α ∈ ker ∂̄ = ker ∆′′ ⊕ Im ∂̄ (because
α ∈ ker ∂̄ and (14) holds) and p′′(∂α) = 0 (because α ∈ ker(p′′ ◦ ∂)). The last two relations amount
to ∂α ∈ Im ∂̄. This is equivalent to [∂α]∂̄ = 0, i.e. to d1([α]∂̄) = 0.

To complete the proof of the well-definedness of T , it remains to show that [[α]∂̄]d1 does not

depend on the choice of representative α of the class [̃α], i.e. that the zero element of H̃p, q(X, C)
is mapped by T to the zero element of Ep, q

2 . To prove this, let α ∈ ker(p′′ ◦ ∂) ∩ ker ∂̄ be a (p, q)-
form such that α = ∂̄u + ∂v with v ∈ ker ∂̄. We want to show that [[α]∂̄]d1 = 0 ∈ Ep, q

2 , i.e. that
[α]∂̄ = d1([β]∂̄) or equivalently that [α]∂̄ = [∂β]∂̄ for some β ∈ C∞p−1, q(X, C) such that ∂̄β = 0. This
is equivalent to showing that α = ∂β + ∂̄γ for some β ∈ C∞p−1, q(X, C) such that ∂̄β = 0 and some
γ ∈ C∞p, q−1(X, C). We can choose β := v and γ := u.

To prove that T is injective, let α ∈ ker(p′′ ◦ ∂)∩ ker ∂̄ be a (p, q)-form s.t. T ([̃α]) = [[α]∂̄]d1 = 0.
Then [α]∂̄ = [∂β]∂̄ for some β ∈ C∞p−1, q(X, C) such that ∂̄β = 0. Hence α = ∂β + ∂̄γ for some

γ ∈ C∞p, q−1(X, C). Thus, α ∈ Im ∂̄ + Im (∂| ker ∂̄), so [̃α] = 0.

To prove that T is surjective, let [[α]∂̄]d1 ∈ E
p, q
2 . Then ∂̄α = 0 (i.e. α ∈ ker ∂̄) and d1([α]∂̄) =

[∂α]∂̄ = 0 (i.e. ∂α ∈ Im ∂̄, which is equivalent, since we already have ∂α ∈ ker ∂̄ = ker ∆′′⊕ Im ∂̄, to
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p′′(∂α) = 0, i.e. to α ∈ ker(p′′◦∂| ker ∂̄)). Thus, α ∈ ker(p′′◦∂)∩ker ∂̄. It is clear that [[α]∂̄]d1 = T ([̃α])
by definition of T . �

The isomorphism (19) naturally prompts the introduction of a Laplace-type operator which,
surprisingly, is not a differential operator. It will be the main tool of investigation in this paper.

Definition 3.2 Let (X, ω) be a compact Hermitian manifold with dimCX = n. For every p, q ∈
{0, 1, . . . , n}, we define the operator ∆̃ : C∞p, q(X, C) −→ C∞p, q(X, C) by

∆̃ := ∂p′′∂? + ∂?p′′∂ + ∂̄∂̄? + ∂̄?∂̄. (20)

In other words, we have

∆̃ = ∆′p′′ + ∆′′, where ∆′p′′ := ∂p′′∂? + ∂?p′′∂ : C∞p, q(X, C) −→ C∞p, q(X, C). (21)

Thus ∆̃ is the sum of a pseudo-differential regularising operator (∆′p′′) and an elliptic differential

operator of order two (the classical ∂̄-Laplacian ∆′′).

Clearly, ∆̃ is a non-negative self-adjoint operator whose kernel is ker ∆̃ = ker ∆′p′′ ∩ ker ∆′′ and

ker ∆′p′′ = ker(p′′ ◦ ∂) ∩ ker(p′′ ◦ ∂?) ⊃ ker ∂ ∩ ker ∂? = ker ∆′ (22)

because 〈〈∆′p′′u, u〉〉 = ||p′′∂u||2 + ||p′′∂?u||2. Actually, if we put ∆′p′′⊥
:= ∂p′′⊥∂

? + ∂?p′′⊥∂, then

0 ≤ ∆′p′′ ≤ ∆′ = ∆′p′′ + ∆′p′′⊥
since

〈〈∆′u, u〉〉 = ||∂u||2 + ||∂?u||2 = ||p′′∂u||2 + ||p′′∂?u||2 + ||p′′⊥∂u||2 + ||p′′⊥∂?u||2

= 〈〈∆′p′′u, u〉〉+ 〈〈∆′p′′⊥u, u〉〉 (23)

for any form u. Indeed, for example, ∂u = p′′∂u + p′′⊥∂u and p′′∂u ⊥ p′′⊥∂u, while 〈〈∂?p′′∂u, u〉〉 =
〈〈p′′∂u, ∂u〉〉 = 〈〈p′′∂u, p′′∂u〉〉 = ||p′′∂u||2.

We now pause briefly to notice some of the properties of ∆̃.

Lemma 3.3 (i) If the metric ω is Kähler, then ∆′p′′ = 0, so ∆̃ = ∆′′.
(ii) For every p, q = 0, 1, . . . , n, let (ψp, qj )1≤j≤hp, q be an arbitrary orthonormal basis of the ∆′′-

harmonic space Hp, q
∆′′(X,C) ⊂ C∞p, q(X, C). Then ∆′p′′ is given by the formula

∆′p′′u =
hp−1, q∑
j=1

〈〈u, ∂ψp−1, q
j 〉〉 ∂ψp−1, q

j +
hp+1, q∑
j=1

〈〈u, ∂?ψp+1, q
j 〉〉 ∂?ψp+1, q

j , u ∈ C∞p, q(X, C). (24)

(iii) For all p, q, ∆̃ : C∞p, q(X, C) −→ C∞p, q(X, C) behaves like an elliptic self-adjoint differential

operator in the sense that ker ∆̃ is finite-dimensional, Im ∆̃ is closed and finite codimensional in
C∞p, q(X, C), there is an orthogonal (for the L2 inner product induced by ω) 2-space decomposition

C∞p, q(X, C) = ker ∆̃
⊕

Im ∆̃ (25)
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giving rise to an orthogonal 3-space decomposition

C∞p, q(X, C) = ker ∆̃
⊕(

Im ∂̄ + Im (∂| ker ∂̄)

)⊕(
Im (∂? ◦ p′′) + Im ∂̄?

)
(26)

in which ker ∆̃⊕ (Im ∂̄ + Im (∂| ker ∂̄)) = ker(p′′ ◦ ∂) ∩ ker ∂̄, ker ∆̃⊕ (Im (∂? ◦ p′′) + Im ∂̄?) = ker ∂̄? ∩
ker(p′′ ◦ ∂?) and (Im ∂̄ + Im (∂| ker ∂̄))⊕ (Im (∂? ◦ p′′) + Im ∂̄?) = Im ∆̃.

Moreover, ∆̃ has a compact resolvent which is a pseudo-differential operator G of order −2, the
Green’s operator of ∆̃, hence the spectrum of ∆̃ is discrete and consists of non-negative eigenvalues
that tend to +∞.

Proof. (i) If ω is Kähler, ∆′ = ∆′′, hence p′ = p′′. Since ker ∆′ is orthogonal to both Im ∂ and Im ∂?,
p′ ◦ ∂ = 0 and p′ ◦ ∂? = 0. Thus p′′ ◦ ∂ = 0 and p′′ ◦ ∂? = 0, so ∆′p′′ = 0.

(ii) Since ker ∆′′ is finite-dimensional, p′′ : C∞p, q(X, C) −→ ker ∆′′ is a regularising operator of

finite rank defined by the C∞ kernel
hp, q∑
j=1

ψp, qj (x)⊗(ψp, qj )?(y). Consequently, for every u ∈ C∞p, q(X, C),

(p′′u)(x) =

∫
X

hp, q∑
j=1

ψp, qj (x) 〈u(y), ψp, qj (y)〉 dVω(y), i.e. p′′u =
hp, q∑
j=1

〈〈u, ψp, qj 〉〉ψ
p, q
j . (27)

Taking successively u = ∂?v with v ∈ C∞p+1, q(X, C) and u = ∂w with w ∈ C∞p−1, q(X, C), we get

p′′∂?v =
hp, q∑
j=1

〈〈v, ∂ψp, qj 〉〉ψ
p, q
j and p′′∂w =

hp, q∑
j=1

〈〈w, ∂?ψp, qj 〉〉ψ
p, q
j .

Formula (24) follows at once from these identities.

(iii) Since ker ∆̃ ⊂ ker ∆′′ and the latter kernel is finite-dimensional thanks to ∆′′ being elliptic,

ker ∆̃ is finite-dimensional.
The operator ∆̃ is elliptic pseudo-differential as the sum of an elliptic differential operator and a

regularising one, so the elliptic theory applies to it. But we can also argue starting from the obvious
inequality ∆̃ ≥ ∆′′ ≥ 0 (which follows from 〈〈∆′p′′u, u〉〉 ≥ 0 for all u) and combining it with the
Gårding inequality for the elliptic differential operator ∆′′. We get constants δ1, δ2 > 0 such that

δ2 ||u||21 ≤ 〈〈∆′′u, u〉〉+ δ1 ||u||2 ≤ 〈〈∆̃u, u〉〉+ δ1 ||u||2, u ∈ C∞p, q(X, C), (28)

where || ||1 denotes the Sobolev norm W 1 and || || denotes the L2 = W 0 norm. Since 〈〈∆̃u, u〉〉 ≤
1
2
||∆̃u||2 + 1

2
||u||2, we get

δ2 ||u||21 ≤
1

2
||∆̃u||2 + (δ1 +

1

2
) ||u||2, u ∈ C∞p, q(X, C). (29)

This suffices to prove that Im ∆̃ is closed by the usual method using the Rellich Lemma (see e.g.

