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Neural detection of spheres in images for lighting calibration

Laurent FAINSIN, Jean MELOU, Lilian CALVET, Axel CARLIER, and Jean-Denis DUROU
IRIT, UMR CNRS 5505, Université de Toulouse, France

ABSTRACT

Accurate detection of spheres in images holds significant value for photometric 3D vision techniques such as
photometric stereo.! These techniques require precise calibration of lighting, and sphere detection can help in
the calibration process. Our proposed approach involves training neural networks to automatically detect spheres
of three different material classes: matte, shiny and chrome. We get fast and accurate segmentation of spheres
in images, outperforming manual segmentation in terms of speed while maintaining comparable accuracy.

Keywords: lighting calibration, object detection, DETR, transformers.

1. INTRODUCTION

The digitization of real objects and environments has become a key element in many fields: archaeology, post-
production, medicine, etc. Each of these fields has its own constraints and objectives. For example, the 3D
digitization of heritage allows to preserve the object of study while simplifying its access to the general public,
as well as to professionals who, by having a digital copy faithful to the original, will be able to use it for their
analyses.?

Photogrammetric methods, which are well known, provide a surface reconstruction from the correspondence
between images taken from different viewpoints. However, photogrammetry does not explicitly use the photo-
metric characteristics of the scene. As a result, the quality of the results is highly dependent on the presence of
texture on the surface of the objects to be reconstructed. In addition, these methods do not allow the recovery
of the real color of the scene.

Photometric methods relate the appearance of a 3D point to the angle between the surface normal at that
point and the direction of the incident light.! However, these methods require a very precise knowledge of the
lighting of the scene. It is therefore necessary to calibrate the lighting during the shooting. To do this, it is
customary to position a sphere in the scene, which is visible in each of the images.? If the 3D reconstruction
method requires changing the camera pose, or if the sphere must be held at the end of a pole when access to the
scene is limited, this implies that the position of the sphere varies from one image to another, as illustrated in the
example of Figure 1. Manual trimming of the sphere in each image then becomes very tedious. It is also notable
that, depending on the lighting estimation algorithm that will be used, the sphere may be matte or glossy.
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Figure 1. Three images of the “Panneau du cheval gravé” (Chauvet-Pont-d’Arc cave, Ardéche, France), used for 3D
reconstruction by photometric stereo. Two calibration spheres are positioned at the end of a pole: a white matte sphere
(indicated in red) and a black shiny sphere (indicated in blue). Although the camera pose is constant, the position of the
spheres in the image differs from one image to another.

Once the 3D model is obtained, it may need to be re-lit, either for heritage display in a museum or for use in
film post-production. Image-based lighting (IBL)? is a method that uses a real environment as a light source to
re-light the 3D model in a realistic way. To capture this environment, it is customary to use a chrome sphere.



The detection of spheres in images is therefore a recurrent problem in the field of 3D reconstruction. We
propose a new approach to this problem, based on the latest advances in neural networks. Our approach also
provides a classification of the detected spheres (matte, shiny or chrome), which allows us to use the appropriate
algorithm afterwards.

After a brief review of existing methods in Section 2, we describe our approach by first presenting our learning
data and then the DETR network, respectively in Sections 3 and 4. We then present our results and applications
in Section 5. Conclusion and perspectives are eventually presented in Section 6.

2. STATE OF THE ART

The literature on ellipse detection is extensive. In addition to the fact that ellipses are naturally present in many
real scenes, they also appear in images due to the perspective projection of spheres. Many applications, such as
camera calibration,* medical imaging diagnosis® or robotics® have made ellipse detection a fundamental problem
in computer vision.

Methods based on Hough transform — The Hough transform is used to determine the parameters of ellipses
by a voting procedure. This approach is very computationally and memory intensive. Various improvements have
been proposed by introducing, for example, randomness.” The approximation of the silhouette of a sphere by a
circle reduces the number of parameters from five to three, which considerably simplifies the use of the Hough
transform and its variants. However, these methods are very sensitive to image noise and to the quantification
of the parameters to be estimated.

Edge following methods — Edge tracking methods exploit the connectivity between edge pixels to detect
ellipses. Studying the gradients of the image allows arc segments to be detected. Many methods actually detect
line segments, from which arc segments can be deduced. Improvements can therefore be obtained in the detection

of line segments, as well as in the post-processing. Other methods aim to detect arc segments directly, in order
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to reduce the computation time.
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Figure 2. Result of the ELSD® detector. The input image (left) needs to be cropped or reduced in order to be processed.
The detection (right) contains many false positives.

