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ABSTRACT

Context. In the next decade, many optical surveys will aim to answer the question of the nature of dark energy by measuring its
equation-of-state parameter at the per mill level. This requires trusting the photometric calibration of the survey with a precision
never reached so far on many sources of systematic uncertainties. The measurement of the on-site atmospheric transmission for each
exposure, or for each season or for the full survey on average, can help reach the per mill precision for the magnitudes.
Aims. This work aims at proving the ability to use slitless spectroscopy for standard-star spectrophotometry and its use to monitor on-
site atmospheric transmission as needed, for example, by the Vera C. Rubin Observatory Legacy Survey of Space and Time supernova
cosmology program. We fully deal with the case of a disperser in the filter wheel, which is the configuration chosen in the Rubin
Auxiliary Telescope.
Methods. The theoretical basis of slitless spectrophotometry is at the heart of our forward-model approach to extract spectroscopic
information from slitless data. We developed a publicly available software called Spectractor, which implements each ingredient of
the model and finally performs a fit of a spectrogram model directly on image data to obtain the spectrum.
Results. We show through simulations that our model allows us to understand the structure of spectrophotometric exposures. We also
demonstrate its use on real data by solving specific issues and illustrating that our procedure allows the improvement of the model
describing the data. Finally, we discuss how this approach can be used to directly extract atmospheric transmission parameters from
the data and thus provide the base for on-site atmosphere monitoring. We show the efficiency of the procedure in simulations and test
it on the limited available data set.

Key words. atmospheric effects – instrumentation: spectrographs – techniques: spectroscopic – cosmology: observations

1. Introduction
Cosmology measures and interprets the evolution of the whole
Universe. To probe its dynamics and understand the nature
of dark energy, observers need to compute distances at dif-
ferent epochs from the light they receive in telescopes. The
evolution of cosmological distances with time indicates how
dark energy, dark matter, and matter interact and how they can
be modelled.

Optical surveys use magnitude and colour comparisons to
build a relative distance scale. For instance, type Ia supernovae
(SNe Ia) revealed the presence of a dark energy component
because they appeared fainter in the early Universe than was
thought (Riess et al. 1998; Perlmutter et al. 1999; Betoule et al.
2014; Scolnic et al. 2018). More precisely, because SNIa colours
shift with the expansion of the Universe, high-redshift super-
novae were fainter in red bands than what can be inferred
from low-redshift supernovae observed in blue bands. This case
underlines that colours need to be accurately calibrated in an
optical survey to display the dynamics of the Universe (see e.g.
Betoule et al. 2013). Every chromatic effect that alters the astral
⋆ The software Spectractor is available at https://github.com/
LSSTDESC/Spectractor

light distorts our dynamic perception of the expansion of the
Universe, such as the galactic dust, the instrumental response,
or the local atmospheric conditions.

In this paper, we present a forward-modelling method to
analyse and extract data gathered with a dispersing element
(grating or hologram) in the filter wheel of a telescope. We
label our approach forward modelling because we implement a
numerical simulation of the data-taking procedure that includes
as much a priori knowledge as available, and then estimate
model parameters from likelihood maximisation. This method is
fundamentally different from the traditional flux-weighted sum
orthogonal to the dispersion axis (Horne 1986; Robertson 1986)
or the algebraic method that uses multiple images (Ryan et al.
2018) because it relies on physical modelling to directly describe
the footprint of the spectrum on the imaging sensor. Deconvolu-
tion techniques and point spread function (PSF) modelling have
been explored for optical fibre spectrographs (Bolton & Schlegel
2010; Li et al. 2019), but in our forward model, we proceed to
build a physical model for the extraction of the spectra, and
in particular, the atmospheric transmission from spectra. Our
approach was inspired by the forward modelling developed in
Outini & Copin (2020), and we applied it for punctual sources
with the ultimate goal of measuring atmospheric transmission.
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The scientific context of our work is the study of the atmo-
spheric transmission variability via the repeated observation of
stable (standard) stars. Burke et al. (2010) opened the path to
controlling the optical survey photometry with dedicated mea-
surements of atmospheric components by observing standard
stars. Then, Burke et al. (2017) reached a 5 per mill (i.e. per
thousand) relative photometric calibration between filters that
covered the full optical and the near-infrared (near-IR) range and
accounted for linear temporal variations of the atmosphere trans-
mission over the nights. Because of the scale of the new SNe Ia
surveys, the number of observed objects now reaches a point
where even such an exquisite calibration becomes the dominant
source of systematics. One of the challenges of modern SNe Ia
cosmology thus is to be able to accurately measure and esti-
mate the chromatic variations of the atmospheric transmission
at the per-thousand level that allow us to probe for systematic
variations, either nightly, seasonal, or directional.

While spectrophotometry at the required precision has been
hinted at in The Nearby Supernova Factory (2013); Rubin et al.
(2022), it relies on the dedicated use of a specifically designed
integral field spectrograph. Our current approach instead focuses
on exploring the spectrophotometric possibilities offered by a
much simpler design: We consider a slitless spectrograph, where
a disperser (either a grating or a hologram) is inserted in the
converging beam of a telescope in a regular filter wheel. This
implementation is used in the Rubin Auxiliary Telescope (Aux-
Tel) (Ingraham et al. 2020), as well as on the Star Direct Illumi-
nation Calibration Experiment (StarDICE) telescope. StarDICE
is an experiment aiming at transferring to stars the unit of opti-
cal power (watt) defined at the National Institute of Standards
and Technology (NIST) with a reference cryogenic radiometer,
the Primary Optical Watt Radiometer (POWR) (Houston & Rice
2006; Hazenberg 2019; Betoule et al. 2023).

This paper describes the preparatory work for these projects
and presents the analysis procedure we developed and tested on
a few nights of data gathered at the Cerro Tololo Inter-American
Observatory (CTIO). It describes some implementation choices
and demonstrates that the forward modelling approach allows us
to incrementally build a detailed understanding of the data that
in the end can permit the direct extraction of the parameters used
to describe the atmospheric transmission variability.

The first section of this paper describes the theory of slitless
spectrophotometry, the basic implementation in Spectractor,
and the data and simulation sets we used to assess the quality of
the algorithm. Section 3 details the different ingredients of the
Spectractor software, the assumptions and the implementa-
tion choices. In particular, we detail the regularised deconvo-
lution technique at the heart of the process to obtain a prior
for the forward model and to qualify the code on simulations.
The application of Spectractor to extract spectra from on-sky
CTIO data is described in Sect. 4, while Sect. 5 focuses on the
measurement of the atmospheric transmission. Discussions and
summaries conclude the paper in Sect. 6.

2. Forward modelling of a slitless spectrogram

There are many different possible configurations for gathering
spectroscopic data without the use of a slit. The slitless spectro-
graph configuration that we considered (a grating or hologram
in a converging beam) can be implemented in different ways that
could require special care in the forward-modelling analysis. For
example, the field of view can be small and may contain only one
star, or it can be crowded, with many source-dispersed images

(so-called spectrograms hereafter) super-imposed on each other.
Different detectors might span the field of view, with responses
that need to be mapped and gaps that need to be accounted for.
We did not try to abstractly solve all different situations. We
therefore defer all the technical issues that we did not encounter
to further work and concentrate on those we did and solved.

Within these restrictions, we consider in the following only
the case of point sources and do not discuss, except for a passing
mention in the next section, the case of extended sources such
as galaxies or resolved planetary nebulae, nor the deblending of
these extended sources with point sources.

2.1. Description and geometry of a slitless spectrograph

The slitless spectrograph we consider can be seen as a grating
with N grooves per millimetre, placed in a telescope beam at a
distance DCCD from a charge-coupled device (CCD) sensor. In
the following, the positions in the sensor plane are parametrised
with the coordinates r = (x, y), and the z-axis points orthogo-
nally toward the CCD. The disperser can be more or less complex
and may be used in a convergent or in a parallel beam, and its
resolution can vary, but in the end, it will spread the source light
in different diffraction orders superimposed on the CCD, with a
sky background that is also diffracted. Depending on the choice
of N, on the size NCCD (in pixels) of the sensor, and on DCCD,
different diffraction orders will finally be recorded by the sensor.

The special case of the zeroth order is worth mentioning.
While its presence on the image is not mandatory, knowing its
centroid position r0 can significantly facilitate the setting of the
zero of the wavelength calibration.

The positive and negative diffraction orders are placed on
each side of the zeroth order on a line forming an angle α with
the x-axis. We parametrised the position along this dispersion
axis with the coordinate u and transversally with the coordinate
v. The zeroth order stands at coordinates (u0, 0) in the (u, v) coor-
dinate system. If the instrument wavelength coverage spans more
than one octave in wavelength, the different diffraction orders are
superimposed on each other.

The source spectrogram is the total 2D CCD image formed
by the cummulation of the dispersed light. All the notations are
illustrated in Fig. 1.

For a periodic grating placed inside a convergent beam
instead of a parallel beam, this optical system response is astig-
matic, that is, the image of a point source such as a star is not
point-like on the sensor. Usually, the image is elliptical, and the
redder the wavelength, the wider the ellipse (see e.g. Moniez
et al. 2021). However, the centroid of these ellipses is still given
by the classical grating formula (see e.g. Murty 1962; Hall 1966;
Schroeder & Inc 2000),

sin θp(λ) − sin θ0 = pNeffλ, (1)

tan θ(λ) =
u(λ)
DCCD

, tan θ0 =
u0

DCCD
. (2)

The angles are those of the projection in the plane perpendicular
to the grating lines (see Fig. 1); θ0 is the angle of the projected
telescope beam axis with respect to the normal to the grating
surface, p is the diffraction order, θp(λ) is the corresponding pro-
jected diffracted angle, and Neff is the effective spatial frequency
of the grating lines at the position of the central ray1 of the light
beam (hereafter called chief ray).

1 For some dispersers this number of lines per millimetre can depend
on the beam position on the grating.
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Grating

CCD

Telescope beam

Order 0
Order 1

CCD

Fig. 1. Geometry of a simple slitless spectrograph in the plane orthogo-
nal to the CCD (top) and parallel to the CCD (bottom). A convergent
beam with incident angle θ0 is focused on a CCD at position r0 =
(x0, y0), but also passed through a grating with Neff grooves per mil-
limetre at a distance DCCD above the CCD. The beam is deflected at an
angle θ(λ) along the mean dispersion axis u, which forms an angle α
with respect to the CCD x axis, but is focused somewhere above the
sensor. Atmospheric refraction adds a supplementary dispersion along
and transversally to the mean dispersion axis.

The observer can choose the focus of the telescope. One
common choice is to set the focus using the zeroth order, but
if this is done, the spectrogram can be affected by defocusing
effects at increasingly redder wavelengths (for periodic gratings).
To minimise the defocusing effect and increase the spectro-
graph resolution, the focus for a particular wavelength can be
optimised, but it is then more difficult to set the zero of the wave-
length calibration with a defocused zeroth-order image. In the
following, we assume that the focus has been made on the zeroth
order unless otherwise specified.

2.2. Theoretical model of a spectrogram

A theoretically perfect image of a light source can be modelled
by its spatio-spectral flux density C(r, λ). For a point source, we
can separate the spectral and spatial distributions as

S ∗(r, λ) = S ∗(λ) × δ (r − r0) , (3)

with S ∗(λ) spectral energy density (SED) of the astrophysical
object, and δ the Dirac distribution. The observed spectral and
spatial distribution is then

Cp(r, λ) = Tinst,p(λ) Tatm(λ|Pa) S ∗(r, λ), (4)

where Tatm(λ|Pa) is the atmospheric transmission, depending on
a set of atmospheric parameters Pa, and Tinst,p(λ) is the instru-
mental transmission (including the CCD quantum efficiency) for
the diffraction order p.

Order 0 Order 1 Order 2Dispersion relation

PSF shape 
variations

Order 0 Spectrogram order 1 Spectrogram order 2

(a)

(b)

(c)

Spectractor

Monochromatic star

Polychromatic star

Reality

Fig. 2. General illustration of the spectrograph model and of the pur-
pose of the spectrum extraction. (a) Illustration of the image formation
for a monochromatic star observed through a slitless spectrograph. (b)
Same for a polychromatic star. (c) Real acquired image: The detector
generally is a black-and-white sensor, with noise, a structured and chro-
matic background, and field star zeroth- and first-order spectrograms.
The goal of Spectractor is to extract the colour information from
this image to obtain the stellar spectrum.

In the case of a monochromatic point source, we have
C0(r, λ) = A δ(λ − λ0) × δ (r − r0), with A the received source
flux at λ0. The PSF describes the optical response of the tele-
scope and of the atmospheric turbulence on a sensitive surface
such as a CCD (see Fig. 2a). It depends a priori on the wave-
length λ and can be modelled by a function ϕ0(r, λ) whose spatial
integral is normalised to one. Therefore, by definition of the PSF,
the image of a monochromatic point source centred on r0 on the
CCD can be described as a convolution product,

I0(r) =
∫

dλ
"

d2r′ C0(r′, λ) ϕ0(r − r′, λ)

= A ϕ0(r − r0, λ0). (5)

With a slitless spectrograph, the mechanism is the same, but
the incoming light is dispersed in several diffraction orders p,
and light from all diffraction orders of the sky background is
superimposed. The position of the point-source image depends
on the wavelength and on the order p. Moreover, the shape of the
PSF itself can depend on the order p and on the wavelength λ.
Here and everywhere else, the dispersed-imaging PSF integrates
both the seeing and the instrumental PSF. We introduce the dis-
persion relation ∆p(λ) as the 2D vectorial quantity that describes
the position of the PSF centroids

{
xc,p(λ) − x0, yc,p(λ) − y0

}
on

the CCD with respect to the zeroth-order position (x0, y0), for
a diffraction order p and a wavelength λ. This quantity can be
computed by applying the classical grating formula (1). With
a point-like monochromatic source, the image recorded on the
CCD is modelled as

I(r) =
∑

p

∫
dλ
"

d2r′ Cp(r′, λ) ϕp(r − ∆p(λ) − r′, λ)

=
∑

p

Ap ϕp(r − ∆p(λ0), λ0), (6)

with ∆0(λ0) = r0 and Ap the flux density at wavelength λ0 for the
order p. On the image, we expect a series of spots, one per order
p, of different intensities, with different sizes, but containing the
same spectral information S ∗(λ0) about the source.

