
HAL Id: hal-04160659
https://hal.science/hal-04160659

Submitted on 12 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The heterogeneous multiscale method applied to
inelastic polymer mechanics

Maxime Vassaux, R A Richardson, P V Coveney

To cite this version:
Maxime Vassaux, R A Richardson, P V Coveney. The heterogeneous multiscale method applied
to inelastic polymer mechanics. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 2019, 377 (2142), pp.20180150. �10.1098/rsta.2018.0150�. �hal-
04160659�

https://hal.science/hal-04160659
https://hal.archives-ouvertes.fr


royalsocietypublishing.org/journal/rsta

Research
Cite this article: Vassaux M, Richardson RA,
Coveney PV. 2019 The heterogeneous
multiscale method applied to inelastic
polymer mechanics. Phil. Trans. R. Soc. A 377:
20180150.
http://dx.doi.org/10.1098/rsta.2018.0150

Accepted: 9 October 2018

One contribution of 11 to a theme issue
‘Multiscale modelling, simulation and
computing: from the desktop to the exascale’.

Subject Areas:
computational biology, computational
physics, computer modelling and simulation

Keywords:
heterogeneous multiscale method, polymer
mechanics, fracture, inelasticity, high
performance computing

Author for correspondence:
P. V. Coveney
e-mail: p.v.coveney@ucl.ac.uk

The heterogeneous multiscale
method applied to inelastic
polymer mechanics
M. Vassaux, R. A. Richardson and P. V. Coveney

Centre for Computational Science, Department of Chemistry,
University College London, 20 Gordon St, WC1H 0AJ London, UK

MV, 0000-0003-2975-0625; RAR, 0000-0002-9984-2720;
PVC, 0000-0002-8787-7256

Mechanisms emerging across multiple scales are
ubiquitous in physics and methods designed
to investigate them are becoming essential. The
heterogeneous multiscale method (HMM) is one of
these, concurrently simulating the different scales
while keeping them separate. Owing to the significant
computational expense, developments of HMM
remain mostly theoretical and applications to physical
problems are scarce. However, HMM is highly
scalable and is well suited for high performance
computing. With the wide availability of multi-
petaflop infrastructures, HMM applications are
becoming practical. Rare applications to mechanics
of materials at low loading amplitudes exist, but are
generally confined to the elastic regime. Beyond that,
where history-dependent, irreversible or nonlinear
mechanisms occur, not only computational cost but
also data management issues arise. The micro-scale
description loses generality, developing a specific
microstructure based on the deformation history,
which implies inter alia that as many microscopic
models as discrete locations in the macroscopic
description must be simulated and stored. Here,
we present a detailed description of the application
of HMM to inelastic mechanics of materials, with
emphasis on the efficiency and accuracy of the
scale-bridging methodology. The method is well
suited to the estimation of macroscopic properties
of polymers (and derived nanocomposites) starting
from knowledge of their atomistic chemical structure.
Through application of the resulting workflow
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to polymer fracture mechanics, we demonstrate deviation in the predicted fracture toughness
relative to a single-scale molecular dynamics approach, thus illustrating the need for such
concurrent multiscale methods in the predictive estimation of macroscopic properties.

This article is part of the theme issue ‘Multiscale modelling, simulation and computing: from
the desktop to the exascale’.

1. Introduction
The design and manufacture of advanced multifunctional materials remains a slow, uncertain,
expensive and time-consuming process. The current approach, largely unchanged in decades,
consists of an extensive trial-and-error process followed by testing and certification. This process
typically takes around 20 years from concept to commercial implementation [1,2]. Computational
models offer, in principle, a serious alternative due to their ability to perform parametric studies
with high efficiency [3,4]. Yet, applicable models still suffer from major drawbacks in terms of
accuracy, chemical specificity and reliability [5,6]. Effective integration within the design process
requires computational models to be certified via appropriate validation and verification, and the
results rendered actionable via uncertainty quantification.

The macroscopic mechanics of solids are highly dependent on structural detail found at each
scale, from the electronic organization at the quantum mechanical level through to the geometry
of the sample at the macroscopic scale. Attempts to estimate macroscopic mechanical properties
using a single model at nanoscopic resolution are quickly rendered intractable by the astronomical
computational cost or limited by unrealistic test set-ups involving, for example, microscopic
material samples or simplistic uniaxial tests. Scale-bridging approaches become essential [7,8].

To render such simulations tractable, so-called hierarchical multiscale models make use of
a loosely coupled scheme in which continuum-level constitutive equations are parametrized
beforehand using lower-level molecular or coarse-grained simulations [9–12]. However, in trying
to reproduce the wide variety of lower-scale mechanisms occurring, these empirically formulated
constitutive equations suffer vast increases in complexity, becoming ill-defined and difficult
to integrate [5,13]. As a consequence, the constitutive equations are reduced to a massively
simplified description of the true behaviour of the material, potentially missing out important
phenomena that appear under non-trivial mechanical states at the microscopic level.

