
HAL Id: hal-04160247
https://hal.science/hal-04160247v4

Preprint submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximal multiplicity of Laplacian eigenvalues in
negatively curved surfaces

Cyril Letrouit, Simon Machado

To cite this version:
Cyril Letrouit, Simon Machado. Maximal multiplicity of Laplacian eigenvalues in negatively curved
surfaces. 2023. �hal-04160247v4�

https://hal.science/hal-04160247v4
https://hal.archives-ouvertes.fr


MAXIMAL MULTIPLICITY OF LAPLACIAN EIGENVALUES IN

NEGATIVELY CURVED SURFACES

CYRIL LETROUIT AND SIMON MACHADO

Abstract. In this work, we obtain the first upper bound on the multiplicity of Laplacian eigen-
values for negatively curved surfaces which is sublinear in the genus g. Our proof relies on a trace
argument for the heat kernel, and on the idea of leveraging an r-net in the surface to control this
trace. This last idea was introduced in [JTYZZ21, Theorem 2.2] for similar spectral purposes in the
context of graphs of bounded degree. Our method is robust enough to also yield an upper bound
on the “approximate multiplicity” of eigenvalues, i.e., the number of eigenvalues in windows of size
1/ logβ(g), β > 0. This work provides new insights on a conjecture by Colin de Verdière [Col86] and
new ways to transfer spectral results from graphs to surfaces.

1. Introduction

1.1. Main results. Let M be a closed, connected Riemannian manifold, and let ∆ denote the
Laplace-Beltrami operator on M , simply called “Laplacian” in the sequel, which is self-adjoint and
non-positive. The operator −∆ has a discrete spectrum

(1) 0 = λ1(M) < λ2(M) ≤ . . .→ +∞,

where the λi(M) are repeated according to their multiplicity.
Our first main result deals with the case where M is a closed negatively curved surface. We

denote by T the set of triples

T = {(a, b, ρ) ∈ R3 | b ≤ a < 0, ρ > 0}.

For any (a, b, ρ) ∈ T , let M(a,b,ρ)
g be the set of closed connected surfaces of genus g, with injectivity

radius ≥ ρ, and with Gaussian curvature c(x) satisfying b ≤ c(x) ≤ a for any x ∈M . An important

example is obtained by taking (a, b, ρ) = (−1,−1, ρ), in which case M(a,b,ρ)
g is the set of hyperbolic

surfaces (i.e., with constant curvature −1) of injectivity radius ≥ ρ.
We obtain a general sublinear upper bound on the maximal multiplicity of λ2(M) for negatively

curved surfaces. Our first main result is the following:

Theorem 1.1 (Maximal multiplicity of λ2). For any (a, b, ρ) ∈ T , there exists C0 > 0 such that

for any g ≥ 2 and any M ∈ M(a,b,ρ)
g , the multiplicity of λ2(M) is at most C0

g
log log(1+g) .

For any (a, b, ρ) ∈ T and δ > 0, there exist C1, α > 0 such that for any g ≥ 2 and any

M ∈ M(a,b,ρ)
g with spectral gap λ2(M) ≥ δ, the multiplicity of λ2(M) is at most C1

g
logα g .

The dependence of C0, C1, α on a, b, ρ, δ is explicit. For instance, C0 = C ′
0
|b|+ρ−2

|a| with C ′
0 > 0

universal, see Remark 4.2. Our strategy of proof partly relies on a geometric idea which takes its
source in [JTYZZ21]. This last work proves the same sublinear bound as ours, for the adjacency
matrix of combinatorial graphs with a uniform bound on the degree.

Our next statement is stronger than Theorem 1.1, in the sense that it accommodates for “ap-
proximate multiplicity” in a window of size O(1/ logβ(g)), β > 0 (see Remark 4.6 for comments on
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the size of this window). This result parallels a similar statement [HSZZ22, Theorem 1.6] for graphs
with a uniform bound on the degree of each vertex.

Theorem 1.2 (Maximal approximate multiplicity of λj). For any j ∈ N≥2, any (a, b, ρ) ∈ T ,
and any β,K > 0, there exists C0 > 0 and g0 ∈ N≥2 such that the number of eigenvalues in

[λj(M), (1 + K
logβ g

)λj(M)] is at most C0
g

log log g for any g ≥ g0 and any M ∈ M(a,b,ρ)
g .

Following an analogous result on regular graphs [MRS21, Proposition 5.3] and using a graphs to
surfaces transfer principle due to Colin de Verdière and Colbois [CC88], we also provide a construc-
tion of closed hyperbolic surfaces with high approximate multiplicity. This result shows that if the
injectivity radius is allowed to tend to 0, no bound like the one in Theorem 1.2 can hold.

