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‡ École Supérieure d’Ingénieurs en Électrotechnique et Électronique (ESIEE), Paris, France
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Abstract—Channel adaptation physical layer security (PLS)
schemes are degraded when the channel state information (CSI)
is imperfect. Imperfect CSI is due to factors such as noisy
feedback, outdated CSI, etc. In this paper, we propose a low-
complexity noisy CSI denoising scheme based on the autoencoder
architecture of deep neural networks referred to as DenoiseSec-
Net. To further reduce complexity, we then propose a hybrid
version (HybDenoiseSecNet) that combines a legacy denoising
scheme and a shallow neural network to achieve a similar
performance as DenoiseSecNet. Simulation results, in terms of bit
error rate (BER), secrecy capacity, and normalized mean squared
error (NMSE), show the performance improvement of our
proposed scheme compared to conventional denoising schemes.
Finally, we study the significant reduction in computational
complexity of the proposed scheme compared to another neural
network scheme.

Index Terms—Autoencoder, deep learning, matched filter (MF)
precoding, neural networks, orthogonal frequency division mul-
tiplexing (OFDM), and physical layer security (PLS).

I. INTRODUCTION AND MOTIVATIONS
Physical layer security (PLS) is a concept that has gained

a lot of attention in recent times. It uses wireless chan-
nel characteristics such as noise, fading, diversity, etc. as
a source of security. Channel adaptation is a category of
PLS techniques in which the transmitter (Alice) tunes the
transmission parameters to favor the legitimate receiver (Bob)
while remaining random to or degrading the eavesdropper
(Eve) [1]. Channel adaptation techniques require knowledge
of instantaneous channel state information (CSI). However,
the instantaneous CSI is not usually perfect due to factors
such as noisy feedback, outdated CSI, etc. This means that
under imperfect CSI conditions, the performance of the PLS
scheme deteriorates.

Several denoising strategies have been considered in the
literature. Denoising is the process of removing noise from
a noisy signal. In [2], the use of the truncation technique
to denoise the noisy CSI was presented. In this method, the
authors assumed that the channel length is known and only the
channel impulse response (CIR) taps below the channel length
are considered significant. The CIR is truncated at this point
and all other taps beyond this are discarded. It was shown to
give a better mean squared error (MSE) compared to the no
truncation case. More popular is the noisy CSI denoising using
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and Agence Nationale des Fréquences (ANFR).

the threshold approach. Several works have been done in this
area as seen in [3], [4]. An iterative threshold method using
convolutional code for channel estimation in an orthogonal
frequency division multiplexing (OFDM) transmission was
proposed in [3]. The results showed that higher transmit
diversity gains and better bit error rate (BER) performances
were achieved compared to legacy estimation schemes that
are more susceptible to noise. In [4], an efficient time-domain
threshold-based channel estimation technique was proposed
in OFDM systems. The threshold, referred to as the universal
threshold, can be applied without prior knowledge of the
channel statistics and the standard deviation of the noise.

Recently, deep learning has been adopted in many fields
such as natural language processing [5], computer vision
[6], etc. Similarly, researchers have started working on the
use of deep learning for CSI prediction (in the case of
outdated CSI [7]) or CSI denoising (in the case of noisy
CSI [8], [9]). The authors in [8] proposed an autoencoder to
reduce CSI feedback in a massive MIMO system operating in
frequency division duplex (FDD) mode. The CSI is encoded
after CSI estimation and then transmitted as a low-dimensional
codeword. At the receiver, the received codeword is decoded
to recover the original CSI. A noise extraction unit (NEU)
was then used to extract the noise in the codeword. The
model predicts the noise and then subtracts the predicted noise
from the noisy codeword to get the denoised codeword. This
scheme is hereafter referred to as DNNet-NEU.

The impact of a noisy CSI on the BER and secrecy capacity
of a PLS scheme that combines matched filter (MF) precoding
and diversity was investigated in [10]. The conclusion was
that as the CSI error variance increases, the secrecy capacity
reduces and BER significantly increases leading to system
degradation. In this paper, a neural network denoising al-
gorithm that is employed at the transmitter to denoise the
imperfect CSI is introduced. The denoised CSI is then used
for the MF precoding and ensures Bob retains the intended
security gains over Eve. The contributions of this paper
include:

• We propose a denoising deep autoencoder model referred
to as DenoiseSecNet. This model accepts noisy CSI as
input and gives denoised CSI that are nearly accurate
estimates of the noiseless CSI.