[Dem96, 3.10, p. 18-19]). From closedness of Im ∆̃ and self-adjointness of ∆̃ we get (25).
Now (26) is easily deduced from (25) as follows. It is clear that

Im ∆̃ ⊂ Im (∂ ◦ p′′) + Im (∂? ◦ p′′) + Im ∂̄ + Im ∂̄?.
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Since Im (∂ ◦ p′′) = Im (∂| ker ∆′′) and ker ∆′′ ⊂ ker ∂̄, we get Im (∂ ◦ p′′) ⊂ Im (∂| ker ∂̄), hence

Im ∆̃ ⊂
(

Im ∂̄ + Im (∂| ker ∂̄)

)
⊕
(

Im (∂? ◦ p′′) + Im ∂̄?
)
. (30)

Indeed, we can easily check that the middle sum on the r.h.s. of (30) is orthogonal. We have
Im ∂̄ ⊥ Im ∂̄? since ∂̄2 = 0 and Im ∂̄ ⊥ Im (∂? ◦ p′′) since 〈〈∂̄u, ∂?p′′v〉〉 = 〈〈∂∂̄u, p′′v〉〉 = 0 for all
u, v because ∂∂̄u ∈ Im ∂̄ ⊥ ker ∆′′ 3 p′′v. Similarly, Im (∂| ker ∂̄) ⊥ Im (∂? ◦ p′′) since ∂2 = 0 and

Im (∂| ker ∂̄) ⊥ Im ∂̄? since 〈〈∂u, ∂̄?v〉〉 = 〈〈∂̄∂u, v〉〉 = 0 for all u ∈ ker ∂̄ and all v.
Now, putting together (25) and (30), we get

C∞p, q(X, C) ⊂ ker ∆̃
⊕(

Im ∂̄ + Im (∂| ker ∂̄)

)⊕(
Im (∂? ◦ p′′) + Im ∂̄?

)
in which the inclusion must be an equality because all the three mutually orthogonal spaces on the
r.h.s. are contained in C∞p, q(X, C). This proves (26) and also that the inclusion in (30) is an equality.

The first of the three 2-space decompositions stated after (26) will be proved as (34) in the proof
of the next Theorem 3.4, while the second one can be proved analogously. The third one is (30) that
was seen above to be an equality.

The last two statements about the Green’s operator and the spectrum are proved in the usual
way using the elliptic theory. �

We now get the Hodge isomorphism for the second page of the Frölicher spectral sequence
announced in the introduction (cf. Theorem 1.1).

Theorem 3.4 Let (X, ω) be a compact Hermitian manifold with dimCX = n. For every p, q ∈
{0, 1, . . . , n}, let H̃p, q

∆̃
(X, C) stand for the kernel of ∆̃ acting on (p, q)-forms. Then the map

S = Sp, q : H̃p, q

∆̃
(X, C) −→ H̃p, q(X, C), α 7−→ [̃α], (31)

is an isomorphism. In particular, its composition with the isomorphism T : H̃p, q(X, C) −→ Ep, q
2

defined in (19) yields the Hodge isomorphism

T ◦ S = T p, q ◦ Sp, q : H̃p, q

∆̃
(X, C) −→ Ep, q

2 , α 7−→
[
[α]∂̄

]
d1

. (32)

Thus, every class [[α]∂̄]d1 ∈ E
p, q
2 contains a unique ∆̃-harmonic representative α.

Proof. Thanks to (22), we have

H̃p, q

∆̃
(X, C) = ker(p′′ ◦ ∂) ∩ ker(p′′ ◦ ∂?) ∩ ker ∂̄ ∩ ker ∂̄? ⊂ ker(p′′ ◦ ∂) ∩ ker ∂̄. (33)

In particular, every form α ∈ H̃p, q

∆̃
(X, C) defines a class [̃α] ∈ H̃p, q(X, C), so the map Sp, q is well

defined. We now prove the following orthogonal decomposition

ker(p′′ ◦ ∂) ∩ ker ∂̄ = ker ∆̃
⊕(

Im ∂̄ + Im (∂| ker ∂̄)

)
, (34)
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where ker ∆̃ = H̃p, q

∆̃
(X, C) is given by (33). It is clear that (34) implies that S is an isomorphism.

Thanks to the 3-space orthogonal decomposition (26), proving (34) is equivalent to proving

ker(p′′ ◦ ∂) ∩ ker ∂̄ =

(
Im (∂? ◦ p′′) + Im ∂̄?

)⊥
. (35)

Now, the r.h.s. term in (35) is the intersection of (Im (∂? ◦ p′′))⊥ = ker (∂? ◦ p′′)? = ker (p′′ ◦ ∂) with
(Im ∂̄?)⊥ = ker ∂̄. This proves (35), hence also (34). �.

4 Harmonic metrics for the pseudo-differential Laplacian

It is well known that only Kähler metrics are harmonic for the most commonly used Laplace-type
operators they induce. We shall now point out which Hermitian metrics lie in the kernel of ∆′p′′ .

Proposition 4.1 Let (X, ω) be a compact Hermitian manifold of dimension n. Consider the oper-
ator ∆′p′′ induced by ω.
(i) The following equivalences hold:

∆′p′′ω = 0 ⇐⇒ ∂ω ∈ Im ∂̄ ⊕ Im ∂̄? and ∂?ω ∈ Im ∂̄ ⊕ Im ∂̄?, (36)

∆′p′′ω
n−1 = 0 ⇐⇒ ∂ωn−1 ∈ Im ∂̄ ⊕ Im ∂̄? and ∂?ωn−1 ∈ Im ∂̄ ⊕ Im ∂̄?. (37)

(ii) In particular, if ∂ω ∈ Im ∂̄ and ∂ωn−1 ∈ Im ∂̄, then ∆′p′′ω = 0 and ∆′p′′ω
n−1 = 0.

(iii) If ω is both SKT (i.e.∂∂̄ω = 0) and Gauduchon (i.e.∂∂̄ωn−1 = 0), the next equivalences hold:

∆′p′′ω = 0 ⇐⇒ ∆′p′′ω
n−1 = 0 ⇐⇒ ∂ω ∈ Im ∂̄ and ∂ωn−1 ∈ Im ∂̄. (38)

We shall term the metrics ω with the property ∂ω ∈ Im ∂̄ super SKT, while those satisfying
∂ωn−1 ∈ Im ∂̄ are the strongly Gauduchon (sG) metrics of [Pop13].

Proof. (i) The condition ∆′p′′ω = 0 is equivalent to p′′(∂ω) = 0 and p′′(∂?ω) = 0 (cf. (22))
which amount to ∂ω ⊥ ker ∆′′ and ∂?ω ⊥ ker ∆′′. These conditions are, in turn, equivalent to the
conditions stated on the r.h.s. of (36) thanks to the orthogonal 3-space decomposition C∞p, q(X, C) =
ker ∆′′ ⊕ Im ∂̄ ⊕ Im ∂̄? (cf. (13)) for (p, q) = (2, 1), resp. (p, q) = (0, 1). This proves (36) and (37)
is proved similarly.

(ii) It suffices to show that the sG condition ∂ωn−1 ∈ Im ∂̄ is equivalent to ∂?ω ∈ Im ∂̄? and that
the super SKT condition ∂ω ∈ Im ∂̄ is equivalent to ∂?ωn−1 ∈ Im ∂̄?. This follows immediately from
the Hodge star operator ? = ?ω : Λp, qT ?X −→ Λn−q, n−pT ?X being an isomorphism and from the
well-known formulae

∂? = − ? ∂̄?, ∂̄? = − ? ∂?, ?? = ± 1 and ? ω =
ωn−1

(n− 1)!
.

For example, we have the equivalences:

∂?ω ∈ Im ∂̄? ⇐⇒ − ? ∂̄ ? ω ∈ Im (− ? ∂?) ⇐⇒ ∂̄ωn−1 ∈ Im ∂ ⇐⇒ ∂ωn−1 ∈ Im ∂̄,

where the last equivalence follows by conjugation.
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(iii) The SKT condition ∂∂̄ω = 0 is equivalent to ∂ω ∈ ker ∂̄ (and also to ∂?ωn−1 ∈ ker ∂̄?), while
the Gauduchon condition ∂∂̄ωn−1 = 0 is equivalent to ∂ωn−1 ∈ ker ∂̄ (and also to ∂?ω ∈ ker ∂̄?).
Thus, the equivalences (38) follow from (i), (ii) and from the orthogonal splittings ker ∂̄ = ker ∆′′⊕
Im ∂̄ and ker ∂̄? = ker ∆′′ ⊕ Im ∂̄? (cf. (14)). �

We do not know at this point whether non-Kähler Hermitian metrics that are both super SKT
and strongly Gauduchon exist. The author is grateful to L. Ugarte for informing him that

(1) no such metrics exist on nilmanifolds of complex dimension 3;
(2) on nilmanifolds of complex dimension 3, there exist non-Kähler Hermitian metrics that are

both SKT and strongly Gauduchon.

5 Sufficient metric conditions for the E2 degeneration of the

Frölicher spectral sequence

Throughout this section, (X, ω) will be a compact Hermitian manifold with dimCX = n. Recall that
for every k ∈ {0, . . . , 2n}, the d-Laplacian ∆ : C∞k (X, C) −→ C∞k (X, C) is defined by ∆ = dd?+d?d.
If we denote by Hk

∆(X, C) ⊂ C∞k (X, C) the kernel of ∆ acting on smooth forms of degree k, we have
the Hodge isomorphism Hk

∆(X, C) ' Hk
DR(X, C) with the De Rham cohomology group of degree k.

We start with the following very simple observation.

