
HAL Id: hal-04160738
https://hal.science/hal-04160738

Submitted on 12 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated digital twin generation of manufacturing
systems with complex material flows: graph model

completion
Giovanni Lugaresi, Andrea Matta

To cite this version:
Giovanni Lugaresi, Andrea Matta. Automated digital twin generation of manufacturing systems with
complex material flows: graph model completion. Computers in Industry, In press, 151, pp.103977.
�10.1016/j.compind.2023.103977�. �hal-04160738�

https://hal.science/hal-04160738
https://hal.archives-ouvertes.fr

Automated Digital Twin Generation of Manufacturing Systems

with Complex Material Flows: Graph Model Completion

Giovanni Lugaresi1∗ and Andrea Matta2

1 Laboratoire de Génie Industriel, CentraleSupélec – 3 Rue Joliot Curie, 91190 Gif-sur-Yvette, FRANCE

2 Department of Mechanical Engineering, Politecnico di Milano – Via La Masa 1, 20156 Milano, ITALY

*Corresponding author: giovanni.lugaresi@centralesupelec.fr

Abstract. Industry 4.0 determined the emergence of technologies that enable data-driven produc-

tion planning and control approaches. A digital model can be used to make decisions based on the

current state of a manufacturing system, and its efficacy strictly depends on the capability to cor-

rectly represent the physical counterpart at any time. Automated model generation techniques such

as process mining can significantly accelerate the development of digital twins for manufacturing

systems. However, complex production environments are characterized by the convergence of differ-

ent material and information flows. The corresponding data logs present multiple part identifiers,

resulting in the wrong finding of the system structure with traditional process mining techniques.

This paper describes the problem of discovering manufacturing systems with non-linear material

flows, such as assembly lines. An algorithm is proposed for the proper digital model generation, aided

by the new concept of object-centric process mining. The proposed approach has been applied suc-

cessfully to two test cases and a real manufacturing system. The results show the applicability of

the proposed technique to realistic settings.

Keywords: model generation · discrete event simulation · process mining · assembly · manufac-

turing · digital twin.

1 Introduction

Recently, the complexity of manufacturing environments has been significantly increasing in order to meet

the rising demand for customized products. Meanwhile, production enterprises have been pushed to invest

in new technologies toward higher digitization and automation (Rao et al., 2008). Information systems

are now essential for the successful day-to-day operations of modern organizations. These systems must

be able to meet the new, more demanding requirements and enable the efficient online management of

shop floors. The design of modern decision support tools is based on the coexistence of the real system

with its digital counterpart, often referred to as digital twin (DT) (Negri et al., 2020). With regards to

production planning and control phases, DTs can be based on discrete event simulation models with

the addition of real-time data streams. DTs can help production planners to evaluate optimal solutions

2

for the current system state at any time (Tavakoli et al., 2008). However, if the model is not correctly

representing the system structure and parameters, any conclusion derived from experimental results is

likely to be erroneous and may lead to expensive decisions (Lugaresi and Matta, 2021b).

Meanwhile, Industry 4.0 has contributed to the spreading of new technologies for data handling. Such

equipment can provide up-to-date information on the shop floor status (Tao et al., 2018). The increased

integration of functionalities allows for a closer coupling of previously separated decisional levels (Rossit

and Tohmé, 2018). Faster data transfer speeds allow for quicker decisions to be made based on current

data from the shop floor, leading to better online decisions (Monostori et al., 2016). The availability

of real-time data enables the generation of models from manufacturing system datasets. This way, the

development phase may be significantly shortened, enabling the alignment of digital twins with their real

counterparts (Reinhardt et al., 2019).

Recent research adopted process mining techniques for model generation (van der Aalst, 2016, 2018).

However, the automated development of digital models for more complex manufacturing systems reaches

the limitations of the available methodologies. Indeed, most approaches based on process mining are

limited by the so-called flat data. Namely, a unique part identifier is used to identify material flows,

while in realistic context several different object types may be involved in certain production phases (e.g.,

batches, packages, orders). The relationships among different objects are disregarded by the traditional

methodologies. The result is that certain types of systems cannot be modeled entirely with an automated

approach. Assembly processes are commonly used in production industries, such as automotive and

electronics. At these assembly stations, multiple material flows intersect. Hence, it is typical for new

part identifiers to be given to the newly-assembled parts, either during or after the assembly. Traditional

process mining techniques make use of a single part identifier, which limits their ability to identify logical

flows (e.g., activity precedences). As a consequence, production systems with non-linear material flows

are discovered as a collection of separate, independent models.

The goal of this work is to provide automated support in the development of discrete event simulation

models for complex manufacturing systems. The contribution of the paper is threefold: (1) it describes the

problem of discovering manufacturing systems with non-linear material flows, (2) it introduces a method

based on object-centric process mining to generate a complete graph model of a manufacturing system

starting from available datasets, and (3) it introduces quantitative indicators to evaluate the fitness of

the generated graph models. The problem of automated model generation is strictly linked to the quality

of input data. Indeed, several issues arise in terms of data availability, data cleaning, and preparation

for automatic processing. These issues are not within the scope of this paper, and in the remainder it is

assumed that complete and clean datasets are available.

The rest of the manuscript is structured as follows. Section 2 introduces the related works on the

automated simulation model generation in manufacturing systems, with a focus on the assembly phases.

Section 3 describes the characteristics of the problem for the discovery and model generation, pointing

3

out the information that is available for the discovery and the criteria to guide the mining. Section 4

outlines the proposed method to generate a graph model. Section 5 proposes a solution procedure. Section

6 presents the experiments that have been used to investigate the applicability of the approach and the

numerical results. Section 7 contains the authors’ final remarks.

2 Related Work

This section lists the significant contributions for generating simulation models of complex manufacturing

systems, it outlines how object-centric process mining can support the generation of models for more

complex systems, and it introduces the research gap.

2.1 Automated Generation of Simulation Models for Manufacturing Applications

Process mining is a recent research field that includes a plethora of techniques to discover, monitor,

and improve real processes by extracting knowledge from data logs available from modern information

systems. It is mainly composed by three activities (van der Aalst, 2016): system discovery is finding the

main logical relationships between activities, conformance checking refers to the collection of approaches

that find deviations between the discovered model and a standard one, and enhancement that is linked to

the idea of improving some model properties of interest. Process mining can detect not only parameters

and causal relationships, but also logical relationships such as activity precedences. This allows to infer

the topological structure of a manufacturing system and to generate a simulation model (Rozinat et al.,

2009). Several works in the field of process mining have used it to develop models that can predict the

performance of a manufacturing system (i.e. simulation). Rozinat et al. (2009) were the first to propose

this approach. A novel methodology for identifying dispatching rules in a manufacturing system has been

proposed by Bergmann et al. (2015). Milde and Reinhart (2019) conceived a technique for identifying

the material flow, calculating the parameters, and recognizing the control policies from manufacturing

systems datasets. Lugaresi and Matta (2021b) devised a method for constructing simulation models with

an appropriate level of detail. Process mining has also been used to discover specific parameters of a

manufacturing system, such as interarrival times (Martin et al., 2015), determinants of process delays

(Ferreira and Vasilyev, 2015), resource availabilities (Martin et al., 2016), batching operations (Martin

et al., 2017), and production system structures (Denno et al., 2018).

2.2 Discovery of Systems with Non-linear Material Flows

The available model generation methodologies suffer limitations in the discovery of complex manufactur-

ing systems. Indeed, most approaches based on process mining are relying on the assumption of a single

part identifier in the datasets, while in most realistic environments multiple object types may be involved

4

in a production step (e.g., packaging, batching, assembly). Assembly processes are very common in pro-

duction enterprises, for instance in the automotive or consumer electronics industries. In the literature,

few studies have addressed the application of digital model generation techniques to assembly operations.

In order to select significant contributions with which to relate, papers have been collected from Scopus

database. The papers are the results from the following query: (”model generation” OR ”process mining”

) AND (manufactur* OR produc*) AND (assembl* OR aggregat* OR merg* OR join*). No time-based

limitations have been applied, and only papers in the English language have been considered. The query

has been executed on 2023-02-06 and resulted in 163 papers. From a title- and abstract-based screening,

17 papers have been selected based on the following exclusion criteria: (1) the paper does not regard the

assembly of any type of materials, (2) the paper talks about non-engineering topics, (3) the paper does

not mention any type of data-based model generation or analysis. Table 1 lists the selected contributions,

which are described in the following.

van der Aalst (2021) introduced the concept of federated process mining and presented a formal frame-

work for using process mining in the analysis of cross-organizational event logs. The author introduces the

concept of Merging Abstractions, which consists in the idea of merging different process mining results

into a single representation. The paper also highlights the fact that in case of multiple object types, the

resulting abstraction is a set of separate graph models. Brockhoff et al. (2022) examined the integration

of the structural information of multi-level Bills of Materials into a top-down operational process anal-

ysis framework. The goal is to automatically discover Bills of Materials to aid the performance analysis

of a complex manufacturing system. The effectiveness of the proposed approach has been tested using

data from a real industrial printer assembly factory. Xu et al. (2016) proposed an approach to combine

different process event logs using genetic algorithm, effectively automating the process of flattening data.