The observed sources are naturally polychromatic. For point-
like sources, the theoretical description above holds at each
wavelength, and the image can be described as

I(r) =
∑

p

∫
dλ S p(λ)ϕp

(
r − ∆p(λ), λ

)
, (7)
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Order 0 centroid Reduced 
image Rotation

PSF 
model

Guess position, 
object name,…

�⃗�# a Spectro-
gram

Geometric l 
calibration

Neff, DCCD

PSF(l) 
parameters

PSF 
deconvolution

Telescope 
diameter, ADR, 

atomic lines

Spectrum
DCCD

l and flux 
calibration

Full Forward 
Model

Disperser 
ratio 2/1

Calibrated order 1 spectrum S1(l), order 2 spectrum S2(l),
A2, 𝑟#	, a, DCCD, PSF(l)

Internal minimization loop

ADR model

Fig. 3. Overview of the Spectractor pipeline. The green ellipses represent external inputs needed for the spectrum extraction, and blue ellipses
stand for the Spectractor products. The bottom stage represents the full forward-modelling method for extracting the spectrum from the raw
spectrogram.

with

∆p(λ) =
{
xc,p(λ) − x0, yc,p(λ) − y0

}
, (8)

S p(λ) = Tinst,p(λ) Tatm(λ|Pa) S ∗(λ). (9)

Therefore, the spectrogram of a polychromatic source can be
viewed as a stack of monochromatic images with different cen-
troids, or as a dispersed image with a very chromatic PSF (see
Fig. 2b). This description of the image and of the spectro-
gram formation is the base of our forward model for slitless
spectrograph data.

To obtain the S p(λ) spectra, a process to un-stack the
monochromatic images spread across the image by the disperser
is needed (Fig. 2c). This in turn requires that ingredients such as
the PSF ϕp(r, λ) and the dispersion relation ∆p(λ) are sufficiently
well known, either a priori, through a specific data analysis, or
directly fitted on data. The hardest point usually is the determina-
tion of the PSF kernel as a function of wavelength. As illustrated
in Figs. 1 and 2, in the general case, the PSF is blurred and defo-
cused. A simple Moffat profile can be used to model the PSF as
long as the defocus is small; we used this approximation through-
out this paper and leave the general defocus case for future work.
Nevertheless, we studied and discuss two cases: The use of a
standard grating, and the use of an holographic disperser that
limits the defocus.

In this paper, we describe our implementation of this process
in the form of the python3 Spectractor code (Neveu et al.
2021) (see Sect. 3). We also show how we tested it on simula-
tions and data and how it could be used in order to ingest lacking
modelling information from specific data analysis.

2.3. Spectractor

We call Spectractor2,3 the computer suite we wrote to anal-
yse the future AuxTel images and the images obtained on the

2 https://github.com/LSSTDESC/Spectractor
3 https://spectractor.readthedocs.io

Cerro Tololo Inter-American Observatory (CTIO) 0.9 m tele-
scope. It was trained on CTIO data, but with the purpose of being
easily configurable for slitless spectrophotometry with other tele-
scopes. The main steps, inputs, and outputs of the extraction part
are illustrated in Fig. 3 and are described in detail in Sect. 3.
To facilitate reading of the following, we summarise the main
Spectractor steps below.

Zeroth-order centroid. The main inputs of Spectractor
are a pre-processed image (overscan subtracted, debiased, and
spatial flat fielded) obtained with a slitless spectrograph, and
a configuration file setting the main geometrical and spec-
trographic properties of the instrument (DCCD, N, telescope
diameter, pixel size, the PSF model, etc.) At the time of writ-
ing this paper, the PSF models we implemented were either a
Gaussian profile, a Moffat profile, or a Moffat minus a Gaussian
profile. Additional and more detailed PSF models are planned
to describe the AuxTel data more accurately as they are anal-
ysed. The centroid of the zeroth order is contained in the image.
We thus implemented a searching procedure to inform us on the
origin of the location of the spectrum and set the zero of the
wavelength scale.

Rotation. Because of the geometry of the spectrograph and
the dispersion properties of the grating, the spectrogram was
cropped from the image and was de-rotated so that the disper-
sion axis was along the horizontal axis of the cropped image. The
rotation angle is fitted later in the full model without explicitly
rotating the image.

Geometric wavelength calibration. On this image, a first
fit of a 1D sliced PSF model transverse to the dispersion axis
is performed. The PSF shape parameters are represented by a
polynomial function4 as a function of the distance to the zeroth
order.
4 A polynomial function of the fourth order is sufficient to absorb the
main chromatic variations of the PSF shape.
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PSF deconvolution. The procedure is continued by a
deconvolution that uses a 2D PSF model and the 1D result as
a prior to regularise it.

Wavelength calibration. A first wavelength calibration is
performed using the detection of the principal absorption or
emission lines in the extracted spectrum (astrophysical or telluric
lines).

Flux calibration. The spectrum flux in ADU is converted
into erg s−1 cm−2 nm−1 units using the telescope collecting area,
CCD gain, and exposure time.

Full forward model. Finally, given all these prior ingredi-
ents, a full forward model is initiated on the pre-processed5 but
not rotated exposure using a 2D PSF model, and a model for
the atmospheric differential refraction (ADR)6. The PSF shape
parameters as well as the wavelength calibration are refitted in
the process. The main output is a calibrated spectrum in wave-
length and amplitude, but Spectractor also returns a host
of useful fitted parameters such as the PSF shape chromaticity
or the DCCD distance to perform extraction quality analyses, and
in the end, to improve the forward modelling or its initialisation.

All steps but the last are implemented in order to provide the
required ingredients to the full forward models, and they are thus
completely contingent to the availability of understanding the
instrument. This is again be addressed below when we discuss
how the optical transmission of the instrument can be obtained.

2.4. Data examples

While we use the natural ability of the forward-model implemen-
tation to easily provide simulations to validate the code, we also
present the use of Spectractor on real data.

2.4.1. CTIO data

In order to test the approach of slitless spectroscopy, in partic-
ular, using a holographic disperser, we benefited of a run of
17 nights in May-June 2017 at the Cerro Tololo Inter-American
Observatory (CTIO) 0.9 m Cassegrain telescope ( f /13.7, scale
at focal plane 60µm ′′−1). This telescope is equipped with a
cooled Tek2K CCD device of 2048 × 2046 pixels, read by four
amplifiers7. Two filter wheels are installed. The first wheel in the
light path was used to insert broad-band filters, and the second
wheel holds different dispersers.

While many gratings were tried, we focused on two of them
here: a Thorlabs blazed grating (300 lines mm−1) ref. GT50-03,
and an amplitude holographic optical element (around 350
lines mm−1) especially designed for this telescope. This holo-
gram is fully described and analysed based on the CTIO data
in Moniez et al. (2021). Its main advantage is that the defocusing
described in Fig. 1 is very limited, which allowed us to model its
chromatic PSF with simpler mathematical models.

By using these dispersers in the upstream filter wheel, we
readily transformed the CTIO 0.9 telescope into a spectrophoto-
metric instrument with a resolution of about 150–200 (Moniez
et al. 2021).
5 For future developments, one could model directly the unprepro-
cessed exposure, for instance introducing the chromatic flat fields
directly in the forward model.
6 ADR is also called Differential Chromatic Refraction (DCR).
7 https://noirlab.edu/science/programs/ctio/
instruments/Tek2K
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Fig. 4. Processed exposure of CALSPEC star HD111980 observed at
CTIO with an amplitude-hologram grating of 350 lines mm−1 on 2017
May 30. The greyscale gives the exposure intensity in ADU s−1. The
yellow circle indicates the zeroth-order position of HD111980.

Figure 4 shows an example of the data we obtained: The dis-
persion axes are nearly horizontal along the x-axis of the CCD,
and for an optimal focusing of the amplitude hologram, the target
star was placed around pixel coordinates (750, 700). The spec-
trum covers two amplifiers. Field stars are present, and the sky
background is also dispersed (brighter in the middle).

Dome flats were taken with two different filters, blue
(λ < 550 nm) and red (λ > 715 nm). We saw no difference in
the extraction of the spectra using one or the other. In order to be
more precise about the extraction of absorption bands in water
in the red part of the spectrum, we chose to use only the red
flat to flatten out the pixel-to-pixel fluctuations in our exposures.
Combined bias was taken at the beginning of each night for the
bias subtraction. We made sure that the meta data contained
informations about the properties of the CCD and the on-site
meteorological station.

We mainly analysed the performances of the holographic ele-
ment we brought during this run. Fortunately, we had one very
good night on 2017 May 30 with very stable conditions in terms
of temperature and seeing, which we used to estimate the atmo-
spheric transmission. During that night, we essentially moni-
tored the CALSPEC8 (Bohlin et al. 2014, 2020) star HD111980
with an amplitude hologram. The main characteristics of these
data are summarised in Table 1.

2.4.2. Simulations

To test the Spectractor pipeline, we used the full forward
model for CTIO spectrograms (see Sect. 3.8) to simulate obser-
vations of CALSPEC stars (in particular, HD111980).

The simulation used in Sect. 3 shares the same known char-
acteristics as the real-data image presented in Table 1, but with
variations in the unknown parameters such as the PSF model,
the amount of second-order diffraction contamination, and the
atmospheric parameters.

8 https://www.stsci.edu/hst/instrumentation/
reference-data-for-calibration-and-tools/
astronomical-catalogs/calspec
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Table 1. Principal characteristics of the exposure used as an example in
Sect. 3.

Properties Values

Observatory CTIO 0.9 m
Disperser Amplitude hologram ≈ 350 lines mm−1

Dispersion axis angle α ≈ −1.6◦

DCCD ≈ 56 mm
Pixel size 24µm

Pixel spectral scale ≈ 1 nm
Pixel angular scale 0.′′401

Target CALSPEC HD111980
Exposure 120 s

Background level ≈ 25 ADU
Seeing 0.′′65

Airmass 1.13
Outside pressure 784 hPa

Outside temperature 8.6 ◦C

For the simulations, a 2D Moffat circular PSF kernel
ϕ(x, y, λ) was chosen. To model the widening of the PSF due
to defocusing or chromatic seeing effects, the shape parameters
γ and α evolved with wavelength as a nPSF order polynomial
function,

ϕ(x, y|rc, P) = A

1 + (
x − xc

γ(z(x))

)2

+

(
y − yc

γ(z(x))

)2−α(z(x))

(10)

A =
α − 1
πγ2 with α > 1, (11)

γ(z) =
nPSF∑
i=0

γiLi(z), α(z) =
nPSF∑
i=0

αiLi(z). (12)

The integral of this PSF kernel is exactly A, and its centre is
at rc = (xc, yc). The PSF shape parameters (γ(x), α(x)) are them-
selves sets of polynomial coefficients γi and αi, respectively. The
Li(x) functions are the order i Legendre polynomials. We call
xmin and xmax the left and right pixel positions of the spectrogram
edges on the x-axis. The parameter z ∈ [−1, 1] was rescaled pro-
portionally on the desired pixel range [xmin, xmax], set to approxi-
mately encompass the wavelength range [350 nm, 1100 nm] with
the formula

z(x) =
x − (xmax + xmin)/2

(xmax − xmin)/2
. (13)

Parametrisation with Legendre polynomials has the advantage
to give an equal weight to all polynomial coefficients during
χ2 minimisation, regardless of the degree of the polynomial
functions. The chosen nPSF, γi, and αi values are quoted for
each simulation. The simulation suite is fully available in the
Spectractor code.

3. Forward-model extraction of a spectrum

In this section, we follow and describe in detail the steps of the
Spectractor pipeline in order to obtain the first-order spec-
trum S 1(λ) of a point source, calibrated in flux and wavelength.
These steps cover the orange boxes of Fig. 3. The process starts
from a preprocessed image containing the 2D image that is
formed by a star observed through a slitless spectrograph, which
we call a spectrogram.
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Fig. 5. Zeroth-order images from different celestial objects, observed in
different seeing conditions with several dispersers. The red cross shows
the fitted centroid using the Spectractor method from Sect. 3.2. All
images have saturated pixels.

3.1. Uncertainty evaluation

When it is not given, we must start to build the uncertainty map
of the exposure when the exposure is pre-processed. The uncer-
tainties on the pixel values are estimated using the CCD gain
GCCD(x, y) (in electrons ADU−1) and its read-out noise σro (in
electrons). Other sources of noise, such as those coming from
the flat-fielding or the dark current, are subdominant. The corre-
lations between pixels are also negligible. The exposure unit is
considered to be in ADU at that point. The uncertainty σ(x, y)
on the pixel value I(x, y) is then

σ(x, y) =
1

GCCD(x, y)

√
σ2

ro +GCCD(x, y)I(x, y) (14)

because we assume that the number of photoelectrons in each
pixel follows a Poisson distribution. The uncertainty map can be
inverted to obtain a weight map, on which we can superimpose
a mask to remove bad pixels. Assuming no correlations between
pixels, we then assemble the weight matrix W as the diagonal
matrix of the inverted pixel variances.

The computed noise variance uses the pixel value itself,
which incorporates the noise fluctuation. Using weights incor-
porating the fluctuations can introduce a bias on the recovered
quantities because in the case of positive fluctuation, the weight
is increased, while in the case of negative fluctuation, the weight
is decreased. The bias is smaller with spectrograms with a high
signal-to-noise ratio (S/N). For this reason, we only considered
the case with a high S/N in simulations and data, and we avoid
the bias due to this uncertainty evaluation (even at the spectrum
edges, where flux is low). The case with a low S/N is postponed
for future developments.

3.2. Zeroth-order centroid

Because the zeroth order is included in the observed images, we
used its centroid to set the zero of the wavelength scale. There-
fore, an error in the determination of the zeroth-order centroid
(x0, y0) causes a systematic shift of the wavelength calibration.

A subset of different situations encountered in the CTIO data
is presented in Fig. 5. To obtain a high S/N in the spectrogram,
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Fig. 6. Illustration of the fitting process to find the zeroth-order centroid for the planetary nebula PNG321.0+3.9. Left: zeroth-order data image of
the target. Middle: best-fitting 2D circular Moffat model. Right: residuals.

the exposure time was set at such a value that the zeroth order
is saturated, causing bleeding spikes. If the exposure has astro-
metric coordinates in the World Coordinate System (WCS), then
we can obtain the precise position of the star on the CCD. How-
ever, in most images we obtain from CTIO, the WCS associated
with the images is incorrect because the mount calibration is not
correct.