• We propose a hybrid model (HybDenoiseSecNet) that
combines a conventional denoising scheme with a shal-
low denoising autoencoder. This achieved the same
performance as DenoiseSecNet but at a much-reduced
complexity.

• Numerical results show the BER and secrecy capacity
performance improvement of the proposed schemes over
legacy denoising schemes.

• We also show the significant reduction in complexity
of our proposed scheme compared to another neural
network scheme in the literature.

• We investigate the impact of the choice of the activation
function (AF) on the efficacy of the proposed models. We
also study the performance of the models for different
magnitudes of CSI error variances.

The rest of this paper is organized as follows: Section
II is devoted to describing the system model of the PLS
scheme that incorporates DenoiseSecNet/HybDenoiseSecNet.
In Section III, the proposed models are presented. Simulation
results are discussed in Section IV while Section V concludes
the paper.

Notations: Individual vector elements, vectors, and matrices
are denoted by normal letters (e.g. x), lowercase boldface
letters (e.g. x), and uppercase boldface letters (e.g. X).
Absolute, conjugate and l2-norm are symbolized by |x|, x∗,
and ∥x∥2 respectively.

II. SYSTEM MODEL

A. System Model
We consider an OFDM transmission with N subcarriers op-

erating in FDD mode. The entries of the main channel between
Alice and bob, h(b), and the wiretap channel between Alice
and Eve, h(e), are independent and identically distributed
(i.i.d.) Rayleigh fading zero-mean complex Gaussian variables
with unit variance. For all pairs of uncorrelated subcarriers
in the same OFDM block, (h(b)

n1 and h
(b)
n2 ), Alice transmits

MF precoded symbols, xn1
and xn2

, to Bob. To ensure the
uncorrelation between subcarrier pairs, all pairs are chosen as
follows:

h|n1,n2
=

{
hn1

, where 1 ≤ n1 ≤ N/2,

hn2
, where n2 = n1 +N/2.

(1)

This is explained in Section IV-A. The instantaneous CSI
of the main channel is used to design the precoder which
maximizes signal-to-noise ratio (SNR) in the direction of Bob
only. Frequency diversity is also added to improve reliability.
The end-to-end transmission steps are shown in Fig. 1.

Eve is aware of the main channel CSI due to CSI feedback
in FDD mode. Bob and Eve are located at separate locations.
Hence, their channels exhibit uncorrelated propagation in
a rich scattering environment [11]. This ensures that the
intercepted transmit MF precoded signal is not optimal for
Eve. It loses the diversity gain because the precoding was
done with a CSI that is uncorrelated to its own. This provides
secrecy capacity and BER gain for Bob over Eve.

For each pair of subcarriers, the received signals at Bob are

such that

y(b)n1
= h(b)

n1
xn1

+ z(b)n1
, y(b)n2

= h(b)
n2

xn2
+ z(b)n2

, (2)

where z
(b)
n1 and z

(b)
n2 are the random noise which are i.i.d.

random Gaussian complex variables CN (0, σ2).
The received signals at Eve are expressed as

y(e)n1
= h(e)

n1
xn1

+ z(e)n1
, y(e)n2

= h(e)
n2

xn2
+ z(e)n2

. (3)

Similarly, z(e)n1 and z
(e)
n2 are the random noise which are i.i.d.

random Gaussian complex variables CN (0, σ2).
The MF-precoded signals for the transmit symbol, s, are

expressed as

xn1
= Pn1

s, xn2
= Pn2

s (4)

where

Pn1
=

√
2h

(b)∗

n1√
|h(b)

n1 |2 + |h(b)
n2 |2

, Pn2
=

√
2h

(b)∗

n2√
|h(b)

n1 |2 + |h(b)
n2 |2

. (5)