Lemma 5.1 (a) If for every p, q ∈ {0, 1, . . . , n} the following map induced by the identity

Jp, q : H̃p, q

∆̃
(X, C) −→ Hp+q

∆ (X, C), γ 7−→ γ, (39)

is well defined, then the Frölicher spectral sequence of X degenerates at E2.
(b) A sufficient condition for the map Jp, q to be well defined is that the following inequality hold

∆′ −∆′p′′ ≤ ∆′′ + (C∆′′ + (1− ε)∆′) on (p, q)-forms, (40)

for some constants C ≥ 0 and 0 < ε ≤ 1 depending only on X, ω and (p, q). (Recall that ∆′−∆′p′′ =
∆′p′′⊥

≥ 0.)

Thus, (40) implies the degeneracy at E2 of the Frölicher spectral sequence of X.

Proof. (a) Well-definedness for Jp, q means that for every smooth (p, q)-form γ we have ∆γ = 0

whenever ∆̃γ = 0. It is clear that Jp, q is automatically injective if it is well defined, hence in that
case dim H̃p, q

∆̃
(X, C) ≤ dimHp+q

∆ (X, C). Therefore, if all the maps Jp, q are well defined, then∑
p+q=k

dimEp, q
2 ≤ bk := dimHk

DR(X, C) for all k ∈ {0, . . . , 2n} (41)

since dimEp, q
2 = dim H̃p, q

∆̃
(X, C) by the Hodge isomorphism (32) and the images Jp, q(H̃p, q

∆̃
(X, C))

inHk
∆(X, C) have pairwise intersections reduced to zero for p+q = k for bidegree reasons. Inequality

(41) is precisely the degeneracy condition (12) at E2.
(b) Clearly, a sufficient condition for Jp, q to be well defined is that the following inequality hold
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〈〈∆γ, γ〉〉 ≤ C 〈〈∆̃γ, γ〉〉 for all γ ∈ C∞p, q(X, C) (42)

since ∆, ∆̃ ≥ 0. Now, by definition of ∆̃ (cf. (21)), 〈〈∆̃γ, γ〉〉 = 〈〈∆′p′′γ, γ〉〉+〈〈∆′′γ, γ〉〉. Meanwhile,

for every (p, q)-form γ, we have 〈〈∆γ, γ〉〉 = ||∂γ+ ∂̄γ||2 + ||∂?γ+ ∂̄?γ||2 = ||∂γ||2 + ||∂?γ||2 + ||∂̄γ||2 +
||∂̄?γ||2 = 〈〈∆′γ, γ〉〉 + 〈〈∆′′γ, γ〉〉 since ∂γ is orthogonal to ∂̄γ and ∂?γ is orthogonal to ∂̄?γ for
bidegree reasons. (This argument breaks down if γ is not of pure type.) Thus

〈〈∆γ, γ〉〉 = 〈〈∆′γ, γ〉〉+ 〈〈∆′′γ, γ〉〉 for all γ ∈ C∞p, q(X, C). (43)

It is now clear that (40) implies (42) with a possibly different constant C, so (40) implies the
well-definedness of Jp, q. �

Concerning inequality (40), note that the stronger inequality 〈〈∆′γ, γ〉〉 ≤ C 〈〈∆′′γ, γ〉〉 for all
(p, q)-forms γ and all bidegrees (p, q) implies the degeneracy at E1 of the Frölicher spectral sequence,
but we shall not pursue this here.

5.1 Use of (b) of Lemma 5.1

We shall now concentrate on proving inequality (40) under the SKT assumption (i.e. ∂∂̄ω = 0)
coupled with a torsion assumption on the metric ω.

Lemma 5.2 A sufficient condition for (40) to hold (hence for E2(X) = E∞(X)) is that there exist
constants 0 < δ < 1− ε < 1 and C ≥ 0 such that the following inequality holds

(1− ε− δ)
(
||p′′⊥∂u||2 + ||p′′⊥∂?u||2

)
+ (1− ε) (||p′′∂u||2 + ||p′′∂?u||2) + C 〈〈∆′′u, u〉〉 ≥(

1

δ
− 1

)(
||p′′⊥τu||2 + ||p′′⊥τ ?u||2

)
+ 〈〈[∂ω ∧ ·, (∂ω ∧ ·)?]u, u〉〉 − 〈〈[Λ, [Λ,

i

2
∂∂̄ω]]u, u〉〉 (44)

for every form u ∈ C∞p, q(X, C) and every bidegree (p, q). (Note that all the terms on the r.h.s. of
(44) are of order zero, hence bounded, while the last and only signless term vanishes if ω is SKT.)

Proof. By Demailly’s non-Kähler Bochner-Kodaira-Nakano identity ∆′′ = ∆′τ + Tω (cf. (109)),
inequality (40) is equivalent to each of the following inequalities:

∆′ −∆′p′′ ≤ ∆′ + [τ, ∂?] + [∂, τ ?] + [τ, τ ?] + C ∆′′ + (1− ε) ∆′ + Tω ⇐⇒

0 ≤
(

∆′p′′ + (τp′′∂? + ∂?p′′τ) + (∂p′′τ ? + τ ?p′′∂) + (τp′′τ ? + τ ?p′′τ)

)
(45)

+ (1− ε) ∆′ + C ∆′′ + (τp′′⊥∂
? + ∂?p′′⊥τ) + (∂p′′⊥τ

? + τ ?p′′⊥∂) + (τp′′⊥τ
? + τ ?p′′⊥τ) + Tω.

Since ∆′p′′ + (τp′′∂? + ∂?p′′τ) + (∂p′′τ ? + τ ?p′′∂) + (τp′′τ ? + τ ?p′′τ) = (∂ + τ)p′′(∂? + τ ?) + (∂? +
τ ?)p′′(∂ + τ) ≥ 0, inequality (45) holds if the following inequality holds
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(1− ε) 〈〈∆′u, u〉〉 + C 〈〈∆′′u, u〉〉+ ||p′′⊥τu||2 + ||p′′⊥τ ?u||2

≥ −2 Re 〈〈p′′⊥∂?u, p′′⊥τ ?u〉〉 − 2 Re 〈〈p′′⊥∂u, p′′⊥τu〉〉 − 〈〈Tωu, u〉〉. (46)

Now, suppose that 0 < ε < 1 and choose any 0 < δ < 1− ε. The Cauchy-Schwarz inequality gives

∣∣∣∣2 Re 〈〈p′′⊥∂u, p′′⊥τu〉〉
∣∣∣∣ ≤ δ ||p′′⊥∂u||2+

1

δ
||p′′⊥τu||2,

∣∣∣∣2 Re 〈〈p′′⊥∂?u, p′′⊥τ ?u〉〉
∣∣∣∣ ≤ δ ||p′′⊥∂?u||2+

1

δ
||p′′⊥τ ?u||2.

Thus, for (46) to hold, it suffices that the following inequality hold:

(1− ε) 〈〈∆′u, u〉〉+ C 〈〈∆′′u, u〉〉 ≥ δ (||p′′⊥∂u||2 + ||p′′⊥∂?u||2) +

(
1

δ
− 1

)
(||p′′⊥τu||2 + ||p′′⊥τ ?u||2)

+ 〈〈[∂ω ∧ ·, (∂ω ∧ ·)?]u, u〉〉 − 〈〈[Λ, [Λ,
i

2
∂∂̄ω]]u, u〉〉. (47)

This is equivalent to (44) since

〈〈∆′u, u〉〉 = ||p′′∂u+p′′⊥∂u||2 + ||p′′∂?u+p′′⊥∂
?u||2 = (||p′′∂u||2 + ||p′′∂?u||2) + (||p′′⊥∂u||2 + ||p′′⊥∂?u||2)

thanks to the obvious orthogonality relations p′′∂u ⊥ p′′⊥∂u and p′′∂?u ⊥ p′′⊥∂
?u. �

To apply Lemma 5.2, we start with a very simple elementary observation.

Lemma 5.3 Let H be a Hilbert space and let A,B : H → H be closed linear operators such that
A,B ≥ 0, A = A? and B = B?.

If kerA ⊂ kerB and if B ≤ A on (kerA)⊥, then B ≤ A.

Proof. We have to prove that 〈Bu, u〉 ≤ 〈Au, u〉 for all u. Since A is closed, kerA is closed in H, so
every u ∈ H splits uniquely as u = uA + u⊥A with uA ∈ kerA and u⊥A ∈ (kerA)⊥. Moreover,

A((kerA)⊥) ⊂ (kerA)⊥. (48)

Indeed, for every u⊥A ∈ (kerA)⊥ and every v ∈ kerA, we have: 〈A(u⊥A), v〉 = 〈u⊥A, Av〉 = 0 since
A?v = Av = 0. Therefore, for every u, we get:

〈Au, u〉 = 〈Au⊥A, uA + u⊥A〉 = 〈Au⊥A, u⊥A〉 ≥ 〈Bu⊥A, u⊥A〉 = 〈Bu⊥A, u〉 = 〈Bu, u〉.
The second identity above followed from (48), the inequality followed from the hypothesis and the
last two identities followed from the next relations:

(i) B((kerA)⊥) ⊂ (kerA)⊥ and (ii) B(kerA) = 0.
To prove (i), let u⊥A ∈ (kerA)⊥ and v ∈ kerA ⊂ kerB. We have: 〈B(u⊥A), v〉 = 〈u⊥A, Bv〉 = 0 since
B?v = Bv = 0. Identity (ii) follows from the hypothesis kerA ⊂ kerB. �

We shall now apply Lemma 5.3 to the non-negative self-adjoint operators

B := ∆′p′′⊥ = ∆′ −∆′p′′ ≥ 0 and A := (C + 1) ∆′′ + (1− ε) ∆′ ≥ 0
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for which we obviously have kerB = ker ∆′p′′⊥
⊃ ker ∆′ ⊃ ker ∆′ ∩ ker ∆′′ = kerA. The choice of

constants C > 0 and 0 < ε < 1 will be specified later on.
We know from (b) of Lemma 5.1 that a sufficient condition for E2(X) = E∞(X) in the Frölicher

spectral sequence is the validity of inequality (40), i.e. of the inequality B ≤ A. By Lemma 5.3,
this is equivalent to having B ≤ A on (kerA)⊥ = (ker ∆′ ∩ ker ∆′′)⊥. Now, the proof of Lemma 5.2
shows that for this to hold, it suffices for the inequality (47) to hold on (ker ∆′ ∩ ker ∆′′)⊥. If we
assume ∂∂̄ω = 0, after bounding above ||p′′⊥v|| by ||v|| for v ∈ {∂u, ∂?u, τu, τ ?u} in the r.h.s. of (47),
we see that it suffices to have

(1− ε− δ) 〈〈∆′u, u〉〉+ C 〈〈∆′′u, u〉〉 ≥
(

1

δ
− 1

)
〈〈[τ, τ ?]u, u〉〉+ 〈〈[∂ω ∧ ·, (∂ω ∧ ·)?]u, u〉〉. (49)

for all u ∈ (ker ∆′ ∩ ker ∆′′)⊥ and some fixed constants C > 0, 0 < δ < 1− ε < 1.
Now, we choose the constants such that δ = 1 − 2ε > 0 (so 0 < ε < 1

2
) and C = 1 − ε − δ = ε.

