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Abstract

Classical molecular dynamics is a computer simulation technique that is in widespread

use across many areas of science, from physics and chemistry to materials, biology and

medicine. The method continues to attract criticism due its oft-reported lack of re-

producibility which is in part due to a failure to submit it to reliable uncertainty

quantification (UQ). Here we show that the uncertainty arises from a combination of

(i) the input parameters and (ii) the intrinsic stochasticity of the method controlled
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by the random seeds. To illustrate the situation, we make a systematic UQ analysis

of a widely used molecular dynamics code (NAMD), applied to estimate binding free

energy of a ligand-bound to a protein. In particular, we replace the usually fixed input

parameters with random variables, systematically distributed about their mean val-

ues, and study the resulting distribution of the simulation output. We also perform

a sensitivity analysis, which reveals that, out of a total of 175 parameters, just six

dominate the variance in the code output. Furthermore, we show that binding energy

calculation damps the input uncertainty, in the sense that the variation around the

mean output free energy is less than the variation around the mean of the assumed

input distributions, if the output is ensemble-averaged over the random seeds. Without

such ensemble averaging, the predicted free energy is five times more uncertain. The

distribution of the predicted properties is thus strongly dependent upon the random

seed. Owing to this substantial uncertainty, robust statistical measures of uncertainty

in molecular dynamics simulation require the use of ensembles in all contexts.

Introduction

The classical molecular dynamics computer simulation technique, which solves Newton’s

equations of motion for assemblies of molecules, is a very widely used method across all

areas of scientific research, from physics and chemistry to materials, biology and medicine.

Today it is commonplace to read reports of such simulations being performed routinely

on models containing many tens of thousands of atoms, and in the largest cases as many

as some hundreds of millions of atoms as in the 2020 Gordon Bell award in the COVID-

19 category for simulation of the Spike protein.1 What is clear, however, is that despite

such studies abounding in the academic research literature, their impact in contexts where

decision-making is required are few and far between. That is to say, the method is rarely

used to make actionable decisions — ones which are taken as a matter of urgency based on
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the predictions of a computer simulation. While this is done routinely in many engineering

contexts in which macroscopic simulations are performed, it remains uncommon at molecular

and lower length and time scales. In general, molecular dynamics is regularly used as a kind

of post hoc rationalisation method to explain experimental observations after they have

occurred.

A well-known application of molecular dynamics involves the prediction of the binding

affinity of a lead compound or drug candidate with a protein target, which is of central

importance in drug discovery and personalised medicine. The binding affinity, also known

as the free energy of binding, is the single most important initial indicator of drug potency,

and the most challenging to predict.2,3 There are various approaches to estimate the magni-

tude of the binding free energy (a measure of how strong the interaction is between a ligand

and its target protein), based on different theories and approximations.4 Molecular mechan-

ics Poisson-Boltzmann surface area (MMPBSA) and molecular mechanics generalised Born

surface area (MMGBSA) methods5 are among the most popular methods for free energy cal-

culations, which are based on invoking a continuum approximation for the aqueous solvent

to approximate electrostatic interactions following all-atom molecular dynamics simulations.

There are other approaches with different approximations, domains of application and com-

putational requirements. The choice of which computational method to use is influenced by

the desired accuracy, precision, time to solution, computational resources available, and so

on. Even today, all these methods remain prone to sizeable errors and are deemed unreliable

for decision-making.

To make progress toward actionable molecular dynamics simulations, several things are

required. The first is to ensure that the methods being used are reproducible, an essential

requirement for any scientific method.6–8 Beyond that, the methods need to be validated

against experiment, and verified in the sense that the codes used are indeed implementing

the correct mathematics. Finally, codes should be subjected to an uncertainty quantification
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(UQ) study, in order to report the magnitude and distribution of the uncertainty which is

inherently present.

There are two sources of uncertainty accruing in MD simulations, due to systematic and

random sources.7 In order to get a full grip on uncertainty in MD simulations, one needs to

be able to identify and quantify both. Epistemic uncertainty is introduced by inaccuracies

inherent to the system investigated and within the measurement method performed. On

the one hand, they come from the assumptions and approximations made when a theory is

applied, a model is constructed, or a process is mimicked by the simulation of a real-world

problem. In principle, a higher level of resolution should produce more accurate predictions

than a lower level one, although in practice it is not always the case because of the quality of

the theory employed.9–11 On the other hand, systematic errors can arise from the calibration

of the MD engine. The thermodynamic conditions, such as constant volume or pressure in a

closed system, must be accurately specified. Multiple factors need to be carefully considered

in the preparation of the molecular models, such as choice of force field, protonation and

tautomeric states, buffer conditions, use of physical restraints and constraints, thermostat

and barostat.

Epistemic uncertainty can be tied to imperfectly known input parameters, and/or ap-

proximate mathematical models. This uncertainty can in principle be reduced via improved

mathematical models, or by calibrating the parameters to data. Random variation on the

other hand, also called system noise, aleatoric or stochastic uncertainty, is caused by the

intrinsically chaotic nature of classical molecular dynamics. While this uncertainty cannot

be reduced, it can be quantified via ensemble methods. Given the extreme sensitivity of

Newtonian dynamics to initial conditions, two independent MD simulations will sample the

microscopic states with different probabilities no matter how close the initial conditions

used.12 The impact of the chaotic nature of MD has not been widely recognised in the MD

field. Leimkuhler and Matthews’ book (2015)13 is a notable exception, although it does not

4



address the issue of uncertainty quantification.