While not directly part of the extraction procedure, we
present the algorithm we implemented to find the zeroth-order
centroid in these difficult cases as a useful example of how to
improve the starting point from a preliminary analysis of the
data.

First, the image is cropped around the supposed position of
the zeroth-order image, as close as needed so that the targeted
star is the brightest object. Then the cropped image is projected
onto the x- and y-axis: The maximum of the two projections sets
a new approximation of the zeroth-order position. From there,
saturated pixels are detected, and a null weight is associated with
them. A 2D second-order polynomial background with a 3σ out-
lier removal is fitted and subtracted from the cropped image.
Finally, a 2D circular Moffat profile is fitted on the weighted
pixels: Only the crown of non-saturated pixels counts and locks
the fit. This last step is then repeated a second time on a new
cropped image for which the width and height are divided by
two, centred on the last fitted centroid. This step is illustrated in
Fig. 6. We tested this process on many images, most of which
were pathological, and we visually confirmed that the accuracy
of this algorithm is finer than the pixel size on CTIO images.

Another issue we solved is that when a disperser is added to
the telescope beam path, the WCS associated with the image can
be shifted or distorted. In the case of a crowded field, for faint
objects, or for a very pathological zeroth order, we developed a
method for estimating the WCS using the field stars, the library
astrometry.net9 (Lang et al. 2010), and the Gaia DR2 cata-
logue. The process is described in Appendix A, but it was not
used by default for the CALSPEC stars we observed. However,
when the centroids obtained with both methods are compared,
their difference has a scatter of 0.′′15 (around one-half of a pixel)
on CTIO data, which confirms that both methods are accurate at
the 0.′′15 level at least (Fig. 7).

This accuracy is converted into a prior on the zeroth-order
shift δu0 used during the wavelength-calibration process to
account for a mistake in the evaluation of the zeroth-order
centroid.

9 http://astrometry.net/doc/readme.html
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Fig. 7. Difference between the fitted centroids of the target stars and
the centroid recovered using the WCS estimate locked on the Gaia cat-
alogue (blue and orange lines) on the x- and y-axis at CTIO during the
night of 2017 May 30, as a function of the exposure date. The histogram
of the differences is presented on the right.

3.3. Rotation

Unless special care has been taken to that end when mounting
the disperser in the filter wheel, the spectrogram image can be
tilted (possibly intentionally) with respect to the x-axis, with an
angle, which can be poorly known depending on the mounting
of the disperser into the telescope beam.

This dispersion direction can either be known a priori or fit-
ted in the full forward-model step. We needed a supplementary
step to estimate a good starting point for this angle because our
case is the latter case.

In addition, we found it extremely useful that the spectro-
gram was roughly aligned with the x-axis of the exposure in our
procedure, with the wavelength increasing with x. To this end,
the exposure must be flipped and rotated accordingly before the
process of extracting more information could be continue. That
was useful both for diagnosing the data quality and for refining
the starting point of the full forward model.

The spectrogram of sources that are sufficiently continuous
in wavelength, such as the thermal emission component of stars,
displays filament shapes on the 2D image that can be detected
using a Hessian analysis inspired by the one developed in Planck
Collaboration Int. XXXVIII. (2016). The advantage of this tech-
nique is that it comes with an analytical expression of the angle
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Fig. 8. Disperser rotation angle estimation. Left: Angle α on the spec-
trogram image for the 5% pixels with the highest λ− values found in
the Hessian matrix, and the dispersion axis as the median of the angles
(black line, shifted upward for clarity). The masked pixel with low λ−
values are indicated (light grey). Right: Histogram of the selected angles
from the left panel and its median (vertical black line).

of the detected shape with respect to the horizontal or vertical
axis of the CCD grid.

The Hessian matrix H(x, y) of the image is computed for
each pixel value I(x, y) as

H(x, y) =
(
Hxx Hxy
Hxy Hyy

)
=


∂2I
∂x2

∂2I
∂x∂y

∂2I
∂x∂y

∂2I
∂y2

. (15)

The two eigenvalues of the Hessian matrix H are calculated as

λ±(x, y) =
1
2

(
Hxx + Hyy ± h

)
, (16)

with h =
√

(Hxx − Hyy)2 + 4H2
xy. The eigenvalue λ− is associ-

ated with the eigenvector directed along the spectrum dispersion
axis, and λ+ corresponds to the eigenvector with the largest
change in intensity value, that is, transverse to the dispersion
axis. The orientation angle of these eigenvectors with respect to
the x-axis can be computed analytically. For instance, we have
for λ−

α(x, y) = arctan
(

Hyy − Hxx − h
2Hxy

)
=

1
2

arctan
(

2Hxy

Hxx − Hyy

)
, (17)

with the trigonometric formula tan 2α = 2 tanα/(1 − tan2 α).
After selecting the 5% pixels with the highest λ− value above
a reasonable threshold, the median α of the remaining α(x, y)
values gives the orientation of the spectrum with respect to the
x-axis. A linear fit can also be performed across the selected pix-
els, and the slope gives an angle very close to the one estimated
with the median of the angle values. This process is illustrated
Fig. 8.

Because of the atmospheric differential refraction (ADR),
the spectrogram can be sheared transversally to the dispersion
axis. The ADR shear is about 2′′ across the visible spectrum,
which is 5 pixels at CTIO, while the spectrogram is ≈700 pixels
long, and it is thus neglected at this step of this analysis. On the
other hand, it is fully accounted for in the full forward model.
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Fig. 9. Background estimation on a CTIO image (in arbitrary units).
Top: laterals bands to the spectrogram (masked behind the rectangular
grey region) where the background is estimated. The grey patches indi-
cate masked sources. Middle: fitted background using the SExtractor
method with the evaluation boxes in red (here final size is 20 × 20
pixels). Bottom: residuals normalised to their uncertainties. Right: dis-
tribution of the normalised residuals in units of σ.

3.4. Background estimation

The background of the image must be carefully subtracted to
avoid bias in the estimation of the spectrum flux and its PSF.
However, due to optical vignetting, it can be non-flat, and it
is dispersed. It can also contain additional field stars and their
corresponding spectrograms.

To estimate the spectrogram background, we first selected
two lateral bands above and below the spectrogram region that
had the same length and width N(bgd)

y (see Fig. 9). First, we
masked the sources detected above a 3σ threshold. Then we
divided the two lateral regions in a few square boxes of size
(N(bgd)
y /2,N(bgd)

y /2). The box dimensions must be larger than
the typical size of a field star PSF or of a spectrogram width,
but small enough to account for the spatial variations in the
background.

To obtain a first estimate of the background, we used a
Python wrapper of the SExtractor10 algorithm for background
extraction, which is roughly based on the bilinear interpolation
of the median value inside the boxes, after a sigma-clipping
rejection of the outlier pixels (more details in Bertin & Arnouts
1996). This process is illustrated in Fig. 9.

In a second step, we analysed the distribution of the back-
ground residuals normalised with their uncertainties in the two
regions, with the sources being masked. When the histogram of
the residuals normalised by their errors (the pull distribution)
departs from a distribution of zero mean and standard deviation
equal to 1, we refined the background estimate by dividing the
box size by 2, and the process was continued iteratively until the
mean was below 1 and the standard deviation was below 2, or
until the box size decreases below a threshold of 5 pixels.

At the end of this process, the estimated background was
interpolated between the two lateral bands to obtain the back-
ground below the spectrogram, and it was finally subtracted.
We call B(r) the background map. The background RMS was
also evaluated by SExtractor and was added quadratically as a
background uncertainty to the error budget of the spectrogram.

10 http://www.astromatic.net/software/sextractor
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At this stage of the pipeline, with α and r0 given and using a
first geometrical wavelength calibration to approximately define
the left and right margins of the spectrogram, we cropped the
exposure to extract a background-subtracted spectrogram. This is
extremely useful for diagnosis purposes and can also be directly
studied with an atmospheric forward model (see Sect. 5).

3.5. First spectrum extraction

The next step of the pipeline we implemented is devoted to
extracting the first-order spectrum S 1(λ) and estimating the
wavelength-dependent PSF. The extraction of the spectral infor-
mation S 1(λ) from the spectrogram image is a delicate process.
The intuitive and traditional way to extract slitless spectra at this
stage of the pipeline is to sum over the cross-dispersion direction,
possibly with weights, to form what we call a cross-dispersion
spectrum. Horne (1986) and Robertson (1986) presented an
optimal method to achieve this. However, this method leads to
distorted spectra in case of a wavelength-dependent PSF (neigh-
bouring wavelengths contaminate each other on the sensor),
which is not an issue for spectroscopy, but is problematic for
spectrophotometry. In the following, we first describe a method
for deconvolving the spectrum for the PSF (Sect. 3.5). The prod-
ucts of that process are then very useful to inform the full
forward model, finalising the unbiased extraction of the spectrum
(Sect. 3.8).

3.5.1. First-order model of the spectrogram

To start, we only consider the spectrogram of the first diffraction
order, potentially with the superposition of a second diffrac-
tion order, as provided by the previous step of the pipeline. The
cropped spectrogram has the shape (Nx,Ny) pixels.

Inspired by Eq. (7), we model the spectrogram as a discrete
stack of Nx 2D PSF realisations of amplitude Ai, separated by
one pixel along the x-axis,

I1(r|A, rc, P) =
Nx∑
i=0

Ai ϕ(r|rc,i, Pi), (18)

with r = (x, y) the vector of the pixel coordinates, A the
amplitude parameter vector along the dispersion axis of the
spectrogram, and ϕ(r|rc,i, Pi) the 2D PSF kernel whose inte-
gral is normalised to one. This kernel depends non-linearly on
the shape parameter vector Pi and on the centroid position vec-
tor rc,i = (xc,i, yc,i), where only the yc,i coordinate is considered
unknown. The xc,i coordinate is set directly to the pixel index i.
This choice of implementation can be discussed and changed,
but it was found to be practical because the PSF is then well
sampled by the pixel grid. In theory, we could choose another
sampling for xc,i, however, to increase the speed of the spectrum
extraction or to enhance the spectral resolution.

In some way, the array of vectors rc is a sampled precursor
of the dispersion relation ∆1(λ), and the vector A is the flux den-
sity S 1(λ) integrated within the pixels. When we index all the
NxNy spectrogram pixels as a long vector Z =

(
ζ1, · · · , ζNxNy

)
,

the Eq. (18) takes a matricial form,

I1(Z|A, rc, P) =M(Z|rc, P) A, (19)

with

M(Z|rc, P) =
ϕ(ζ1|rc,1, P1) · · · ϕ(ζ1|rc,Nx , PNx )

...
. . .

...
ϕ(ζNxNy |rc,1, P1) · · · ϕ(ζNxNy |rc,Nx , PNx )

 . (20)

The (NxNy,Nx) matrix M is called the design matrix.
This model of the spectrogram is designed to deconvolve

the spectrum S 1(λ) from the PSF. In principle, we can choose
to sample it with PSF kernels separated by arbitrary distances.
However, if the PSF is correctly sampled by the pixel grid, it is
difficult to extract the spectrum with a spatial resolution below
the typical PSF width, and therefore, below the pixel size.

At this stage, we wish to extract the spectrum from a spec-
trogram that is potentially contaminated by higher diffraction
orders, as yielded by the pipeline steps discussed above, or
that is distorted by atmospheric differential refraction. The final
extraction using a full forward model that takes these physical
effects entirely into account is the last step of the Spectractor
pipeline. This is presented in Sect. 3.8.

3.5.2. Preparation for deconvolution

To initialise the deconvolution with parameters close to the final
best model, a first PSF fit is performed transversally to the disper-
sion axis with 1D PSF kernels on the rotated spectrogram image,

I(1D)
1 (r|A(1D), rc, P) =

Nx∑
i=0

A(1D)
i ϕ(1D)(r|rc,i, Pi). (21)

This procedure is done in two steps. The first step fits the
1D parameters independently for each pixel column by apply-
ing a 5σ clipping to reject field stars and other CCD defects. In
the second step, a polynomial evolution of the 1D PSF param-
eter vector along the dispersion axis is proposed. For instance,
a polynomial evolution of the yc,i(xc,i) positions can model the
transverse ADR, and a polynomial evolution with the width of
the PSF can model a defocusing effect. The polynomial coef-
ficients are fitted using a Gauss-Newton minimisation of a χ2

(Eq. (23)) for the non-linear parameters (see Appendix B), alter-
nating with a linear resolution for the amplitude parameters as
follows.

Assuming that we gather all the spectrogram pixel values in
a long vector D (as Z), we can model it as

D =M(Z|rc, P)A + ϵ, (22)

with ϵ the random noise vector. The χ2 function to minimise is

χ2(A|P) = (D −M A)T W (D −M A) , (23)

with W the weight matrix of dimension (NxNy,NxNy), which is
the inverse of the data covariance matrix (see Sect. 3.1). In most
cases, this matrix is diagonal because the pixels are all consid-
ered to be independent. The minimum of Eq. (23) is reached for
the set of amplitude parameters Â given by

Â(1D)
= (MT WM)−1MT WD. (24)

The covariance matrix associated with the Â coefficients is
C(1D) = (MT WM)−1. At the end of this process, we obtain a first
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Fig. 10. Results from the deconvolution of a simulated spectrogram of the CALSPEC star HD111980 with a Moffat PSF kernel, without second-
order diffraction contamination, (γ0, γ1, γ2) = (10, 2, 5) and (α0, α1, α2) = (2, 0, 0). Left: simulated spectrogram (top), best-,fitting spectrogram
model (middle) and residuals in units of σ (bottom) after the rotation process and the 1D transverse fit. Right: same simulated spectrogram with
its original rotation (top), best-fitting spectrogram model (middle), and residuals in units of σ (bottom) after the deconvolution process. All colour
maps are normalised by the maximum of the simulated spectrogram. The grey areas designate masked pixels.

guess of the rc and P parameters and a first guess of the ampli-
tudes Â(1D)

with their uncertainties σA(1D) , which form what we
call a transverse cross-spectrum.

The result of this extraction is illustrated on simulated data in
Fig. 10 left. For this simulation, we chose to ignore the second-
order diffraction, and we used a wide PSF kernel with strong
chromatic variations to enhance the visibility of the residuals
for the 1D extraction: (γ0, γ1, γ2) = (10, 2, 5) and (α0, α1, α2) =
(2, 0, 0). At first glance, the model in the top panel appears to
be accurate, but the residuals show that this 1D model failed to
capture the true evolution of the PSF shape with wavelength. As
expected, the residuals are less dramatic with a thinner PSF, but
remain measurable. This shows that a 2D PSF extraction method
has to be used.