Proposition 1.3. For any sequence of positive numbers (εg)g∈N≥2
, there exists a family of connected

closed hyperbolic surfaces (Mg)g∈N≥2
, where Mg has genus g, with at least g − 1 eigenvalues in

[λ2(Mg), (1 + εg)λ2(Mg)].

1.2. A general volume-dependent bound. Theorems 1.1 and 1.2 are deduced from more general
statements, which bound the (approximate) multiplicity in terms of three geometric quantities: the
volume, the injectivity radius, and a lower bound on the Gaussian curvature. For instance:

Theorem 1.4. For any ρ > 0 and b < 0 there exists C0 > 0 such that for any closed, connected Rie-
mannian surface M with injectivity radius inj(M) ≥ ρ and Gaussian curvature ≥ b, the multiplicity

of λ2(M) is at most C0(1 +
vol(M)

log log(3+vol(M))).

If a negative upper bound on the Gaussian curvature is imposed in addition, then together with
the Gauss-Bonnet theorem this implies Theorem 1.1. In complement to Theorem 1.4, we refer the
reader to Theorem 4.1, which is a version of Theorem 1.4 with spectral gap, to Theorem 4.4, which
accommodates for approximate multiplicity and works for any λj , and to Theorem 4.7, which is a
scale-free version of Theorem 1.4.

1.3. Bibliographical comments. The maximal multiplicity of Laplacian eigenvalues has been
studied at least since the 1970’s and a seminal paper of Cheng [Che76]. We review the literature,
mostly focusing on the case of surfaces (see however the last paragraph of this section on higher
dimension). ForM a closed surface of genus g, letmi(M) denote the maximal multiplicity of the i-th
eigenvalue of a Riemannian Laplacian on M (with the convention (1) on indexing of eigenvalues).

Linear bounds. Cheng proved in [Che76] that mi(M) ≤ 1
2(2g + i)(2g + i + 1). This result has

been improved by Besson in [Bes80] who sharpened the bound down to 4g + 2i − 1. Both papers
proceed by bounding the order of vanishing of eigenfunctions and obtaining a contradiction if an
eigenspace is too large (see also [SY94, Section III.6]). Then, Sévennec [Sev02] proved that in
negative Euler characteristic, m2(M) ≤ 5− χ(M); in particular, if M is orientable of genus g ≥ 2,
then m2(M) ≤ 2g + 3. This bound has been improved to 2g − 1 for closed hyperbolic surfaces of
sufficiently high genus in [FP23, Theorem 9.5].

Sublinear bounds. Some sublinear bounds on the multiplicity of eigenvalues on surfaces are
already available in the literature. However these bounds work only under two strong assumptions:
first, they hold for hyperbolic surfaces only and second, they require some control (i) either over the
number of closed geodesics of length ≤ c log(g) for c > 0 a small constant, (ii) or, for any L > 0, over
the number of closed geodesics of length ≤ L as g → +∞. This control is related to the notion of
Benjamini-Schramm convergence (see [ABBGNRS17]), satisfied in particular with high probability
by hyperbolic surfaces drawn with respect to the Weil-Petersson probability measure.

The assumption of hyperbolicity allows to use tools which are not available for general negatively
curved surfaces: for instance, the Selberg trace formula which relates, in closed hyperbolic surfaces,
the spectrum of the Laplacian to the set of lengths of closed geodesics. This formula has been used
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in [Mon22, Theorem 1.6] to derive a sublinear bound on the multiplicity of Laplacian eigenvalues for
random hyperbolic surfaces (see [GLST21, Corollary 1.7] for a different but related sublinear bound
using the Selberg transform). Relying also on the Selberg trace formula, [FP23, Proposition 9.3]
gives a sublinear bound when λ2(M)− 1

4 is of order 1/ log(g)2. Finally, we mention [ABBGNRS17]
which proves sublinear bounds for the related problem of limit multiplicities under Benjamini–
Schramm convergence, and the papers [DW78], [SX91] and [Gam02] which give precise rates of
convergence - with power saving - under more restrictive arithmetic assumptions.

Our method, which works for any surface and does not assume a control over the number of
closed geodesics of length ≤ L for large L, is totally different. It relies mainly on an ingredient
inspired from the work [JTYZZ21] pertaining to multiplicities in graphs (see Section 1.4), and on
heat kernel estimates, which correspond geometrically to random walks and not to closed geodesics.