The parameters used in MD simulations are usually calibrated to reproduce one or more

available measurements from experiments, calculations from quantum mechanics, or both.

In almost all cases, only a single value is used for the parameters, while the uncertainty in

the parameters is simply ignored. For a realistic model of a biomolecular system, the number

of parameters is very large. There are ∼16,000 energy terms in the system we are studying

here, excluding the terms for all of the water molecules. These energy terms contain ∼40,000

parameters. Only limited studies have been performed to quantify uncertainties from force

field parameters, using relatively simple models such as TIP4P water molecules14 and/or

focusing on a small subset of parameters such as those for the Lennard-Jones potential15

or the atomic radius and charge parameter.16 While a quantification of the uncertainties

from all the force field parameters is beyond the scope of this work, we note that the above

studies show that the prediction uncertainty from parameters may be larger than statistical

simulation uncertainty.

In this paper we perform such an uncertainty quantification study applied to a bind-

ing affinity calculation. Calculations are performed using Enhanced Sampling of Molecular

dynamics with Approximation of Continuum Solvent (ESMACS)17 on a molecular com-

plex of the bromodomain-containing protein 4 (BRD4-BD1) and the tetrahydroquinoline

(I-BET72618) ligand (see figure 1). In particular we perform a parametric UQ analysis,

in which we replace deterministic scalar input parameters with random variables, and we

also quantify the uncertainty arising from the seeds. Our overall goal is then to perform

a forward propagation step, meaning we propagate the joint probability distribution of the

inputs through NAMD via a suitable sampling method, in order to obtain the corresponding

distribution of the simulation outcome. While NAMD has a large number of inputs (175)

the majority of them are not relevant for forward UQ, as they do not directly influence the

solution. Using expert knowledge, we selected a subset of 14 parameters which are known to
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have an impact on simulation behaviour, to which we assigned uniform input distributions.

It makes sense to reduce the number of input distributions a priori, since many forward

UQ techniques (e.g. stochastic collocation (SC)19 or polynomial chaos expansions20) suf-

fer from the curse of dimensionality. This essentially means that the required number of

NAMD evaluations grows exponentially with the number of uncertain inputs, which leads to

a computational bottleneck due to the compute-intensive nature of NAMD. This is further

exacerbated due to the random seeds, which we also incorporate in our epistemic (paramet-

ric) uncertainty analysis. For each sample of the joint input distribution, we run 25 replica

simulations in which we only vary the random seeds. One of our goals is to contrast the

variation in the simulation outcome due to the parameters with the variation arising from

the random seeds. We also examine the “robustness” of NAMD to epistemic uncertainty, by

which we mean the extent to which the binding affinity calculation either damps or amplifies

uncertainties from the input data to the output free energy predictions. Although we have

a priori restricted the number of uncertain inputs, a 14-dimensional space is still too large

to sample with standard SC or polynomial chaos expansions, while simple Monte Carlo is

known to have a slow convergence rate. For this reason we employ a dimension-adaptive

variant of the SC sampler.21,22 Briefly, this method banks on the existence of a low effective

dimension, where only a subset of all parameters contribute significantly to the variance in

the simulation output. The dimension-adaptive algorithm starts with a single sample, and

iteratively refines the sampling plan along the directions which are found to be important,

based on a suitable error metric. Details are given in the Methods section. Here we note that

such methods have found application in a wide variety of domains, e.g. finance,23 natural

convection24 and epidemiology,25 to name just a few.

A final point of interest we wish to study here concerns the assumption of normality.

From our investigations,7 we observe that the statistical properties one computes from molec-

ular dynamics trajectories may be approximately described by a Gaussian random process.
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Figure 1: Sources of uncertainty and quality of predictions in molecular simula-
tions for ensemble-based binding affinity calculations. (a) The types of uncertainties
in the simulation (i) and the settings of parametric configurations (ii) are responsible for
the uncertainty in predicted binding affinities (iii). Sensitivity analysis determines input
parameters that most substantially impact predicted binding energy variability (iv). (b)
The random errors are dealt with by ensemble approaches, in which multiple replicas (i) are
simulated from initially close conformations. Neighbouring trajectories in the “underlying”
phase space diverge exponentially fast (ii), generating different distributions for a quantity
of interest (iii). The number of replicas used to perform ensemble averaging (iv) varies,
depending on the required accuracy and the power of the available computational resources.
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However, a normal distribution may not be automatically assumed. In fact, there are fre-

quently significant deviations from such statistics in nonlinear dynamical systems of which

molecular dynamics is an excellent example.26,27 The simulations should then proceed from a

statistical-mechanical ensemble corresponding to the experimental conditions, and properties

calculated from expected values may then be compared with their corresponding experimen-

tal counterparts. Following our recent findings, non-normality of binding free energies has

been confirmed experimentally (Ian Wall and Alan Graves, private communication, 2020).