We recall that we ultimately aim to provide a very accurate 3D reconstruction. Since photometric stereo
allows for accuracy of the order of the pixel size, the images used as input are generally very large, and cannot
be processed by the algorithms we have tested. Moreover, once the images have been reduced, or cropped, many
false positives appear and the results call for post-processing, as shown on the right of Figure 2.

Deep learning methods — Object detection and classification are problems for which neural networks have
proven to be very effective, especially convolutional neural networks (CNNs). Region-based CNNs perform an
object detection step, the result of which is a bounding box, followed by a classification step. Resulting from
a series of improvements, Faster R-CNN? shows very good results but this two-step approach makes it rather
slow. Ellipse R-CNN'Y uses Mask R-CNN,'! an improvement of Faster R-CNN allowing instance segmentation,



for elliptical object detection. The well-known YOLO'? and its successors offer one-step object detection. They
are faster but much less accurate than the previous methods.'® Recently, new approaches based on transformers
show results that are quite comparable in terms of accuracy to Faster R-CNN.'* They also perform better on
larger objects, thanks to the use of global information, through the self-attention process.

Finally, it is notable that the detection of reflective objects such as chrome spheres is generally problematic
and is an active area of research.!®

3. DATASETS

Our first dataset includes archaeological photographs, which are used for 3D reconstruction by photometric stereo
for heritage preservation. This dataset consists of 1013 images of lithic objects on dark, rugged backgrounds.
Although it serves as a suitable starting point, we identified several limitations to this dataset. First, it contains
exclusively white matte spheres and red or black shiny spheres, but no chrome sphere. In addition, the scenes
presented are all relatively similar, making the models trained on this dataset likely to overfit.

Subsequently, we acquired a second dataset presented by Murmann et al.'® which includes over 1000 real
scenes, each captured in high dynamic range (HDR) and high resolution, under 25 lighting conditions, for a
total of 25375 pictures. This work provides an excellent learning basis for applications such as estimating
the illumination of a single image or re-lighting an image. In order to measure ground truth of the incoming
illumination, the authors place a chrome sphere and a gray sphere in the scene. Since the corresponding masks
for each sphere are also provided, we can use this dataset for sphere detection.

Figure 3. Two images extracted from our datasets. Left: archaeological picture. Right: picture from.'S

However, both these datasets present a set of scenes under different lighting: many images were virtually
indistinguishable, except for variations in the direction of lighting. This may be a barrier to generalization. We
proceed to train initial models on the aforementioned datasets; however, performance on entirely new images is
suboptimal. These datasets alone are insufficient to allow our model to generalize. Thus, we introduce synthetic
datasets in order to limit the risk of overfitting.

We use Blender and high-quality, high dynamic range images (HDRISs) obtained from PolyHaven* to generate
a synthetic dataset featuring fully consistent lighting and reflections. This method involves rendering spheres
in various colors (selected from the McBeth chart) and materials such as matte white, matte grey, shiny black,
shiny red, shiny cyan, and chrome. The process of generating a scene requires loading a random HDRI, pointing
the camera in a random direction, and generating multiple spheres within the viewing range at varying distances
and scales while simultaneously checking for collisions or occlusions. Despite its relatively slow execution, with
render times reaching up to 25 seconds, we were still able to quickly generate 36455 images using this method.
Consequently, this facilitated the expansion of our learning domain, akin to a form of weak supervision.'”

*https://polyhaven.com/hdris


https://polyhaven.com/hdris

Figure 4. Image generated by Blender, extracted from our dataset. Rendering allows to generate chrome spheres consistent
with the surrounding environment.

4. NEURAL NETWORK

We opt to experiment with the DETR model due to its simplicity of implementation, well-established state
of the art performance, and broad framework support with pre-trained weights.'* We use the Hugging Face
implementation with a ResNet50 backbone pre-trained on ImageNet. DETR end-to-end transformer encoder-
decoder architecture with a set-based global loss streamlines the detection pipeline by eliminating the need for
many hand-designed components such as anchor generation and non-maximum suppression procedures.
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Figure 5. The DETR* architecture.
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The DETR model utilizes various loss functions to train the network. One of the loss functions used is the
cross-entropy loss, which is applied to the class prediction outputs of the model. Another loss function used is
the bounding box L1 loss, which measures the discrepancy between the predicted bounding boxes and the ground
truth bounding boxes. Additionally, the Generalized Intersection over Union (GIoU) loss is used to calculate the
accuracy of the predicted bounding boxes. Finally, the cardinality-based error is used to penalize the model for
missing or erroneous object detection. Together, the weighted sum of these loss functions enable the model to
learn and improve its object detection performance during training.