The approach is promising in finding relations within different cases.

Petschnigg et al. (2020) introduced a systematic approach for automatically creating a factory simula-

tion model from a raw point cloud obtained from laser scanning and supervised by a deep-learning-based

object segmentation module. The approach has been demonstrated using an automotive assembly plant.

The material flow dynamics have not been investigated. Sjarov et al. investigate the modeling phases of

a digital twin of production resources. The modeling approach is demonstrated using an assembly cell in

a laboratory. The main purpose of the digital twin is the visualization of process performance online. Ng

et al. introduced a toolset that integrates model abstraction, automatic model generation, and simulation-

based optimization within an internet platform. The toolset features a unique model aggregation and

generation technique, which combined with optimization engines can accelerate the time-intensive model

building, experimentation, and optimization processes to aid decision-making. The generation method

assumes assembly points have already been identified. Rashid and Louis (2020) proposed a framework

that combined RFID tracking and process mining techniques to create a digital model of an assembly

line and detect any deviations from the predefined plan. Yang et al. presented a general process mining

5

approach that addresses the diversity issue by classifying cases into sub-logs, which are then processed

by multiple process miners to generate separate sets of process models. A genetic algorithm is used to

combine the process models into a comprehensive process model, balancing four quality dimensions. The

approach has been tested on synthetic and real-life logs from a telecommunications company. Lugaresi

and Matta (2021a) described the problem of discovery of manufacturing systems with assembly phases.

The authors have proposed an algorithm to automatically generate a graph model including non-linear

material flows. A flow shop with synthetic data has been used as case study. The approach is limited to

the discovery of assembly steps that correspond to starting points of the respective graph models (i.e.,

no predecessor activities).

Krenczyk et al. (2017) proposed a heuristics and simulation-based approach for balancing mixed and

multi-model assembly lines. The proposed approach consists in a combination of data-driven automatic

simulation model generation and heuristic line balancing methods. The implementation is demonstrated

using FlexSim simulation software within a practical example. Limère et al. (2013) proposed a mixed

integer linear programming that provides an optimal assignment of individual parts to either kitting or

bulk feeding, with the goal of minimizing in-plant logistics costs. Denno et al. (2018) used process mining

to optimize the production schedule for an automotive under-body assembly system.

Dong et al. (2019) presented a method that integrates process mining and complex network theory

to analyze the relationship between resource nodes and process nodes in a manufacturing workflow.

The method combines information about processes and resources to identify critical nodes and improve

workflow analysis. Knoch et al. (2020) proposed a method to derive process traces from videos that depict

assembly procedures recorded from above. The method is based on an algorithm to generate trajectories

of a operator hand movements by using input from a neural network-based real-time object detector. The

trajectories are automatically classified and linked to work steps through hierarchical clustering of similar

behavior patterns using dynamic time warping. Knoll et al. (2019a) developed a methodology to apply

process mining to internal logistics for a mixed-model assembly line, which included multi-dimensional

process mining to automate and improve the Value Stream Mapping methodology, and to identify areas

of the plant where the most waste is produced. Knoll et al. (2019b) developed an internal logistic ontology

to facilitate the pre-processing of manufacturing event logs. The authors highlight the multiple-objects

nature of shop floor data given by the natural interrelation of several components within production

phases. Similarly, Schuh et al. (2020) created a complete data model to enable the application of process

mining in end-to-end order processing in production enterprises.

The discovery of multiple-object phases such as assembly has not received enough attention from the

literature, although being among the most common production steps. Indeed, with the sole exeption of

Lugaresi and Matta (2021a), the aforementioned papers do not specifically focus on model generation

including the modeling of assembly phases. This shortfall may be due to the problem of flattening data

(van der Aalst, 2019), which is particularly acute for assembly processes, in which different material flows

6

T
a
b
le

1
:
F
e
a
tu

re
s
o
f
th

is
p
a
p
e
r
w
ith

re
sp

e
c
t
to

sig
n
ifi
c
a
n
t
c
o
n
trib

u
tio

n
s
in

th
e
lite

ra
tu

re
.

R
e
fe
re

n
c
e

A
p
p
lic

a
tio

n
F
ie
ld

S
c
o
p
e

E
v
e
n
t
L
o
g

B
lo
ck

in
g
C
o
n
d
itio

n
s
R
e
a
l
C
a
se

S
tu

d
y
F
itn

e
ss

T
e
stin

g

N
g
et

a
l.

M
a
n
u
fa
ctu

rin
g

M
o
d
el

G
en

era
tio

n
-

-
-

-

L
im

ère
et

a
l.
(2
0
1
3
)

M
a
n
u
fa
ctu

rin
g

A
ssem

b
ly

K
ittin

g
O
p
tim

iza
tio

n
-

-
-

-

Y
a
n
g
et

a
l.

T
eleco

m
m
u
n
ica

tio
n
s

M
o
d
el

G
en

era
tio

n
O
C
P
M

-
•

-

K
ren

czy
k
et

a
l.
(2
0
1
7
)

M
a
n
u
fa
ctu

rin
g

A
ssem

b
ly

L
in
e
B
a
la
n
cin

g
T
ra
d
itio

n
a
l

-
-

-

D
en

n
o
et

a
l.
(2
0
1
8
)

M
a
n
u
fa
ctu

rin
g

S
tru

ctu
re

D
iscov

ery
T
ra
d
itio

n
a
l

-
-

-

X
u
et

a
l.
(2
0
1
6
)

A
g
n
o
stic

A
u
to
m
a
ted

D
a
ta

L
o
g
g
in
g

U
n
stru

ctu
red

-
-

-

K
n
o
ll
et

a
l.
(2
0
1
9
a
)

M
a
n
u
fa
ctu

rin
g

V
a
lu
e
S
trea

m
M
a
p
p
in
g

O
C
P
M

-
-

-

D
o
n
g
et

a
l.
(2
0
1
9
)

M
a
n
u
fa
ctu

rin
g

R
eso

u
rce

M
o
d
elin

g
T
ra
d
itio

n
a
l

-
-

-

K
n
o
ll
et

a
l.
(2
0
1
9
b
)

M
a
n
u
fa
ctu

rin
g

D
a
ta

M
o
d
elin

g
-

-
-

-

K
n
o
ch

et
a
l.
(2
0
2
0
)

M
a
n
u
fa
ctu

rin
g

S
tru

ctu
re

D
iscov

ery
U
n
stru

ctu
red

-
•

-

R
a
sh
id

a
n
d
L
o
u
is

(2
0
2
0
)

C
o
n
stru

ctio
n

S
tru

ctu
re

D
iscov

ery
T
ra
d
itio

n
a
l

-
-

-

P
etsch

n
ig
g
et

a
l.
(2
0
2
0
)

M
a
n
u
fa
ctu

rin
g

M
o
d
el

G
en

era
tio

n
U
n
stru

ctu
red

-
•

-

S
ch
u
h
et

a
l.
(2
0
2
0
)

M
a
n
u
fa
ctu

rin
g

D
a
ta

M
o
d
elin

g
U
n
stru

ctu
red

-
-

-

L
u
g
a
resi

a
n
d
M
a
tta

(2
0
2
1
a
)

M
a
n
u
fa
ctu

rin
g

M
o
d
el

G
en

era
tio

n
O
C
P
M

•
-

-

va
n
d
er

A
a
lst

(2
0
2
1
)

A
g
n
o
stic

M
erg

in
g
G
ra
p
h
M
o
d
els

T
ra
d
itio

n
a
l

-
-

-

S
ja
rov

et
a
l.

M
a
n
u
fa
ctu

rin
g

D
ig
ita

l
T
w
in

M
o
d
elin

g
-

-
•

-

B
ro
ck
h
o
ff
et

a
l.
(2
0
2
2
)

M
a
n
u
fa
ctu

rin
g

D
iscov

ery
o
f
B
ills

o
f
M
a
teria

ls
T
ra
d
itio

n
a
l

-
•

-

th
is

pa
per

M
a
n
u
fa
ctu

rin
g

M
o
d
el

G
en

era
tio

n
O
C
P
M

•
•

•

7

Fig. 1: Entity relationship diagrams between manufacturing activities and parts identifiers: a) traditional process mining, b) object-

centric process mining.

converge toward assembly stations where the part identifiers are likely to change. For instance, in the

automotive market it is common to assign an identifier to a car frame, and other dedicated IDs to its

sub-components, such as the doors. When the car is assembled, it may have either a new identifier or the

same ID of one of the sub-components. All events in the production system will refer to the assembled

product, which is linked to multiple sub-components IDs. This means that there are multiple ways to

flatten the data, leading to different views that are not connected. As a result, it becomes difficult to

obtain an overview of the real system structure from a discovery approach, since the event data must be

extracted multiple times for the each requested view.