Quantifying systematic errors requires first bringing the random components contributing

to the errors under full control.

Theory and methods

We describe the ESMACS protocol, the dimension-adaptive sampling method, as well the

methods to compute the Sobol index and uncertainty amplification factor. The last three

methods are more extensively described in one of our previous studies of the CovidSim

epidemiological code.25

ESMACS protocol and Ensemble simulations

The protein target of our investigation is the bromodomain-containing protein 4,17 which is

currently a major and rapidly evolving focus for the pharmaceutical industry. Preclinical and

early stage clinical studies have shown that inhibitors targeting the protein exhibit promising

efficacy in pathologies ranging from cancer to inflammation. BRD4 has recently become

something of a benchmark system for free energy calculations, which we have investigated

extensively using our binding affinity calculator for diverse compound datasets.17,28 Here we

use one of the compounds studied previously,17 and investigate the sources of uncertainty

along with the quality of binding free energy predictions.
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The preparation and setup of the simulations are implemented using ESMACS. More

details can be found in our previous publications.17,29 We use the same force field as de-

scribed previously: the AMBER ff99SB-ILDN18 force field for the protein, TIP3P for water

molecules, and the general AMBER force field (GAFF) for the ligand with partial charges

calculated using restrained electrostatic potential (RESP) module in the AMBER package.

The molecular system is solvated in orthorhombic water boxes. The minimal distance be-

tween the protein atoms and the box edges was set to be 14Å as in our previous publications.

It is treated here as one of the parameters included in the UQ study.

In the standard ESMACS protocol, an ensemble of 25 replicas is used for each of the para-

metric configurations. The starting phase spaces are close to each other for the replicas, dif-

fering only in their initial velocities which are generated independently from a Maxwell–Boltzmann

distribution at 50K. Each molecular system is then virtually heated to a desired temperature,

and subsequently maintained at this temperature and a defined pressure (with temperature

and pressure coupling constants). After a total of 2ns equilibration, a 4ns production phase is

initiated, of which the trajectory is analysed to extract binding free energies. Full simulation

details can be found in our previous publications.17,29

Dimension-adaptive uncertainty propagation

Our chosen method of propagating input uncertainty through NAMD is based on Stochastic

Collocation (SC).30 Each input parameter ξi ∈ R is assigned an independent probability

density function p(ξi), and the goal is to propagate these though NAMD in order to ex-

amine the corresponding distribution of the output. In particular, let e(ξj1 , · · · , ξjd) be the

ensemble-averaged binding energy code output, computed at some parametric configuration

ξ = (ξj1 , · · · , ξjd) ∈ Rd in the stochastic domain, as indexed by a multi-index (j1, · · · , jd).

Traditionally, the SC method involves an expansion over a tensor-product of such points,
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i.e.:

e(ξ) ≈ ẽ(ξ) =

m1∑
j1=1

· · ·
md∑
jd=1

e(ξj1 , · · · , ξjd) aj1(ξ1)⊗ · · · ⊗ ajd(ξd) (1)

Here, ẽ denotes the polynomial approximation of e, as each aji is a 1D Lagrange interpolation

polynomial given by

aji(ξi) =
∏

1≤k≤mi
k 6=ji

ξi − ξk
ξji − ξk

. (2)

A well-known property of the Lagrange polynomial associated with the ji-th collocation

point (in a given dimension 1 ≤ i ≤ d), is that aji(ξji) = 1 at this point, and aji(ξjk) = 0

at all other collocation points xjk (for i 6= k). The 1D collocation points are generated

from the points of a quadrature rule, used to approximate integrals weighted by the chosen

input distribution p(ξi). The order of this quadrature rule for the i-th input determines the

number of points mi along that dimension, and due to the tensor-product construction the

total number of code evaluations for d inputs equals M = m1 ·m2 · · ·md, or M = md if all

inputs receive the same quadrature order (see Figure 2a for an example). Note that, in the

standard SC method, the order of each quadrature rule must be specified by the user. The

exponential increase with the number of inputs d is known as the curse of dimensionality,

and it limits practical applications of the standard SC method to less that 10 uncertainty

parameters.

Since we have a 14 dimensional input space, we employed a dimension-adaptive version of

the SC method, based on the original work of .19,21 This method does not remove the curse of

dimensionality, although it does postpone its effect to higher dimensions. The general idea is

to forego the standard single tensor product based on user-specified quadrature orders, and

instead iteratively build the sampling plan using a linear combination of tensor products of

10



different orders. Often, one starts from a single sample placed in the middle of the stochastic

domain, which corresponds to assuming a 0-th order rule for all inputs. The sampling plan is

then refined in an anisotropic fashion, sequentially increasing the order of (combinations of)

inputs parameters which are deemed important by a suitable error metric. This method thus

aims to find a lower effective dimension, which explains most of the variability of the output.