As a (partial) remedy to these problems, computational schemes have been developed
that seamlessly couple multiple scales in a semi-concurrent fashion, implemented through the
heterogeneous multiscale method (HMM) [14–16]. A similar scheme built on two finite-element
models is the finite-element squared (FE2) method [17,18]. The scheme has been classified as
semi-concurrent [19] because the multiple models are run in parallel but solved separately, in
contradistinction to concurrent methods which embed a discrete and a continuum description
within a single system [20,21]. HMM and other semi-concurrent methodologies have the benefit
of being extremely scalable, as the lower-scale models are independent of each other and can
therefore be simulated in parallel. For example, one may perform thousands of molecular
dynamics (MD) simulations (representing the lower-scale system) simultaneously coordinated
by an upper-scale model.

Owing to the increases in the computational power and parallelism available on the biggest
supercomputers, as well as sophisticated computational workflows [22,23], such computational
methods that were unrealistic only a few years ago may now be used to assess the mechanical
properties of solids in an engineering context, while retaining atomistic-level chemical specificity.
Nevertheless, implementations of HMM bridging such scales [24–27] are rare and have, to
date, been limited to elastic mechanics. We propose here modifications to the standard HMM
implementation to capture history-dependent mechanical behaviour, including nonlinear and
irreversible mechanisms. In an attempt to analyse or predict mechanical properties related
to failure, fatigue, energy dissipation (and many other situations), capturing these inelastic
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mechanisms is of the utmost importance. We present these enhancements to the HMM workflow
with emphasis on data transfer between scales and data management of single-scale models.
We then demonstrate the benefits of such an approach to the quantification of macroscopic
mechanical properties, such as toughness, as opposed to those derived from single-scale atomistic
approaches (e.g. [28–31]).

The developments presented here are applied to the two-scale modelling of thermoset
polymers, relying on a MD [32] description of the material at the lower, atomistic scale and a
finite-element method (FEM) [33,34] description at the upper, continuum scale. We explore in
detail the consequences of solving inelastic mechanics on the simulation of the atomistic model.

2. Single-scale models
The two single-scale models are orchestrated in a cyclic dynamic fashion (figure 1). Each iteration
(time-step) of the continuum model requires the parallel execution of a large number of atomistic-
level models nt

md with variable execution time.
The atomistic models are simulated using all-atom MD [35], a method that integrates Newton’s

equations of motion (2.1) for a system of individually resolved atoms:

− ∇U
(
ra

i
) = ma

i
d2ra

i
dt2 (2.1)

with ra
i the displacements of the atom i, U the potential energy of the thermodynamic ensemble,

ma
i the mass of the atom i of the atomic model.

In the present case, for temperature control, stochastic equations of Langevin dynamics (2.2)
are solved:

− ∇U
(
ra

i
) − γ

dra
i

dt
+

√
2γ kBTR (t) = ma

i
d2ra

i
dt2 (2.2)

with γ a damping parameter, T the temperature of the thermodynamic ensemble, kB the
Boltzmann constant and R(t) a stationary Gaussian process with a zero time average. The degrees
of freedom of the atomistic system ra

i are the displacements of the particles representing the atoms,
subject to constraints imposed by the molecular structure.

We simulate the system as a canonical ensemble (NVT), which conserves the number of atoms
(N), and fixes the volume (V) and temperature (T) of the system. The atomistic model is initialized
in its most recent configuration of atoms. As we deal with inelastic mechanics, the system cannot
be started from an equilibrium configuration, as the history must be preserved. Updating the
atomistic mechanical state is performed by deforming the system box according to the strain
tensor ε provided by the continuum model. The volume is varied by applying a constant strain
rate ε̇a on the system, which is chosen as a function of the characteristic relaxation time τa of
the material (this will be the object of further discussion in the following sections). As a result,
the number of time-steps to perform in each atomistic model simulation will, in general, be
directly proportional to the amplitude of the applied deformation (the length of time-step being
constant). Coarse-grained MD is not considered in the present study, as the process of coarse-
graining the atomistic system requires recent parametrization techniques to capture mechanisms
of interest such as fracture [36]. However, all-atom MD models could easily be replaced by coarse-
grained ones.

The continuum system is discretized using a generally unstructured mesh on which the FEM is
used to solve the linear momentum conservation equation for a locally homogeneous solid (2.3):

∇σ (x) + ρf (x) = ρ
d2x
dt2 (2.3)

with ρ the density of the continuum and f the volumetric forces.
Boundary conditions are applied on the position of nodes of the mesh of the model x, namely

the nodal displacements or on the nodal forces. The system is parametrized by the local strains
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Figure 1. Global workflow of the multiscale model based on HMM. The building blocks of the workflow include: a continuum
(FEM) model (in blue), an atomistic (MD) model (in red) and a scale-bridging coupling procedure based on homogenization
(in violet); the cyclic coupling procedure involves a dynamic number of atomistic model simulations ntmd at each time-step t.
(Online version in colour.)

(represented by the second-order tensors) or the local stresses. Classically, the strains and stresses
are linked by means of constitutive equations, but in the present case that relation is established
via the response of atomistic models.