B. Impact of Imperfect CSI
To study the impact of imperfect CSI, we assume a noisy

feedback channel between Alice and Bob. The effect of this
is that Alice precodes the symbol using a noisy CSI and thus
the SNR for the legitimate user is no longer maximized. We
model the imperfect CSI as given in [12]:

h(b) =
√
1− ϵh̃

(b)
+
√
ϵψ, (6)

where h(b) is the actual channel gain without errors and
h̃
(b)

is the imperfect channel gain with errors. The CSI error
ψ is a zero-mean unit variance complex Gaussian random
variable CN (0, 1), and the magnitude of the error variance,
ϵ ∈ [0, 1[.nThe case ϵ = 0 corresponds to the perfect CSI
scenario while ϵ = 1 corresponds to completely noisy CSI.
Inspired by [10], the expressions for the performance metrics
of the system under imperfect CSI conditions are hereafter
expressed. For Bob, the instantaneous SNR, conditional BER,
and conditional channel capacity using the QPSK constellation
can be expressed respectively as:

γ(b) =
(1− ϵ)(|h̃(b)

n1 |2 + |h̃(b)
n2 |2)γ̄

ϵγ̄ + 1
, (7)

BER(b)
∣∣∣
h
(b)
n1

,h
(b)
n2

=
1

2
erfc

(√
γ(b)

2

)
, (8)

C(b)
∣∣∣
h
(b)
n1

,h
(b)
n2

=
1

2
log2(1 + γ(b)), (9)

where γ̄ is the average SNR at the receiver. For asymptotic
analysis, we consider the instantaneous SNR with imperfect
CSI when γ̄ → ∞. The asymptotic limit is given as

lim
γ̄→∞

γ(b) =
(1− ϵ)

ϵ
(|h̃(b)

n1
|2 + |h̃(b)

n2
|2). (10)

The instantaneous SNR in this region is no longer dependent
on the average SNR but is now limited by the CSI error
variance. The implication of this is an error floor as will be
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Fig. 1: System model for PLS Scheme that combines matched filter precoding and frequency diversity for security.

seen in section Section IV-A.
Similarly, for Eve, the instantaneous SNR, conditional BER,

and conditional channel capacity using the QPSK constellation
are given respectively:

γ(e) =
(1− ϵ)(ββ∗)γ̄

(ϵγ̄ + 1)(|h(e)
n1 |2 + |h(e)

n2 |2)
, (11)

BER(e)
∣∣∣
h
(e)
n1

,h
(e)
n2

=
1

2
erfc

(√
γ(e)

2

)
, (12)

C(e)
∣∣∣
h
(e)
n1

,h
(e)
n2

=
1

2
log2(1 + γ(e)), (13)

where

β = h(e)
n1

h̃(b)∗

n1
+ h(e)

n2
h̃(b)∗

n2
. (14)

The secrecy capacity is the positive difference between the
channel capacities of Bob (9) and Eve (13). The final BER
and secrecy capacity are obtained by averaging the conditional
ones on the variables hn1 hn2 for all subcarrier pairs in N .

III. PROPOSED SCHEME

A. Structure and Operation of DenoiseSecNet
In this paper, to denoise the imperfect CSI at the transmitter,

we have used the feed-forward autoencoder of deep learning, a
very well-known model in deep learning [13]. DenoiseSecNet
is a 5-layer autoencoder block consisting of the input layer,
output layer, and 3 hidden layers as shown in Fig. 2. We
define f(.) and g(.) as the encoder and decoder operations
of the autoencoder respectively. In DenoiseSecNet, we define
the input as the noisy CSI, h̃. Thus the encoder and decoder
outputs will be f(h̃) and g(f(h̃)) respectively. The encoding
and decoding operations both take place at Alice. Afterward,
the output of the decoding block is used to precode the
transmit signal.

Starting from the first hidden layer to the output layer, we
have fully connected (FC) layers and an activation layer that
provides non-linearity to the model. For the ℓ-th layer of the
model, the linear activation can be written as:

mℓ =W ℓaℓ−1 + bℓ, (15)

where aℓ−1 is the activation of the previous (ℓ− 1)-th layer,
W ℓ represents the weight of the current ℓ-th layer and bℓ are
the biases for the layer. Note that the noisy CSI is the input
for the first layer, i.e. a0 = h̃.
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Fig. 2: Denoising ANN Autoencoder.