While there is no guarantee of the existence of an effective dimension RM with M < d,

it is often observed in practise that only a small number of parameters are responsible

for the majority of observed output variance, see e.g.25 It should be noted that there are

methods besides dimension-adaptive SC which also seek a lower effective dimension. Notable

examples include High-Dimensional Model Representations,31 Active Subspaces32 and more

recent ideas involving machine learning.33

To adaptively refine the sampling plan, a ‘look-ahead step’34 is executed, where the com-

putational model is evaluated at the new unique ‘candidate’ locations which are admissible.21

The admissibility criteria is explained in detail by Gerstner et al. (2003);21 here we only

provide a general outline. Let Λ be the set containing all quadrature-order multi indices

l = (l1, · · · , ld) which have been selected (the gray squares of Figure 2b), which, as stated, is

initialised as Λ := {(0, · · · , 0)}. Now define the forward neighbours of any multi index l by

the set {l + ei | 1 ≤ i ≤ d}, where ei is the elementary basis vector in the i-th direction, e.g.

e3 = (0, 0, 1, · · · , 0). The forward neighbours of the set Λ are then the forward neighbours

for all l ∈ Λ, which are not already in Λ. Similarly, the backward neighbours of l are given

by {l − ei | li > 0, 1 ≤ i ≤ d}. An index set Λ is said to be admissible if all backward

neighbours of Λ are in Λ. In short, the aforementioned candidate directions are generated

by those forward neighbours l where Λ ∪ {l} remains an admissible set, corresponding to

the × symbols of Figure 2b. For each admissible forward neighbour l, a local error measure

is computed. There are multiple possibilities for creating such a measure, either based on

the interpolation error between subsequent levels of refinement,22 Sobol sensitivity indices34
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Figure 2: Two-dimensional examples of building sampling plans with one-dimensional
quadrature rules of (different) orders. The horizontal axis displays the 1D quadrature points
of order li, and the corresponding sampling plan in (ξ1, ξ2) space is shown on the right. a) A
standard SC example, where the user specified a second-order rule for both inputs (l = (2, 2)),
leading to a dense sampling plan of 25 points. b) Possible iterations of a dimension-adaptive
example. The first iteration contains the 0-th order rule for all inputs, i.e. Λ = {(0, 0)}.
For this initial sampling plan there are two admissible candidate multi-indices, i.e. (1, 0) and
(0, 1) (see × symbols). In this example, (0, 1) generated a larger error, and therefore gets
accepted in Λ, leading to a more refined sampling plan in the ξ2 direction. This opens up
new candidate directions, and the process repeats, leading to an anisotropic sampling plan.
This plan is thus built from a linear combination of tensor products, using the quadrature
orders in Λ.
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or based on the observed error in quadrature metrics.21 For this study we adopt an error

metric in the latter category where, similar to,35 we look for candidate directions defined

by admissible multi indices, in which the change in variance is maximised. Hence, for every

admissible multi-index l we compute a corresponding error measure εl, defined as

εl := Varξ [e | Λ ∪ {l}]− Varξ [e | Λ] . (3)

Here, Varξ [e | Λ] is the variance in the ensemble-averaged binding energy due to the uncer-

tain inputs ξ, when evaluated using the points generated by the currently accepted multi

indices in Λ. Likewise, Varξ [e | Λ ∪ {l}] is the variance obtained if candidate multi-index l

were to be accepted.

Note that every index l = (l1, · · · , ld) ∈ Λ constitutes a separate tensor product of 1D

quadrature rules with orders given by l. As noted, the SC expansion in the adaptive case

is therefore constructed as a linear combination of tensor products over the accepted multi-

indices in Λ, i.e.

q(ξ) ≈ q̃(ξ) =
∑
l∈Λ

cl

ml1∑
j1=1

· · ·
mld∑
jd=1

q(ξ
(l)
j ) a

(l1)
j1

(ξ1)⊗ · · · ⊗ a(ld)
jd

(ξd), (4)

where q(ξ
(l)
j ) = q(ξ

(l1)
j1
, · · · , ξ(ld)

jd
), and mli is the number of points generated by a one-

dimensional rule of order li. The coefficients cl are computed as

cl =
1∑

k1=0

· · ·
1∑

kd=0

(−1)|k|1 · χ(l + k), where χ(l) =


1 l ∈ Λl

0 otherwise

; (5)

see19 for details.

What remains is the specification of the type of 1D quadrature rule. In the case of

(anisotropic) sparse grid methods as described here, it is common practice to select a nested
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rule, which has the property that a rule of a given order contains all points generated by that

same rule at lower orders. When taking linear combinations of tensor products built from

nested 1D rules of different order, as in (4), many points will overlap. This leads to a more

efficient sampling plan in higher dimensions. For our calculations we employ the well-known

Clenshaw-Curtis quadrature rule; see e.g.22 Finally, we note that to generate the 1D rules,

EasyVVUQ makes use of the Chaospy library.36

Sobol index calculation

Briefly, the Sobol indices of e (ξ) are global, variance-based measures of sensitivity of the

ensemble-averaged binding energy e with respect to the inputs ξ ∈ Rd.37,38 It allows to

to identify important input parameters, and the indices have an intuitive interpretation.