3. Scale-bridging for inelastic mechanics
The cornerstone of the proposed work relies on a scale-bridging strategy that benefits from
the separation of time and spatial scales. Moreover, the proposed strategy includes efficient
management of the data exchanged between the single-scale models and a tunable sampling
methodology for the atomistic simulations.

(a) Separation of scales
Scale separation is a fundamental criterion for the applicability of HMM, allowing the mechanics
of the atomistic scale (at a given time and location within the continuum model) to be analysed at
greatly reduced cost [37].

In spatial terms, it is not necessary to compute over the entire volume of the associated
finite-element cell, but rather over a greatly reduced subset of that, corresponding to the scale
over which the system can be treated as effectively homogeneous. Equivalently, these are the
dimensions for which the volume simulated is far greater than the largest heterogeneous feature
at that scale. Boundary conditions are commonly applied to this reduced system, enforcing
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Figure 2. (a) Periodic boundary conditions applied to an atomistic system encompassing a few dimensions of the longest
heterogeneity la avoid the simulation of the atomistic model on the whole volume of a cell of the mesh of the continuum
system; (b) asynchronous coupling of atomistic and continuum time scales shortens the evolution of the atomistic system to
durations of the order of the atomistic relaxation time τa. (a) Spatial scale-bridging, (b) time scale-bridging.

this assumption of infinite replicability. In polymer systems, the dimension of the largest
heterogeneity relates to the entanglement length in the case of thermoplastics, and to the distance
between cross-links in the case of thermosets. The required dimensions for a simulation of
thermosets are therefore far smaller in general than those required in the case of thermoplastic
polymers. An indirect consequence of the spatial scale separation is that the volume of the
continuum system is simulated by many independent atomistic models. These simulations
are coordinated at each iteration of the continuum model. As a result, the overall simulation
workflow is highly scalable, as all the atomistic model simulations required at a given time-step
can be performed in parallel and independently (figures 2 and 3).

Similarly, with regard to separation of time scales, the atomistic dynamics does not need to be
simulated for the length of an entire time-step of the macroscale (continuum) model, but rather
only until the system relaxes and the stress tensor becomes stationary on average . As a direct
consequence of considering inelastic mechanics, the time τa to reach a relaxed state may become
large, especially for viscoelastic materials such as polymers, even at small scales. Once again,
the type of polymer will influence greatly the time to reach convergence. The introduction of
cross-links greatly impedes long, diffusive mechanisms such as reptation, thereby accelerating
the relaxation. The strain rate is usually the prevailing factor in the case of polymer mechanics.
ε̇c is necessarily not preserved through the atomistic models, but convergence of the constitutive
behaviour (that is the stress–strain relationship) to the quasi-static case can be found at relatively
high ε̇a.
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Figure 3. Comparison of the structure of (a) a thermoplastic and (b) a thermoset polymer; for a given polymer chain, the
process of cross-linking reduces the atomistic characteristic length la of the system from the entanglement length to thedistance
between two cross-links, and largely inhibits the sliding of chains past each other (by a reptationmechanism) therefore reducing
relaxation time (basedon the illustrationbyHendersonC., 2015, CC0). The constitutivebehaviour of (c) short-chainpolyethylene,
a thermoplastic polymer, and (d) TGMDA epoxy, a thermoset polymer, for different strain rates ε̇a; decreasing the strain rate ε̇a
ceases to have an influence comparatively earlier for epoxy resin than for polyethylene, convergence of the behaviour appearing
to be hardly reached for polyethylene in the range of test strain rates. (a) Polyethylene reptation length, (b) epoxy cross-link
distance, (c) polyethylene uniaxial behaviour and (d) epoxy uniaxial behaviour.

The equations (3.1) illustrate the constraints on the time Ta and spatial Da dimensions
over which to simulate the atomistic system, depending on the relaxation time τa and size of
heterogeneities la at the atomistic scale:

la � Da, τa � Ta

and gx = �xc

Da
, gt = �tc

Ta

⎫⎪⎬
⎪⎭

(3.1)

They also define the computational reduction in time gt and space gx with respect to the
atomistic dimensions Ta and Da, and the continuum scale time �tc and spatial �xc increments.