At this stage, we obtained a spectrum close to a cross-
dispersion spectrum as in Horne (1986) and Robertson (1986),
but informed with a fitted PSF model with a smooth polynomial
wavelength evolution.

3.5.3. PSF deconvolution

Having provided ourselves with this first 1D estimate of the spec-
trum, we can resort to a more accurate 2D PSF modelling. When
using 2D PSF kernels, the latter linear regression method enters
the category of the deconvolution problems or inverse problems.
Because the spectral amplitude information is mixed and diluted
at a scale below the typical size of the PSF, the computation
of the Â vector sampled at the pixel scale inverting Eq. (19)
using 2D PSF kernels may lead to results that are far from the
reality, while giving an apparently good fit to data (low χ2).
When this is done, a common symptom is the alternation of
positive and negative values in Â, or at least with large varia-
tions, demonstrating that the problem is ill-posed. As we know
by the physics that well-sampled spectra are rather continuous

and differentiable functions, we enforce a regularisation method
to smooth the resulting Â vector.

A first fit to the data, without any prior on A, using a 1D
transverse PSF model fitted independently to each column of
data along the dispersion axis thus yields a vector Â(1D)

that con-
tains most of the spectral flux, especially in the smooth parts of
the spectrum, but lacks precision in the rapidly varying parts.
The most visible effect of the PSF is to smooth the absorption
lines, and more generally, to deform the spectral information
where the spectral energy density evolves rapidly (e.g. in the blue
part of the spectrum), while conserving the total flux. It nonethe-
less provides useful information that we use as a prior A0 on A
when performing a fit using a 2D PSF kernel with a Tikhonov
regularisation.

The Tikhonov regularisation method proposes to add a regu-
larisation quantity to the χ2 and minimise a new cost function,

E(A|rc, P) = (D −M A)T W (D −M A)

+ r(A − A0)T Q(A − A0)

= χ2(A|rc, P) + rχ2
pen(A|A0), (25)

A0 = Â(1D)
(26)

where Q is the weight matrix. The last term favours Â to be close
to prior vector A0, with a positive regularisation hyper-parameter
r.

Minimising this E(A|rc, P) function is still a linear regres-
sion for the A parameters, whose optimal value now is

Â = (MT WM + rQ)−1(MT WD + rQA0). (27)

The covariance matrix associated with Â directly is

C = (MT WM + rQ)−1. (28)
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We tested different Q matrices on CTIO simulations, and the
matrix that gives the most satisfying results when Â is compared
to the true amplitudes uses the Laplacian operator L,

L =



−1 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...
. . .

. . .
. . .

...
...

0 0 0 0 · · · −2 1
0 0 0 0 · · · 1 −1


(29)

Q = LT UT UL, (30)

with UT U the matrix proposed in Eq. (C.5),

UT U =



1/σ2
A(1)

1D

0 · · · 0

0 1/σ2
A(2)

1D

· · · 0
...

...
. . .

...
0 0 · · · 1/σ2

A(Nx )
1D


. (31)

The total variation regularisation is known to be able to
retrieve very sharp features (e.g. steps or edges) when decon-
volving an image. The Laplacian regularisation cannot do the
same, but discontinuities are not expected in the physical spectra
we observe. Moreover, the norm-2 regularisation offers analyti-
cal solution, while a norm-1 regularisation needs to conduct an
iterative minimisation process (more details in Appendix C).

For the 1D transverse estimate, the deconvolution fit is per-
formed using a Gauss-Newton minimisation of E(A|P) for the
non-linear P parameters (see Appendix B) and a linear resolu-
tion for the A parameters (see Sect. 3.5.2). The Gauss-Newton
minimisation is repeated three times with a clipping rejection
of bad pixels to remove field stars or CCD defects that can pull
the final parameters in undesired directions. At the end of this
process, we obtain the measured r̂c and P̂ parameters, and a mea-
surement of the amplitudes Â(r) with their covariance matrix
C(r). The vector Â(r) forms the searched spectrum, but it might
be contaminated by the second diffraction order at this stage.
To accelerate the computation, regions farther away than twice
the PSF FWHM from the centroids are masked and set to zero
with null weights (the grey regions in Fig. 10). For this process,
a default value of the r regularisation parameter was chosen,
without fully exploring how it could be optimised.

The PSF deconvolution problem was solved in another way
in Ryan et al. (2018) for slitless spectroscopy. Instead of using a
PSF model, the mathematical model was inverted using multiple
exposures of the same spectrum, ideally taken at different orien-
tations, dispersion directions, or dithered positions. In this way,
the number of data leads to an invertible problem, but a damp-
ing hyper-parameter equivalent to r still needs to be introduced
in Eq. (25). Ryan et al. (2018) tuned this hyper-parameter man-
ually and determined the breaking point of a specific L-curve
(see Hansen 1992). This method is mathematically similar to
the one we used (described in Sect. 3.5.4) because it leads to
an equilibrium between information from the prior and data.

3.5.4. Optimisation of the regularisation

The correct amount of information for which the data can be
searched might be thought hard to determine. It may seem
hopeless to find information at a spatial scale below the typi-
cal width of the convolution kernel with a unique spectrogram.

Therefore, we searched for the way to determine the optimal
hyper-parameter r.

The regularisation parameter r is optimised via the study of
the resolution operator

R = I − rCQ, (32)

with I the identity matrix. A fruitful interpretation of the R
operator is given in Hansen (2010) with

Tr I = Tr R + Tr (rCQ)⇔[
# parameters

]
=

[
# parameters resolved by data

]
+

[
# parameters resolved by prior

]
, (33)

where the trace of the resolution operator gives the effective
number of degrees of freedom that can be extracted from the
data for a given amount of prior information. We set

Ndof = Tr R. (34)

The optimal r parameter is found by minimising the following
G(r) function, which behaves like a reduced χ2,

G(r) =
χ2(Â|r̂c, P̂)

(NxNy − Ndof)2 . (35)

This method, known as general cross-validation (GCV), is exten-
sively presented for example in Golub et al. (1979); Wahba
(1990); Hansen (2010). It is demonstrated that the minimum
of G(r) corresponds to the minimum of the distance |MÂ −
MAtruth|

2, where Atruth is the true amplitude vector hidden in the
data.

We tested different ways to implement the optimisation of
the regularisation process in Spectractor . The most effi-
cient result (in terms of rapidity and bias of the final result) is
obtained by setting a default reasonable regularisation parame-
ter for the fitting procedure of the amplitude Â and PSF r̂c, P̂
parameters, and finally to find the minimum of the G(r) func-
tion. We observed in the simulations that regardless of the r
hyper-parameter that is chosen at the beginning, the process
reconstructs an unbiased spectrum at the end of the E(A|rc, P)
minimisation. The level of regularisation of the solution can thus
be set a posteriori by finding the optimal r after minimising the
G(r) function.

The result of a 2D deconvolution process is presented in the
right panel of Fig. 10 for a simulation with a wide PSF kernel,
but without second diffraction order to stress the benefit of the
deconvolution. The residual map between the best-fitting model
and the simulated spectrogram shows that the 1D transverse fit
cannot extract the spectrum from the spectrogram image cor-
rectly (Fig. 10 left), while the 2D deconvolution ends with a
quasi-unstructured residual map that respects the expected Gaus-
sian distribution (Fig. 10 right). Because our model is informed
by a PSF model, we are able to extract spectra with a single
exposure, which involves rather small matrices compared with
Ryan et al. (2018). This allows us to tune the r hyper-parameter
automatically in a few seconds with a standard laptop.

If the spectrogram is not fully contained in the sensor area,
the spectrum exhibits a discontinuity that causes the norm-2
regularisation to fail (the second derivative from the Lapla-
cian operator is undefined). For a given instrumental PSF, it
is therefore better to use a more dispersive grating to feed the
deconvolution with more data and increase the wavelength res-
olution, but the spectrogram must fit inside the sensor area for
regularisation techniques to be use.
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Fig. 11. Optimisation of the r hyper-parameter for a simple simula-
tion with nPSF = 0, γ0 = 5, α0 = 3 (and the same characteristics as
in Table 1). Top: G(r) function (blue) and the minimum position r =
0.0467 (vertical black line). Middle: χ2 evolution with r. Bottom: trace
of the resolution matrix Tr R. The intersection with the black line gives
the effective number of parameters fitted by data, here, 180.

3.5.5. The spectrophotometric uncertainty principle

The regularity of the deconvolved solution depends on the hyper-
parameter r. The optimal r parameter is chosen as the minimum
of the G(r) function represented in the top panel of Fig. 11 for
a simple simulation with nPSF = 0, γ0 = 5, α0 = 3 (and the same
characteristics as in Table 1),

ϕ(x, y|rc, P) =
α0 − 1
πγ2

0

1 + (
x − xc

γ0

)2

+

(
y − yc

γ0

)2−α0

. (36)

The second panel displays the χ2(Â(r)|r̂c, P̂) function, which
shows that the optimum A(r) solution does not minimise the
agreement with the data (minimum χ2) , but makes a compro-
mise with a regularisation scheme (modelled by the χ2

pen(A|A0)
penalty term). The lower panel illustrates that the effective num-
ber of amplitude parameters fitted by data with the optimum
regularisation hyper-parameter is approximately 180. For this
simulation, about 680 amplitude parameters were fitted in a spec-
trogram built with a constant PSF FWHM of about 5.5 pixels.
Intuitively, we can conjecture that an optimum relation must exist
between the typical width of the PSF kernel and the amount of
information that can be searched for in data,

[PSF width] ×
[
# effective degrees of freedom

]
≈

[
# parameters

]
. (37)

If too many parameters are searched for, the problem
becomes ill-posed. If too few parameters are searched for, it
should be compensated for with a wide PSF kernel. We thus
postulate that we should have a spectrophotometric uncertainty
principle of the type

σPSF ×
Ndof

Nx
≳ h, (38)

where the optimum is reached at equality, and h has the same
units as σPSF the width of the PSF kernel. This formula gives the
minimum number of the degrees of freedom required to describe
data given a PSF width.
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Fig. 12. Product of the PSF FWHM with Ndof/Nx as a function of the
PSF FWHM for three different PSF models: a Gaussian kernel (orange
stars), a Moffat kernel with α0 = 2 (blue points), and a Moffat kernel
with α0 = 3 (green points).

We tested the deconvolution and regularisation process on a
large number of simulated spectrograms with a constant width
(nPSF = 0), but without second diffraction order. For the sake of
simplicity, we tested this without any loss of generality. We tried
a Gaussian PSF kernel and a Moffat kernel with two different
exponents (α0 = 2 and 3) and various γ0 values. The results are
summarised in Fig. 12. For the three models, σPSF was chosen
to be half of the PSF FWHM. The figure shows that for any PSF
kernel, the measure of the number of degrees of freedom Ndof/Nx
scales as the inverse of the PSF width. They show a definite trend
for the product σPSF × Ndof/Nx that appears to be asymptotically
constant and equal to the number h close to 0.8 pixel when the
PSF size is significantly greater than a few pixels. This h value
varies with the S/N of the spectrogram, but for a situation, it
locks the relation between σPSF and Ndof . This flatness of the
relation shows that our procedure agrees when the extraction of
information at the scale of the PSF kernel is considered optimal.

It is also noteworthy that this equation could be exploited to
accelerate the computation of the PSF cubes: Instead of comput-
ing a PSF kernel for each pixel column i, we could compute it for
each Ndof/Nx pixel. Because the computation times were not an
issue in this paper, we left this investigation for a future project
in which computation speed counts.

3.6. Wavelength calibration

Despite the astigmatism of the system, to first approximation, the
slitless spectrograph obeys the usual grating formula (Eq. (1);
see e.g. Murty 1962; Hall 1966; Schroeder & Inc 2000). Using
the notations of Fig. 1, the grating formula can be inverted to
find the relation between the u coordinate along the dispersion
axis and λ.

First, we assume that the true zeroth-order position is at u0
along the dispersion axis, but that a misfit of its centroid (see
Sect. 3.2) can shift the position by a quantity δu(fit)

0 .
The ADR also slightly spreads the zeroth-order image along

the local constant azimuth line in a deterministic way depending
on the airmass and the spectrum of the source. It also depends on
the parallactic and camera angles, the atmosphere temperature,
pressure, and humidity. It is incorporated in the wavelength cal-
ibration process as a wavelength-dependent shift δu(ADR)(λ) of
the PSF centroid position along the dispersion axis with respect
to a reference wavelength λref : δu(ADR)(λref) = 0.
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We model this effect using the NIST metrology toolbox11

recommendation of using a modified version of the Edlén equa-
tion (Edlén 1966) by Birch and Downs (Birch & Downs 1993,
1994) (see Appendix D).

The distance d(λ) between an abscissa of the spectrogram
and the zeroth order then reads

δu(λ) = δu(fit)
0 + δu(ADR)(λ), (39)

u0 = DCCD tan θ0, (40)
d(λ) = u(λ) − u0 − δu(λ), (41)

so that

d(λ|DCCD, δu
(fit)
0 ) = DCCD

[
tan (arcsin(pNeffλ + sin θ0))

− tan θ0] − δu(ADR)(λ) − δu(fit)
0 . (42)

The bijection between the position on the CCD and the wave-
length is thus parametrised with two unknown parameters, DCCD

and δu(fit)
0 , that need to be fitted.

As a starting point, we compute a first wavelength array λ0
from the array of distances d to the zeroth order along the dis-
persion axis, assuming δu0 = 0 and given a prior value of DCCD.
To obtain a wavelength array given DCCD and δu0, Eq. (42) is
inverted as

λ =
1

pNeff

sin arctan

d + δu(ADR)(λ) + δu(fit)
0

DCCD

 − sin θ0

 . (43)

To remove the ambiguity with ADR, which also depends on
wavelength, we iterate this computation five times starting from
λ0 and updating λ. We verified that it is enough to converge
toward a stable wavelength solution. In these steps, we associ-
ated a wavelength array λ with the amplitude array A. From this
calibration, λref is computed as the mean wavelength weighted by
the spectrum A itself, in order to associate the maximum ampli-
tude of the zeroth order with its brighter wavelength. With the
fit of δu(fit)

0 and this setting of λref , we ensure that we are not
sensitive to the slight dispersion of the zeroth order itself.