Let Var [eu] be a so-called partial variance, where the multi-index u can be any subset of

U := {1, 2, · · · , d}. Each partial variance represents the fraction of the total output variance

that can be attributed to the input parameter combination indexed by u. When we normalise

a partial variance with the total variance we obtain the corresponding Sobol index Su:

Su :=
Var [eu]

Var[e]
, (6)

where V[e] =
∑

u⊆U V[eu] is the is the total variance of e.38 Since all partial variances are

positive, the sum of all possible Su equals 1.

The number of all possible subsets u (the power set of U), rises exponentially with

d. In practise however, often only the first-order Sobol indices are computed, i.e. Si with

i ∈ {1, · · · , d}. These measure the variance fraction that can be attributed to each individual

input, and more often than not, are already responsible for the majority of the output

variance, such that the higher-order effects of varying multiple inputs simultaneously is

relatively minor. This is also reflected in our results, see Section S4.
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To compute the Sobol sensitivity indices, we employ the method described in.39 The

general idea is to transform the adaptive SC expansion into a polynomial chaos expansion

(PCE), which facilitates an easy computation of the Sobol indices. As this is already well

documented, and not critical for our discussion, we refer to25,39 for more details.

Uncertainty amplification factor

In,25 we developed a ‘robustness score’ for computational models, under uncertainty in the

input parameters. Here, we modify it slightly to deal with negative in- and outputs. We

base our robustness score on the coefficient of variation, a simple (dimensionless) measure for

variability in some random variable X, defined as the standard deviation over the mean, i.e.

CV (X) := σX/µX . Any forward uncertainty propagation method approximates the first two

moments of the output, and so the output CV is available. Assuming we can (analytically)

compute the first two moments of each input ξi ∈ ξ, i = 1, · · · , d, CV (ξi) := σξi/µξi ∈ R

is also easily computed. As d > 1, we will compute the average variability at the input.

Note that ξ may contain inputs defined on vastly different scales. Likewise, the order of

magnitude between the input and output can also differ significantly. However, since the

CV is a dimensionless quantity, this will not pose a problem. Here, we propose to use the

ratio of the (absolute) CVs, denoted as CVR, as a relative measure of variability between

the input and the output, which in the case of the scalar binding-energy becomes

CV R :=

∣∣∣∣σeµe
∣∣∣∣ /

(
1

d

d∑
i=1

∣∣∣∣σξiµξi

∣∣∣∣
)
. (7)

The absolute value is taken to avoid cancellation of variability. While technically not neces-

sary in the case of NAMD, since all our inputs are positive and the output e is consistently

negative, the current form of (7) is more generally applicable in this fashion.

Note that we do not include the random seed in the computation of the average input
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CV, since e here is the ensemble average over the replicas. In any case it would not make

sense to compute the CV of the seeds, as the mean and variance of the random seeds are

meaningless. Therefore, to still incorporate the effect of aleatoric uncertainty, we compute

the output CV of each replica (CV (ei)) separately. and average these values afterwards. In

this case the CVR becomes

CV R :=
1

S

S∑
s=1

∣∣∣∣σesµes

∣∣∣∣ /
(

1

d

d∑
i=1

∣∣∣∣σξiµξi

∣∣∣∣
)

(8)

where S is the number of random seeds considered, 25 in our case.

The basic idea of (7)-(8) is to say something about the robustness of the code to input

uncertainty, given a user-specified input distribution. Note that Sobol indices are not suited

for this goal. They attribute a fraction of the total output variance to subsets of parameters,

and do not compare the variability observed at the output to the amount of variability

assumed at the inputs. Thus, (7)-(8) tells us to what extent the code amplifies the assumed

input uncertainty, where we define amplification as having a CVR larger than 1. Relative

damping occurs when CV R < 1, which is the case for our NAMD results.

Results and discussion

Binding affinity calculations performed by means of molecular dynamics simulations (using

NAMD) depend on an extensive set of parameters. Exhaustively listing all possible param-

eters, we gathered 175 variables. However, not all these parameters should be included in

the UQ procedure, and we use expert opinion to reduce this set.

16



Dimension reduction

A large number of parameters in the listing are configurational parameters; they control

aspects such as I/O data flow but do not influence the behaviour of the model simulation.

Some parameters are also redundant between different equilibration and simulation phases

of the affinity calculation. After eliminating these inputs, the listing was reduced down to

25 parameters. These remaining parameters can be classified into two groups:

• Group 1: “Physical parameters” which control the thermodynamics of the equilibra-

tion and binding processes; these essentially refer to the duration, the temperature

and the pressure of the simulations (e.g. setTemperature, BerendsenPressureTarget,

time sim1 ).

• Group 2: “Solver parameters” which affect the algorithm used to compute the solution

of the molecular dynamics equations; they modify the actual physics solved as well as

the accuracy of the resolution (e.g. initTemperature eq1, timestep, cutoff ).

From the physical parameters we selected a total of 4 parameters based on our experi-

ence with MD: temperature, pressure, equilibration duration and sampling duration. Solver

parameters were more numerous; there are 21 in total. However, 11 of these parameters are

discrete variables which may not be suited for adaptive sampling methods, depending on

the method used. Moreover, adding these parameters would drastically increase the cost of

the UQ campaign. The 11 excluded parameters include: reassignFreq (frequency to reassign

velocities of atoms to fit set temperature), nonbondedFreq (frequency to reevaluate non-

bonded interactions), fullElectFrequency (frequency to reevaluate electrostatics). Because of

their influence on the solver behaviour, we do not expect these parameters to have a strong

impact on the binding affinity.