It is through the concept of separation of scales that the HMM scheme achieves a major
reduction in computational cost. With regard to simulating the whole volume of the continuum
system at an atomic resolution (both in time and in space), the computations are reduced twofold.
First, the reduction in time is on the order of the ratio of the relaxation time of the atomistic system
to the time-step of the continuum model. And second, the reduction in space is on the order of
the ratio of the characteristic length of the heterogeneities in the atomistic system to the spatial
discretization length of the continuum model. The only overhead incurred by the HMM is then
the simulation of the continuum model over an overlapping spatio-temporal domain. But the cost
of the simulation of the continuum model is negligible compared to the cost of the many atomistic
models; therefore, this is never a limitation of HMM.
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(b) Data management
In this two-level scheme, the upper and lower scales evolve separately but must exchange
information on a regular basis. Any given point in the continuum model has its own, local
mechanical history, necessitating (in general) a unique instance (or set of instances) of the
atomistic model representing the molecular-level mechanics associated with that region. This
prevents the reconstruction of the atomistic system in the current mechanical state every time
an atomistic model needs to be simulated [38,39]. In the finite-element discretization of this
continuum, these points correspond to the quadrature points q in each finite element. The local
mechanical states may exhibit irreversible and nonlinear behaviour (such as cracking or plastic
deformation) necessitating the local state to persist between successive simulations at a given
location. This means the most recent configuration of atoms must be stored for each q, so that it
may be used as the starting point for any future atomistic simulations required during evolution
of the continuum model. As the continuum model algorithm is incremental in time, we avoid the
need to store the complete configurational history of each atomistic model, instead only retaining
the mechanical state at the end of the most recent step.

The combined effect of this is that the atomistic models simulate essentially continuous
trajectories, but under varying boundary conditions determined by solving the balance of forces
at the continuum level.

(c) Data transfer across scales
Now to be more explicit, what we have so far referred to as the ‘mechanical state’ can be described
via two standard variables of continuum mechanics: the infinitesimal strain ε and the Cauchy
stress σ tensors. These variables constitute the sole information to be transferred between the two
scales. In our implementation, ε is used as the input to the atomistic simulation, engendering a
deformation to the new state (figure 4). The resulting change in pressure, and more specifically
the virial form of σ (3.2) is then communicated back to the continuum model so that the balance
of forces can be computed from the integral of σ over the whole continuum volume. Through this
cyclic coupling, the time evolution of both the continuum and atomistic scale models is linked.

The virial form of σ (3.2):

〈
σij

〉 =
〈∑Na

k=0 ma
kv

a
k,iv

a
k,j

〉

Va
+

〈∑Na

k=0 ra
k,if

a
k,j

〉

Va
(3.2)

is defined as the sum of the time-average of a kinetic term which is a function of the mass ma
i of

the particle i and the velocity va
k,i of the particle i in direction k and the time-average of a potential

term which is a function of the position ra
i and the exerted force f a

i on the particle i of the Na

particles of the atomistic system of volume Va.
To simplify the exchange of information between the scales, we have made a few assumptions.

As we apply a thermostat at the atomistic scale, the temperature is controlled and constant
throughout the simulation; thus the effect of temperature gradients at the continuum scale is
not included. In short, we assume that the atomistic description is always at local equilibrium.
In the case of large inelastic deformations, this could become an issue, as heat is released due
to friction or bond dissociation mechanisms. This effect could be mitigated by testing set-up
characteristics, such as structures with limited bulk. Extending the current continuum model
to account for complete thermodynamics could be a viable option because of the very small
computational cost of macroscale versus micro-scale simulations. Also, there is no mass flow in
our model, meaning the mass in each finite-element cell is conserved (and is constant at each q),
hence the number of atoms is constant in each atomistic model. Indeed, the rate of deformation of
the finite-element cells is assumed to be much slower than the time needed to relax the atomistic
simulations. Consequently, we do not enforce that ε̇a be equal to ε̇c, and allow both scales to evolve
on their own time scales. In the case of a much greater ε̇c, with the finite-element cell deforming
faster than τa, then this assumption would need to be revisited.
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Figure4. Data interactions between theupper (continuum)model and lower (atomistic)models simulated for eachquadrature
point q of the mesh of the continuum; the projected strain tensor ε is passed down, while the homogenized stress tensor σ is
transferred up. The local densityρ and the strain rate ε̇c are constants of the continuummodel, while the number of atoms Na,
the temperature T and the strain rate ε̇a are constants of the atomistic model. (Online version in colour.)

It is relatively trivial to communicate ε at a given quadrature point to the corresponding
atomistic model via a boundary condition (ε is an internal variable of the continuum model).
However, the reverse coupling—transferring the resultant σ back up to the continuum model—is
a more complicated task (and is described below). The stress sampling method employed is an
average of the mechanical state over the whole atomistic system (see equation (3.2)). In turn, such
a method is less sensitive to fluctuations and therefore converges rapidly. However, it enforces
homogeneity on the sampled stress state. More sophisticated and tightly coupled techniques
exist for bridging from discrete to continuum medium [40,41] which capture stress heterogeneity
and avoid spurious stress reflection although they suffer from the requirement of much greater
computational costs compared to HMM.

The desired deformation (corresponding to ε obtained from the upper model) is applied to
the atomistic system via a gradual affine transformation of ra

i (option ‘remap x’ in LAMMPS).
This is performed such that the increment of strain applied during the evolution of the atomistic
model matches the largest ε̇a possible while enabling the system to remain relaxed. That is to say,
ε̇a is sufficiently small such that the deformation is applied over a period far longer than τa. τa is
expected to be orders of magnitude smaller than �tc, in order for the assumption of the separation
of scales to be valid, therefore ε̇a is generally much larger than ε̇c.