5. TRAINING AND RESULTS

Training data — On our various datasets, we separate training data and test data as follows:

e Archeological photographs: 1013 images, including 101 test images;
e Murmann et al.:'® 25375 images, including 253 test images;

e Synthetic dataset: 36455 images, including 364 test images.



Training hyperparameters and results — For training we use the AdamW optimizer with a learning rate
of 1.10™%, a backbone learning rate of 1.107°, a weight decay of 1.10™4, a cosine annealing scheduler,'® set our
class number to 3 and our queries number to 100. We also use a train batch size of 6, train for at most 2
epochs and employ a dataloader sampler to ensure the balanced utilization of all datasets. The main metric for
evaluating the performance of the DETR model is the GIoU, our final trained model attained GIoU score of 0.9
on authentic test images, which accounts for 10% of the archaeological dataset, indicating a good detection of
spheres.

It is important to highlight that the model exhibits a tendency to sometime “under-detect” spheres, as the
detections tend to be slightly cropped. However, this has negligible impact in practice on the performance of
the light detection task for matte and shiny spheres. On the other hand, this could pose a challenge in the case
of chrome spheres, particularly if we intend to unwrap the scene within the reflection.

Figure 6. Deductions from our DETR. Left: the chrome and matt spheres are correctly detected (green and red squares).
Right: the matt sphere is correctly detected (red square), while its shadow is not, whereas it has a circular silhouette,
thus avoiding a false positive.

Comparison with manual detection — The process of manually outlining objects can be a cumbersome
and time-consuming task, which typically requires between 7 and 40 seconds to complete, as indicated by
Papadopoulos et al.!” In contrast, automated detection techniques that leverage machine learning models offer
a significant reduction in time and effort required for object detection. Although manual detection may yield
higher accuracy in certain scenarios, the trade-off between speed and efficiency afforded by automated detection
makes it a viable and practical option for many applications where perfect calibration is not strictly required.

Application to photometric stereo — As an illustration, we propose to use our sphere detection and
classification algorithm for 3D reconstruction. Photometric stereo requires precise knowledge of lighting. In the
absence of laboratory conditions, it is common to place a sphere in the scene to be reconstructed.

The “Panneau du cheval gravé” (Chauvet-Pont-d’Arc cave, Ardeche, France) cannot be approached without
destroying valuable archaeological ground. Thus, the sphere is placed at the end of a pole, carried by hand, and
moves in the scene from one shot to the next. Our algorithm allows us to detect and classify each sphere present
in the images. We then apply a lighting estimation algorithm specific to each type of sphere. The albedo and
normal maps obtained by photometric stereo are presented in Figure 7.

6. CONCLUSION AND PERSPECTIVES

In this paper, we present a new method for detecting calibration spheres using deep learning. This is a fairly
straightforward task (the Hough transform does this very well), which is nevertheless characterized by the
appearance of false positives in the presence of cast shadows and circular patterns. We propose an approach
based on neural networks, which is much faster than manual detection, and even more accurate, in practice,
when shadows are located near the boundary of a sphere silhouette.



Figure 7. Results of the photometric stereo method, with light estimated with auto-detected spheres. From left to right:
zoom on one of the 17 pictures of the “Panneau du cheval gravé” presented in Figure 1, albedo map and normal map
obtained by photometric stereo.

Lighting estimation using spheres could be carried out in a single step, but we prefer to limit ourselves to
the first step, i.e. sphere detection, for two reasons. Firstly, we can remain very generic in the type of spheres
used, since the network detects and classifies matt, shiny and chrome spheres. On the other hand, this allows us
to take a more modular approach, inspired by the philosophy of some open-source 3D reconstruction software.
Users are then free to use the output of our network for the application of their choice.

The detection of spheres in an image is, in fact, only the first step in the estimation of illumination, a task
necessary for the implementation of 3D reconstruction techniques such as photometric stereo. So, is it really
necessary to position spheres in the scene? A number of recent works aim to estimate lighting directly from
photographs.2’ As the problem is ill-posed, deep learning approaches predominate. In the future, we also plan
to estimate lighting without using a sphere, which would simplify the shooting protocol, but without necessarily
using a neural network.
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