For the 14 remaining inputs, we choose uninformative uniform distributions to reflect

our lack of knowledge in the most-likely values of these inputs, with bounds at ±15% from
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their nominal values. Only the temperature is also varied in a reduced range ([280K, 320K])

for physical reasons. These parameters and their uncertain ranges can be found in the

Supplementary Information (see table S1).

Uncertainty quantification of free energy

The parametric configurations of the simulations, hence not the random seeds, are iteratively

refined in directions where a variance-based error metric is largest (see the Methods section).

Each iteration creates an ensemble of model evaluations, which we executed in parallel on

the SuperMUC-NG supercomputer at the Leibniz-Rechenzentrum in Germany. We limited

our study to the consumption of a budget of 2,000,000 CPUhs, which were allocated for this

work. The computations were orchestrated using the VECMA Toolkit (VECMAtk),40 and

specifically the EasyVVUQ library.41,42 Ensembles are chosen to contain a (large) number

N of replicas such that adding one more replica does not change the statistical properties of

the ensemble. The embarassingly parallel computations of ensembles is particularly suited

for modern supercomputers. As NAMD is compute intensive, our strategy consisted of re-

peated refinement of the sampling plan until our computational budget was depleted. This

occurred at 63 samples from the joint input probability distribution function in the reduced

temperature range (123 samples in the full temperature range, see Supplementary Informa-

tion). For each sample, 25 replicas are simulated (using the same 25 seed values every time),

each replica constituting an individual microstate. Their ensemble average corresponds to

the thermodynamic macrostate. As a result, 1575 (3075 in the full temperature range) ES-

MACS workflow executions are completed for the purpose of this analysis. The use of an

ensemble of replicas is standard in the field of UQ, in which a sufficiently large number of

replicas are run concurrently from which reliable statistics can be extracted. Indeed, because

molecular dynamics is intrinsically chaotic, the need to use ensemble methods is fundamental

and holds regardless of the duration of the simulations performed. The number of replicas
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necessary in the ensemble varies from one system to the other and must be determined by

direct investigation. Our previous studies show that, starting from reliable initial structures

such as those obtained from high resolution crystallography experiments with extensive equi-

libration (each replica was separately equilibrated for 2ns in the case of small proteins of

approximately 150 amino acids), accurate and reproducible results can be achieved from

ensemble simulations consisting of 25 replicas with 4ns production runs.4

The binding free energy is the quantity of interest of our UQ, the distribution of which

follows a slightly asymmetric distribution peaking at -34.85kcal/mol (based on the kernel

density estimator of the distribution) with a longer tail for less negative binding energies

(see figure 3.a). The standard deviation of the distribution is 1.63kcal/mol. We also gener-

ate samples of averaged binding energies using bootstrapping, either averaged over replicas or

parametric configurations, to analyse the respective contribution of epistemic and aleatoric

uncertainty. On the one hand, the distribution of averaged binding energies over replicas

(see figure 3.b) – that is for each parametric configuration the average of computed bind-

ing energies over 25 replicas – accounts solely for epistemic uncertainty. The non-normal

distribution of ensemble-averaged energies reveals one peak around -34.36kcal/mol with a

thicker tail for less negative binding energy parametric configurations. The standard de-

viation is 0.45kcal/mol. On the other hand, the distribution of averaged binding energies

over parametric configurations (see figure 3.c) – that is the average of the computed bind-

ing energies over the 63 parametric configurations – accounts purely for aleatoric uncer-

tainty. This distribution manifests a rather symmetric distribution centred around a peak

at -34.35kcal/mol as well. The distribution of parametric-averaged binding energies ap-

pears to be somewhat sharper than the ensemble-averaged ones, with a standard deviation

of 0.31kcal/mol. Nonetheless, the aleatoric uncertainty induces significant variations of the

predicted binding energies. The standard deviation associated with the aleatoric uncertainty

amounts to two-thirds of that associated with epistemic uncertainty. It should be noted how-
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ever that the amount of epistemic uncertainty is directly linked to the assumed variance of

the input distributions, such that the ratio of aleatoric to epistemic uncertainty changes with

the input distribution of the parameters.

Figure 3: Non-normal distributions of computed binding free energies. (a) Distri-
bution of the binding energies computed for each replica of each parametric configuration,
resulting in 1575 samples in total. (b) Distribution of the binding energies averaged over
the 63 parametric configurations for each of the 25 replicas. The distribution shows the
influence of aleatoric uncertainty on the computed binding energies. (c) Distribution of the
binding energies averaged over 25 replicas for each of the 63 parametric configurations. The
distribution shows the influence of epistemic uncertainty on the computed binding energies.
The continuous blue line corresponds to the kernel density estimator for each distribution.