Thus, (1/δ) − 1 = 2ε/(1 − 2ε). If, moreover, we choose ε such that 2/(1 − 2ε) < 3 (i.e. such that
0 < ε < 1/6), (49) holds with these choices of constants whenever the following inequality holds:

〈〈(∆′ + ∆′′)u, u〉〉 ≥ 3 〈〈([τ, τ ?] + [∂ω ∧ ·, (∂ω ∧ ·)?])u, u〉〉 for all u ∈ (ker ∆′ ∩ ker ∆′′)⊥. (50)

For all p, q ∈ {0, . . . , n}, the non-negative self-adjoint differential operator ∆′+∆′′ : C∞p, q(X, C) −→
C∞p, q(X, C) is elliptic. Therefore, since X is compact, it has a discrete spectrum contained in [0, +∞)
with +∞ as its only accumulation point. In particular, it has a smallest positive eigenvalue that we
denote by

ρp, qω := min

(
Spec (∆′ + ∆′′)p, q ∩ (0, +∞)

)
> 0. (51)

Thus, ρp, qω is the size of the spectral gap of ∆′ + ∆′′ acting on (p, q)-forms. We get

〈〈(∆′ + ∆′′)u, u〉〉 ≥ ρp, qω ||u||2 for all u ∈ C∞p, q(X, C) ∩ (ker ∆′ ∩ ker ∆′′)⊥, (52)

since ker(∆′+ ∆′′) = ker ∆′∩ker ∆′′. On the other hand, the non-negative torsion operator [τ, τ ?] +
[∂ω ∧ ·, (∂ω ∧ ·)?] is of order zero, hence bounded, hence

〈〈([τ, τ ?] + [∂ω ∧ ·, (∂ω ∧ ·)?])u, u〉〉 ≤ Cp, q
ω ||u||2 for all u ∈ C∞p, q(X, C), (53)

where Cp, q
ω := sup

u∈C∞p, q(X,C), ||u||=1

〈〈([τ, τ ?] + [∂ω ∧ ·, (∂ω ∧ ·)?])u, u〉〉.

We conclude from (52) and (53) that (50) holds if ρp, qω ≥ 3Cp, q
ω . We have thus proved the

following statement which is nothing but Theorem 1.2.

Theorem 5.4 Let X be a compact complex n-dimensional manifold. If X carries an SKT metric
ω whose torsion satisfies the condition

Cp, q
ω ≤ 1

3
ρp, qω (54)

for all p, q ∈ {0, . . . , n}, then the Frölicher spectral sequence of X degenerates at E2.
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5.2 Use of (a) of Lemma 5.1

We shall now give a different kind of metric condition ensuring that E2(X) = E∞(X) in the Frölicher
spectral sequence.

Lemma 5.5 Let X be a compact complex manifold with dimCX = n. If X admits a Hermitian
metric ω whose induced operators ∆′,∆′′,∆′p′′ : C∞p, q(X, C) −→ C∞p, q(X, C) satisfy the condition

ker ∆′p′′ ∩ ker ∆′′ ⊂ ker ∆′ in every bidegree (p, q), (55)

the Frölicher spectral sequence of X degenerates at E2.

Proof. As noticed in (22), we always have ker ∆′p′′ ⊃ ker ∆′. Recall that ker ∆′p′′ ∩ ker ∆′′ = ker ∆̃

and that this space is denoted by H̃p, q

∆̃
(X, C) in bidegree (p, q). For every u ∈ H̃p, q

∆̃
(X, C), we have

∆′u = 0 thanks to (55), hence from (43) we get

〈〈∆u, u〉〉 = 〈〈∆′u, u〉〉+ 〈〈∆′′u, u〉〉 = 0 + 0 = 0.

This shows that the identity map induces a well-defined linear map H̃p, q

∆̃
(X, C) −→ Hp+q

∆ (X, C) for

all (p, q), hence E2(X) = E∞(X) by (a) of Lemma 5.1. �

We now use Lemma 5.5 to give two sufficient metric conditions ensuring that E2(X) = E∞(X)
in the Frölicher spectral sequence. The following theorem subsumes two results mentioned in the
introduction.

Theorem 5.6 Let X be a compact complex manifold with dimCX = n.
(i) For any Hermitian metric ω on X, the following three conditions are equivalent:

(a) p′′∂ = ∂p′′ on all (p, q)-forms for all bidegrees (p, q);
(b) [∂, ∂̄?](ker ∆′′) = 0 and [∂, ∂̄?](Im ∂̄ ⊕ Im ∂̄?) ⊂ Im ∂̄ ⊕ Im ∂̄?;
(c) [∂, τ̄ ?](ker ∆′′) = 0 and [∂, τ̄ ?](Im ∂̄ ⊕ Im ∂̄?) ⊂ Im ∂̄ ⊕ Im ∂̄?.

Moreover, if X carries a Hermitian metric ω satisfying one of the equivalent conditions (a), (b), (c),
the Frölicher spectral sequence of X degenerates at E2.

(ii) If X carries an SKT metric ω (i.e. such that ∂∂̄ω = 0) which moreover satisfies the identity

〈〈[τ̄ , τ̄ ?]u, u〉〉 = 〈〈[∂̄ω ∧ ·, (∂̄ω ∧ ·)?]u, u〉〉 for all u ∈ ker ∆′p′′ ∩ ker ∆′′, (56)

the Frölicher spectral sequence of X degenerates at E2.

Proof. (i) Let ω be any Hermitian metric on X and let u be any smooth (p, q)-form. Then
u = u0 + ∂̄v + ∂̄?w with u0 ∈ ker ∆′′ and v, w smooth forms of bidegrees (p, q − 1), resp. (p, q + 1).
(Note that we can choose v ∈ Im ∂̄? and w ∈ Im ∂̄ if these forms are chosen to have minimal L2

norms.) Thus p′′u = u0, so the following equivalences hold:

p′′∂u = ∂p′′u ⇐⇒ p′′∂u0 + p′′∂∂̄v + p′′∂∂̄?w = ∂u0 ⇐⇒ p′′∂∂̄?w = p′′⊥∂u0

⇐⇒ p′′∂∂̄?w = 0 and p′′⊥∂u0 = 0 ⇐⇒ ∂u0 ∈ ker ∆′′ and ∂∂̄?w ∈ Im ∂̄ ⊕ Im ∂̄?

⇐⇒ ∂u0 ∈ ker ∂̄? and ∂∂̄?w ∈ Im ∂̄ ⊕ Im ∂̄?. (57)
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We have successively used the following facts: p′′∂∂̄v = −p′′∂̄∂v = 0 because ker ∆′′ ⊥ Im ∂̄,
1 − p′′ = p′′⊥, Im p′′ = ker ∆′′ ⊥ Im ∂̄ ⊕ Im ∂̄? = Im p′′⊥, ∂u0 ∈ ker ∂̄ = ker ∆′′ ⊕ Im ∂̄ (because
u0 ∈ ker ∆′′ ⊂ ker ∂̄), hence the equivalence ∂u0 ∈ ker ∆′′ ⇐⇒ ∂u0 ∈ ker ∂̄?.

Now, ∂̄?∂w ∈ Im ∂̄? and ∂∂̄?u0 = 0 because u0 ∈ ker ∆′′ = ker ∂̄ ∩ ker ∂̄? ⊂ ker ∂̄?, so (57) is
equivalent to

[∂, ∂̄?]u0 = 0 and [∂, ∂̄?]w ∈ Im ∂̄ ⊕ Im ∂̄?.

On the other hand, [∂, ∂̄?] = −[∂, τ̄ ?] by (111). Since u0 ∈ ker ∆′′ and w ∈ Im ∂̄⊕Im ∂̄? are arbitrary,
the equivalences stated under (i) are proved.

To prove the last statement of (i), let ω be a metric satisfying condition (a). We are going to
show that the inclusion (55) holds, hence by Lemma 5.5 we shall have E2(X) = E∞(X) in the
Frölicher spectral sequence of X. Let u ∈ ker ∆′p′′ ∩ ker ∆′′ of an arbitrary bidegree (p, q). Then

0 = 〈〈∆′p′′ u, u〉〉 = 〈〈∆′(p′′u), u〉〉 = 〈〈∆′ u, u〉〉,
where the second identity followed from p′′∂ = ∂p′′ (which also implies p′′∂? = ∂?p′′) and the last
identity followed from u ∈ ker ∆′′ (which amounts to p′′u = u). Thus ∆′u = 0, i.e. u ∈ ker ∆′. This
proves (55), so Lemma 5.5 applies.