(d) Sampling the stress tensor
The stress tensor σ at a given location in the continuum model is derived from the atomistic
model. Unlike in the case of the strain tensor ε, σ is not an internal variable of the atomistic
model, and a homogenization procedure must therefore be performed on the virial (3.2). Owing
to fluctuations in the motion of the atoms, this homogenization procedure must be performed
not only across space, but also across time. σ is computed once the system has become stationary
following its deformation. Fixed dimensions, number of atoms and temperature (i.e. the use of
the NVT ensemble in LAMMPS) are applied throughout the homogenization procedure. Spatial
homogenization is performed over the entire sample , assuming it is free of finite-size effects and
simulated using periodic boundary conditions.

Time homogenization (or sampling), however, is a more arbitrary procedure. There exist many
approaches in the literature on this subject [42,43]. Ideally, one would allow the atomistic system
to evolve under the given constraints (NVT) for a sufficiently long time such that all the possible
configurations are observed. To render this computationally tractable, we choose to perform an
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Figure 5. Stress sampling procedure parametrization; (a) fluctuation of the pressure of a single replica of the atomistic system
at 10% uniaxial stretch over a period of 20 picoseconds, the average pressure is shown in green; (b) the autocorrelation function
of the pressure time series shown in (a), the red dotted line showing the value of the autocorrelation time length; (c) the
evolution of the confidence interval of the time-averaged pressure with respect to the duration of sampling, the red line
showing the optimal duration sampling; (d) the evolution of the confidence interval of the ensemble averaged pressure over
the optimal duration with respect to the number of replicas nr , the red line showing the optimal sampling ensemble size. (a)
Pressure fluctuation, (b) pressure autocorrelation function, (c) time averaging length and (d) ensemble size. (Online version
in colour.)

ensemble averaging of the σ over a shorter period of time [44,45]. Instead of running a single
simulation per q, we instead run several replicas, and perform time averaging on each of them for
a period proportional to the autocorrelation length of the system’s pressure.

To completely define the homogenization procedure, we must now determine the appropriate
number of replicas nr to simulate and the duration (as a function of the autocorrelation length)
over which to average. This is determined by observing the evolution of the uncertainty (95%
confidence interval) on the homogenized pressure (i) in a single replica, to determine the optimal
duration of sampling (figure 5c), and given this optimal duration (ii) in an ensemble of replicas,
to determine the optimal nr (figure 5d). We adapt these two parameters to reach a sufficient
accuracy. The confidence interval appears to reduce as a power law of the sampling duration
and nr. To select the optimal trade-off between accuracy and computational cost, we choose values
corresponding to the point of maximum curvature of the power laws, beyond which we consider
that the gain in accuracy is not worth the increase of cost of computation (in particular with regard
to the nr).

The homogenization procedure is performed for different mechanical states (figure 6). Axial
deformations of 10% and 50% described above are applied to the tetra-functional epoxy system
and compared with the same system at equilibrium (0% deformation). As the system is stretched,
the duration of sampling can be slightly longer. Up to 50%, the deformation reorganizes the
polymer structure in a looser way, growing voids and reducing friction, with geometrical
constraints becoming weaker. Also, the number of replicas nr needed to reach a given confidence
interval increases drastically. At high strains, mechanical instabilities can cause large differences
in the response of different replicas to an identical mechanical state. To ensure a certain accuracy
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Figure 6. Influence of the mechanical state on the sampling duration (a) and ensemble size (b) for TGMDA epoxy; stretching
the epoxy system reduces local geometrical constraints such as friction between the strands, in consequence longer sampling
duration is needed and variations of pressure among replicas are much larger. (a) Sampling duration and (b) ensemble size.

of the predicted σ , it may become necessary to increase the nr when simulating at extreme
mechanical loads.

(e) Heterogeneous multiscale method-oriented single-scale model considerations
Despite most of the subtleties of the implementation of HMM lying in the homogenization
procedure, it is worth commenting on aspects of the single-scale models which can impact the
efficiency of the global workflow.

(i) Atomic interaction potential parametrization

On the atomistic level, the choice of the force field has an important impact on the computational
cost of the overall model, and is selected with consideration of the quantities of interest at
the continuum level. The main distinction we make here is that between reactive and non-
reactive force fields. Depending on the material and the mechanisms we need to capture at the
continuum level, one may choose to employ a reactive force field. Reactive force fields, such as
ReaxFF [46], EAM [47] and AIREBO [48], enable the topography of covalent bonds to evolve
throughout a single simulation of the atomistic model. However, this enhancement comes at the
price of important overheads—the authors of the ReaxFF claim an increase of 10–50 times of
the computational costs [49]. In a comparison of two simulations of a uniaxially stretched epoxy
resin system of approximately 40 000 atoms with a Nosé–Hoover thermostat, one with the non-
reactive OPLS force field and the other with ReaxFF, we observed on average a 10-fold increase in
the time to compute a single time-step with ReaxFF. Furthermore, the typical OPLS time-step of
1–2 fs needed to be reduced to 0.5 fs to ensure dynamic stability of the simulation with ReaxFF,
leading to a 20–40-fold slow down overall. Such significant overheads must be taken into account
when designing these multiscale virtual experiments.