Next, we introduce non-linearity into the model. This is
needed to develop complex representations that can properly
model the function. Non-linearity is achieved by the use of
AF and the AF of choice is the parametric rectified linear
unit (PReLU). This AF improves model fitting with nearly
zero extra computational cost and little overfitting risk [14].
The rationale behind choosing PReLU is explained in Section
IV-A. PReLU is evaluated as:

ϕ(m) =

{
m, if m ≥ 0,

ξm, otherwise.
, (16)

where ξ is a learnable parameter. The output of the encoder
section of the model, labeled as ”Latent Representation” in
Fig. 2, is given below:

f(h̃) = ϕℓ(W ℓ(ϕℓ−1(...ϕ1(W 1h̃+ b1))) + bℓ), (17)

where ϕ(.) represents the non-linear activation. After encod-
ing, the decoder takes the encoded data and generates an
output that is an optimal match of the noiseless version of
the noisy input. The decoder section is represented below:

g(f(h̃)) = ϕL(WL(ϕℓ−1(...ϕ1(W 1f(h̃) + b1))) + bL).
(18)

To train the model, the hyperparameters were optimized
using ray tune [15]. These include the number of layers and
nodes per layer, the batch size, and the choice of the AF. The
loss, L(h, g(f(h̃))), is evaluated using MSE loss as:

L(h, g(f(h̃))) = 1

N

N∑
i=1

∥ĥ− h∥22, (19)

where ĥ is the output of the autoencoder. In this paper,
MSE is preferred to mean absolute error (MAE) and mean



squared logarithmic error (MSLE) because we want to ensure
that the large errors are significantly more penalized than the
smaller errors. To optimize the system and iteratively update
the parameters accordingly, we used the stochastic gradient
descent (SGD) optimizer. It outperforms other optimizers such
as Adam, RMSprop, Adagrad, AdaDelta, etc. in our work.

B. Hybrid Option of DenoiseSecNet
For complexity considerations, we propose a hybrid option

to denoise the noisy CSI, HybDenoiseSecNet. The major
motivation here is to obtain similar BER and secrecy capacity
performance gains to DenoiseSecNet but at reduced complex-
ity. To achieve this, the imperfect CSI is first denoised using
the legacy scheme, truncation method, mentioned in Section
I. We assume that the channel length is known at Alice due to
feedback in FDD mode. Assuming N subcarriers and a known
channel tap length of T , the noisy CSI feedback (h̃) is first
transformed from frequency domain to time domain (TD), as
h̃
TD

, using inverse fast Fourier transform (IFFT) operation of
size N . The truncation then takes place in the time domain
as seen in (20).

ḧTD
t =

{
h̃TD
t , if 0 ≤ t ≤ T − 1,

0, if T ≤ t ≤ N.
, (20)

Channel taps beyond the known significant tap of T are
assumed to be caused by the noise and are ignored. Then
the truncated CSI is transformed to the frequency domain
as, ḧ, using the fast Fourier transform (FFT). This denoised
CSI is then passed through the ANN autoencoder for further
denoising operation as seen in (21). Since already partially de-
noised, the ANN autoencoder can achieve a significant further
reduction in noise with fewer computations as compared to the
full option of DenoiseSecNet. In fact, we do not need a deep
neural network and a shallow neural network can produce
optimal results.

g(f(ḧ)) = ϕL(WL(ϕℓ−1(...ϕ1(W 1f(ḧ) + b1))) + bL).
(21)

The proposed hybrid version is shown in Fig. 2. With other
hyperparameters remaining similar, the change in the hybrid
model is the number of hidden layers and neurons, and thus
the model complexity.