2.3 Research Gap

van der Aalst (2019) discussed the discrepancy between actual event data and the flattened event logs used

by traditional process mining techniques. To address this, the author proposed a new mining approach

called Object-Centric Process Mining (OCPM) and a specific logging format. The object-centric event

log is a collection of events related to objects of different types (e.g., tools, packages, shipments). The

paper also presents notations and a baseline discovery approach to help facilitate OCPM comprehension

and usage. Figure 1 graphically explains the difference between the two mining views. In traditional

mining approaches, only a single part identifier is allowed, while OCPM allows to use several, thereby

representing objects that can be linked to other items with many-to-many relationships. Hence, OCPM

can be applied effectively to describe production systems with assembly operations.

An OCPM representation of a production system dataset allows to represent the relations among

different object types that flow in a manufacturing system. However, the sole recognition of the objects

is not sufficient for identifying the specific locations where they interact one another. With reference

to assembly operations, OCPM can recognise and represent the relationships among products and their

components, while it cannot associate the assembly locations. As a consequence, the positions where

assembly operations occur can only be assumed or discarded from the digital model, unless further man-

ual inspections and modifications are affordable. The consequent limitation is evident in the generated

8

model. The simulation model must take into account the assembly phase in order to accurately depict

the system’s behavior. This means that a specific condition must be present in the model, indicating that

all required materials must be available at the assembly points for the assembly phase to be successful.

A model generation technique that neglects this condition will produce a biased estimation of the real

system performance1. For example, Figure 2 graphically shows two different modeling options using Petri

Nets (Peterson, 1977). The transitions 1 and 2 indicate the last operations that must be done on the

sub-components, while transition 3 expresses the assembly step. In Figure 2a, the assembly operation

represented by transition 3 may be executed even if only one of the upstream steps has been completed.

Differently, in Figure 2b, the assembly step is enabled only by the availability of all necessary compo-

nents. It is worth to notice that assembly operations are not the only blocking conditions that may be

discarded from a model representation. For instance, the operations in a manufacturing system may be

linked to managerial processes that control production based on specific indicators or rules. Also, kanban

manufacturing is notably dependent on the synergy between material and information flows.

Fig. 2: Example of assembly process modeled by a portion of a Petri Net: a) improper modeling results in a non-blocking condition,

b) the blocking condition representing assembly steps is properly modeled: all the previous production steps must be completed

before assembly. The figure has been taken from Lugaresi and Matta (2021a).

Table 1 shows that most available approaches do not explicitly consider blocking conditions such as

the one in Figure 2. The sole work that does is Lugaresi and Matta (2021a), whilst relying on strong

assumptions on the graph models. Differently from the latter and previous approaches, this paper aims to

formalize and generalize the system discovery and model generation phases. The main novelty elements of

this work are the following: (1) it proposes a generalized procedure for the generation of complete graph

models of systems with non-linear material flows, with no assumptions on the assembly phase locations;

(2) it introduces indicators to evaluate the fitness of the generated solutions. Also, the proposed approach

in this work is applied to a real manufacturing system case for testing in realistic industrial conditions.

1 Evidence of the biased estimation of the real system performance is provided in Table 8.

9

3 Problem Description

In this section is described the problem of discovering manufacturing systems with non-linear material

flows. Without loss of generality, this work takes as reference the material flows that determine systems

with assembly operations.

Let us consider as illustrative example the manufacturing system depicted in Figure 3. The system

consists of stations 1 and 2 that produce components of type A, while stations 3 and 4 are dedicated to

components of type B. A conveyour brings parts of type A and B to an assembly station 5. The parts are

assembled into products of type C on station 5 and sent to station 6 for packaging. Each item is traceable

through a unique identifier (e.g., bar code, quick response code). Each station is equipped with sensors

and contributes to the creation of an event log. Event logs are datasets that include data about items

going through the system, such as serial numbers associated with the items and the time stamps of their

activities, as well as various details such as resource identifiers and results of quality controls. Process

mining techniques typically assume to start from an event log with at least three information types:

the activity identifier n ∈ N, the work-piece identifier i ∈ I, and the timestamps tS(n, i) and tF (n, i)

indicating the moment at which the n-th activity has been started and finished by the i-th work-piece,

respectively. It is reasonable to assume that such data types are available and can be gathered from

modern manufacturing systems.

3.1 Object-centric Event Logs

An OCPM-compliant representation of a production system dataset is feasible, provided the availability

of relational tables connecting the components to the assembled products, which are necessary to define

the object relationships. In production environments, such information is typically retrieved from the Bill

of Materials (BOM). The BOM includes the component-product relationships among all part types. For

instance, the BOM of the products produced in the system in Figure 3 can be written as {C : [A,B]}.

Table 2 shows an extract of the object-centric log in which components of type A and B are assembled

into a part type D. The components are coded 1 and 2, respectively, while the assembled part is coded

with 3. In the object-centric representation, the part identifier column has been substituted by two object

columns: components, and assembled products.

Note on Bill of Materials Representations. The BOMs are tables widely used and commonly

available within tools such as Product Life-Cycle Management or Enterprise Resource Planning. A BOM

can be represented by a tree model, in which each part type is represented by a node, and it is connected

with an arc to the nodes of its component part types. Two main cases are introduced and depicted in

Figure 4:

10

Fig. 3: Illustrative example – a) Logical schema of a flow shop manufacturing system with assembly operations; b) Graph model of

the flow shop system.

Table 2: Example of object-centric event log produced by the system in Figure 3.

Activities Involved Objects

Event Time-stamp Name Type Components Assembly

1 0.00 1 start 1 -

2 0.00 3 start 2 -

3 0.35 1 finish 1 -

4 0.35 2 start 1 -

5 0.45 3 finish 2 -

6 0.45 4 start 2 -

7 0.51 4 finish 2 -

8 0.62 2 finish 1 -

9 0.62 5 start {1,2} 3

10 0.76 5 finish {1,2} 3

11 0.76 6 start {1,2} 3

12 0.88 6 finish {1,2} 3

11

Fig. 4: Bill of Materials representations: a) type 1: full traceability of product types, b) type 2: partial part type traceability.

– BOM Type 1: Full part type traceability. In the first case, each node of the BOM identifies a distinct

part. Hence, each assembly step identifies a new part type. In Figure 4a, part types A and B are

assembled in a component of type C, which is then used together with part type D for the production

of the final product, E.

– BOM Type 2: Partial part type traceability. In the second case, multiple assembly operations may be

performed on a part without changing its part type. Such practice is typical for smaller components

or consumables. As example in Figure 4b, part types A and B are assembled in a work-in-progress

component which is already tagged the same way as the final product, i.e. part type E. A further

assembly stage simply adds the sub-component of type D.

It is worth to notice that the second BOM representation is less formally valid. However, in the industrial

practice it often happens to encounter such situations. This can happen for several reasons, and is easy

to be observed among Small and Medium Enterprises. The method proposed in this paper is compatible

with both types of BOM representations as support to define the objects relationships in an event log.

3.2 Digital Model Generation

A simulation model structure can be represented by the collection of relational properties (i.e., precedence

relationships) in a directed graph composed by nodes that indicate the activities and arcs that represent

the material flows. A graph model is defined as a tuple Ω = (N,E) where N is the set of nodes and

E ⊆ N×N is the set of arcs. For example, the graph model of the system in Figure 3 is defined by the set

of nodes N = {1, 2, 3, 4, 5, 6} and the set of arcs E = {(1, 2), (3, 4), (2, 5), (4, 5), (5, 6)}. For convenience,

a matrix Γ = {γij} can be defined, where each element γij is 1 if there is an arc between nodes i and

j, 0 otherwise. The model generation procedure from (Lugaresi and Matta, 2021b) produces the graph

model Ω0 = (N = {1, 2, 3, 4, 5, 6},E = {(1, 2), (3, 4), (5, 6)}). The result is a model with sectors treated as

separate graph models. The graph model is not complete. The same result is obtained with traditional

process mining software tools (e.g., Disco, ProM). This is because the model generation technique is based

on the assumption of a single part identifier. Differently, assembled parts and components have distinct

12

identifiers, resulting in the omission of assembly relationships. Hence, after the system discovery step has

been completed, the graph model must be enriched with elements accounting for assembly operations.