The parameters DCCD and δu(fit)
0 are fit on data using the most

prominent absorption (or emission) lines on the observed stel-
lar spectrum (typically, the hydrogen lines Hα and Hβ, and the
dioxygen lines at 762.1 nm and 686.7 nm). They are locally fit-
ted with a polynomial background plus a Gaussian profile of
unknown height, centroid, and width. A partial χ2 quantity is
computed for each spectroscopic line and added into a global χ2.

A penalty defined as the squared distance between the fit-
ted Gaussian centroids and the tabulated values for the detected
lines, weighted by the squared S/N, is then added to the χ2.

Finally, the full χ2 and its penalty are normalised to the
number of detected lines. This normalisation of the global χ2

is necessary to avoid solutions that favour a lower number of
detected lines, while the penalty gives more weights to the
well-detected lines and anchors them on their tabulated values.
The two parameters δu(fit)

0 and DCCD are varied to minimise the
penalised global χ2 and find the best solution for the wavelength
calibration.

The result of this process is illustrated in Fig. 13. At the
top, the global χ2 is represented for the wavelength calibra-
tion of the planetary nebula PNG321.0+3.9 observed at CTIO.

11 https://emtoolbox.nist.gov/Wavelength/Documentation.
asp
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Fig. 13. Wavelength-calibration process on a planetary nebula spec-
trum. Top: global χ2(δu(fit)

0 ,DCCD) function and its minimum (black
circle) for the planetary nebula PNG321.0+3.9 observed at CTIO. The
sharp steps at the top of the plot arise when certain lines are detected.
Bottom: calibrated spectrum of PNG321.0+3.9. The vertical lines indi-
cate emission or absorption lines that are detected, positioned at their
tabulated values. The dashed blue lines show the fitted background
(whose degree depends on its length), and the plain blue lines show
the Gaussian profiles fitted on data.

Table 2. Emission lines detected in the spectrum of planetary nebula
PNG321.0+3.9 with a S/N above 10.

Line Tabulated Detected Shift FWHM Amplitude SNR EQW
nm nm nm erg s−1 cm−2 nm−1 nm

HeI 388.8 383.8 –5.0 14.1 1.1e-13 46.0 –28.3
Hβ 486.3 485.6 –0.7 4.0 3.9e-14 17.1 –3.0
FeII 515.8 513.6 –2.2 6.5 2.5e-14 10.9 –9.6
Hα 656.3 656.3 –0.0 4.8 1.9e-13 84.6 –44.5
CII 723.5 722.9 –0.6 3.2 6.4e-14 28.0 –7.1
HeI 861.7 865.6 3.9 8.7 5e-15 10.2 –2.5
CIII 970.5 968.8 –1.7 6.4 1.1e-14 22.9 –1.5
HeI 1023.5 1024.3 0.8 10.4 5.6e-15 13.2 –4.7

Notes. The third column gives the centroid of the fitted Gaussian profile,
and the fourth column lists the distance to the tabulated value. The EQW
is reported in the last column.

The sharp steps at high or low DCCD values reflect situations
in which some emission lines are detected or are not detected,
which emphasizes the need to normalise the global χ2 by the
number of detected lines. The smoothness around the minimum
is due to the penalty term on δu(fit)

0 . In the calibrated spectrum, we
can observe many emission lines that have been detected by the
algorithm, and a good alignment between the tabulated values
(represented by the vertical lines), the extrema of the Gaussian
profiles, and those of the data curve. A summary of the detected
lines with high S/N is presented in Table 2, reporting their fitted
wavelength and their equivalent width (EQW).
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3.7. Flux calibration

With the fitted wavelength solution, the spectrum amplitude
Â can be converted from ADU units into flux densities in
erg s−1 cm−2 nm−1, assuming that the telescope collecting area
ST , the exposure time τ, and the CCD gain GCCD (in e− ADU−1)
are known,

S 1(λ) = Â ×
hc GCCD

STτλδλ
, (44)

where δλ is the local variation in λ within one pixel.
The end product of this pipeline is thus a background-

subtracted spectrum, calibrated in wavelength and flux, that is
the product of three quantities: the object SED, the instrumen-
tal transmission, and the atmospheric transmission, which might
be contaminated by a second diffraction order because this latter
has not yet been taken into account.

3.8. Full forward model of the spectrogram

At the end of the previous steps, we also have first estimates of
the two instrumental model functions ϕ1(r, λ) and ∆p(λ), and
of geometric parameters such as the zeroth-order position r0
and the dispersion angle α. With all these ingredients, we can
implement a full forward model of the data that also takes the
atmospheric differential refraction (ADR) and the superposi-
tion with the second diffraction order (last stage of Fig. 3) into
account.

In practice, we enrich the forward model described in the
steps above with the knowledge of the ADR physics (see
Sect. 3.6 and Appendix D) and with the knowledge of the
second-order to first-order transmission ratio r2/1(λ) of the spec-
trograph disperser. The ADR model replaces a polynomial
approach to predict ∆p(λ). In other words, it is used to predict
the trace of the spectrogram on the sensor without free param-
eters, as long as airmass, outside pressure, outside temperature,
and humidity are given. With this, two free parameters remain
for the spectrogram trace on the sensor to be fully constrained:
the dispersion axis angle α and δy(fit), which compensates for
a misfit of the zeroth-order centroid along the y-axis. The ratio
r2/1(λ) can be measured on an optical test bench (see Sect. 5.1) or
on on-sky data. In the full forward model, we use a new design
matrix M̃ that is defined as

M̃ = M(Z|rc, P) + A2R2/1 M(Z|rp=2
c , Pp=2), (45)

where A2 is a safety normalisation parameter, R2/1 is the trans-
mission ratio vector computed for a given wavelength calibra-
tion, rp=2

c are the centroid positions of the second diffraction
order PSF kernels, and Pp=2 are their shape parameters. The
vector rp=2

c is computed using the grating formula (1) and the
ADR model. Pp=2 can be fitted independently of Pp=1, but
we chose to assume that the PSF shape depends more on the
spectrograph defocusing towards the infrared than on the atmo-
spheric chromatic seeing. The PSF shape parameters for the
second diffraction order are thus considered the same as for the
first diffraction order at the same distance of the zeroth order.
We chose to set the Pp=2 vector accordingly12. Therefore, the
12 Another choice could have been to assume that the spectrograph does
not suffer from defocus, and thus arguing that the PSF shape parame-
ters for the second diffraction order are the same than that of the first
diffraction order at the same wavelength whatever the distance to the
zeroth order. For CTIO images, our first choice leads to better fits to
data.

full forward model now includes both first- and second-order
spectrogram models as

I1(Z|A, rc, P) + I2(Z|A, rp=2
c , Pp=2) = M̃ A. (46)

We implemented a two-step iterative method that alternates
the wavelength calibration described in Sect. 3.6 and the full for-
ward model described just above (by combining a linear fit for
the A spectrum amplitudes and a Gauss-Newton descent for the
non-linear parameters P) with the same r hyper-parameter that
was fitted (in Sect. 3.5.4). The A parameter vector determined
with PSF 2D deconvolution previously (Sect. 3.5.3) is seeded
in the forward-model fit as a new prior A0. A 20σ clipping is
performed to reject the field stars and their concomitant spec-
trograms as well as other sensor defects. This procedure ensures
that all the forward-model parameters are fitted again together
on data, using the more complete model including A, P, DCCD,
δu(fit)

0 , and A2. Their values replaced all those that were fitted
previously. The residual map obtained in this way is flatter than
before, with an even smaller final χ2, and consequently, with a
better accuracy of all the fitted parameters.

The two main products of this step are a first-order diffraction
spectrum S 1(λ) separated from the second-order spectrum, and
the second-order spectrum S 2(λ) with

S 2(λ) = r2/1(λ)S 1(λ), (47)

in erg s−1 cm−2 nm−1 (following Eq. (44)).
At this point, we consider the second diffraction order not

as a nuisance, but as a useful signal. With a strong bending due
to ADR (e.g. with the dispersion axis orthogonal to the zenith
direction), it can be detached from the first diffraction order on
purpose to maximise the statistical power of the exposure.

In summary, a full forward model takes advantage of the
higher diffraction orders as a redundant piece of data to fit all
parameters, especially in the bluer part, where absorption lines
are twice wider in pixels than in the first-order spectrum. This is
a key advantage of the forward approach compared to the direct
approach.

3.9. Validation on simulations

To test the full forward model, we simulated a spectrogram with
a second diffraction order and a sharp Moffat PSF kernel to
increase the spectral resolution (see the PSF parameter values
in Table 3), whose shape evolves as a second-order polynomial
function. Figure 14 compares the simulated data with the fitted
spectrogram model and focuses on some atmospheric absorption
lines: The residuals follow the expected Gaussian distribution
again, even in the fast-varying regions of the spectrum.

In Fig. 15, we show that the process recovered the true spec-
trum injected in the simulation within the estimated uncertainties
(diagonal elements from the C matrix from Eq. (28)). The agree-
ment is excellent at all wavelengths, even around the fast-varying
absorption lines. The right panel of the figure also shows the
FWHM of the true PSF. The reconstructed PSF displays the
same wavelength-dependent PSF FWHM as the simulated one.
It is also remarkable that while the cross-spectrum issued from
the transverse 1D fit described in Sect. 3.5.2 failed to recover the
true spectrum and the true PSF profile because of the presence
of the second diffraction order (orange curves), it still proved to
be an important seed for the regularisation process because only
its regularity is used because of the Laplacian operator L.

The recovered parameters are compared with the simulation
values in Table 3. They are fitted together with their uncertainties

A21, page 14 of 29



Neveu, J., et al.: A&A, 684, A21 (2024)

After the full forward-model fit
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Fig. 14. Same as Fig. 10, but with the addition of a second-order diffraction spectrogram and after the full forward-model fitting procedure.

Table 3. Parameters of a spectrogram simulation and Spectractor
estimations, recovered with a full forward-model approach.

Parameter Simulation value Recovered value

x0 (pix) 743.89 743.76
y0 (pix) 682.92 682.93
δy(fit) (pix) 0 −0.199 ± 0.003
α (◦) −1.5653 −1.5654 ± 0.0004

⟨B(r)⟩ (ADU s−1) 0.1930 0.1930
DCCD (mm) 56.322 56.329

A2 1 0.98 ± 0.02
γ0 3 3.00 ± 0.01
γ1 1 0.99 ± 0.02
γ2 1 1.02 ± 0.02
α0 3 3.01 ± 0.01
α1 0 −0.02 ± 0.01
α2 0 0.03 ± 0.02

Ndof 669 298
Reduced χ2 – 0.53

Notes. Parameters with uncertainties are fitted during the Gauss-
Newton descent of the full forward model, while others are just
estimated on data. The simulation was done with a spectrum made from
669 amplitude parameters, and the regularisation process recovered 303
of them. The δy(fit) centroid correction is included in the y0 quoted value.

in the full forward-model minimisation, which provides their full
covariance matrix (Fig. 16), while the other parameters such as
the star centroid are just estimated on data.

The regularisation quantities are given in Fig. 17. For a PSF
FWHM between 2 to 4 pixels, we again obtain Ndof ≈ 300 out
of ≈ 700 parameters. This confirms the rule of thumb given by
the spectrophotometric uncertainty principle. For spectrograms
such as those presented in the previous figures, the end-to-end
pipeline takes 2 min on a standard laptop.

The Spectractor implementation was tested on many sim-
ulations and recovered the simulation parameters within the
estimated uncertainties (68% confidence interval) for sets of
parameters that were not too extreme (smooth wavelength depen-
dence on the PSF, or the PSF kernel sampled over a few pixels).
We also evaluated the extraction bias b between the true spec-
trum given in the simulation S truth

1 (λ) and the extracted spectrum
S 1(λ) as

b =

∫
dλ

(
S 1(λ) − S truth

1 (λ)
)∫

dλS truth
1 (λ)

. (48)

The extraction bias was evaluated with many simulations in dif-
ferent cases in terms of S/N, resolution, and geometry. For the
first case, the variation in S/N was simulated by multiplying
the simulated spectrum by an arbitrary grey factor A1, keeping
the image background at the same level. The S/N of the simu-
lation presented in Fig. 15 and Table 3 corresponds to A1 = 1.
We found no significant bias in the A1 > 1 regime (Fig. 18), but
a small bias appears for spectrograms with a lower S/N at the
percent level. This is because a Gaussian model was used in the
evaluation of the uncertainty map (see Sect. 3.1) while a Poisson
distribution is more accurate at low S/N. The variation in spec-
trogram resolution was simulated by changing the PSF width
γ0, and a small negative bias appeared for low-resolution spectra
(large γ0). These spectra exhibit wider and shallower absorption
lines than the true spectrum, which leads to these negative b val-
ues, but only at the sub-percent level. However, except for the
absorption lines, the overall spectrum shape from blue to red is
recovered perfectly. Finally, geometry variations were also sim-
ulated using different dispersion axis angles α, but we found no
bias. In conclusion, the most important condition for extracting
unbiased spectra from slitless spectrophotometry is a sufficient
S/N, closely followed by a sufficiently fine spectral resolution.
The adequacy of these parameters is easy to test a priori with a
forward-model simulation.
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Fig. 15. Results from the full forward-model fit of a simulated spectrogram of the CALSPEC star HD111980 with a Moffat PSF kernel. A second
diffraction order was simulated. Top left: spectrum output from the full forward-model process (orange) compared with the true spectrum injected
in the simulation (blue) and the intermediate 1D transverse fit used as the prior vector A0 (green). Bottom left: residuals between the true spectrum
and the 1D and 2D fits normalised by their estimated uncertainties. Top right: FWHM of the true PSF (blue, right below the green curve) compared
with the fitted PSF during the full forward-model procedure (green) or the 1D transverse fit (orange). Bottom right: difference between the true
PSF FWHM injected in the spectrogram simulation and the 1D and 2D fits. All blue curves are covered by the orange curves.

Fig. 16. Correlation matrix of the full forward-model fitting of a spec-
trogram simulation at the end of the Gauss–Newton descent.

Fig. 17. Same as Fig. 11, but for the simulation illustrated in Fig. 15.