(ii) We prove that inclusion (55) holds under the assumptions made. Let u ∈ ker ∆′p′′ ∩ ker ∆′′.
Note that the conjugate of Demailly’s non-Kähler Bochner-Kodaira-Nakano identity ∆′′ = ∆′τ +

Tω (cf. (109)) is

∆′ = ∆′′τ + T ω, (58)

where ∆′′τ := [∂̄ + τ̄ , ∂̄? + τ̄ ?] and T ω = [Λ, [Λ, i
2
∂∂̄ω ∧ ·]] − [∂̄ω ∧ ·, (∂̄ω ∧ ·)?]. Thanks to formula

(58), we have

〈〈∆′ u, u〉〉 = 〈〈(∆′′ + [∂̄, τ̄ ?] + [τ̄ , ∂̄?])u, u〉〉+ 〈〈[τ̄ , τ̄ ?]u, u〉〉 − 〈〈[∂̄ω ∧ ·, (∂̄ω ∧ ·)?]u, u〉〉
= 〈〈[τ̄ , τ̄ ?]u, u〉〉 − 〈〈[∂̄ω ∧ ·, (∂̄ω ∧ ·)?]u, u〉〉, (59)

where we have used the SKT assumption on ω to have T̄ω reduced to −[∂̄ω ∧ ·, (∂̄ω ∧ ·)?] in formula
(58) and the argument below to infer that 〈〈[∂̄, τ̄ ?]u, u〉〉 = 〈〈[τ̄ , ∂̄?]u, u〉〉 = 0 from the assumption
u ∈ ker ∆′′ = ker ∂̄ ∩ ker ∂̄?:

〈〈[∂̄, τ̄ ?]u, u〉〉 = 〈〈τ̄ ? u, ∂̄?u〉〉+ 〈〈∂̄u, τ̄u〉〉 = 0 + 0 = 0,

〈〈[τ̄ , ∂̄?]u, u〉〉 = 〈〈∂̄? u, τ̄ ?u〉〉+ 〈〈τ̄u, ∂̄u〉〉 = 0 + 0 = 0. (60)

Now, ∆′ = ∆′p′′ + ∆′p′′⊥
, so the assumption u ∈ ker ∆′p′′ reduces (59) to

〈〈∆′p′′⊥ u, u〉〉 = 〈〈[τ̄ , τ̄ ?]u, u〉〉 − 〈〈[∂̄ω ∧ ·, (∂̄ω ∧ ·)?]u, u〉〉. (61)

The r.h.s. of (61) vanishes thanks to the hypothesis (56), so ∆′p′′⊥
u = 0, hence also ∆′u = 0. �

Remark 5.7 The proof of (ii) of the above Theorem 5.6 shows that if X carries an SKT metric ω
whose torsion satisfies the condition [τ, τ ?] = [∂ω ∧ ·, (∂ω ∧ ·)?], then the Frölicher spectral sequence
of X degenerates at E1.
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Proof. To get E1 degeneration, it suffices for the inclusion Hp, q
∆′′(X, C) ⊂ Hp+q

∆ (X, C) of ∆′′-, resp.
∆-harmonic spaces to hold for all p, q. (The argument is analogous to the one for (a) of Lemma
5.1.) Now, (59) holds for all u ∈ Hp, q

∆′′(X, C) if ω is SKT, hence ∆′u = 0 whenever ∆′′u = 0 under
the present assumptions. Then, by (43), we get ∆u = 0 for all (p, q)-forms u satisfying ∆′′u = 0
and for all p, q. This proves the above inclusion, hence the contention. �

5.2.1 Alternative expression for the torsion operator R̄ω

We shall now compute the operator R̄ω := [τ̄ , τ̄ ?] − [∂̄ω ∧ ·, (∂̄ω ∧ ·)?] featuring in (ii) of Theorem
5.6 in terms of the non-negative operator S̄ω (cf. (2)).

Lemma 5.8 Let (X, ω) be an arbitrary compact Hermitian manifold of dimension n. Put S̄ω :=
[∂̄ω ∧ ·, (∂̄ω ∧ ·)?] ≥ 0. The following formula holds:

[τ̄ , τ̄ ?]− S̄ω = 2S̄ω + [[Λ, S̄ω], L], (62)

where, as usual, L = Lω := ω ∧ ·. Moreover, for any bidegree (p, q), [[Λ, S̄ω], L] is given by

〈〈[[Λ, S̄ω], L]u, u〉〉 = 〈〈S̄ω(ω ∧ u), ω ∧ u〉〉 + 〈〈S̄ω(Λu), Λu〉〉+ (p+ q − n) 〈〈S̄ωu, u〉〉
− 2Re 〈〈Λ(S̄ωu), Λu〉〉, u ∈ C∞p, q(X, C). (63)

Proof. Since τ = [Λ, ∂ω ∧ ·], we get

[τ̄ , τ̄ ?] =

[
[Λ, ∂̄ω ∧ ·], [(∂̄ω ∧ ·)?, L]

]
=

[
[[(∂̄ω ∧ ·)?, L], Λ], ∂̄ω ∧ ·

]
−
[
[∂̄ω ∧ ·, [(∂̄ω ∧ ·)?, L]], Λ

]
,(64)

where the last identity followed from Jacobi’s identity applied to the operators [(∂̄ω ∧ ·)?, L], Λ and
∂̄ω ∧ ·.

To compute the first factor in the first term on the r.h.s. of (64), we apply again Jacobi’s identity:

[
[(∂̄ω ∧ ·)?, L], Λ

]
= −

[
[L, Λ], (∂̄ω ∧ ·)?

]
−
[
[Λ, (∂̄ω ∧ ·)?], L

]
. (65)

Using the standard fact that [L, Λ] = (p+ q − n) Id on (p, q)-forms, for any (p, q)-form u we get

[
[L, Λ], (∂̄ω ∧ ·)?

]
u = [L, Λ]

(
(∂̄ω ∧ ·)?u

)
− (∂̄ω ∧ ·)?

(
[L, Λ], u

)
= (p+ q − 3− n) (∂̄ω ∧ ·)?u− (∂̄ω ∧ ·)?((p+ q − n)u) = −3(∂̄ω ∧ ·)?u.

Thus

[
[L, Λ], (∂̄ω ∧ ·)?

]
= −3(∂̄ω ∧ ·)?. On the other hand, [Λ, (∂̄ω ∧ ·)?] = [∂̄ω ∧ ·, L]? = 0 since,

clearly, [∂̄ω ∧ ·, L]u = ∂̄ω ∧ ω ∧ u− ω ∧ ∂̄ω ∧ u = 0 for any u. Therefore, (65) reduces to
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[
[(∂̄ω ∧ ·)?, L], Λ

]
= 3(∂̄ω ∧ ·)?. (66)

Similarly, to compute the first factor in the second term on the r.h.s. of (64), we start by applying
Jacobi’s identity:

[
∂̄ω ∧ ·, [(∂̄ω ∧ ·)?, L]

]
=

[
(∂̄ω ∧ ·)?, [L, ∂̄ω ∧ ·]

]
−
[
L, [∂̄ω ∧ ·, (∂̄ω ∧ ·)?]

]
=

[
[∂̄ω ∧ ·, (∂̄ω ∧ ·)?], L

]
= [S̄ω, L], (67)

where the last but one identity followed from [L, ∂̄ω ∧ ·] = 0 seen above.
Putting together (64), (66) and (67), we get:

[τ̄ , τ̄ ?] = 3S̄ω − [[S̄ω, L], Λ]. (68)

A new application of Jacobi’s identity spells

[[S̄ω, L], Λ] + [[L, Λ], S̄ω] + [[Λ, S̄ω], L] = 0, which gives − [[S̄ω, L], Λ] = [[Λ, S̄ω], L]. (69)

Indeed, since [L, Λ] = (p + q − n) Id on (p, q)-forms and S̄ω is an operator of type (0, 0), we get
[[L, Λ], S̄ω] = 0 which accounts for the last statement in (69).

It is now clear that the combined (68) and (69) prove (62).
To prove (63), we start by computing

〈〈[[Λ, S̄ω], L]u, u〉〉 = 〈〈[Λ, S̄ω] (ω ∧ u), u〉〉 − 〈〈ω ∧ [Λ, S̄ω]u, u〉〉
= 〈〈S̄ω(ω ∧ u), ω ∧ u〉〉 − 〈〈ω ∧ u, ω ∧ S̄ωu〉〉+ 〈〈S̄ω(Λu), Λu〉〉

− 〈〈Λ(S̄ωu), Λu〉〉. (70)

Then we notice the general fact that for every (p, q)-forms u, v we have:

〈〈ω ∧ u, ω ∧ v〉〉 = 〈〈Λu, Λ v〉〉 − (p+ q − n) 〈〈u, v〉〉. (71)

Indeed, 〈〈ω ∧ u, ω ∧ v〉〉 = 〈〈Λ(ω ∧ u), v〉〉 and Λ(ω ∧ u) = ω ∧ Λu − (p + q − n)u. Now, applying
(71), we get

〈〈ω ∧ u, ω ∧ S̄ωu〉〉 = 〈〈Λu, Λ(S̄ωu)〉〉 − (p+ q − n) 〈〈u, S̄ωu〉〉. (72)

It is now clear that the combined (70) and (72) prove (63) because 〈〈Λu, Λ(S̄ωu)〉〉 is the conju-
gate of 〈〈Λ(S̄ωu), Λu〉〉 and 〈〈u, S̄ωu〉〉 = 〈〈S̄ωu, u〉〉. �
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5.2.2 Putting the hypothesis ∂p′′ = p′′∂ in context

We now reinterpret the commutation of ∂ with p′′ (the simplest sufficient condition for E2(X) =
E∞(X) found so far, cf. Theorem 5.6).