The problem consists in the addition of arcs to the graph model obtained by traditional mining steps,

Ω0. In the following, such addition is called Graph Model Completion. Any node in the graph model Ω0

can be an assembly node, and each added arc is dedicated to a product type that is produced in the

system. Let us define zijp as the boolean variable that defines if the directed arc (i, j) is added to the

graph model for representing the assembly of product type p. The Graph Model Completion corresponds

with the addition of elements to the Γ matrix. Namely, the complete graph model can be defined by a

Γ ′ matrix, in which each element γ′
ij is defined as follows:

γ′
ij = I(γij +

∑
p

zijp) (1)

where I(x) is 1 if x > 0, 0 otherwise.

For instance, referring to the illustrative example of Figure 3, γ1,2 = γ3,4 = γ5,6 = 1, and z2,5,C =

z4,5,C = 1. Hence, the Γ ′ matrix will include the additional elements γ′
2,5 = γ′

4,5 = 1. Thanks to such

addition, assembly nodes (i.e., n = 5) can be recognized as such, and the correct modelling of the blocking

conditions is enabled.

Figure 5 summarizes the main steps of the model generation framework. The goal is to generate a

complete digital model of a manufacturing system. The information system of a production environment

is exploited to gather information, namely an event-log, the BOM, and additional information such as

work-force availability and maintenance policies. The event log is exploited in a graph model generation

procedure as in (Lugaresi and Matta, 2021b). Then, the BOM is exploited to complete the graph model

with the assembly-related arcs. Further adjustments can be done to model parameters taking into account

additional information (e.g., statistical distribution fitting, maintenance policies, availability models). In-

deed, since a digital twin should follow the evolution of the system along its life cycle, it is necessary to

keep updating the parameters to guarantee the physical-digital alignment (e.g., buffer sizes, processing

time distributions). The adjustments can occur in several ways: among others, a manual or automated

adjustment of a known parameter (e.g., spindle speed), an estimation based on an available dataset (i.e.,

distribution fitting), or an estimation based on expert knowledge. Also, the graph model may be tuned

toward the users’ specifications (Lugaresi and Matta, 2021b). Finally, the graph model can be converted

into a simulation model through a specific formalism such as Petri Nets (Peterson, 1977) or Event Rela-

tionship Graphs (Schruben, 1983). Essentially, model conversion means translating the graph models into

simulation code (Peñarroya et al., 2006). Each element in the model finds a correspondent in a executable

language (e.g., a node becomes a station object instance). Further information on model conversion is

available in related literature (Passarin and Verucchi, 2022). Model tuning, parameter estimation, and

13

model conversion are out of the scope of this paper. The remainder of this paper concentrates on the first

two steps of the model generation framework, with a focus on graph model completion.

Fig. 5: General overview of the model generation approach and the scope of this paper (LOG: Event Log, BOM: Bill of Materials,

DB: Additional Databases).

4 Proposed Model Generation Method

The first step of a model generation procedure consist in creating a graph model from the available event

log. Then, in order to take into account for non-linear material flows, the graph model is enriched with

the arcs that represent multiple objects relationships. Once a graph model is created, nodes and arcs can

be enriched with properties of the system. For instance, the finite capacity of the conveyor between two

generic activities i and j can be indicated as a property of the arc (i, j).

4.1 Generation of a Graph Model

Model generation links an event log with its corresponding simulation model. This work takes as reference

the model generation procedure that has been developed in (Lugaresi and Matta, 2021b). Firstly, a set

of unique identifiers of activities is created and indicated by N. The specific route that each part followed

in the system is called trace and can be represented by a series of activity identifiers. Each i-th part has

its corresponding trace θi = {n(1), n(2), . . . , n(Ni)}, where Ni is the number of the activities performed by

the part. The traces can also be used to fetch precedence relationships between activities. In summary, a

node is created when a specific activity has been performed by at least one object in the system, and an

arc indicates that at least one trace shows an activity has followed another. Namely, arc (m,n) exists if

∃i ∈ I,m, n ∈ N|tF (n, i) < tS(m, i).

14

4.2 Non-linear Material Flows

The problem described in section 3 can be expressed as a matching of components and assembled parts.

To this end, the temporal proximity of operations can be exploited as indicator of assembly locations.

The general idea is that the added arcs have to be such that the temporal difference between the produc-

tion of components and assembled products is minimized. Such assumption is suitable for a significant

subset of manufacturing systems. For instance, flow lines in which relevant components are produced in a

nearby machining area, or group technology manufacturing, in which a set of production cells coordinate

to produce the work-in-progress that will converge downstream. A typical example is the automotive

sector: doors are usually formed and welded in the same plant as the chassis, and converge to the main

assembly line with very limited time differences (Uysal et al.). Meanwhile, other production systems may

not be suitable for a time-proximity-based approach. This is the case for systems relying on batch pro-

duction (e.g., foundry, moulding) or with several out-sourced activities. In such systems, the completion

timestamps of components will be equal for all the components of the batch.

In order to base the Graph Completion Problem (GCP) on the temporal distance between each

element production time, it is essential to maintain both parts and sub-components in the mathematical

representation. Multiple combinations of parts and sub-components instances are possible, hence an

assignment is necessary before considering the temporal distance. The next section elaborates on the

mathematical formulation of the problem.

4.3 Mathematical Formulation

The GCP can be expressed through a mathematical programming formulation. In the following, dca is

defined as the time difference between the instant in which the c-th component is produced and the

moment it is assembled with the a-th product. The mean temporal proximity can be expressed by the

Mean Square Error (MSE) which is used as objective function of the problem. C is defined as the set of

components, A the set of assembled products, S the set of stations (i.e. the nodes of the original graph

model), and P the set of part types.

Assumptions. It is assumed that a production system is supplied with data collection devices and it is

possible to assemble an event log. Also, it is assumed that the log is clean from incomplete traces, and each

trace belongs to a part that is either a component or an assembled product. Further, the BOM-related

cardinalities are respected: for instance, if one product requires two components, then the corresponding

traces must be in the log. Finally, it is considered the case in which no batching is present along the

production activities, and that products and components are processed in sequential order, i.e. the initial

sequence is identical to the final sequence.

Parameters. The following parameters can be derived by the joint pre-processing of event log and BOM:

15

– τc is the time instant at which component c has been produced: from the log, τc = maxn∈N tF (n, c)∀c ∈

C.

– tsa is the time instant at which assembled product a is produced on station s, 0 otherwise. Namely,

tsa = tS(s, a) if ∃ tS(s, a)∀a ∈ A, s ∈ S.

– ηs is 1 if the s-th station is compatible with assembly, 0 otherwise. A station is compatible for assembly

if it produces at least one part type from sub-components.

– ρcp is equal to 1 if the c-th component is of part type p, 0 otherwise.

– Bap is an integer value representing the number of components of type p required for the fabrication

of the assembled part a.

– M is a very large number.

Decision Variables. The decision variables of the problem are as follows:

– xcas is 1 if the c-th component is assigned to assembled part a on station s, 0 otherwise.

– dca is the temporal distance between the production of component c and the a-th assembled product.

Graph Completion Problem (GCP):

min y (2)

subject to:

y ≥
∑

a

∑
c d

2
ca

|C||A|
(3)

dca ≥ tsa − τc − (1− xcas)M ∀c, a, s (4)

dca ≤ tsa − τc + (1− xcas)M ∀c, a, s (5)∑
a

∑
s

xcas ≤ 1 ∀c (6)

∑
c

∑
s

xcasρcp = Bap ∀a, p (7)

∑
c

∑
a

xcas ≤ M ηs ∀s (8)

∑
c

xcas ≤ M tsa ∀a, s (9)

dca ∈ R;xcas ∈ {0, 1}. (10)

The objective function (2) aims at the minimization of the Mean Square Error y, defined by the temporal

distance between the components and assembled products, as stated in constraint (3). Constraints (4) and

(5) indicate that the temporal distance dca is to be accounted only for the component-assembly pairs that

are selected. The constraints are activated only for the component-product combination on the selected

16

station, which is indicated by xcas = 1. Constraints (6) state that each component can be assigned to

either one assembled product, on maximum one station. Constraints (7) state that each assembled product

has to be assigned to the number of components corresponding to the BOM requirements. Constraints

(8) guarantee that only stations compatible with assembly operations are selected. Constraints (9) ensure

that assembly locations are identified in accordance to where the production is recorded in the log, hence

that an assembled product is not assigned to unvisited stations. Constraints (10) indicate the nature of

the decision variables. In total, GCP counts |C||A|(1+|S|) variables and 1+|C|+2|A|+|S|(|C||A|+|A|+1)

constraints.