For completeness, we represent the reconstructed number
of degrees of freedom for all these simulations in Fig. 18. As
expected, for spectrograms with a very low S/N, this number
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Fig. 18. Extraction bias b (blue points) as a function of the S/N mate-
rialised by the amplitude A1 factor (top), of the PSF width γ0 (middle),
and of the rotation angle α (bottom). For completeness, the effective
number of degrees of freedom Ndof is represented with red diamonds
for each simulation.

is close to zero. In that case, the extracted spectra are close to
the A0 = Â(1D)

prior spectra. When the signal increases, then
Ndof strongly increases until it saturates because of pixelisation.
Conversely, this number decreases when the PSF width increases
because the spectrogram has a lower spectral resolution.

4. Spectrum extraction on data

The success of the spectrum extraction on data mostly depends
on the model of the wavelength-dependent PSF of the tele-
scope. If the PSF model correctly represents the reality, the
residuals after the full forward-model fit of the spectrogram con-
verges towards the expected Gaussian distribution. Otherwise,
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Fig. 19. Same as in Fig. 14, but for CTIO data: CALSPEC star HD111980 observed on 2017 May 30 with a blazed Thorlabs grating 300 lines mm−1

(left), for which the PSF is out of focus and deviates from a Moffat model, and an amplitude hologram of 350 lines mm−1 (right), better focused on
the CCD.
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Fig. 20. Calibrated spectra of CALSPEC star HD111980 observed at CTIO on 2017 May 30 with a blazed Thorlabs grating 300 lines mm−1 (left)
and an amplitude hologram of 350 lines mm−1 (right). The CALSPEC SEDs are given for comparison (scaled for convenience). The two dispersers
do not have the same transmission curves, which explains the different shapes of the spectra. The vertical lines indicate emission or absorption
lines that are detected, positioned at their tabulated values. Locally, the dashed blue lines show the fitted continuum, and the plain blue lines are
the Gaussian profiles fitted on absorption lines.

the extracted spectrum is distorted when the PSF is too far from
reality.

This is illustrated in Fig. 19. In the left panels, a blazed
Thorlabs grating with 300 lines mm−1 was chosen to observe
CALSPEC star HD111980 at CTIO on 2017 May 30. Directly
placed in the filter wheel at DCCD ≈ 55 mm from the CCD, this
grating presents a rather strong defocusing that is poorly mod-
elled by our default circular Moffat PSF, even with a fourth-order
polynomial evolution with wavelength.

The building of an appropriate model for this highly defo-
cused PSF is left for future work and is presented here as an
illustration that the prior understanding of the telescope can be
greatly worthwhile in a forward-fitting approach. These extrac-
tions used a sigma-clipping procedure with a 20σ threshold in
order to reject only the field stars and not the poorly modelled
spectrogram pixels.

However, the same PSF kernel as was used to treat the
same star observed 5 min later, but with an amplitude hologram
optimised to correctly focus the spectrogram at all wavelength
(Moniez et al. 2021), leads to residuals between ±5σ (right fig-
ures), mostly dominated by a field star that contaminates the
spectrogram at about 530 nm.

The parameters of interest for these two extractions are sum-
marised in Table 4. We realised a posteriori that the S/N was not
sufficient to fit A2, and decided to keep it fixed at 1. The way
in which the ratio r2/1(λ) was obtained for these exposures is
explained in Sect. 5.

The calibrated spectra given by Spectractor at the end of
the extraction process are given in Fig. 20. Because of the strong
defocusing, the spectrum from the Thorlabs grating presents
broadened absorption lines, while the amplitude hologram has
sharper absorption lines. The second displays a better spectral
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Table 4. Parameters of the CTIO exposures and Spectractor esti-
mates.

Parameter CTIO Exposure 1 with CTIO Exposure 2 with
blazed regular grating amplitude hologram

Disperser 300 lines mm−1 350 lines mm−1

Seeing [′′] 0.68 0.65
Airmass 1.12 1.13
x0 (pix) 767.2 779.9
y0 (pix) 696.7 702.6
δy(fit) (pix) 0.2402 ± 0.0008 −0.217 ± 0.004
α (◦) −0.7980 ± 0.0001 −1.5650 ± 0.0004

⟨B(r)⟩ (ADU s−1) 2.4 0.2
DCCD (mm) 55.53 56.33

A size 562 669
r 0.97 0.16

Ndof 125 197
Reduced χ2 9.67 1.05

resolution that is limited by the atmospheric seeing, which
argues in favour of either controlling the spectrograph PSF
at the hardware level, or of being able to accurately model a
defocused PSF kernel. At this point, it seems easier to adjust
the spectrograph to obtain a simple PSF model than to guess
the complexity of the chromatic PSF with on-sky data. Based
on these spectra or spectrograms, we show in Sect. 5 how
to measure the atmospheric transmission or the instrumental
transmission via forward modelling.

5. A path toward measuring atmospheric
transmission

One of the main objectives for building a spectrophotometric
instrument and its analysis pipeline is to be able to accurately
measure on-site atmospheric transmission so as to improve the
photometric calibration of other telescope on the same site. For
instance, the aim of the Auxiliary Telescope at Cerro Pachón is to
measure the atmospheric transmission to correct the photometry
of the LSST survey.

In order to discuss the capabilities of Spectractor in mea-
suring atmospheric quantities, we first recall that its main output
is a first diffraction order spectrum,

S 1(λ) = Tinst,1(λ) Tatm(λ|Pa) S ∗(λ). (49)

To be able to obtain the atmospheric transmission Tatm(λ|Pa), we
need to know the stellar SED and the instrumental transmission,
and to have an accurate full forward model for the spectrograph.

Because the most accurate PSF model is achieved with the
amplitude hologram at CTIO because of its focusing proper-
ties, we expect better results from its analysis than from the data
acquired with the Thorlabs grating.

In order to inform our forward model, we need to know the
disperser on-sky first-order transmission and their r2/1(λ) ratio.
While we show below how to use on-sky data to this end, we also
secured the Thorlabs grating to bring it back on an optical bench
at the Laboratoire de Physique Nucléaire et de Hautes Énergies
(LPNHE) and measure its transmission. This was not possible
for the prototype hologram used at CTIO, and we had to recover
its transmission with on-sky data.

While in theory, the forward modelling of the atmospheric
transmission could be based on a perfect a prior knowledge of

the instrument and simply needs to fit each star exposure, in prac-
tice, all this is slightly more complex. We therefore decided to
show that our pipeline can be used with intermediary steps in
order to gain increasingly better understanding of the data, up to
the point where the full forward modelling of the atmospheric
parameters becomes possible. Because of the limited telescope
time and observations, this first paper relies on a limited amount
of data and aims at presenting the algorithms and procedures.
Clearly for accurate results, many more data are required.

The different steps that we undertook and detail below are as
follows:

– Sect. 5.1: laboratory measurement of the blazed grating
transmission as a function of λ;

– Sect. 5.2.1: inference of the CTIO 0.9 m telescope transmis-
sion using data taken with the blazed grating during a stable
night;

– Sect. 5.2.2: inference of the amplitude hologram transmis-
sion during the same stable night with the CTIO 0.9 m
telescope transmission;

– Sects. 5.2.3, 5.3: measurement of Tatm(λ|Pa) with data using
the amplitude hologram with Tinst,1(λ), S ∗(λ), and a Moffat
PSF kernel.

5.1. Disperser transmission measurement

Our blazed Thorlabs 300 lines mm−1 grating was studied 2 yr
after the CTIO campaign on the LPNHE optical test bench. The
optical bench is made of parabolic off-axis mirrors to simulate a
monochromatic f /D = 18 telescope beam. A monochromator is
used to select an accurately known narrow wavelength interval,
and the light, after passing through the grating mounted on an
xyz support, is collected on a CCD device.

The transmissions for orders 0, 1, and 2 were measured using
aperture photometry at many wavelengths. Because the labora-
tory bench had been designed to measure filter transmissions,
it could unfortunately not be adjusted to allow a S/N that was
high enough in the regions below 450 nm and above 1000 nm.
For these wavelength ranges, we therefore used the spreadsheet
of the grating manufacturer.

To measure the r2/1(λ) ratio, we used the optical bench
measurement above 450 nm and the CTIO on-sky measurement
from Moniez et al. (2021) below.

In order to measure wavelengths bluer than < 400 nm, we
extrapolated the r2/1(λ) function with an exponential model
C exp [−(λ − λ0)/τ] with three free parameters C, λ0, and τ fitted
on the laboratory data.

The first-order efficiency curve and the r2/1(λ) curve for
the blazed Thorlabs 300 lines mm−1 grating are represented in
Fig. 21 and were used in Spectractor when spectra taken with
this grating were measured (e.g. in Fig. 19 left).

5.2. Analysis of a photometric night

To measure the CTIO 0.9 m telescope transmission, we made
use of a set of spectra acquired at different airmasses dur-
ing a night with stable photometric condition. The multiplicity
of the airmass conditions and the hypothesis that the atmo-
spheric transmission spectrum only varies with the quantity of
atmosphere between the source and the observer allowed us to
factorise the atmospheric transmission as an airmass-dependent
term and the instrumental transmission term.

In order to distinguish between the average spectrum of
the atmospheric transmission and the instrumental transmission
spectrum, we performed the fit over the available Ns spectra
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Fig. 22. Spectra from the CALSPEC star HD111980 acquired during
the night of 2017 May 30 at CTIO, which was assumed to be photo-
metric, with the blazed Thorlabs grating with 300 lines mm−1 (top) and
an amplitude hologram with 350 lines mm−1 (bottom). The curves are
coloured according to the acquisition airmass z. In the amplitude holo-
gram, a field star creates a spike around 530 nm.

by simulating the atmospheric transmission with Libradtran13

(Mayer & Kylling 2005; Emde et al. 2016) jointly with Ni
arbitrary coefficients to sample the Tinst,1(λ) curve.

At CTIO on 2017 May 30, the night presented very stable
conditions according to the in situ meteorological measure-
ments of temperature, pressure, humidity, and also a stable
seeing around 0.8". We analysed the spectra of CALPSEC star
HD111980 acquired with the Thorlabs and holographic dis-
persers under the hypothesis that this night was photometric. The
observations cover an airmass range from 1 to 2 (see Fig. 22).

For each of the dispersers, Ns spectra were acquired and
extracted. They were averaged in 3 nm bins, for which the
instrumental transmission is assumed to be very smooth at this
scale. The main atmospheric and hydrogen absorption lines were
masked in this process.

13 http://www.libradtran.org

5.2.1. Analysis of a photometric night in which the
instrumental transmission was extracted

We present here how we estimated the telescope transmission
from a photometric night data set and the knowledge of the labo-
ratory measurement of the Thorlabs grating. Basically, we fitted
a telescope transmission model and one atmospheric model on
the collection of spectra extracted from the data collected with
this disperser.

From 300 nm to 1100 nm, we simultaneously fitted the Ns =
20 good blazed grating spectra observed with the model from
Eq. (9) for p = 1,

S 1(λ) = Tinst,1(λ) Tatm(λ|Pa) S ∗(λ), (50)

where S ∗(λ) is the binned SED of the CALSPEC star, and
Tinst,1(λ) is a vector of Ni = 250 free linear amplitude parameters.

The Libradtran atmospheric transmission simulation Tatm(λ)
uses the in situ pressure, temperature, and airmass given in each
exposure metadata. In addition, three common parameters Pa
were fitted:

– the precipitable water vapour (PWV; in mm);
– the ozone quantity (in dobson db);
– the vertical aerosol optical depth (VAOD).

In order to account for a possible small grey variation in the
atmospheric transmission, each spectrum was weighted by a grey
factor A(n)

1 , with their average constrained to one,〈
A(n)

1

〉
n
= 1. (51)

The χ2 we need to minimise thus reads

χ2 =

Ns∑
n=1

[
Dn − A(n)

1 S 1(λ)
]T

C−1
n

[
Dn − A(n)

1 S 1(λ)
]
, (52)

where Dn is the data vector for spectrum number n, and Cn is
its covariance matrix estimated by the Spectractor extraction
pipeline. The A(n)

1 and Pa parameters were fitted jointly via a
Gauss-Newton descent and come with their covariance matrix,
while the Tinst,1(λ) linear parameters were computed analytically
via the usual algebra at each descent step. Because the spectrum
of the star is assumed to be known, no regularisation is needed.
Because the instrumental transmission is assumed to be smooth,
the descent was repeated with a 5σ clipping to remove outliers.

This procedure has been tested on simulations, and we ver-
ified that it recovered the injected parameters for instrumental
transmission, grey factors, and atmospheric quantities within the
uncertainty ranges.

The results obtained on the CTIO data are presented in
Fig. 23. Approximately 15% of the 5000 spectral data points
are masked, either because they are close to a spectral line, or
because they are 5σ outliers. The residuals are structured below
the 2σ level in the red part of the spectra, either because of an
incorrect PSF model for the redder wavelengths due to defocus-
ing, or because of PWV variations in the atmosphere, as hinted
by the spectra, vertically ordered in time.

The best Tinst,1(λ) solution that we extracted is presented in
Fig. 24. The black points represent the raw fitted Tinst,1(λ) vec-
tor, and the red curve is smoothed with a Savitzky–Golay filter
of order 1 and window size 17. The error bars result from the
combination of raw uncertainties from the fit plus the difference
between the smoothed curve and the scattered raw black points.
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Fig. 23. Multispectra fit of a CTIO photometric night using the blazed
grating with 300 lines mm−1. Top: Dn data spectra binned in 3 nm inter-
vals, indexed vertically by their index n and with a coloured amplitude.
Masked regions are shown in grey. Middle: best-fitting spectrum mod-
els A(n)

1 S 1(λ) indexed vertically by their index n. Bottom: residual map.
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Fig. 24. Measured Tinst,1(λ) curve for the CTIO 0.9 m telescope
equipped with a Thorlabs 300 lines mm−1 blazed grating (black points)
from a photometric night. The red curve is a smoothing using a
Savitzky–Golay filter of order 1 and a window size 17.

This leads to larger uncertainties for the instrumental through-
put where the spectra were masked, around the main absorption
lines.

The transmission curve presents the expected decreases due
to the loss of efficiency of the CCD. Given the measurement
of the blazed Thorlabs grating at the laboratory (Fig. 21), we
extracted the CTIO 0.9 m instrumental throughput from the
Tinst,1(λ) smoothed curve.

This fills the lack in a priori knowledge of the telescope
throughput to inform our forward model, and it is used in
the following analysis. We obtained the telescope throughput
by dividing the fitted instrumental transmission by the first-
order efficiency of the blazed Thorlabs grating. The atmospheric
transmission results are detailed in Sect. 5.2.3.