Lemma 5.9 Let (X, ω) be a compact Hermitian manifold. The following implication and equiva-
lence hold:

∂∆′′ = ∆′′∂ =⇒ ∂p′′ = p′′∂ ⇐⇒ ∂(ker ∆′′) ⊂ ker ∆′′ and ∂?(ker ∆′′) ⊂ ker ∆′′. (73)

Proof. Suppose that ∂∆′′ = ∆′′∂. Then, taking adjoints, we also have ∆′′∂? = ∂?∆′′. These identities
immediately imply

∂(ker ∆′′) ⊂ ker ∆′′ and ∂?(ker ∆′′) ⊂ ker ∆′′. (74)

Now suppose that (74) holds. We shall prove that ∂p′′ = p′′∂. Let u be an arbitrary smooth
form. Then u splits as u = u0 + ∂̄v + ∂̄?w with u0 ∈ ker ∆′′. Thus ∂p′′u = ∂u0 and

p′′∂u = p′′∂u0 + p′′∂∂̄v + p′′∂∂̄?w = ∂u0 + p′′∂∂̄?w

because ∂u0 ∈ ker ∆′′ by (74) and p′′∂∂̄v = −p′′∂̄∂v = 0 since Im ∂̄ ⊥ ker ∆′′. We now prove that
p′′∂∂̄?w = 0 and this will show that ∂p′′u = p′′∂u, as desired. Proving that p′′∂∂̄?w = 0 is equivalent
to proving that ∂∂̄?w ∈ (ker ∆′′)⊥. Let ζ ∈ ker ∆′′, arbitrary. We have

〈〈ζ, ∂∂̄?w〉〉 = 〈〈∂?ζ, ∂̄?w〉〉 = 0

because ∂?ζ ∈ ker ∆′′ thanks to (74), ∂̄?w ∈ Im ∂̄? and ker ∆′′ ⊥ Im ∂̄?.
It remains to prove that if ∂p′′ = p′′∂, then (74) holds. Note the general fact that for any form

u, u ∈ ker ∆′′ iff p′′u = u. Let us now suppose that ∂p′′ = p′′∂. Then, taking adjoints, we also have
∂?p′′ = p′′∂?, so (74) holds. �

Part II: E2 degeneration of the spectral sequence associated
with a pair of foliations

This part of the paper outlines a way of extending to the context of foliations the ideas and the
objects introduced in Part I. They will hopefully be continued in future work in the more general
context of a single foliation. We highlight here the rather substantial new technical difficulties
involved.

6 Review of standard material

Let X be a compact complex manifold of dimension n endowed with a complementary pair of regular
foliations (N, F ) (cf. (4)). We keep the notation used in the Introduction.

There always exists (e.g. by the analogue of the argument for the real case in [Rei58, p.245-246])
a Hermitian metric ω on X, called henceforth a product metric, which in every system of local
product coordinates z1, . . . zr, zr+1, . . . , zn has the shape
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ω =
r∑

j, k=1

ωjk̄(z
′, z′′) idzj ∧ dz̄k +

n∑
j, k=r+1

ωjk̄(z
′, z′′) idzj ∧ dz̄k. (75)

In general, the coefficients ωjk̄ are functions on U depending on both groups of coordinates z′ and
z′′. We put

ωN :=
r∑

j, k=1

ωjk̄(z
′, z′′) idzj ∧ dz̄k and ωF :=

n∑
j, k=r+1

ωjk̄(z
′, z′′) idzj ∧ dz̄k. (76)

For some of our results that follow, we shall need to assume the existence of a special kind of
Hermitian metric on X adapted to the (N, F ) structure. The name is borrowed from [Rei59] (where
the real case was studied) whose analogue to the complex Hermitian context we consider.

Definition 6.1 A bundle-like Hermitian metric on a compact complex manifold X endowed
with an integrable holomorphic almost product structure (N, F ) is a Hermitian metric ω which in
every system of local product coordinates z1, . . . zr, zr+1, . . . , zn has the shape

ω =
r∑

j, k=1

ωjk̄(z
′) idzj ∧ dz̄k +

n∑
j, k=r+1

ωjk̄(z
′′) idzj ∧ dz̄k. (77)

The spectral sequence induced by (N, F ). Put Ek(X) := C∞(X, Λk, 0T ?X). For every p, q ∈
{0, . . . , k}, let Ep, q denote the holomorphic vector subbundle ΛpN? ⊗ ΛqF ? of Λk, 0T ?X, and let
Ep, q(X) = Ep, qN, F (X) := C∞(X, Ep, q) stand for the space of its global smooth sections. The integrable
operators

∂N : Ep, q(X)→ Ep+1, q(X) and ∂F : Ep, q(X)→ Ep, q+1(X) (78)

define a double complex E•, •(X) with the total differential ∂ = ∂N + ∂F . We consider the spectral
sequence associated in the standard way with this double complex (see e.g. [Dem 96, §.9] or [Voi02,
§.8.3.2]).

As usual, the first two steps in the spectral sequence are defined by the second differential ∂F , resp.
the first differential ∂N . Indeed, we put Ep, q

0 := Ep, q(X) and d0 := ∂F , so the groups E1 = E1(N, F )
are defined as the cohomology of the complex

· · · ∂F−→ Ep, q−1(X)
∂F−→ Ep, q(X)

∂F−→ Ep, q+1(X)
∂F−→ · · · , (79)

i.e. Ep, q
1 = Ep, q

1 (N, F ) = Hq(Ep, •(X), ∂F ), while the differentials d1 are induced by ∂N :

· · · d1−→ Ep−1, q
1

d1−→ Ep, q
1

d1−→ Ep+1, q
1

d1−→ · · · . (80)

This means that for any form α ∈ Ep, q(X) such that ∂Fα = 0, the class [α]∂F ∈ E
p, q
1 is mapped by

d1 to the class [∂Nα]∂F ∈ E
p+1, q
1 . Moreover, d2

1 = 0 since ∂2
N = 0, so (80) is indeed a complex. The

groups E2 = E2(N, F ) are defined as the cohomology of this complex, i.e. for all p, q we have
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Ep, q
2 = Ep, q

2 (N, F ) := Hp(E•, q1 , d1) =

{[
[α]∂F

]
d1

/
α ∈ Ep, q(X)∩ ker ∂F and ∂Nα ∈ Im ∂F

}
, (81)

so the elements of Ep, q
2 are d1-classes of ∂F -classes.

This spectral sequence converges to the ∂-cohomology in bidegrees (k, 0) of the manifold X, i.e.
if we let Ep, q

∞ := lims→+∞E
p, q
s , we have canonical isomorphisms

Hk, 0
∂ (X, C) '

⊕
p+q=k

Ep, q
∞ , k = 0, 1, . . . , n. (82)

Note that the vector spaces Ep, q
s need not be finite-dimensional since the system (∂N , ∂F ) is

not elliptic in general. Indeed, if we have fixed a Hermitian metric ω on X and denote by ∂?N , ∂
?
F

the adjoints of ∂N , ∂F w.r.t. the L2 inner product induced by ω, the associated Laplace-Beltrami
operators

∆′N = [∂N , ∂
?
N ] = ∂N∂

?
N + ∂?N∂N and ∆′F = [∂F , ∂

?
F ] = ∂F∂

?
F + ∂?F∂F

are not elliptic in general (since each “misses” the complementary directions). However, a fact that
will be important for us is that the sum of these Laplacians

∆′N + ∆′F

is an elliptic operator. So is also the usual ∂-Laplacian

∆′ = [∂, ∂?] = ∆′N + ∆′F + [∂N , ∂
?
F ] + [∂F , ∂

?
N ].

Since X is compact, ker ∆′N = ker ∂N ∩ ker ∂?N and ker ∆′F = ker ∂F ∩ ker ∂?F .

7 The non-differential Laplacian and E2 degeneration

Let X be an n-dimensional compact complex manifold equipped with an integrable holomorphic
almost product structure (N, F ) and with a product Hermitian metric ω. By analogy with the
Frölicher case described in Part I, we consider the following operators

p′N : Ep, q(X) −→ ker ∆′N and p′F : Ep, q(X) −→ ker ∆′F (83)

the orthogonal projections onto the ∆′N -harmonic, resp. the ∆′F -harmonic spaces. Similarly, let

p
′⊥
N : Ep, q(X) −→ (ker ∆′N)⊥ and p

′⊥
F : Ep, q(X) −→ (ker ∆′F )⊥ (84)

denote the orthogonal projections onto the orthogonal complements of the respective harmonic
spaces. The operators p′N , p

′
F , p

′⊥
N , p

′⊥
F depend on the metric ω and are no longer pseudo-differential

operators, let alone regularising or of finite rank, since the kernels of ∆′N and ∆′F are no longer
finite-dimensional due to the lack of ellipticity of ∆′N and ∆′F . They clearly satisfy the properties:

p′N = (p′N)? = (p′N)2, p′F = (pF )
′? = (p′F )2, p

′⊥
N = (p

′⊥
N )? = (p

′⊥
N )2, p

′⊥
F = (p

′⊥
F )? = (p

′⊥
F )2. (85)

Again by analogy with the Frölicher case, we define our main object of study in this second part.
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Definition 7.1 Let X be a compact complex manifold with dimCX = n equipped with an integrable
holomorphic almost product structure (N, F ) and with a product Hermitian metric ω. For every

p, q, we define the operator ∆̃′ : Ep, q(X) −→ Ep, q(X) by

∆̃′ := ∂Np
′
F∂

?
N + ∂?Np

′
F∂N + ∂F∂

?
F + ∂?F∂F . (86)

In other words, we have

∆̃′ = ∆′N, p′F + ∆′F , where ∆′N, p′F := ∂Np
′
F∂

?
N + ∂?Np

′
F∂N : Ep, q(X) −→ Ep, q(X). (87)

Thus ∆̃′ is the sum of a Fourier integral operator (∆′N, p′F
) and a non-elliptic differential operator of

order two (the ∂F -Laplacian ∆′F ).