Retrieving the Graph Model. Once GCP is solved, the solution in terms of graph model can be retrieved

with a post-processing step. Indeed, the corrections to the model defined by the variable z can be derived

with the simple procedure listed in Algorithm 3 described in Appendix C.

5 Solution Procedure

This section proposes a solution procedure for the problem formulated in section 4.3. It is assumed that

the graph model generation method described in (Lugaresi and Matta, 2021b) is applied once at the

beginning of the procedure. The result is a graph model Ω. Given that the size of the problem depends

on |C|, |S|, and |A|, which are generally not large in a production system, the proposed solution method

is based on the complete enumeration of feasible assembly stations in the existing graph model. Then,

the selection of the specific assembly locations is done following the idea of temporal proximity. Figure 7

summarizes the procedure steps.

5.1 Step 1: Define the BOM Levels.

It is assumed to analyze a subset of nodes and arcs such that one level of BOM is explored at a time.

Indeed, a generic BOM B can be separated in a collection of levels, B = {B1, . . . , Bi}. For instance, the

BOM of the products produced in the system of Figure 10 has two levels: the first one is B1 = {D : [C,D]},

while the second is B2 = {D : [A,B]}. Hence, the problem is separated in two parts, so that only one

level of BOM is present in each part. For each level, the GCP is solved. Referring to Figure 10, the GCP

is firstly solved for the system composed of stations s ∈ {3, 4, 5}. Then, the system composed by stations

s ∈ {1, 2, 3, 5} is analyzed. In summary, Step 1 is dedicated to the identification and separation of the

BOM levels. The remaining steps take as input one BOM level at a time, and one GCP is solved for each

level.

5.2 Step 2: Define the Set of Candidate Stations.

In this step, a subset of stations Sp ⊆ S is identified. Each node in the graph model Ω is a station s ∈ S.

By exploiting the information from the BOM, it is possible to identify the stations that produce parts

17

with sub-components. All such stations are candidate assembly locations. Let Bi be the i-th level of BOM

selected at Step 1. Each station s ∈ Sp is a candidate station if it has produced an assembly product

of type p included in Bi, namely ∃ tS(s, a)|pa ∈ Bi. Figure 6 represents the logic of this step, which is

performed by Algorithm 1 in Appendix B (complexity: O(n)).

Fig. 6: Selection of candidate stations (step 2).

5.3 Step 3: Define the Set of Combinations.

In this step, the possible combinations of assembly stations are identified. Starting from the results of

model generation, the obtained graph model can be divided in a collection of G disjunct subgraphs

Ω = {Ω1, . . . , ΩG}. Since different product types may be produced on different stations, there is no

guarantee that they will be produced on nodes from the same disjunct graph model. Further, for each

product type, only one node is a candidate assembly station. As a result, multiple combinations of

candidate stations are identified. Let us define V a collection of tuples. Each tuple corresponds to a

possible combination of assembly stations for the considered part types. For instance, referring to the

system in Figure 3, the subcomponents of product type C can either be assembled on station 5 or station

6 Hence, V = {(5), (6)}. Step 3 is performed by Algorithm 2 in Appendix B (complexity: O(n)).

5.4 Step 4: Assignment Sub-Problem.

The remaining part of the problem regards the assignment of the components to the corresponding as-

semblies. Time proximity is used as indicator of the best matchings. Notice that this problem corresponds

18

to a job assignment problem (Pentico, 2007), in which the cost matrix is determined by the square time

differences between the production time of components and assemblies. Namely, for each combination

v ∈ V, δ(v)ca is defined as the difference of the timestamps of the a-th assembled product and the c-th

component:

δ(v)ca = (tsva − τc)
2 ∀c, a (11)

Differently from dca, which depends on the assignment given by xcas, δ
(v)
ca considers the temporal distance

with the product assembled on the station from the specific combination v. Hence, in step 4, the following

problem is solved for each combination of assembly stations v:

Component-Assembly Assignment Problem (CAAP):

min y (12)

subject to:

y ≥
∑

a

∑
c(δ

(v)
ca)2x

(v)
casv

|C||A|
(13)

constraints (6), (7), (10).

The objective function (12) represents the minimization of the time proximity between the components

and assemblies through the Mean Square Error y, which is defined in constraint (13). The remaining

constraints are (6), (7), and (10). The CAAP is a sub-problem of the GCP in which the stations’

assignments have been established.

5.5 Step 5: Identify and Evaluate the Solution.

Finally, among the |V| combinations, the algorithm selects the one that guarantees the lowest MSE,

indicated by v∗. The corresponding solution of the assignment problem can be used to retrieve the GCP

solution. Starting from the selected solution, the corresponding nodes and arcs can be added to the

graph model. The procedure to complete the graph model starting from a GCP solution x∗
cas is listed in

Algorithm 3 in Appendix C (complexity: O(n)).

5.5.1 Assignment Scores Once a solution is obtained by the procedure, it is of interest to understand

how the solution performs with respect to the underlying system. The algorithm provides information on

both the component-product assignment and the location of the assembly operation. These assignments

may be subject to deviations, due to several reasons: the assignments are driven by time differences and

small deviations may cause a different assignment from the real one (e.g., due to a data collection error),

the components registered in the log may be sent to other sectors of the system that are not traced, the

19

Fig. 7: Proposed procedure for solving the Graph Completion Problem.

real production order may not be sequential for all the components. Hence, it is important to evaluate

the capability to provide good assignments and to spot the correct assembly locations. Let us define x∗
cas

as the solution of the algorithm, and wcas the matrix representing the correct assignments in the system.

The assignment score α is an indicator of the goodness of the assignments on the a-th assembled

product, as follows:

αa =

∑
c(
∑

s |x∗
cas − wcas|)
|C|

. (14)

For each assembled product, αa assumes values in the interval [0, 1], with 1 representing the completely

correct assignments. Additionally, ᾱ ∈ [0, 1] is defined as the average assignment score:

ᾱ =

∑
a αa

|A|
. (15)

λc is the location assignment indicator on the c-th assembled product, measuring how well the method

has assigned components on the assembly stations:

λc = 1−
∑
s

|
∑

a x
∗
cas − wcas|
|A||S|

. (16)

For each component, λc assumes values in the interval [0, 1], with 1 representing the completely correct

location assignment. Similarly to α, λ̄ ∈ [0, 1] is defined as the average location score:

λ̄ =

∑
c λc

|C|
. (17)

Also the global behavior of the obtained solution can be assessed. This can be done with a repro-

ducibility score, defined as:

ϕ =

∑
c

∑
a

∑
s |x∗

cas − wcas|
|C||A||S|

. (18)

20

The score ϕ assumes values in the interval [0, 1], with 1 representing a completely correct assignment,

both in terms of assembly station and component-assembly assignment.

6 Numerical Experiments

The solution procedure described in section 5 has been applied in three test cases. Each test case has

the goal to test a different aspect of the GCP. Table 3 summarizes the characteristics of the experiments

that are listed as follows:

– Test Case 1. A multi-stage production system with five part types, namely two assembled products

and three components (single-level BOM of type 1). The scope of this experiment is to verify that

the proposed approach can correctly be executed in a system with multiple assembled parts.

– Test Case 2. A multi-stage production system with four part types, with a multi-level BOM of type

2. The scope is to show the behavior of the proposed method with respect to a multi stage production

system, i.e. in which the BOM is composed by multiple levels.

– Test Case 3. A real production system with assembly operations within the manufacturing of tier-1

automotive components (single-level BOM of type 1). The scope of this test is twofold: (1) to verify

the applicability of the proposed approach in a realistic scenario, and (2) the quantitative observation

of the performance obtained with a complete model, to understand the difference with a model

generated with the standard approach.

For all the experiments, the solution procedure (section 5) has been implemented in ILOG CPLEX

v12.6 and it is solved using a PC equipped with an i7-6600U CPU at 2.6 GHz and 16 GB memory.

Table 3: Characteristics of the test cases selected for the experiments.

Case BOM Levels Product Types Components Number Processing Time Distribution

1 Single Multiple 2000 Exponential

2 Multiple Single 3000 Exponential

3 Single Single 3000 Fitted from data

In the following are described the test cases, the experimental settings, and the numerical results.

6.1 Test Case 1: Flow Shop

The first test case is a flow shop which produces two final product types, D and E. The system is depicted

in Figure 8.

21

Fig. 8: Test Case 1 – Flow shop manufacturing system. Squares represent stations and triangles represent inter-operational buffers.

Stations 2 and 4 produce sub-components, while stations 5 and 7 assemble them into products of type D and E, respectively.