A more accurate estimate of the instrumental transmission
would need more data, both to inform a better PSF model,
and to constrain the atmospheric transmission variations better.
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Fig. 25. Multispectra fit of a CTIO photometric night using the ampli-
tude hologram with 350 lines mm−1. Top: Dn data spectra binned in
3 nm intervals, indexed vertically by their index n and with a coloured
amplitude. Masked regions are shown in grey. Middle: best-fitting spec-
trum models A(n)

1 S 1(λ) indexed vertically by their index n. Bottom:
residual map.

Because the available data were limited, our goal was to illus-
trate that a forward-model approach can be adjusted to gain more
information about the different components of the model.

We find it also noteworthy that the procedure is symmetric
with respect to atmospheric transmission and telescope transmis-
sion: The need for the Libradtran model as a priori to constrain
the atmospheric transmission shape could be replaced by the a
priori measurement of the telescope transmission.

5.2.2. Analysis of a photometric night in which amplitude
hologram transmissions were obtained

The next step needed to further inform our forward model in
order to use the best-quality data to constrain the atmospheric
transmission was to estimate the holographic disperser transmis-
sion. If this transmission is known, the data gathered with this
disperser can be used, and we can take advantage of the fact that
its PSF can be fairly well modelled with a Moffat.

In order to obtain the hologram transmission, we used the
same procedure as described for the Thorlabs disperser above
on data that were collected during the same photometric night,
but with the holographic disperser. However, the ratio r2/1(λ) is
still a prior information needed for the full forward model. For
the holographic disperser, we built r2/1(λ) using the interpolated
on-sky data presented in Moniez et al. (2021 Fig. 21) alone.

The Ns = 27 spectra are presented in Fig. 22, and the
results are presented in Fig. 25. Approximately 0.5% of the 6723
data points are masked. The residuals are below 3σ. A deep
absorption feature is visible around the water-absorption band
at 950 nm.

As in the previous section, from the Tinst,1(λ) best fit (see
Fig. 26), we deduced the transmission of the first diffraction
order for the holographic disperser, using the CTIO 0.9 m tele-
scope transmission curve determined previously. We are well
aware of the systematic errors present in these results, and we
stress that they are presented here to illustrate that the forward
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Fig. 26. Measured Tinst,1(λ) curve for the CTIO 0.9 m telescope
equipped with an amplitude holographic grating of about 350
lines mm−1 (black points) from a photometric night. The red curve
shows a smoothing using a Savitzky–Golay filter of order 1 and a win-
dow size 11.

Table 5. Atmospheric parameters Pa fitted for the same photometric
night of 2017 May 30, observing CALSPEC star HD111980 with two
different dispersers.

Disperser aerosols ozone PWV χ2
red

VAOD db mm

Thorlabs 0.020 ± 0.001 314 ± 2 2.00 ± 0.04 8.3
Ampl. holo. 0.016 ± 0.003 284 ± 9 2.2 ± 0.1 2.4
MERRA-2 0.017 265 4 – 5

Notes. Last line gives the MERRA-2 value measured in a 60 km wide
cell around CTIO.

model approach we implemented can be used when a priori
information about crucial components of the model is lacking.

5.2.3. Analysis of a photometric night in which atmospheric
parameters were extracted

In addition to the instrumental transmissions of both dispersers,
the procedures above also yield the parameters describing the
mean atmospheric transmission of the night. Under the assump-
tion that the night was photometric, these results are presented
in Table 5.

The rather low value of the reduced χ2 for the amplitude
hologram illustrates the focusing properties of this disperser,
which allow us to describe its PSF quite accurately with a sim-
ple 2D Moffat. Quantities obtained from the blazed Thorlabs
grating data show lower statistical uncertainties than amplitude
hologram data because their S/N is much higher (because its
transmission is much higher). However, they certainly show
higher unevaluated PSF systematics than the hologram mea-
surements. The difference between the two estimates of the
atmospheric transmission in Table 5 leads to variations in syn-
thesised broad-band magnitudes for the LSST filters of about
8 mmag in the u, g, and r filters, 3 mmag in i, 1.5 mmag in z,
and 4 mmag in y filter for various standard CALSPEC SEDs
and supernovae at redshift 0. The millimagnitude accuracy on
atmospheric transmission can thus be reached provided that the
accuracy of the atmospheric parameters reaches below the differ-
ence shown in Table 5: We found that PWV must be fitted with
an accuracy better than ≈ 0.05 mm to obtain a milli-magnitude
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Fig. 27. Measured A(n)
1 grey absorption factors for the CTIO night of

2017 May 30, in which CALSPEC star HD111980 was observed, for
each spectrum (ordered in time).

accuracy in y band. For VAOD, uncertainties of about 0.001 are
required for the u, g, and r bands. For ozone, a 10 db precision is
enough to obtain milli-magnitude precision in r band.

Furthermore, the ozone and VAOD parameters we fitted are
similar to the estimates of the global meteorological network
MERRA-214 (Gelaro et al. 2017) for the CTIO site during that
night. The MERRA-2 PWV value ranges from 4 to 5 mm during
the night of 2017 May 30. As MERRA-2 averages atmospheric
quantities in 60 km wide cells, it can be expected that quanti-
ties with large local variations such as water vapour could differ
from on-site measurements. This is even more true for CTIO,
which is located at the top of a Chilean mountain. On the other
hand, a high-atmosphere quantity would be expected to depart
less between on-site and satellite measurements. We report the
MERRA-2 values and compare them to what we extract with
our forward model to illustrate that with a detailed knowledge
of the telescope, the challenging problem of on-site atmospheric
transmission measurement can be solved. While the quoted error
bars only propagate the statistical uncertainties and are proba-
bly dominated by systematics, the tentative concordance between
the parameters measured by MERRA-2 and our forward-model
results supports the algorithm we developed.

For completeness, we also present the evolution of the grey
parameters A(n)

1 through the night in Fig. 27 for the holographic
disperser data, together with the final correlation matrix of the
fitted parameters in Fig. 28. The variation in the 27 A(n)

1 factors is
lower than 1%. This supports the first-order approximation of the
night as being photometric and again shows that the procedure
is able to improve our understanding of the data. It also offers
venues to improve the model.

Finally, we note that the correlation matrix shows that the
VAOD aerosol parameter is particularly strongly correlated to
the spectrum amplitudes. This is expected because this quantity
is mostly determined by the spectrum slope for λ ≈ 400 nm. Any
systematic on the amplitude of the spectrum therefore directly
affects the estimate of aerosols.

5.3. Atmospheric forward-model approach

After illustrating that the forward-model approach can be used to
measure the telescope and disperser transmissions, which yields

14 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
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Fig. 28. Correlation matrix for the multi-spectrum parameters fitted for
the CTIO night of 2017 May 30, in which CALSPEC star HD111980
was observed.

a set of stellar and atmospheric transmission spectra, we can pro-
ceed one step further. Assuming that our measurement of these
crucial components of the forward model had been done with
enough data to be accurate, we might skip the part in which the
spectrum is extracted and directly fit the atmospheric parameters
on the raw spectrogram.

At the cost of having access to the transmissions described
above, when we model the spectrum S 1(λ) as the product of a
known instrumental transmission Tinst,1(λ), a Libradtran atmo-
spheric model Tatm(λ|Pa), and the SED S ∗(λ) of a known
CALSPEC star, we can describe any observed spectrogram as

I(Z|A, rc, P) = M̃(Z|rc, P) A (53)
A(λ) = A1Tinst,1(λ) Tatm(λ|Pa) S ∗(λ), (54)

with A1 a grey factor.
As before, the parameters and their covariance matrix were

estimated via a Gauss-Newton descent by minimising a χ2 cal-
culated over a single spectrogram. The fitted parameters were
A1, A2, δy

(fit), Pa,DCCD, α, and all the polynomial coefficients
that model the wavelength dependence of the PSF kernel. Each
spectrogram was fitted independently. We call this a spectrogram
fit. As a comparison, and as a way to assess the quality of the
stellar spectrum forward model, we also directly fit S 1(λ) and
the atmospheric transmission on the stellar spectra extracted at
this step. We call this a spectrum fit.

5.3.1. Qualification on simulations

The direct extraction of atmospheric parameters from a spec-
trogram was tested on simulations. The parameters we chose to
simulate were the extracted parameters found from fitting all data
spectrograms of the photometric night of 2017 May 30, involving
the amplitude hologram. With these parameters, we simulated
spectrograms of a CALPSEC star spanning an airmass ≈ 1 to
≈ 2 with the same seeing and atmospheric conditions as that
of our data. We arbitrarily fixed the unknown Pa parameters to
300 db for ozone, 0.03 for VAOD, and 5 mm for PWV.

The result of the spectrogram fit is very similar to what was
presented in Fig. 10. For comparison, we present the result of the

spectrum fit of the extracted spectrum from one of the simulated
spectrograms in Fig. 29. The extracted spectrum (red points), the
best-fitting spectrum model (blue), and the true spectrum (green)
all agree within the quoted uncertainties.

In addition, the recovered atmospheric values are compati-
ble with the true injected values within the uncertainties, with
a strong correlation between the grey parameter A1 and the
aerosols, as seen before on real data. The nightly behaviour is
presented in Fig. 30. All values agree with the true values for
both methods and correctly account for the variable simulated
conditions.

We again note the strong correlation between the VAOD
and the A1 parameter. As mentioned before, this is an expected
behaviour because aerosols specifically affect the spectrum slope
in the blue and the global spectrum amplitude.

In addition to validating the spectrogram fit, theses results
also show that the forward-model process and all the pipeline
steps presented above do not bias the measurement of the
atmospheric parameters.

5.3.2. Data analysis

The individual fits of the spectrograms and spectra extracted
from CTIO data are presented in Figs. 31, 32, and 33.

The atmospheric forward modelling fits the data at the 5σ
uncertainty level, but the PSF model imprints structured resid-
uals similarly to what happens in the full forward-model case
(Fig. 19). This effect is visible throughout the spectrogram and
inside the dioxygen absorption line.

The spectrum presented in Fig. 32 is globally well fitted by
the S 1(λ) model. The fit residuals around the main dioxygen line
for data and for the simulation are compatible with the instru-
mental throughput uncertainties. All spectrograms and spectra
of the night show the same residual patterns. The two methods
yield very similar values for the atmospheric parameters. The
values of the spectrogram fit are smooth in time, with a visible
correlation between VAOD and A1 parameters, while the spec-
trum fit values are shifted and more scattered, probably due to
the higher sensitivity of this simpler procedure to outliers such
as the field-star contamination of the spectra around 530 nm.

We recall that in the spectrogram fit, the raw spectrogram
data are directly fitted with a model that contains the instru-
mental transmission for diffraction orders 1 and 2, a Libradtran
atmospheric model, and models for the dispersion relation and
PSF kernel.

At this point, the smoothness of the atmospheric parameter
curves and the reasonable values that we obtained (low ozone
and a few millimetres of precipitable water vapour) are as close
to reality as can be expected with the quality and size of the data
set at hand.

We again acknowledge that these atmospheric results are
affected by systematic uncertainties and choices (e.g. the circu-
larity of the PSF model, the PSF size of the second diffraction
order, or the blazed grating transmission model) that affect the
absolute value of the quoted parameters. Unfortunately, we do
not have enough data to estimate systematics and proceed. We
leave an analysis of the atmospheric transmission for a future
paper, for example, based on the high-quality data set promised
by AuxTel, which is dedicated to measuring atmospheric trans-
mission at the Rubin Observatory site. With its mirror with a
diameter of 1.2 m, its high-quality CCD sensor, and its fast read-
out electronics, the spectra of CALSPEC standards or stars with
similar magnitudes can be acquired at a rate of approximately
one or two per minute. Its overall observation strategy is not yet
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Fig. 29. Results from the S 1(λ) model fit on the spectrum of CALSPEC star HD111980, extracted from a simulated spectrogram. Left: spectrum
data (red) compared with the best-fitting model (blue) and the model uncertainties (light blue band) due to the CTIO telescope transmission
uncertainties, the true injected spectrum in the simulation (green), and the residuals (bottom). Middle: zoom around the dioxygen line at 762 nm
and zoom on the H2O absorption band around 950 nm. Right: correlation matrix of the fitted parameters.
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defined, but it has to infer the atmospheric transmission for each
LSST pointing, presumably observing a grid of stars (CALSPEC
stars or others) to infer directional atmospheric transmissions
and interpolate them for the LSST pointing.

6. Summary and conclusions

Slitless spectrophotometry with forward modelling opens a path
towards the acquisition of spectra with imaging telescopes that
can be simply transformed into spectrographs by inserting a
disperser on the light path.

We demonstrated on simulations that building a forward
model of a spectrogram allows for accurate spectrophotome-
try, with a spectral resolution that only depends on the width
of the PSF along the dispersion axis. The key of the process is

a regularisation algorithm, which is fed with as much as prior
information as possible (regularity of the searched spectrum,
PSF parametrisation, ADR, and grating efficiency). The two key
functions of the model are the dispersion function ∆p(λ) and the
PSF model ϕ(r, λ), together with the knowledge of the rp/1(λ)
ratio of diffraction-order transmissions.

We exemplified that this procedure functions on real data,
with tentatively very promising results. We are aware of the lim-
its of the data set in our possession, and we exemplified that the
forward-model procedure can be used to improve our knowledge
of the data, and by doing so, to inform the forward model.

We can also summarise some of the important lessons
learned while implementing the Spectractor pipeline as fol-
lows:

– Forward modelling provides a modular approach in which
each brick is a physical or empirical model that can be
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Fig. 31. Results from the atmospheric forward model of CALSPEC star HD111980 with a Moffat PSF kernel (the shape parameters evolve as a
fourth-order polynomial function), observed with an amplitude hologram with 350 lines mm−1. Left: spectrogram data (top), best-fitting spectro-
gram model (middle), and residuals in units of σ (bottom) Middle: zoom around the dioxygen line at 762 nm and zoom on the H2O absorption band
around 950 nm. All colour maps are normalised by the maximum of the simulated spectrogram. Right: correlation matrix of the fitted parameters.
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Fig. 32. Results from the S 1(λ) model fit on the spectrum of CALSPEC star HD111980. Left: spectrum data (red) compared with the best-fitting
model (blue, mostly behind the green curve) and the model uncertainties (light blue band) due to the CTIO telescope transmission uncertainties,
and the residuals (bottom). Middle: zoom on the dioxygen line at 762 nm and zoom on the H2O absorption band around 950 nm. Right: correlation
matrix of the fitted parameters.

changed or improved, depending on the data particulari-
ties and S/N. The residuals indicate how the model can be
improved (data rules);

– When it is implemented, forward modelling can easily sim-
ulate data sets to test new algorithms;

– The second diffraction order is not a contamination, but a
signal that helps recover the blue part of the first-order spec-
trum. It should be taken advantage of whenever possible.
This in particular means that we need to rethink the common
wisdom of spectroscopy by increasing the efficiency of the
grating in the second order, and use a field rotator (if avail-
able) in order to more easily separate the different diffraction
orders on the sensor through ADR;

– The accurate knowledge of the PSF is thus crucial and
requires dedicated data and an analysis that need to be care-
fully budgeted for. The PSF width sets the spectral resolution
and the number of degrees of freedom that can be extracted
from the data, and thus, decreasing the width is crucial.