In the case of thermoset polymers, it is not possible to capture the mechanisms leading
to failure of the material without modelling bond breakage, as conformational changes are
constrained by the cross-linking. Reactive force fields are therefore necessary and ReaxFF
is employed in §4. Conversely, in the case of thermoplastic polymers, failure occurs via
disentanglement and sliding of chains. Rupture of bonds may not be the determining factor in
such cases.

(ii) Continuummodel solution algorithm

At the level of the continuum model, the time and spatial discretization will naturally influence
the computational expense, as it impacts directly nt

md. However, the choice of solution algorithm
also plays a determining, though more intricate, role.
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Figure 7. Solving quasi-static equilibrium of continuummechanics implies evolving the continuum system using the stiffness
matrix K of the associated linearized system of equations; which relies on the initial estimation of C̃ at equilibrium (blue) or on
updated estimations all along the deformation path using the atomistic system (red); reducing the frequency update leads to
larger error on the estimation of u in between prediction-correction steps. (Online version in colour.)

To predict the displacements of the nodes of the mesh of the continuum model u (thus
determining the local strains to be transferred to the atomistic models), the evolution of the
continuum system may be handled either quasi-statically (3.3):

− ∇σ (u) = ρf (3.3)

or dynamically (3.4):

∇σ (u) + ρf = ρ
∂2u
∂t2 . (3.4)

These two main options have different requirements with respect to the atomistic system.
Solving for static equilibrium involves inverting the relation between external and internal

forces of the continuum system. Internal forces can be expressed as a linear function of u, and a
global stiffness matrix K (3.5):

ut+1 = K−1 Ft+1
e − Ft

e
�tc

(3.5)

with Fe the external nodal forces applied on the discretized continuum.
The global stiffness matrix depends directly on C̃ of the material in its current state. Unlike

the mass properties, C̃ varies as the atomistic system evolves, and inelastic mechanisms occur
such as covalent bond breaking or chain disentanglement. Therefore, the stiffness matrix needs to
be recomputed frequently to avoid accumulation of error during the prediction of displacements
(figure 7), while the mass matrix M is only assembled once, initially. As discussed in section (3.e.i),
the evaluation of C̃ carries a significant cost, and reducing the frequency of their calculation
is essential to the feasibility of the overall simulation. Another potential speed-up is to only
compute an approximation of C̃ derived from the interatomic potential expression omitting the
stress fluctuation term [27].

Solving for dynamic equilibrium relies on methods such as the Euler forward or backward
schemes. The force balance is expressed as a function of the accelerations a, and this relation is
then inverted to obtain accelerations (3.6):

at+1 = M−1 Ft+1
e − Ft

e
�tc

. (3.6)
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In turn, the node velocities v and u are successively derived. The solution algorithm only requires
knowledge of the mass properties of the continuum system, which have the benefit of being
stationary (due to the zero mass flow condition). The mass matrix of the system, inverted to obtain
the nodal accelerations, is built only once during the initialization stages of the simulation, and
using the masses of the atomistic systems.

Consequently, as part of an HMM, solving dynamic equilibrium is rather more convenient,
although several drawbacks persist. For example, the time and space discretization constraints
necessary to ensure stability of integration may, in turn, increase the sum of nt

md. Classically,
stability is ensured by enforcing the Courant–Friedrichs–Lewy condition [50] (3.7):

�xc

�tc
< ‖v‖l2. (3.7)

4. Prediction of fracture toughness informed by chemical composition
Fracture toughness is used here as a classic example of a mechanical property that is of
utmost importance to engineers when looking for new structural materials. The evaluation of
fracture toughness of a new material is typically performed experimentally by means of what
is called a ‘compact-tension’ test following ASTM International Standards [51] (ASTM/E1820).
The geometry of the test is specifically designed to trigger the appearance of a single crack in the
structure. The dimensions of the compact-tension test specimen are typically of the order of a few
centimetres, while the load is applied over a few seconds (figure 8).

When considering a chemically specific atomistic description of the material to be
characterized, in this case an epoxy resin, the testing set-up to determine the fracture toughness
must be simplified as the time and space dimensions of the ASTM test cannot be computed at
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atomic resolution. Fortunately, fracture toughness is defined as the energy required to split a piece
of material in two. In all-atom MD studies of fracture properties, the ASTM experimental set-up
is often simplified to a uniaxial tension test performed on a cubic specimen a few nanometres
long, over a few nanoseconds [28–31]. Leaving aside the limitations of performing such a test
over very short time scales, and therefore missing time-dependent mechanisms characteristic at
the microsecond scale or above, we focus here on the validity of the simplification of the ASTM
compact-tension test as a uniaxial tension test. We compare the local response of the material
characterized with the two tension test set-ups. For the compact tension set-up, we focus on a cell
located at the notch tip (figure 8). The TGMDA epoxy is used as the material for comparison. In
both set-ups, ε̇a is a chosen set according to the convergence value in figure 5, namely 0.0001 fs−1.
Similarly, the number of replicas and the stress sampling time are set as prescribed, respectively,
in figures 5d and 5c, that is six replicas and 3 ps.