6.1.1 Production System. The system is composed by six stations. Stations 1 and 2 produce sub-

components of type A, B, and C. Station 3 assembles parts of type A and B into products of type D, while

station 4 assembles B and C into E. Each station s has a downstream buffer of size Hs and the buffer

capacities are equal for all stations: Hs = 10∀s, except from stations 5 and 6 which produce products

D and E as soon as the needed sub-components are available in the corresponding upstream buffers.

Both inter-arrival times and processing times are distributed according to an exponential distribution

with mean 1 min. The choice of such distribution is due to its ability to describe variability (i.e., high

variance) which characterizes a significant set of production environment.

6.1.2 Experimental Setting. The manufacturing system has been modeled in Arena Simulation

Software. Five event logs have been generated, each corresponding to an independent replication. Each

replication represents the production of 1000 final products, 600 of type D and 400 or type E. The

resulting event log contains 7168 events. Since the BOM contains a single level for both part types, one

GCP has to be solved over the entire set of nodes.

6.1.3 Results. Given that two part types are being produced, the set of possible combinations of

assembly stations is given by the permutations of 2 elements from the sets SD = {3, 5} and SE = {4, 6}.

Hence, for this case the set of candidate assembly stations are the tuples V = {(3, 4), (3, 6), (5, 4), (5, 6)}.

For each replication, the GCP solution method described in section 5 has been used to generate a graph

model. Table 4 summarizes the results obtained for the first test case. It can be noticed that the correct

combination of assembly stations v∗ = (3, 4) has been selected in each replication as the one guaranteeing

the minimumMSE value. Figure 9 shows the graph model obtained with the proposed procedure. The arcs

(1, 3) and (2, 3) have been added to represent the production of part type D, while the arcs (1, 4) and (2, 4)

model the assembly of part type E. The obtained scores are: average assignment score ᾱ = 0.949±0.0192,

average location score: λ̄ = 1.0± 0.0, average reproducibility score: ϕ̄ = 0.931± 0.0196.

Note on computation time. The requirements in terms of computation time have been tested by

executing the first test case while varying the problem dimension in terms of input components, i.e.

22

Table 4: Test Case 1 - Objective function values obtained for each candidate combination of assembly stations v.

Combinations v Assignment Scores

Replication (3,4) (3,6) (5,4) (5,6) α λ ϕ

1 10.706 25.327 13.721 29.690 0.939 1 0.911

2 18.299 46.527 21.413 51.048 0.968 1 0.951

3 17.242 45.971 19.646 49.371 0.945 1 0.937

4 10.316 32.593 11.865 35.303 0.932 1 0.919

5 14.398 33.623 16.816 37.206 0.963 1 0.935

Mean 14.192 36.808 16.692 40.524 0.949 1 0.931

Fig. 9: Test Case 1 – Graph model obtained by the proposed approach: the dashed lines represent the added arcs as solution of the

GCP.

|C| ∈ {10, 100, 500, 1000, 2000, 5000}. Table 5 shows the behaviour of the average computation time,

which is exponentially increasing and it exceeds five minutes with 2000 components.

Table 5: Test Case 1 – Average computation time with respect to the number of input components (5 replications).

Nr. of components 10 100 500 1000 2000 5000

Nr. of traces 34 282 1390 2792 5589 13989

Average Computation Time [s] 7 8 26 122 342 1380

6.2 Test Case 2: Multi-Level BOM

In this case, a production system with a two-level BOM is analysed.

6.2.1 Production System. Figure 10 shows the structure of production system under study. Station

1 and 2 produce components of type A and B, respectively. Such components are assembled in station 3

into product type D. On station 5, the component type C is assembled on product D. Hence, the Bill of

Materials is of type 2 and it consists in two separate levels. The first level consists in the assembly of D

23

Fig. 10: Test Case 2 – Production system and BOM structure. Squares represent stations and triangles represent inter-operational

buffers. Stations 3 and 5 are the assembly stations.

and C, while the second one describes the assembly of components A and B. Each station has a processing

time ps which is distributed according to an exponential distribution with mean 1min. Inter-operational

buffers have 10 slots each.

6.2.2 Experimental Setting. The goal of this test case is to show the behavior of the developed

approach in a multi-level system. For the experiments, five event logs have been generated with a discrete-

event simulation model in Arena Simulation Software, each representing the production of 1000 compo-

nents for each part type. The resulting event log contains 9169 events. In the following are listed the

results of the first replication.

6.2.3 Results. As first step, subsets of stations are selected based on the levels of BOM. Accordingly,

the set of stations for the first level is N1 = {3, 4, 5}, and for the second level, N2 = {1, 2, 3, 5}. Each node

set is used in the remaining steps of the method.

Level 1. The set of candidate stations is the subset of N1 in which the assembled components are

produced, hence S1 = {3, 5}. Given that the system produces a single product, both stations are candidate.

Hence, the set of possible combinations is V = {(3), (5)}. For each combination, the assignment problem

defined in section 5.4 has been solved. For both sub-problems, a total of 1792 components and 792

assembled products have been assigned one another. The objective function is y3 = 0.00381 and y5 =

0.00323. Accordingly, station 5 is selected as assembly station. Figure 11a shows the resulting graph

model. The computation times are 63.14 s and 58.23 s, respectively. Further, the scores defined in section

5.4 have been calculated: average assignment score: ᾱ = 0.99833 ± 0.000741, average location score:

λ̄ = 1.0± 0.0, average reproducibility score: ϕ̄ = 0.9995± 0.0001141.

Level 2. In the second level of the BOM, the components are types A and B and the assembled product

is D. The subset of N2 in which D is produced is S2 = {3, 5}. Again, both stations are candidate assembly

locations, and the set of possible combinations is V = {(3), (5)}. For both sub-problems, a total of 2000

components and 792 assembled products have been assigned. The objective function is y3 = 0.02101 and

24

Fig. 11: Test Case 2 – Resulting graph models depending on the levels of the BOM: a) level 1, b) level 2, c) complete model. The

dashed lines represent the added arcs as solution of the GCP.

y5 = 0.02957. Hence, station 3 is selected as candidate assembly station. Figure 11b shows the resulting

graph model. The computation times are 65.03 s and 78.29 s, respectively. Further, the scores defined

in section 5.4 have been calculated: average assignment score: ᾱ = 0.99802 ± 0.000913, average location

score: λ̄ = 1.0± 0.0, average reproducibility score: ϕ̄ = 0.928± 0.000489.

The final complete graph model is visible in Figure 11c.

6.3 Test Case 3: Real Production System

The problem to be investigated is a multi-cell production system from a tier-1 supplier of road vehicle

injectors. This system has been analysed within an industrial project, hence a validated discrete event

simulation model was available and has been used to generate the input data.

6.3.1 Production System. The system consists of eight stations, as shown in Figure 12. Stations

1, 2, and 3 are dedicated to the production of sub-components, which are placed in buffers 1 and 3.

The remaining stations produce the main part of the injector, and in station 7 the sub-components are

assembled. Table 6 presents the detailed information about each manufacturing cell (process information

is not disclosed for confidentiality reasons). The distributions of the processing times are fitted from

collected field data or outputs of a more detailed and validated simulation model of each cell in isolation.

Let us denote withHs the buffer capacity of the downstream product store of each cell. The manufacturing

system works with a pull production planning using kanban, hence the buffer capacities depend on the

specific number of production cards issued in the shop floor. For the sake of simplicity, herewith this

25

Fig. 12: Test Case 3 – Automotive tier-1 supplier production system. Squares represent stations and triangles represent inter-

operational buffers. Station 7 is the assembly station.

phenomenon is not considered and it is assumed Hs = 10∀s; injectors can be produced in station 7

whenever all required sub-components are available in the corresponding upstream buffers.

Table 6: Test Case 3 – Parameters of the manufacturing system used for the experiments (u is a random number between 0 and

1). The processing times refer to the production of 1000 work-pieces.

Station s Buffer Hs Processing Time rs [s]

1 10 Logn(4.96, 0.52)

2 10 195 + Tria(30, 45, 90) + Logn(4.58, 0.542)

3 10 100 +Gamma(0.89, 111.91) + 240

4 10 156 +Gamma(1.13, 34.21)

5 10 Tria(80, 140, 500)

6 10 42 + Logn(1.57, 0.542), if u ≤ 0.53

62 + Logn(2.10, 0.632), if u > 0.53

7 10 170 +Gamma(5.94, 6.48)

8 10 196 +Gamma(5.75, 5.86), if u ≤ 0.93

277 +Gamma(0.94, 22.47), if u > 0.93

6.3.2 Experimental Setting. The production system has been modeled in Arena Simulation Soft-

ware. Five event logs have been generated, each corresponding to an independent replication in which

1000 injectors are produced. For each replication, the procedure described in section 5 has been applied.