The idea we shall now be pursuing is to find a hypothesis ensuring that ∆̃′ satisfies Gårding’s
inequality by ensuring that ∆′N, p′F

dominates a constant multiple of ∆′N and then using the ellipticity

of ∆′N + ∆′F and Gårding’s inequality it satisfies.

Theorem 7.2 Suppose that for every p, q the following identity holds:

ker(∆′N : Ep, q(X)→ Ep, q(X)) + ker(∆′F : Ep, q(X)→ Ep, q(X)) = Ep, q(X). (88)

(i) There exists a constant 0 < ε < 1 such that for all p, q we have

〈〈∆′N, p′Fu, u〉〉 ≥ (1− ε) 〈〈∆′Nu, u〉〉, u ∈ Ep, q(X). (89)

(ii) There exist constants δ1, δ2 > 0 such that for all p, q, Gårding’s inequality holds for ∆̃′:

〈〈∆̃′u, u〉〉+ δ1 ||u||2 ≥ δ2 ||u||21, u ∈ Ep, q(X), (90)

where || ||1 stands for the Sobolev norm W 1 and || || stands for the L2 norm.

(iii) The above Gårding’s inequality implies in turn that ker ∆̃′ is finite-dimensional, that the image

Im ∆̃′ is closed in Ep, q(X) and that the following 3-space orthogonal decomposition holds:

Ep, q(X) = ker ∆̃′
⊕(

Im ∂F + Im (∂N | ker ∆′F
)

)⊕(
Im (∂?N ◦ p′F ) + Im ∂?F

)
. (91)

Moreover, the decomposition (91) also holds when Im (∂N | ker ∆′F
) is replaced with Im (∂N | ker ∂F ).

(iv) If, moreover, [∂N , ∂
?
F ] = 0, then Im ∂F is closed in Ep, q(X) and the following Hodge isomor-

phism holds:

Hp, q

∆̃′
(N, F ) := ker

(
∆̃′ : Ep, q(X) −→ Ep, q(X)

)
' Ep, q

2 (N, F ), α 7−→
[
[α]∂F

]
d1

. (92)

Thus, every class [[α]∂F ]d1 ∈ E
p, q
2 (N, F ) contains a unique ∆̃′-harmonic representative α. In par-

ticular, dimCE
p, q
2 (N, F ) < +∞ for all p, q.

(v) Much more holds under the above assumption [∂N , ∂
?
F ] = 0: the spectral sequence induced by

(N, F ) degenerates at E2 (i.e. E2(N, F ) = E∞(N, F ).)
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Proof. (i) The hypothesis ker ∆′N + ker ∆′F = Ep, q(X) is equivalent (using the Open Mapping The-
orem in Fréchet spaces) to each of the following equivalent conditions:

(ker ∆′N)⊥ ∩ (ker ∆′F )⊥ = {0} ⇐⇒ the map p′F : (ker ∆′N)⊥ −→ ker ∆′F is injective

⇐⇒ ∃0 < ε < 1 such that ||p′Fv||2 ≥ (1− ε) ||v||2 for all v ∈ (ker ∆′N)⊥.

The constant in the last inequality is necessarily in the interval (0, 1) since ||p′Fv|| ≤ ||v|| for all
forms v. The choices v := ∂Nu and v := ∂?Nu are allowed for all the forms u since Im ∂N ⊥ ker ∆′N
and Im ∂?N ⊥ ker ∆′N . Thus, we obtain

〈〈∆′N, p′Fu, u〉〉 = ||p′F∂Nu||2 + ||p′F∂?Nu||2 ≥ (1− ε) (||∂Nu||2 + ||∂?Nu||2) ≥ (1− ε) 〈〈∆′Nu, u〉〉

for all u ∈ Ep, q(X). This proves (89).
(ii) Thanks to (89) and to Gårding’s inequality satisfied by the elliptic differential operator

∆′N + ∆′F , there exist constants δ′1, δ
′
2 > 0 such that

〈〈∆̃′u, u〉〉+ δ′1 ||u||2 ≥ (1− ε) 〈〈(∆′N + ∆′F )u, u〉〉+ δ′1 ||u||2 ≥ (1− ε)δ′2 ||u||21
for all u ∈ Ep, q(X). This proves (90) after putting δ1 := δ′1 and δ2 := (1− ε)δ′2.

(iii) Gårding’s inequality (90) implies the finite dimensionality of ker ∆̃′ and the closedness of

Im ∆̃′ by standard arguments (see e.g. [Dem96, 3.10. p. 18-19]). Since ∆̃′ is self-adjoint, (90) also
implies the following 2-space orthogonal decomposition:

Ep, q(X) = ker ∆̃′
⊕

Im ∆̃′. (93)

Now, it is clear that Im ∆̃′ is contained in

(Im ∂F + Im (∂N | ker ∆′F
))⊕ (Im (∂?N ◦ p′F ) + Im ∂?F ) ⊂ (Im ∂F + Im (∂N | ker ∂F ))⊕ (Im (∂?N ◦ p′F ) + Im ∂?F ),

(94)
where the direct sums are orthogonal because ∂N (resp. ∂?N) anti-commutes with ∂F (resp. ∂?F )
and ker ∆′F = ker ∂F ∩ ker ∂?F . Since the direct sums in (94) are, in turn, contained in Ep, q(X), the
conjunction of (93) and (94) implies (91) and also that the inclusion (94) is actually an equality.

(iv) If ∂N and ∂?F anti-commute, then the following orthogonality relations hold:

Im ∂F ⊥ Im (∂N | ker ∆′F
) and Im (∂?N ◦ p′F ) ⊥ Im ∂?F . (95)

Indeed, for u arbitrary and v ∈ ker ∆′F = ker ∂F ∩ ker ∂?F , we have

〈〈∂Fu, ∂Nv〉〉 = 〈〈u, ∂?F∂Nv〉〉 = −〈〈u, ∂N(∂?Fv)〉〉 = 0 because ∂?Fv = 0.

Similarly, for u, v arbitrary, we have

〈〈∂?N(p′Fu), ∂?Fv〉〉 = 〈〈p′Fu, ∂N∂?Fv〉〉 = −〈〈p′Fu, ∂?F∂Nv〉〉 = 0

because p′Fu ∈ ker ∆′F ⊥ Im ∂?F .
On the other hand, it is clear that in any pre-Hilbert space, whenever the sum of two mutually

orthogonal subspaces is closed, each of the two subspaces is closed. From (iii) we know that Im ∆̃′

is closed in Ep, q(X) and that it splits orthogonally as Im ∆̃′ = (Im ∂F + Im (∂N | ker ∆′F
))⊕ (Im (∂?N ◦

p′F ) + Im ∂?F ), hence Im ∂F + Im (∂N | ker ∆′F
) and Im (∂?N ◦ p′F ) + Im ∂?F are closed in Ep, q(X). Thanks
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to the orthogonality relations (95), we infer that Im ∂F , Im (∂N | ker ∆′F
), Im (∂?N ◦ p′F ) and Im ∂?F are

closed in Ep, q(X) under the assumption [∂N , ∂
?
F ] = 0.

The proof of the Hodge isomorphism statement (92) uses crucially the closedness of Im ∂F and
runs along the lines of the proof of the analogous Theorem 3.4 of the Frölicher case. We shall
therefore limit ourselves to pointing out the main steps.

The sum of the first two main terms on the r.h.s. of (91), after replacing Im (∂N | ker ∆′F
) with

Im (∂N | ker ∂F ), is given by

ker(p′F ◦ ∂N) ∩ ker ∂F = ker ∆̃′
⊕(

Im ∂F + Im (∂N | ker ∂F )

)
(96)

since ker(p′F ◦ ∂N) ∩ ker ∂F is easily seen to be the orthogonal complement of Im (∂?N ◦ p′F ) + Im ∂?F .
Therefore, we immediately obtain the isomorphism (cf. (31)):

S = Sp, qN, F : Hp, q

∆̃′
(N, F ) −→ H̃p, q

N, F (X, C) := ker(p′F ◦ ∂N) ∩ ker ∂F

/(
Im ∂F + Im (∂N | ker ∂F )

)
,

α 7−→ [̃α], (97)

where [̃α] denotes the class in H̃p, q
N, F (X, C) of α ∈ ker(p′F ◦ ∂N) ∩ ker ∂F .

On the other hand, the linear map

T = T p, qN, F : H̃p, q
N, F (X, C) −→ Ep, q

2 (N, F ), [̃α] 7−→
[
[α]∂F

]
d1

, (98)

is seen to be well defined and an isomorphism as in the proof of the analogous Proposition 3.1.
The closedness of Im ∂F is a key ingredient here. For example, for T to be well defined, we need
every α ∈ ker(p′F ◦ ∂N) ∩ ker ∂F to induce a unique class [[α]∂F ]d1 . Now, the class [α]∂F is well-
defined since α ∈ ker ∂F , but we also need to have d1([α]∂F ) = 0 in Ep, q

1 (N, F ), i.e. we need
∂Nα ∈ Im ∂F . However, ∂Nα ∈ ker ∂F and p′F (∂Nα) = 0 (i.e. ∂Nα ⊥ ker ∆′F ), which amounts
precisely to ∂Nα ∈ Im ∂F . If Im ∂F were not closed, this would only amount to the weaker property
∂Nα ∈ Im ∂F .

It is now clear that the composition of the isomorphisms (97) and (98) provides the Hodge
isomorphism (92).

(v) If ∆′ = ∂∂? + ∂?∂ : Ek(X) −→ Ek(X) is the standard ∂-Laplacian induced by the metric ω
(where Ek(X) is the space of smooth (k, 0)-forms on X), the usual Hodge isomorphism theorem for
∂ gives the isomorphism

Hp+q, 0
∆′ (X, C) −→ Hp+q, 0

∂ (X, C), α 7→ [α]∂.