For the simple case of a single-scale atomistic MD simulation, the only non-negligible strain
component lies in the direction of loading (figure 9a), and residual strains are observed laterally.
However, in the HMM case, the deformation of the atomistic model is continuously informed
by the evolution of the macroscopic continuum model, i.e. the deformation at the notch tip of
the compact tension test (figure 8). A different, complex mechanical state is therefore observed
(figure 9b) involving bi-axial tension and shearing. These diverging applied strains lead to
different apparent responses of the material in the orthogonal direction to the failure plane. The
evolutions of the stress–strain relation for the two set-ups are compared in figure 9c. Both set-ups
exhibit the same qualitative features: a short elastic regime followed by yielding, hardening and
brittle failure at very large strains. However, quantitatively these inelastic events occur within a
shorter strain range in the case of the compact tension test. Correspondingly, the HMM simulation
of the compact tension test predicts the apparent fracture energy to be significantly lower.

The divergence of strains applied in the two set-ups has additional implications when
observing the conformations of the resins at the onset of fracture, as shown in figure 10. The epoxy
network under uniaxial tension exhibits localized void growth leading to a single continuous
crack, orthogonal to the tension direction (figure 10a). Conversely, under the deformation
conditions at the notch tip of the compact tension set-up, the observed void growth in the epoxy
network is more dispersed (figure 10b). The resulting fracture pattern is less clearly defined.
One can distinguish two competing cracks, orthogonal to the two tension directions. The HMM
captures different local failure mechanisms, which are responsible for the differences in stress–
strain behaviour observed above. Appropriately emulating the set-up of the standard testing
procedure is therefore indispensible for accurate macroscopic property prediction, and would
be difficult to reproduce efficiently without a multiscale approach.

Given the importance of accurately determining the local strain evolution through
consideration of the broader balance of forces further afield, one might consider integrating
the mechanics of the compact tension test using a hierarchical multiscale approach to avoid
numerous simulations of the atomistic model. As such, one would miss the opportunity to
observe the local mechanisms explaining the response of the material (void growth, in the present
case). Additionally, one would require a mechanically accurate and chemically specific set of
constitutive equations relating σ and ε. Constitutive models, being purely phenomenological and
lacking numerical robustness, must often be formulated subject to supplementary constraints.
An efficient and physically justified constraint can be to enforce that the constitutive equation be
thermodynamically admissible [52]. This requires σ to derive from a convex potential and the
dissipated energy to increase monotonically. The need for robustness has significantly limited the
complexity of such constitutive models, leaving them only able to reproduce relatively simple
mechanisms such as isotropic damage (4.1) [53] or plasticity [54,55]:

σij = (1 − D)Eεij

and D = f (〈ε〉+)

⎫⎬
⎭ (4.1)
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tension test (a) the continuum strain tensor is purely diagonal; while in a compact tension test (b) the continuum strain tensor is
rather bi-dimensional comprising tension in two directions and shearing in the same plane; in turn, the constitutive behaviour
(c) in the direction of failure (normal to the crack plane) displays different yield, strength and energy dissipation; the epoxy resin
appears much tougher when loaded in a uniaxial tension test. (a) Uniaxial tension strain evolution, (b) compact tension strain
evolution, (c) stress–strain relation.

with D the scalar damage variable, varying from 0 to 1 and reproducing the level of degradation
of the material, and E the Young modulus of the pristine material; 〈.〉+ is the positive part of a
given matrix, computed as the positive part of the eigenvalues.

Figure 9b illustrates how complex the actual constitutive behaviour can be, and how simple
isotropic models would be unsatisfactory. Indeed, constitutive behaviour informed by processes
at the atomistic scale would comprise anisotropic yield, hardening and softening. Furthermore,
chemical specificity is poorly captured in the constitutive equation due to the difficulty of
estimating parameters that often lack direct physical meaning (e.g. the parameters in damage
models, which are standard and robust models designed to reproduce fracture in a continuum
model).

5. Computational workflow
Keeping track of inelastic mechanisms requires storage of the (history-dependent) current state
of the material at each spatial location. As constitutive behaviour is handled via atomistic
simulations, the continuum level need only know the current strain and stress tensors at each
q. Conversely, at the atomistic level, the requirements imposed by inelastic mechanics can be
more cumbersome. History dependency implies that the atomistic system must be brought to the
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Figure 10. Conformations of the epoxy at the onset of fracture under uniaxial tension boundary conditions (a) and under
compact tension boundary conditions applied using theHMM(b), and at equilibrium (c) for reference. The deformations applied
in (a) and (b) correspond to the strain tensors shown in figure 9. These configurations are obtained from the same replica of the
atomistic systemwhich contains 38 611 atoms. The carbon atoms appear in grey, the nitrogen atoms in yellow, the oxygen atoms
in red and the hydrogen atoms in pink. The two tension set-up displays highly contrasted conformational changes in the final
state of the atomistic system, in particular void growth ismore dispersedwith the compact tension set-up, potentially exhibiting
two orthogonal crack planes.

desired mechanical state, with the exact ε̇a and following the exact straining trajectory, otherwise
different current mechanical state could result. Evolving the atomistic system with a non-arbitrary
ε̇a is expensive, and it rapidly becomes impossible to reach the current mechanical state starting
from the initial one. Consequently, the most recent state of the atomistic system computed for each
integration point of the continuum model must be stored. This amounts to a significant trade-off
between memory and computational cost.