To provide further insights into the influence of aleatoric uncertainty, we investigate the

distribution of binding energies within individual ensembles of replicas for a given parametric
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configuration. In particular, in Figure 4a we show a probability box (p-box)D(e) : R→ [0, 1],

where e denotes the binding energy. Let Fi(e) := P (Ei ≤ e) be the cumulative distribution

function (cdf) of the predicted binding energy when the random seed η is fixed to a given

value ηi, i = 1 · · · 25. The p-box is in this case then defined as the envelope formed by all 25

cdfs:

D(e) := {p ∈ [0, 1] | F (e) ≤ p ≤ F (e)}

F (e) := min
i∈{1,··· ,25}

Fi(e)

F (e) := max
i∈{1,··· ,25}

Fi(e) (9)

A p-box is commonly used to visualise possible outcomes due to a combination of epis-

temic and aleatory uncertainty.43 Figure 4a shows the p-box obtained from 25 empirical cdfs

(ecdfs), each one estimated from 63 binding energy samples at a given random seed. The

slant of each individual ecdf represents the epistemic uncertainty due to the different param-

eter values, whereas as the width of the p-box is governed by aleatoric uncertainty, caused

by non-overlapping ecdfs for different seeds. To extract 95% confidence intervals from the p-

box we can simply form the interval [e, e], corresponding to F (e) = 0.025 and F (e) = 0.975,

which gives us the displayed value of 6.72 kcal/mol. The width of the p-box already indicates

the influence of aleatoric uncertainty. To further illustrate what could happen if we ignore

the aleatoric uncertainty, we highlight two additional ecdfs in Figure 4a. These correspond

to the maximum and minimum 95% confidence interval (CI) found in all 25 individual ecdfs.

Thus, if we had fixed the seed to one of the 25 values we considered, and therefore executed

the parametric UQ analysis without replicas, we could have obtained an estimated 95 %

CI of 4.54 kcal/mol, but a value of 6.51 kcal/mol would also have been possible, which is

roughly a 30% difference. The p-box CI is more conservative as it combines both aleatoric

and epistemic uncertainty.
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To better visualise the spread of the predictions due to the seeds, consider figure 4.b. Each

horizontal line of dots corresponds to one ensemble of replicas, ordered from bottom to top

with increasing values of the mean binding energy of the ensemble. The solid line which links

the mean binding energy of each of these ensembles corresponds to the ecdf of the ensemble-

averaged energy of the 63 parametric configurations simulated. The aleatoric distribution

of binding energies for a given parametric configuration is not constant. The shape of the

distribution evolves with the mean binding energy of the parametric configuration.

Figure 4: Effect of aleatoric uncertainty on the computed binding energy. (a)
The probability box formed by the envelope of 25 ecdfs with fixed seed, with associated 95%
confidence interval (CI, 6.72). In addition, the ecdfs with the largest / smallest (6.51/4.54) in-
dividual CIs are highlighted. (b) Cumulative distribution function of the ensemble-averaged
binding energy of the 63 parametric configurations ensembles of 25 replicas (solid line); the
individual dots on a given horizontal line show the individual binding energies of the replicas
contributing to a given parametric configuration ensemble.

This can be better shown via a more quantitative insight, provided by the analysis of the

shape measures skewness and kurtosis, related to the third and fourth statistical moments

respectively. Skewness characterises the symmetry of a distribution where, in the case of

unimodal distributions, positive values indicate a distribution where the right tail is longer
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than the left. Kurtosis is related to the tails, where higher values indicate the presence of

outliers in the distribution. Often, the so-called ‘excess kurtosis’ is reported rather than the

kurtosis itself, which is defined as kurtosis - 3. Here, 3 is the value of kurtosis for a standard

Gaussian distribution, such that the excess kurtosis measures a deviation with respect to

this distribution. Our results are reported in Figure 5, where we display the skewness and

excess kurtosis, with bootstrap confidence intervals, as a function of the value of the binding

energy averaged over the replicas. For the skewness we make use of a common rule thumb44

to help with the interpretation of the numbers. Skewness values with an absolute magnitude

smaller than 0.5 are said to be approximately symmetric, denoted by region A in Figure

5. Moderately skewed distributions correspond to absolute values in [0.5, 1.0] (region B),

whereas absolute values which are > 1 are said to indicate highly skewed distributions (region

C). Despite large bootstrap confidence intervals, we can still observe a consistent trend, of

(mostly) moderately (positively) skewed distributions for low averaged binding energy, that

moves towards approximately symmetric distributions for higher averaged binding energies.

In addition, we display the probability density function (pdf) of all bootstrap samples on the

right of the figure. The average kurtosis value of this distribution is roughly 0.44, still within

the approximately symmetric region. However, it is also clear that there is a significant

non-zero probability of observing moderately (positively) skewed distributions. The excess

kurtosis is consistently negative, meaning that compared to a normal distribution, the tails

are shorter and thinner. Overall, these results imply the presence of non-normal distributions.

Finally, we note that skewness and kurtosis appear uncorrelated with the box size (see figure

5.d), while they are linearly correlated with the temperature (see figure 5.e).