Coupled with the Hodge isomorphism (92), this shows (as in the proof of Lemma 5.1) that if the
identity map induces a well-defined linear map

Hp, q

∆̃′
(N, F ) −→ Hp+q, 0

∆′ (X, C), γ 7→ γ, (99)

then E2(N, F ) = E∞(N, F ). Indeed, if well defined, the map (99) is necessarily injective, so we
get an injection Ep, q

2 (N, F ) ↪→ Hp+q, 0
∂ (X, C) for all p, q. Now, since ω is a product metric, one
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easily checks that for any (p, q) 6= (r, s) such that p + q = r + s = k, the images in Hk, 0
∂ (X, C) of

Ep, q
2 (N, F ) and Er, s

2 (N, F ) intersect only at zero because Ep, q(X) is orthogonal to Er, s(X). Thus,
for every k, there is a linear injection⊕

p+q=k

Ep, q
2 (N, F ) ↪→ Hk, 0

∂ (X, C).

This implies the degeneration at E2 of the spectral sequence.
On the other hand, ker ∆̃′ = ker ∆′N, p′F

∩ ker ∆′F (cf. (87)). Meanwhile, the following analogue

of (43) holds:

〈〈∆′u, u〉〉 = 〈〈∆′Nu, u〉〉+ 〈〈∆′Fu, u〉〉 for all u ∈ Ep, q(X),

so for u ∈ Ep, q(X) we have the equivalence: u ∈ ker ∆′ ⇔ u ∈ ker ∆′N ∩ ker ∆′F . Putting these facts
together, we see that the map (99) is well defined whenever the following inclusion holds

ker ∆′N, p′F ∩ ker ∆′F ⊂ ker ∆′N in Ep, q(X). (100)

This is the analogue of Lemma 5.5.
Summing up, we have just argued that if (100) holds for all p, q, then E2(N, F ) = E∞(N, F ).

Now, we claim that the following implications hold:

[∂N , ∂
?
F ] = 0

(a)
=⇒ [∂N , ∆′F ] = 0 and [∂N , p

′
F ] = 0

(b)
=⇒

ker ∆′N, p′F ∩ ker ∆′F ⊂ ker ∆′N in Ep, q(X) for all p, q. (101)

In view of the above arguments, the implications (101) prove (v).
To prove the first part of implication (a) of (101), recall that ∂N and ∂F anti-commute, so if ∂N

and ∂?F anti-commute as well, then ∂N commutes with ∆′F .
To prove the second part of implication (a) of (101), recall that Im ∂F and Im ∂?F have been

proved to be closed in Ep, q(X) under the assumption [∂N , ∂
?
F ] = 0 (cf. proof of (iv)). This implies

the orthogonal 3-space decompostion

Ep, q(X) = ker ∆′F ⊕ Im ∂F ⊕ Im ∂?F . (102)

Now, let u ∈ Ep, q(X). By (102), u splits uniquely and orthogonally as u = u0 + ∂Fv + ∂?Fw, with
u0 ∈ ker ∆′F . Thus, p′Fu = u0. We get (∂Np

′
F )u = ∂Nu0 and, using [∂N , ∂F ] = 0 and [∂N , ∂

?
F ] = 0,

we also get

(p′F∂N)u = p′F (∂Nu0)− p′F (∂F∂Nv)− p′F (∂?F∂Nw) = p′F (∂Nu0), (103)

since p′F ◦ ∂F = 0 and p′F ◦ ∂?F = 0 thanks to the orthogonal splitting (102). Now, since ∆′Fu0 = 0
and ∆′F commutes with ∂N , we get ∆′F (∂Nu0) = 0, i.e. p′F (∂Nu0) = ∂Nu0. From this and (103), we
get (p′F∂N)u = ∂Nu0. Therefore, (∂Np

′
F )u = (p′F∂N)u.

Implication (b) of (101) is proved by running the analogue of the proof of the last statement in
(i) of Theorem 5.6. �
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Remark 7.3 The hypothesis (88) suffices to prove part (v) of Theorem 7.2, but the anti-commutation
hypothesis [∂N , ∂

?
F ] = 0 is needed to get closedness of Im ∂F and the Hodge isomorphism (92) in part

(iv).

Proof. From (i), we get (1−ε) (∆′N +∆′F ) ≤ ∆̃ = ∆′N, p′F
+∆′F ≤ ∆′N +∆′F , hence ker(∆′N, p′F

+∆′F ) =

ker(∆′N + ∆′F ). This means that

ker ∆′N, p′F ∩ ker ∆′F = ker ∆′N ∩ ker ∆′F ⊂ ker ∆′N

which proves (100) in every Ep, q(X). �

8 The anti-commutation of ∂N and ∂?F

We now give a sufficient condition for the crucial hypothesis [∂N , ∂
?
F ] = 0 of Theorem 7.2 to hold.

Theorem 8.1 Let X be a compact complex manifold with dimCX = n equipped with an integrable
holomorphic almost product structure (N, F ) and with a product Hermitian metric ω.

If ω is a bundle-like metric (cf. Definition 6.1) and if ∂NωN = 0 (i.e. ωN is Kähler in the
N-directions), then

[∂N , ∂
?
F ] = 0. (104)

The proof proceeds in local coordinates along the lines of the proof of the standard Hermitian
commutation relations (107) (cf. [Dem97, VII, §.1]) adapted to the foliated situation. We confine
ourselves to pointing out the main steps in the form of the following succession of lemmas whose
straightforward proofs are left to the reader.

Lemma 8.2 Let ΛN := (ωN ∧ ·)? and ΛF := (ωF ∧ ·)?.
If ω is a bundle-like metric in the sense of Definition 6.1, then [ΛN , ∂F ] = 0.

The next observation is that the standard Hermitian commutation relations (107) are still valid
for ∂N and ∂F .

Lemma 8.3 Let τN := [ΛN , ∂NωN ∧ ·] denote the N-directional torsion operator of ω. If ω is a
bundle-like metric in the sense of Definition 6.1, the following identity holds:

[ΛN , ∂N ] = i (∂̄?N + τ̄ ?N). (105)

Lemma 8.4 We always have [∂F , ∂̄N ] = 0.

End of proof of Theorem 8.1. We shall actually prove the identity

[∂F , ∂
?
N ] = 0 (106)
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under the hypotheses of Theorem 8.1 (which imply, in particular, that τN = 0). Taking adjoints,
(106) is seen to be equivalent to (104).

Since τN = 0, the conjugate of (105) reads ∂?N = i [ΛN , ∂̄N ], so we get

[∂F , ∂
?
N ] = i [∂F , [ΛN , ∂̄N ]] = i [ΛN , [∂̄N , ∂F ]] + i [∂̄N , [∂F , ΛN ]].

Since [∂̄N , ∂F ] = 0 by Lemma 8.4 and [∂F , ΛN ] = 0 by Lemma 8.2, we get [∂F , ∂
?
N ] = 0. �

9 Appendix: Commutation relations

We briefly recall here some standard formulae that were used throughout the paper.
Let (X, ω) be a compact complex Hermitian manifold. Recall the following standard Hermitian

commutation relations ([Dem84], see also [Dem97, VII, §.1]):

(i) (∂ + τ)? = i [Λ, ∂̄]; (ii) (∂̄ + τ̄)? = −i [Λ, ∂];

(iii) ∂ + τ = −i [∂̄?, L]; (iv) ∂̄ + τ̄ = i [∂?, L], (107)

where the upper symbol ? stands for the formal adjoint w.r.t. the L2 inner product induced by ω,
L = Lω := ω ∧ · is the Lefschetz operator of multiplication by ω, Λ = Λω := L? and τ := [Λ, ∂ω ∧ ·]
is the torsion operator (of order zero and type (1, 0)) associated with the metric ω.

Again following [Dem97, VII, §.1], recall that the commutation relations (1) immediately induce
via the Jacobi identity the Bochner-Kodaira-Nakano-type identity

∆′′ = ∆′ + [∂, τ ?]− [∂̄, τ̄ ?] (108)

relating the ∂̄-Laplacian ∆′′ = [∂̄, ∂̄?] = ∂̄∂̄? + ∂̄?∂̄ and the ∂-Laplacian ∆′ = [∂, ∂?] = ∂∂? + ∂?∂.
This, in turn, induces the following Bochner-Kodaira-Nakano-type identity (cf. [Dem84]) in which
the first-order terms have been absorbed in the twisted Laplace-type operator ∆′τ := [∂+τ, (∂+τ)?]:

∆′′ = ∆′τ + Tω, (109)

where Tω :=

[
Λ, [Λ, i

2
∂∂̄ω]

]
− [∂ω ∧ ·, (∂ω ∧ ·)?] is a zeroth order operator of type (0, 0) associated

with the torsion of ω. Formula (109) is obtained from (108) via the following identities (cf. [Dem84]
or [Dem97, VII, §.1]) which have an interest of their own:

(i) [L, τ ] = 3 ∂ω ∧ ·, (ii) [Λ, τ ] = −2i τ̄ ?,

(iii) [∂, τ̄ ?] = −[∂, ∂̄?] = [τ, ∂̄?], (iv) − [∂̄, τ̄ ?] = [τ, (∂ + τ)?] + Tω. (110)

Note that (iii) yields, in particular, that ∂ and ∂̄? + τ̄ ? anti-commute, hence by conjugation, ∂̄ and
∂? + τ ? anti-commute, i.e.

[∂, ∂̄? + τ̄ ?] = 0 and [∂̄, ∂? + τ ?] = 0. (111)
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Publ. Math. IHES 35 (1968), 107-126.

[Dem 84] J.-P. Demailly — Sur l’identité de Bochner-Kodaira-Nakano en géométrie hermitienne —
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