The resulting HMM workflow is distributed across many cores and can display significant
load-imbalance. The workflow is divided into a single continuum model and multiple atomistic
models. At any given time-step, evolving the continuum model is generally far less expensive
than evolving one of the many atomistic models (being of the order of 0.1% to 1% of the
computational effort). The continuum and atomistic models are evolved alternatively, but the
atomistic models themselves are run in parallel, drastically improving the scalability of the
method. Nonetheless, there is a highly variable difference in resource requirements between
continuum and atomistic simulation phases. This might justify performing the simulation of the
continuum model on a separate smaller resource. In turn, we would avoid idleness of a large part
of the total allocation when the continuum model is evolved. nt

md can be assumed to be constant,
but with individual execution times determined by the norm of the applied strain on the atomistic
system (which may be zero). As such, efficient scheduling of the many atomistic simulations is
non-trivial, and can involve allocating different numbers of cores to different simulations in an
attempt to achieve (approximately) equal runtime. This problem could be tackled with the help
of resource optimization libraries, which efficiently schedule each atomistic model simulation
by taking into consideration queueing time, execution time and energy consumption across
distributed resources [22].
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6. Conclusion
We have described a HMM implementation suited for the study of nonlinear irreversible
macroscopic mechanisms and its rigorous testing and application to polymer thermosets. We
have discussed in detail the resulting computational workflow and associated numerical tools to
solve multiscale problems encompassing atomistic and continuum descriptions of the material.
We described an implementation to determine the sampling requirements for homogenization of
the material behaviour at the atomistic level and the transfer of the associated information to the
continuum level.

Via an application to the simulation of the measurement of the fracture properties of
an epoxy resin, we illustrate the benefits of the HMM relative to a single-scale atomistic
approach. Unlike single-scale or even hierarchical multiscale models, our multiscale approach
efficiently handles the complexity induced by the local mechanical behaviour of the material,
while integrating the influence of the boundary conditions imposed by the testing set-up
at the engineering scale. We have shown a significant quantitative difference in stress–
strain response and fracture toughness predicted by a purely single-scale (MD) approach and
that predicted by our HMM implementation. Simulated degradation mechanisms, such as
void growth, also differ substantially. This demonstrates the necessity of using a concurrent
multiscale approach for accurate and chemically specific prediction of mechanical properties at
the macroscale.
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Glossary
Da spatial length of an atomistic system.
D scalar damage variable of an isotropic damage constitutive law.
E Young modulus as defined by Hooke’s law.
Na number of particles in the atomistic model.
Ta time duration of an atomistic model simulation.
T ensemble temperature of the atomistic system.
U ensemble potential energy of the atomistic system.
Va volume of an atomistic system.
�tc time duration of a time-step of continuum model incremental solution

algorithm.
�xc spatial length of a finite-element cell of the mesh of the continuum model.
Fe external forces of the nodes of the mesh of the continuum model.
R(t) a stationary Gaussian process with a zero time average introduced by

Langevin dynamics.
a accelerations of the nodes of the mesh of the continuum model.
f a

i force vector of the particles in the atomistic model.
f local volumic forces applied to the continuum system.
ra

i displacement vector of the particles in the atomistic model.
u displacements of the nodes of the mesh of the continuum model.
v velocities of the nodes of the mesh of the continuum model.
x positions of the nodes of the mesh of the continuum model.
ε infinitesimal strain tensor.
σ Cauchy stress tensor.
ε̇a norm of the strain rate tensor of the atomistic system.
ε̇c norm of the strain rate tensor of the continuum system.
γ damping parameter introduced by Langevin dynamics.
K global stiffness of the finite-element mesh of the continuum model.
M global mass of the finite-element mesh of the continuum model.
ρ local density of the continuum system.
τa characteristic time of the atomistic system.
C̃ tangent (or instantaneous) fourth-order stiffness tensor.
gt scale separation computational gain in time.
gx scale separation computational gain in space.
kB Boltzmann constant.
la characteristic length of the atomistic system.
ma

i masses of the particles in the atomistic model.
nr number of replicas of the atomistic system.
nt

md number of atomistic simulations at a given time-step t.
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q quadrature/integration points of the mesh of the continuum model.
va

k,i velocities of the particles in the atomistic model.
FEM finite-element method.
HMM heterogeneous multiscale method.
MD molecular dynamics.
TGMDA tetraglycidyl methylene dianiline.
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