Our study shows that binding free energy is very sensitive to the temperature. This is

not surprising as free energy is a temperature-dependent quantity according to the van’t

Hoff equation. Reducing the size of molecular dynamics simulation cells is one of the most

frequently used devices to reduce the expense of MD calculations. The effect of box size
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on the predicted thermodynamic and kinetic properties is currently the subject of an on-

going debate. In a recent study, a systematic change was reported for various predicted

thermodynamic properties (averaged over 10 replicas) when the MD simulation box size was

increased.45,46 Another study, however, found that the reported box size dependence was not

reproducible when twice as much ensembles were used.47,48 Although box size is the second

most sensitive parameter that our study reveals (see figure S2), the calculated binding free

energies do not change significantly (within error) when the box size varies (see figure 5.c).

The SI contains more details on the influence of the other parameters when the contributions

to uncertainty arising from the temperature parameter are removed (see figure S3).

Finally, we compute the output variation relative to the mean, compared to the relative

variation assumed at the input (see Table 1). This can be seen as a measure of the amount

that binding affinity calculation either amplifies or damps the assumed uncertainty from the

input to the output. We base this on a measure which involves the ratio of the binding-energy

coefficient of variation (CV (e)), with respect to the average input coefficient of variation

CV (ξ) := 1/d
∑d

i=1 |CV (ξi)|; see the Methods section. Briefly, a coefficient of variation (CV)

is a dimensionless measure of variability, defined as the standard deviation over the mean. We

can compute this for the binding energy e, and each of the d = 14 input parameters ξi, taking

the absolute value to avoid cancellation of variability. When CV R := |CV (e)|/CV (ξ) > 1

we say that the code amplifies input uncertainty, as the relative output variability exceeds

that of the input. Conversely, damping occurs when CV R < 1.

In our UQ campaign, the mean coefficient of input variation is about 8.5%. When consid-

ering ensemble-averaged binding energy estimations (over 25 replicas), the mean coefficient

of variation of the binding affinity is less than 1%, leading to a CVR of 0.11. Such significant

damping of uncertainty occurs when using the ensemble average binding energy as our quan-

tity of interest. We can also consider the CVR when we would not use ensemble averaging,

by computing the mean of the individual binding-energy CVs over the 25 replicas, i.e. by
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Figure 5: In-depth analysis of statistics: a loss of normality. (a) the skewness shape
measure with 90% bootstrap confidence intervals, computed using the 25 replicas, for each
of the 63 values of the ensemble-averaged binding energy. Region A corresponds to approxi-
mately symmetric distributions, region B to moderately skewed, and region C to significantly
skewed distributions. The pdf of all samples is shown on the right. (b) An identical figure
for the excess kurtosis shape measure. The horizontal line denotes the value of a standard
normal distribution. (c) Mean binding energy for all parameters set to default except the
box size (standard deviation as error bars). Skewness and kurtosis shape measures of the
binding energy distributions (25 samples): (d) for all parameters set to default except the
box size; (e) for all parameters set to default except the temperature.
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using CV (e) = 1/25 ·
∑25

i=1 |CV (ei)|. As expected, the observed variability at the output is

larger in this case, with a CV (e) of approximately 5%, leading to a CVR of 0.54. While we

still consider this as a damping of uncertainty, it is roughly five times larger compared to

the case where the binding energy is averaged over the 25 replicas. The use of ensemble of

simulations therefore drastically reduces aleatoric uncertainty within binding affinity calcu-

lations, enabling a five-fold decrease in the overall uncertainty within the model simulation

in this case.

Table 1: Coefficients of variation. The mean coefficient of variation (CV) for the input
and the output and their ratio (CVR), with and without presence of ensemble averaging.
In the model analysis, a CV of roughly 8% is introduced via inputs. The corresponding
output variability is reduced down to 1% by the model when computing ensemble-averaged
binding energies (over 25 replicas). When considering individual simulations, variability in
the binding affinity is only reduced to 5%.

ensemble averaging CV(ξ) CV(e) CVR
yes 0.087 0.0094 0.11
no 0.087 0.047 0.54

We conclude that the current practice of running one or only a small number of replicas

of a molecular dynamics simulation is far from sufficient to control uncertainty as already

indicated in our previous studies.4,49 It does not enable one to control the error in the

quantities of interest, as is achieved in a statistically robust manner by ensembles. We have

previously drawn similar conclusions about the role of stochasticity in alchemical free energy

methods including thermodynamic integration and free energy perturbation.50 Our findings

apply to classical molecular dynamics simulation in general, including to all forms of free

energy estimation made using it.7 The distributions of properties predicted using classical

molecular dynamics cannot be assumed to be Gaussian but need to be assessed in each case,

particularly when long-range interactions are involved.4,7 In general, means and standard

deviations reported from a small number of repeated simulations will not be reliable. In

conclusion, if we wish to produce actionable results from molecular dynamics simulations,
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whatever the predicted quantity of interest, we must make use of ensembles for which one

must invoke modern supercomputers.
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We perform rigorous uncertainty quantification
of the widely used molecular dynamics method.
We show that, while parametric uncertainty is
damped, stochastic uncertainty leads to large er-
rors. Statistically robust results can only be ob-
tained by performing ensembles of many simula-
tions.
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