IV. RESULT AND DISCUSSION

A. BER and Secrecy Capacity Performances
In this section, we present the performance of our proposed

DenoiseSecNet and HybDenoiseSecNet and compare them to
legacy denoising schemes. We consider an OFDM system with
N = 64 subcarriers and a QAM constellation. The hidden lay-
ers for the full version of DenoiseSecNet are 64-16-64 while
the hybrid version has only one 16-neuron hidden layer. The
noisy CSI input of 64 subcarriers with 64 complex numbers
each is separated into the real and imaginary components at
the input and output of the model. Hence, the input and output
layers are each 128 in length. The hyperparameters used in
the simulation are summarized in Table I. For the DNNet-
NEU scheme, we consider the hyperparameters as proposed
by the authors in [8]. The Vehicular A model corresponding

TABLE I: Hyperparameters

DenoiseSecNet Structure 128-64-16-64-128
HybDenoiseSecNet Structure 128-16-128
DNNet-NEU Structure 128-1024-128
Training Sample Size 7× 105

Validation Sample Size 2× 105

Test Sample Size 1× 105

Batch size 20
Learning rate 0.01
Optimizer SGD
CSI Error Variance 0.1
Loss Function MSE
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Fig. 3: BER performance of the proposed schemes compared
to conventional schemes.

to a highly frequency selective radio environment with power
delay profiles (PDPs) described in Table II is considered.

TABLE II: PDP for Vehicular-A with 10MHz Bandwidth:
τ = delay spread and σ2

t = power

τ [ns] 0 300 700 1100 1700 2500

σ2
t [dB] 0 -1 -9 -10 -15 -20

From Table II, the coherence bandwidth, calculated as the
inverse of multipath delay spread, is 2.7MHz [16]. From
(1), this means there is a gap of 5MHz between subcarrier
pairs and compared to a coherence bandwidth of 2.7MHz,
uncorrelation between subcarriers is guaranteed.

In Fig. 3, the BER of Bob and Eve are plotted against
the average SNR for different scenarios. When the CSI is
perfect (ϵ = 0), Bob has a diversity gain of 2 but Eve
loses the diversity gain. The higher BER at Eve leads to
a security gap between Bob and Eve. With a noisy CSI
(ϵ = 0.1), the performances of Bob and Eve are completely
degraded, and both exhibit error floors from an average SNR
of 20 dB as explained in Section II-B. Evidently, the PLS
scheme is highly sensitive to CSI accuracy. We then analyze
the BER performance for the proposed autoencoder models
(full and hybrid), DNNet-NEU, and two conventional non-
neural network denoising schemes; universal threshold and
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Fig. 4: Secrecy performance of the proposed schemes com-
pared to conventional schemes.

truncation schemes. We observe that the neural network-based
schemes outperform the conventional schemes. Truncation
and universal threshold schemes exhibit an error floor of
10−3 and 5× 10−3 respectively around 30 dB average SNR.
When DenoiseSecNet, HybDenoiseSecNet, and DNNet-NEU
are used to denoise the noisy CSI, we can see a significant
enhancement in BER performance. The two proposed models
achieve the same level of BER less than 10−4 at SNR = 30dB.
The BER performance of DNNet-NEU is approximately the
same as that of the proposed models.

In Fig. 4, we see the secrecy capacity performance for the
schemes. Expectedly, the secrecy capacity is highest under
perfect CSI conditions and lowest when the CSI error variance
is highest (ϵ = 0.1). The proposed schemes and DNNet-NEU
have a secrecy capacity slightly below the best-case scenario.
Again, the hybrid and full versions of DenoiseSecNet have
the same performance. Next to this is the universal threshold
scheme, and the truncation scheme was the least effective
CSI denoising scheme. It should be noted that the secrecy
capacity was positive in all the cases. This shows that despite
the performance degradation due to the noisy CSI, the channel
capacity of Bob remains higher than the channel capacity of
Eve under similar conditions.

The performances of the denoising schemes are compared
at three CSI error variance levels (ϵ = 0.05, 0.1, and 0.2)
in Fig. 5. Again, DenoiseSecNet and its hybrid version had
the lowest normalized mean squared error (NMSE) after
denoising. The truncation scheme had the highest NMSE. The
schemes remained equally effective in terms of the percentage
reduction in error irrespective of the error variance. Compared
to the initial CSI error variances, a 91% error reduction
was achieved with full and hybrid versions of DenoiseSec-
Net, while DNNet-NEU, threshold, and truncation schemes
achieved 90%, 85%, and 60% reductions respectively.