Then, the result has been used to build a simulation model. For the sake of simplicity, the graph model

has been converted manually into a simulation model in Arena. The obtained model has been used to

generate five independent event logs, and the corresponding performance in terms of throughput and

system time has been calculated.

6.3.3 Results. Table 7 lists the objective function values obtained for each replication. Notice that in

this case, since a single product type is produced, the assembly station combinations V are represented

26

Fig. 13: Test Case 3 – Graph model obtained by the proposed approach. The dashed lines represent the added arcs as solution of

the GCP.

by one-element tuples. Also in this case, the results table shows that in each replication the minimum

objective function value corresponds to components-assembly associations on the correct station: s = 7.

Figure 13 represents the graph model that has been obtained. Station 7 is identified as the assembly

location and arcs are added to the model accordingly. The obtained scores are: average assignment score

ᾱ = 0.884±0.0307, average location score: λ̄ = 1.0±0.0, average reproducibility score: ϕ̄ = 0.860±0.0206.

Such result allows to model correctly the assembly process on station 7, hence enabling the automated

generation of the digital replica of the system of Figure 12.

Table 7: Test Case 3 - Objective function values obtained for each candidate assembly station.

Combinations v Assignment Scores

Replication (4) (5) (6) (7) (8) α λ ϕ

1 0.227 0.164 0.054 0.014 0.016 0.890 1 0.872

2 0.085 0.074 0.038 0.016 0.017 0.844 1 0.843

3 0.051 0.050 0.049 0.048 0.053 0.910 1 0.877

4 0.151 0.114 0.049 0.042 0.046 0.879 1 0.841

5 0.042 0.043 0.042 0.037 0.039 0.895 1 0.865

Mean 0.111 0.089 0.046 0.032 0.034 0.884 1 0.860

6.3.4 Comparison with the Standard Approach. The obtained graph model has been validated by

comparing the performance between two scenarios: (1) model with assembly operations obtained with the

proposed method, (2) model obtained with a method that does not include non-linear flows (i.e., model

generated with the method in (Lugaresi and Matta, 2021b)). Specifically, two performance indicators have

been chosen for the comparison: IDT7 is the vector of inter departure times from the assembly station 7:

IDT7 = tF (7, i)− tF (7, i− 1), and the system time, defined as the time a part of type C takes to flow in

27

the system: ST = tF (8, i)− tS(4, i). Table 8 summarizes the results obtained by simulation experiments

replicated 5 times each. The results show that the exclusion of assembly stations from the representation

causes an over estimation of the system performance. The system time is significantly lower than the one

of the real system. This is because the exclusion of the assembly blocking condition allows for several

products to proceed and exit the system before their corresponding sub-components are available.

Notice that such difference depends on the particular system configuration and parameters.

Table 8: Test Case 3 - Performance validation depending on addition of assembly-related arcs out of 1000 samples (CI-HW = 95%

Confidence Interval Half Width).

Blocking Conditions Replication IDT7 (mean) CI-HW ST (mean) CI-HW

original (with) - 60.9 4.0 2249.5 24.9

with

1 58.5 3.6 2114.1 21.3

2 61.7 3.9 2231.1 23.0

3 62.0 3.8 2251.2 25.6

4 60.2 3.7 2201.6 25.8

5 60.3 3.7 2175.3 22.8

without

1 15.7 0.2 680.6 10.2

2 15.7 0.2 626.7 10.9

3 15.6 0.2 661.6 10.1

4 15.6 0.2 627.7 11.2

5 15.5 0.2 617.7 11.8

7 Final Remarks

This paper has introduced an approach that allows for the discovery and modeling of manufacturing pro-

cesses with non-linear material flows. An algorithm identifies stations in which components are assembled

into final or work-in-progress products, and the corresponding material flows. With the addition of the

GCP and the corresponding solution procedure, the blocking condition related to the availability of com-

ponent parts can be added to a simulation model, allowing for the proper estimation of the performance of

systems with multiple part identifiers and non-linear material flows. The developed technique can also be

used to generate models of disassembly and de-manufacturing systems, since such environments present

material flow dynamics comparable to assembly processes and are subject to the same data flattening

issues. In addition, this work can be exploited within multi-dimensional model generation techniques, in

which manufacturing steps may be characterized by the convergence of different material or information

28

flows (e.g., kanban). This work is beneficial for digital twins dedicated to production planning and control.

Indeed, the proposed algorithm can be applied online, for instance updated with a fixed frequency, and

used to guarantee that the digital twin is always a correct representation of the corresponding physical

system.

Several limitations still need to be overcome. The proposed approach assumes complete data availabil-

ity and perfect traces, while realistic datasets are more unreliable. Proper adjustments could be required.

Further, the exclusion of batched operations limits the applicability of the approach. In production sys-

tems which operate in batches such as thermal treatments or painting processes, the timestamps of

completion for several components are equal. Since the approach relies on temporal proximity, the pres-

ence of batches would cause several equivalent solutions, along with a high risk of improper identifications.

Assuming the absence of batched operations causes the exclusion of certain types of manufacturing sys-

tems, for instance, semi-conductor production systems. In general, this approach is ideal for systems with

a certain degree of production coordination, in which components are produced in-house and not stored

for long times before their usage. Moreover, the computation times suffer greatly from the problem di-

mensions. Within a real-time framework, if the simulation model is built using as reference a short time

window, hence dimensionality issues remain minor. However, higher production rates or longer acquisi-

tions may still determine large datasets. Hence, future developments of this work should also address the

optimization of the solution procedure, for instance with the development of meta heuristic approaches

or ad-hoc branch-and-bound algorithms. Since the discovery of models with multiple interacting elements

is receiving increased interest by researchers, the proposed approach could benefit from the comparison

and integration with techniques that share the same goals (Esser and Fahland, 2021). Last but not least,

future work should aim at providing a direct comparison between the resources required for ()1) manually

building models by simulation experts and (2) employing the proposed technique. Specific experiments

must be designed, in which several systems can be identified and for each of them the automated model

building phases are compared with traditional, manual-intensive approaches.

Bibliography

S. Bergmann, N. Feldkamp, and S. Strassburger. Approximation of dispatching rules for manufacturing

simulation using data mining methods. In 2015 Winter Simulation Conference (WSC), pages 2329–

2340. IEEE, 2015.

T. Brockhoff, M. S. Uysal, I. Terrier, H. Göhner, and W. M. van der Aalst. Analyzing multi-level

bom-structured event data. In Process Mining Workshops: ICPM 2021 International Workshops,

Eindhoven, The Netherlands, October 31–November 4, 2021, Revised Selected Papers, pages 47–59.

Springer International Publishing Cham, 2022.

P. Denno, C. Dickerson, and J. A. Harding. Dynamic production system identification for smart manu-

facturing systems. Journal of manufacturing systems, 48:192–203, 2018.

C. Dong, X. Zheng, and J. Yu. Resource modeling of manufacturing process and critical nodes recognition

based on the integration of process mining and complex network. Jixie Gongcheng Xuebao/Journal of

Mechanical Engineering, 55(3):169–180, 2019.

S. Esser and D. Fahland. Multi-dimensional event data in graph databases. Journal on Data Semantics,

10(1):109–141, 2021.

D. R. Ferreira and E. Vasilyev. Using logical decision trees to discover the cause of process delays from

event logs. Computers in Industry, 70:194–207, 2015.

S. Knoch, S. Ponpathirkoottam, and T. Schwartz. Video-to-model: Unsupervised trace extraction from

videos for process discovery and conformance checking in manual assembly. In International Conference

on Business Process Management, pages 291–308. Springer, 2020.

D. Knoll, G. Reinhart, and M. Prüglmeier. Enabling value stream mapping for internal logistics using

multidimensional process mining. Expert Systems with Applications, 124:130–142, 2019a.

D. Knoll, J. Waldmann, and G. Reinhart. Developing an internal logistics ontology for process mining.

79:427–432, 2019b. ISSN 22128271.

D. Krenczyk, B. Skolud, and A. Herok. A heuristic and simulation hybrid approach for mixed and

multi model assembly line balancing. In International conference on intelligent systems in production

engineering and maintenance, pages 99–108. Springer, 2017.

V. Limère, K. De Cock, and E.-H. Aghezzaf. Generic simulation model for assembly line supply. In 11th

Annual Industrial Simulation Conference (ISC-2013), pages 192–197. EUROSIS-ETI, 2013.

G. Lugaresi and A. Matta. Discovery and digital model generation for manufacturing systems with assem-

bly operations. In 2021 IEEE 17th International Conference on Automation Science and Engineering

(CASE), pages 752–757. IEEE, 2021a.