Because the main scientific driver for the development of
Spectractor is the measurement of on-site atmospheric trans-
mission, we pushed our analysis to that point. We showed that
our procedure allows us to measure the on-sky telescope trans-
mission to the direct extraction of atmospheric parameters from
spectrograms.

While the atmospheric parameters are dominated by sys-
tematic uncertainties, in particular, by our partial knowledge of
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Fig. 33. Evolution of the atmospheric parameters as a function of the exposure time during the night of 2017 May 30, in which CALSPEC star
HD111980 was observed with an amplitude hologram. The blue points show the spectrum fits, and the orange points show the spectrogram fits.

the instrumental transmission and of the PSF, the comparison
with satellite data shows a promising tentative agreement. Work
that goes beyond this paper, which was devoted to presenting
the spectrophotometry method, is a more intensive study of on-
site atmosphere transmission. This requires in particular access
to many more data and a specific detailed analysis to obtain
accurate instrumental transmissions and PSF model.

We would finally like to acknowledge that many elements
of the forward model can and will be improved as new data
become available. In particular, the background might be esti-
mated directly in the forward model, including other diffraction
orders, by modelling the contamination of the field-star spectro-
gram and integrating the chromatic flat-fielding in the model to
account for pixel efficiencies, and so. If the flat screen in the
observatory can be illuminated with a system of several LEDs
or lasers, a cube of wavelength-dependent relative transmission
might be obtained that could be directly included in the forward
model. Instead of dividing the exposures by one of them, each
layer of the PSF cube ϕp(r, λ) could then be multiplied by the flat
corresponding to the correct wavelength before the spectrogram
model is integrated over λ. Using the forward model, we can thus
solve the exact problem of deflation in spectrophotometry.

These ideas are worth implementing in the algorithm if
required by data. On the other hand, many hardware solutions
can also be implemented to increase the a priori knowledge of the
instrument and to greatly improve the forward-model analysis.
For instance we showed that holographic dispersers such as those
presented in Moniez et al. (2021) improve the focusing of the
spectrogram on the sensor on the whole visible and near-infrared
range, which facilitates the PSF modelling. Its narrow width also
allows a better spectral resolution. Another improvement would
be using a collimated beam projector (CBP) (Coughlin et al.
2016; Souverin et al. 2022) to measure the telescope transmission
at the per mill level, and monitor its evolution with time.

In conclusion, we have presented the theoretical tools,
together with a detailed implementation example to add spectro-
photometric ability to an imager by the insertion of a disperser on
the light path. This comes at some computational cost, which is
readily available today, but it also requires either a priori knowl-
edge of the instrument or dedicated data and an analysis to bring
the model to the required level of accuracy.
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Appendix A: Astrometry

It is crucial in many regards to accurately anchor the wave-
length calibration. For atmospheric transmission measurement,
a small shift of about 1 nm can significantly bias the estimate
of the aerosol parameters. Unfortunately, a shift like this can
occur because of the poor determination of the position of the
zeroth order of the spectrum, which is usually saturated with
long bleeding spikes. It is difficult to localise it accurately and
might not be robust enough to achieve a centroid determination
precision that is better than the pixel scale for every image in
every circumstances.

We thus found it useful to explore how the field stars might
be used to set a precise astrometry using the astrometry.net
library15.

The field star centroids were first extracted from the image
using the IRAFStarFinder method from the photutils
library (Bradley et al. 2020), using a 5σ clipping above the
threshold.

The astrometry.net solve-field function was then
called: Patches of stars were compared to known asterisms to
obtain the precise location of the image on the sky as well as the
transformation between image coordinates and sky coordinates
in the form of a World Coordinate System (WCS) description.

This procedure may not yield subpixel precision for the cen-
troid of the target star, in particular, if it has a high proper motion.
To improve the precision, we compared the first source cata-
logue, whose positions were converted into sky coordinates, with
the star positions from the Gaia DR2 catalogue, corrected for
their proper motion.

The difference between the 50 brightest field-star coordinates
in the two catalogues was subtracted from the WCS solution in
order to lock it on the Gaia catalogue.

We then removed the star with the largest distance to the Gaia
catalogue, reapplied astrometry.net followed by the Gaia
catalogue centring and repeated this operation ten times. The
astrometric solution in which the distance between the image
stars and the Gaia stars was smallest was kept. This procedure
minimises the effect of stars with poorly reconstructed centroids
(due to saturation effects) or high proper motions. It ends with a
scatter that is evaluated at ≈ 0.15′′ RMS (Figure 7).

Appendix B: Gauss-Newton minimisation algorithm

The gradient descent to minimise a χ2 using the Gauss-Newton
algorithm works as follows. We consider a data set with N data
points gathered into a vector D with their uncertainties (cor-
related or uncorrelated), represented by a matrix W. We wish
to model these data with a model m(P) depending on a set of
parameters P. For a parameter vector P, the χ2 is defined as

χ2(P) = (M(P) − D)T W (M(P) − D) = RT (P)WR(P), (B.1)

where M(P) is the vector of the model-predicted values for the
N data points. The vector R(P) is the residual vector.

In order to find the set of parameters P̂ that minimises the
χ2 function, we searched for the zero of the χ2 gradient that
verifies ∇Pχ

2(P̂) = 0. The algorithm we used is the iterative
multi-dimensional Gauss-Newton method, which we describe
hereafter.

We started the minimisation with a first-guess value for the
parameters P0. A Taylor expansion at first order of the ∇Pχ

2

15 http://astrometry.net/

function can be performed around the starting point P0 and gives

∇Pχ
2(P1)

P≈P0
≈ 2JT

0 WR0 + 2JT
0 W J0δP1 + · · · , (B.2)

with δP1 = P1 − P0 and J0 = ∇P M(P0) the Jacobian matrix of
the model evaluated at P0. For a linear model, that is, a model
that can be written as m(P|Z) =

∑N
i=1 Pi f (Z), the ∇Pχ

2(P) is
exactly equal to its first-order Taylor expansion.

The zero of the function is then approached by solving the
equation ∇Pχ

2(P1) = 0,

∇Pχ
2(P1) = 0⇒ P1 = P0 −

(
JT

0 W J0

)−1
JT

0 WR0. (B.3)

Because the approximation comes from the Taylor expansion and
because the numerical accuracy of the Jacobian matrix computa-
tion is finite, it is unlikely that the P1 that is found exactly cancels
the χ2 gradient.

We then searched for the α value that minimises the χ2 func-
tion along the line parametrised by the vector α1δP1 where α1 is
a real number. The P1 value solution then reads

P1 = P0 − α̂1

(
JT

0 W J0

)−1
JT

0 WR0. (B.4)

The process was iterated K times,

Pk+1 = Pk − α̂k+1

(
JT

k W Jk

)−1
JT

k WRk, (B.5)

until a convergence criterion is reached. For example when the
value of χ2(Pk) or Pk evolution with k drops below a certain
threshold.

The best-fitting model is then considered to be parametrised
by the kth vector: P̂ ≈ Pk. The covariance matrix of the Pk
parameters is obtained as the Hessian matrix at the minimum χ2,

C(P̂) =
(
JT

k W Jk

)−1
. (B.6)

In Spectractor , we also implemented the possibility to
limit the P search within given bounds (e.g. we can impose that
the amplitudes are all positive). We found that these bounds help
the algorithm to converge.

Appendix C: Second-order penalisation

Regularisation techniques involving the total variation are often
used in image analysis for denoising or deconvolution while
recovering sharp edges. One way to justify the use of a penalisa-
tion with the discretised Laplacian is to understand that it entails
an automatic bound on the total variation. We show this below.

We recall some notations. The complete cost to minimise is

E(A|rc, P) = (D −M A)T W (D −M A)

+ r(A − A0)T Q(A − A0)

= χ2(A|rc, P) + rχ2
pen(A|A0), (C.1)

A0 = A(1D). (C.2)

D is the data vector, M is the design matrix, and A is the ampli-
tude vector that gives the spectrogram and that we wish to obtain.
W is the inverse of the covariance matrix, so that when we have
all the true parameters for A, rc, and P, then χ2(A|rc, P) is the
sum of the squares of the residuals, and thus is the realisation
of a random variable following a χ2 law with NxNy degrees of
freedom, hence the name of the cost, χ2.
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The penalisation term χ2
pen(A|A0) = (A − A0)T Q(A − A0) is

also a quadratic term, and for Q = LT UT UL with the Laplacian
operator L = −DT D,

L =



−1 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...
. . .

. . .
. . .

...
...

0 0 0 0 · · · −2 1
0 0 0 0 · · · 1 −1


(C.3)

D =



1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
0 0 1 −1 · · · 0 0
...
. . .

. . .
. . .

...
...

0 0 0 0 · · · 1 −1
0 0 0 0 · · · 0 1


, (C.4)

and U is such that

U =


1/σA(1)

1D
0 · · · 0

0 1/σA(2)
1D
· · · 0

...
. . .

. . .
...

0 0 · · · 1/σA(Nx )
1D

 (C.5)

we obtain χ2
pen(A|A0) = (UL(A − A0))T (UL(A − A0)), and it is

the quadratic norm (or the squared Euclidean norm) of the vector
UL(A − A0), denoted ∥UL(A − A0)∥22.

When we interpret A as the discretisation of a continuous
spectrogram a by setting A(i) = a

(
i

Nx

)
, and when σ is a func-

tion such that σ
(

i
Nx

)
= σA(i)

1D
, a continuous analogue of this term

would be a term of the form

∥(a − a0)′′∥22,σ =
∫ 1

0

[
(a − a0)′′(x)

]2 dx
σ2(x)

, where a, a0 would be functions whose A, A0 are discretisations.
As a simple consequence,

lim
Nx→∞

N3
xχ

2
pen(A|A0) = ∥(a − a0)′′∥22,σ (C.6)

because NxD ≈ − d
dx .

The total variation distance is defined as the (weighted)
norm-1 of the gradient operator as a functional term,

∥(a − a0)′∥1,σ =
∫ 1

0
|(a − a0)′(x)|

dx
σ(x)
.

We also note that

lim
Nx→∞

Nx∑
i=1

|UD(A − A0)| = ∥(a − a0)′∥1,σ. (C.7)

However, by a simple argument, we can show that the 2-norm
of the second derivative controls the 1-norm of the first deriva-
tive, so that minimising the former means that we also minimise
the latter. In order to prove it, let f (x) = a(x) − a0(x), we obtain

f ′(x) = f ′(0) +
∫ x

0
f ′′(s)ds = f ′(0) +

∫ x

0
f ′′(s)σ(s)

ds
σ(s)

(C.8)

⩽ f ′(0) +
(∫ x

0
( f ′′(s))2 ds

σ(s)2

)1/2 (∫ x

0
σ2(s)ds

)1/2

. (C.9)

Thus, under the supplementary constraint that a′(0) = a′0(0), we
have

∥(a − a0)′∥1,σ ⩽
(∫ 1

0
σ2(s)ds

)1/2

∥(a − a0)′′∥2,σ. (C.10)

The discrete analogue asymptotically in Nx → +∞ is
Nx∑
i=1

|UD(A − A0)|1,σ ⩽ Nx

√
Tr(U−2)χ2

pen(A|A0). (C.11)

This shows that regularisation using the weighted quadratic
second-order derivative automatically ensures an upper bound
of the weighted total variation norm. This means that while it
is computationally much faster, regularising by the weighted
quadratic norm of the second-order derivative ensures an upper
bound on the regularisation via the weighted total variation
norm. Because the usual advantages of the weighted total
variation norm (no assumption of a second-order derivative
or research of a sparse minimiser) are not important here, the
choice of the weighted quadratic norm of the second-order
derivative as a loss function is completely pertinent.

Appendix D: Atmospheric differential refraction

The ADR mostly depends on the pressure, the temperature, and
the airmass and only loosely on the atmospheric humidity.

In our wavelength-calibration process for CALSPEC stars,
the absorption line that weights most in the fit is the main dioxy-
gen line at 762.1 nm. When the ADR is not correctly modelled
and taken into account in the wavelength calibration, shifts of
the absorption line minima towards the blue part of the spectrum
can be observed throughout the night while the airmass of the
star changes.

This is illustrated in the left panels of Figures D.1 and D.2. In
the right panels, the ADR effect is included in the wavelength-
calibration process through a wavelength-dependent shift of the
zeroth-order centroid δu(ADR)

0 (λ). This procedure absorbs most of
the line shifts when the dispersion axis is not orthogonal to the
zenith direction.

Fig. D.1. Absorption line Hβ at 486.3 nm of CALSPEC star HD111980
observed during the night of 2017 May 30 while it goes from an airmass
of 1 to an airmass of approximately 2. Left: Without modelling the ADR
effect in the wavelength-calibration process. Right: With the ADR effect
in the wavelength-calibration process. The profiles are better aligned.

For completeness, we show in Figure D.3 the angle conven-
tions that are used in Spectractor to correctly compute the
zenith direction in the image.

A21, page 28 of 29



Neveu, J., et al.: A&A, 684, A21 (2024)

Fig. D.2. Same as Figure D.1, but for the Fe absorption line at 430.8 nm.

N

Zenith

EW

S

CCD

N
Z

W

Fig. D.3. Angle conventions for the prediction of the ADR effect in the
spectrogram. Top: Celestial coordinates in right ascension αd (RA) and
declination δ (DEC) system, with q the parallactic angle that sets the
direction of the local zenith positively eastward. Bottom: Angle con-
ventions in the Spectractor image, with φc the north-west axis angle
with respect to the horizontal axis of the camera.
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