We compare the performance of HybDenoiseSecNet at
ϵ=0.1 w.r.t. different AFs. We have chosen to use non-
saturated AFs that have the advantage of solving the van-
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Fig. 5: NMSE performance at different error variance levels.
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ishing/exploding gradient problems while improving the con-
vergence speed. Rectified linear unit (ReLU) had the highest
NMSE, this can be explained by the fact that it only considers
the positive part of the linear activation and ignores the
negative. The CSI on the other hand has a distribution of
positive and negative components. The second-highest NMSE
of 0.49 was observed with leaky ReLU. By default, this
AF assigns a gradient of 0.01 to the negative component of
the linear activation but this does not optimally model our
CSI distribution. Scaled exponential linear unit (SELU), a
self-normalizing AF suitable for ANNs to enable high-level
abstract representation [17] was also considered. Finally, the
best performance was observed with PReLU. This is explained
by the fact that the AF can learn the gradient for the negative
region of the CSI. Hence, it properly captures the entire
positive and negative ranges of the CSI.

B. Computational Analysis
Inspired by [18], the computational complexity analysis is

done in terms of the number of real-valued mathematical op-
erations (multiplication/division and summation/subtraction)
needed to denoise the noisy CSIs.



TABLE III: Computational Complexity in terms of real-valued
operations

Denoising Scheme # of Multiplications # of Summations
Truncation 1,152 1,536
Universal Threshold 1,152 2,304
DenoiseSecNet 18,432 18,432
HybDenoiseSecNet 5,248 5,632
DNNet-NEU 262,144 262,144

For the truncation scheme, most of the complexity is from
the IFFT operation before truncation and the FFT operation
afterward. It is well known that the complexity of a sin-
gle FFT operation is (N/2) logN complex multiplications
and N logN complex summations. A complex multiplication
is equivalent to 3 real-valued multiplications and 2 real-
valued summations and a complex summation is equivalent
to 2 real-valued summations. In essence, for the truncation
scheme, the complexity is broken down to 3N logN real-
valued multiplications and 4N logN real-valued summations.
In the universal threshold denoising scheme, in addition to
truncation, we have the two median calculations and signal
clipping operations. This introduces an additional 2N logN
to make a total of 6N logN real-valued operations 1

For the neural network schemes, the focus is on the num-
ber of real-valued multiplications and summations required
to activate all neurons in the hidden and output layers of
the network. Moving from the ℓ-th to the (ℓ + 1)-th layer
will require JℓJℓ+1 multiplications/summations for the linear
transformation, where J signifies the number of neurons in
the layer. The extra operations are the bias summation and
vector product in the activation. In summary, the real-valued
multiplication and summation in DenoiseSecNet are given as:

NMUL = NSUM =

L∑
ℓ=1

Jℓ−1Jℓ (22)

Table III gives a summary of the number of real-valued
operations for all the considered denoising schemes. From
this table, we see that for both multiplication and summation
operations, HybDenoiseSecNet requires only about 30% of
the processing resources used by DenoiseSecNet. In other
words, the full option uses 3.3 times more resources than the
hybrid option. As expected, the hybrid option is more complex
than the threshold and truncation schemes but the significant
secrecy and BER performance gains are valid motivations
to employ this scheme. However, DNNet-NEU requires the
most amount of computational complexity and is 14 times
the complexity of DenoiseSecNet and 50 times that of Hyb-
DenoiseSecNet. This significant reduction in complexity is
what makes HybDenoiseSecNet an interesting alternative.

V. CONCLUSION
In this paper, we proposed two denoising autoencoder

models (DenoiseSecNet and HybDenoiseSecNet) that are used
to denoise noisy CSI in a channel adaptation PLS scheme.
Through simulations, we showed that our scheme significantly

1Recall that median calculation involves sorting and the best sorting
algorithms are at N log(N) complexity.

outperforms conventional schemes in terms of BER, secrecy
capacity, and NMSE. We also studied the reduced complexity
of our proposed schemes compared to another neural network
scheme in the literature. An interesting extension of this work
will be to consider the multi-antenna scenario and cases where
the noise variance is not uniform across subcarriers.
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