G. Lugaresi and A. Matta. Automated manufacturing system discovery and digital twin generation.

Journal of Manufacturing Systems, 59:51–66, 2021b.

30

N. Martin, B. Depaire, and A. Caris. Using process mining to model interarrival times: investigating

the sensitivity of the arpra framework. In 2015 Winter Simulation Conference (WSC), pages 868–879.

IEEE, 2015.

N. Martin, F. Bax, B. Depaire, and A. Caris. Retrieving resource availability insights from event logs.

In 2016 IEEE 20th International Enterprise Distributed Object Computing Conference (EDOC), pages

1–10. IEEE, 2016.

N. Martin, M. Swennen, B. Depaire, M. Jans, A. Caris, and K. Vanhoof. Retrieving batch organisation

of work insights from event logs. Decision Support Systems, 100:119–128, 2017.

M. Milde and G. Reinhart. Automated model development and parametrization of material flow simula-

tions. In 2019 Winter Simulation Conference (WSC), pages 2166–2177. IEEE, 2019.

L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer, G. Schuh,

W. Sihn, and K. Ueda. Cyber-physical systems in manufacturing. Cirp Annals, 65(2):621–641, 2016.

E. Negri, S. Berardi, L. Fumagalli, and M. Macchi. Mes-integrated digital twin frameworks. Journal of

Manufacturing Systems, 56:58–71, 2020.

A. H. Ng, J. Bernedixen, M. U. Moris, and M. Jagstam. Factory flow design and analysis using internet-

enabled simulation-based optimization and automatic model generation. In Proceedings of the 2011

Winter Simulation Conference (WSC), pages 2176–2188. IEEE. ISBN 978-1-4577-2109-0 978-1-4577-

2108-3 978-1-4577-2106-9 978-1-4577-2107-6.

E. Passarin and F. Verucchi. Online synchronisation of digital twins: a control-based methodology for

manufacturing systems applications. 2022.

A. Peñarroya, F. Casado, and J. Rosell. A computer-aided simulation analysis tool for siman models

automatically generated from petri nets. In International Mediterranean Modelling Multiconference,

Barcelona, Spain, pages 57–62, 2006.

D. W. Pentico. Assignment problems: A golden anniversary survey. European Journal of Operational

Research, 176(2):774–793, 2007.

J. L. Peterson. Petri nets. ACM Computing Surveys (CSUR), 9(3):223–252, 1977.

C. Petschnigg, S. Bartscher, and J. Pilz. Point based deep learning to automate automotive assembly

simulation model generation with respect to the digital factory. In 2020 9th International Conference on

Industrial Technology and Management (ICITM), pages 96–101. IEEE, 2020. ISBN 978-1-72814-306-4.

Y. Rao, F. He, X. Shao, and C. Zhang. On-line simulation for shop floor control in manufacturing

execution system. In International Conference on Intelligent Robotics and Applications, pages 141–

150. Springer, 2008.

K. M. Rashid and J. Louis. Process discovery and conformance checking in modular construction using

rfid and process mining. In Construction Research Congress 2020: Computer Applications, pages 640–

648. American Society of Civil Engineers Reston, VA, 2020.

31

H. Reinhardt, M. Weber, and M. Putz. A survey on automatic model generation for material flow

simulation in discrete manufacturing. Procedia CIRP, 81:121–126, 2019.

D. Rossit and F. Tohmé. Scheduling research contributions to smart manufacturing. Manufacturing

Letters, 15:111–114, 2018.

A. Rozinat, R. S. Mans, M. Song, and W. van der Aalst. Discovering simulation models. Information

systems, 34(3):305–327, 2009.

L. Schruben. Simulation modeling with event graphs. Communications of the ACM, 26(11):957–963,

1983.

G. Schuh, A. Gutzlaff, S. Cremer, S. Schmitz, and A. Ayati. A data model to apply process mining

in end-to-end order processing processes of manufacturing companies. In 2020 IEEE International

Conference on Industrial Engineering and Engineering Management (IEEM), pages 151–155. IEEE,

2020. ISBN 978-1-5386-7220-4.

M. Sjarov, T. Lechler, E. Russwurm, J. Fuchs, F. Faltus, E. Schäffer, M. Brossog, and J. Franke. Life cycle

of a digital resource twin: Meta-modeling and application example. 104:1644–1649. ISSN 22128271.

F. Tao, Q. Qi, A. Liu, and A. Kusiak. Data-driven smart manufacturing. Journal of Manufacturing

Systems, 48:157–169, 2018.

S. Tavakoli, A. Mousavi, and A. Komashie. A generic framework for real-time discrete event simulation

(des) modelling. In 2008 Winter Simulation Conference, pages 1931–1938. IEEE, 2008.

M. S. Uysal, S. J. van Zelst, T. Brockhoff, A. Farhang, M. P. Ghahfarokhi, R. Schumacher, S. Junglas,

G. Schuh, and W. van der Aalst. Process mining for production processes in the automotive industry.

W. van der Aalst. Process Mining: Data science in action. Springer, 2016.

W. van der Aalst. Process mining and simulation: a match made in heaven! In SummerSim, pages 4–1,

2018.

W. van der Aalst. Object-centric process mining: Dealing with divergence and convergence in event data.

In International Conference on Software Engineering and Formal Methods, pages 3–25. Springer, 2019.

W. M. van der Aalst. Federated process mining: Exploiting event data across organizational boundaries.

In 2021 IEEE International Conference on Smart Data Services (SMDS), pages 1–7. IEEE, 2021. ISBN

978-1-66540-058-9.

Y. Xu, Q. Lin, and M. Q. Zhao. Merging event logs for process mining with hybrid artificial immune

algorithm. In Proceedings of the International Conference on Data Science (ICDATA), page 10. The

Steering Committee of The World Congress in Computer Science, 2016.

L. Yang, G. Kang, W. Cai, and Q. Zhou. An effective process mining approach against diverse logs based

on case classification. In 2015 IEEE International Congress on Big Data, pages 351–358. IEEE. ISBN

978-1-4673-7278-7.

32

Appendix A: Selection of Candidate Stations

This section elaborates on the method described in step 2 of the procedure in section 5. This step requires

as input three information tables: the event log (L), the BOM level selected at step 1, Bi, and the part

types table (i.e., pa is the part type of assembled product a). Let us define E as the set of events in the

log. id(e) is the part identifier corresponding to the e-th event in the log. Similarly, st(e) is the station –

or node – at which event e occurred. Algorithm 1 lists the steps to identify the set of candidate stations

Sp. Figure 6 explains this step graphically using an example.

Algorithm 1: Selection of candidate stations (step 2).

Data: Event log L, BOM i-th level Bi, part types table pa;

Result: Set of candidate stations: Sp;

1 for e ∈ L do

2 k ← id(e);

3 if pk ∈ Bi(0) then

4 s← st(e);

5 SC ← s;

Appendix B: Definition of the set of combinations V

This section elaborates on the method described in step 3 of the procedure in section 5. The obtained

graph model can be divided in the collection of G sub-graphs Ω = {Ω1, . . . , ΩG}. In step 3, the goal is

to determine a set of tuples. For each tuple, the elements are the candidate assembly nodes for the par

types of interest. Let us accept the short notation N(Ωi) as the function returning the set of nodes for

the i-th sub-graph. Algorithm 2 outlines the procedure of this step.

Appendix C: Graph Model Retrieval

Once the GCP problem (section 4.3) has been solved, the solution in terms of graph model can be

retrieved with a post-processing step. Namely, the additions defined by the variable z can be derived with

the simple procedure listed in Algorithm 3. The algorithm analyses all the components of the solution

matrix x∗
cas. If x

∗
cas = 1, it means the c-th component has been assigned to the a-th assembly on station

s. In this case, the algorithm searches for the last station where a production record exists for component

c. Namely, where the last station l recording the time-stamp tF (l, c). Such station is the starting node of

33

Algorithm 2: Definition of the set of combinations V.

Data: collection of G sub-graphs Ω, Candidate Stations Sp;

Result: Set of station combinations V;

1 for Ωi ∈ Ω do

2 for n ∈ N(Ωi) do

3 if n ∈ Sp then

4 v ← n;

5 SC ← s;

6 V← v;

Algorithm 3: Graph model retrieval.

Data: GCP solution: x∗
cas;

Result: Graph model addition variables: zijp;

1 zijp ← 0 ∀i, j, p;

2 for c ∈ C do

3 for a ∈ A do

4 for s ∈ S do

5 if x∗
cas = 1 then

6 l = argmaxn∈S tF (n, c);

7 zl,s,pa ← 1.

34

the arc that represents the convergence of components of type pa, toward station s. The arc is represented

by zl,s,pa
= 1.