We mention the fact that our results yield a sublinear bound on multiplicity when restricting to
the set of Riemannian covers of a fixed negatively curved surface. Also, when a = b = −1 and ρ
is small, we see that the set of hyperbolic surfaces considered in Theorem 1.1 covers most of the
moduli space of closed hyperbolic surfaces of genus g ≥ 2 since the event of having injectivity radius
≥ ρ has probability roughly 1−ρ2 for the Weil-Petersson probability measure (see [MP19, Theorem
4.1]).

Colin de Verdière’s conjecture. Colin de Verdière conjectures in [Col86, Section V] a much
stronger bound of order

√
g for the maximal multiplicity. More precisely, he conjectures that

(2) m2(M) = chr(M)− 1

where chr(M) is the chromatic number of M , defined as the largest n such that the complete graph
on n vertices embeds in M . By a result of Ringel and Youngs [RY68],

chr(M) =
⌊1
2

(
7 +

√
49− 24χ(M)

)⌋
,

(if M is not the Klein bottle, for which chr(M) = 6), and since χ(M) = 2− 2g for closed orientable
surfaces, m2(g) would be of order

√
12g.

Although a clear improvement over the linear bound of Cheng and Besson, our sublinear bound
m2(M) ≲ g/ log log(g) is far from the conjectured

√
12g. However, since the first version of this

paper appeared, the Colin de Verdière conjecture has been disproven for genus g = 10 and g = 17
[FGPP23]. It is unclear whether these are isolated cases or indicative of a much more general failure
of the conjecture. Precisely, is the right order of magnitude for m2(M) closer to

√
g or g/ log log g?

This conjecture was mostly supported by two lower bounds: first, Colbois and Colin de Verdière
constructed in [CC88] for any g ≥ 3 a closed hyperbolic surface of genus g such that the multiplicity

of λ2 is
⌊
1+

√
8g+1
2

⌋
, which has the same order of growth as the conjectured upper bound (2).

Secondly, it is proved in [Col87, Théorème 1.5] that m2(M) ≥ chr(M) − 1 for arbitrary M , if
m2(M) denotes the maximal multiplicity of λ2, where the maximum is taken over all Schrödinger
operator on M for which λ1 = 0.

The Colin de Verdière conjecture was also supported by the fact that (2) is satisfied for simple
choices of M : the sphere [Che76], the torus [Bes80], the projective plane [Bes80], the Klein bottle
[Col87], [Nad87]. The work [FP21] shows that the Klein quartic maximizes the multiplicity of λ2
among all closed hyperbolic surfaces of genus 3, with multiplicity equal to 8, which also matches
the equality (2). The proof is based on the Selberg trace formula.

Proving upper bounds on the multiplicity seems much more challenging. Proposition 1.3 highlights
some of the challenges. For instance, extending Theorem 1.2 to surfaces with small injectivity radius
would require a proof which separates between eigenvalues very close to one another, since there
exist hyperbolic surfaces M of (large) genus g with “approximate multiplicity” of λ2(M) of order
g.
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Literature on graphs. As already mentioned in Section 1.1, our inspiration comes from the
following result proved in [JTYZZ21, Theorem 2.2]:

Theorem 1.5 ([JTYZZ21]). For every j and every d, there is a constant C = C(d, j) so that
the adjacency matrix of every connected n-vertex graph with maximum degree at most d has j-th
eigenvalue multiplicity at most Cn/ log log n.

The main motivation of the authors of [JTYZZ21] is the equiangular problem, namely the com-
putation of the maximal number of lines in Rd which are pairwise separated by the same angle.
This problem shows up for instance through tight frames in coding theory. In [JTYZZ21, Theorem
1.2], the equiangular problem for a fixed angle α between the lines is solved by showing that it may
be reduced to Theorem 1.5.

We also mention the work [MRS21], in which an improvement of [JTYZZ21, Theorem 2.2] is
proven for regular graphs. This improvement does not seem easy to transfer to (negatively curved)
surfaces.

Higher dimension. On any closed manifold M of dimension n ≥ 3, it is possible to construct a
sequence of metrics whose first non-trivial eigenvalue multiplicity tends to +∞ (see [Col86]). On the
other hand, it is proved in [HKP16, Corollary 1.1] that for n-dimensional manifolds whose geometry
is controlled, the multiplicity of λ2 is bounded: there exists C depending on n only such that in
any n-dimensional Riemannian manifold with Ricci ≥ −(n− 1)κ for some κ ≥ 0, the multiplicity of

λ2 is at most C0(1 + vol(M)(κn/2 + inj(M)−n)) where inj(M) denotes the injectivity radius of M .
This has to be compared with our Theorem 4.7. Indeed, we believe that our proofs of Theorems
1.4 and 4.7 work in any dimension, up to changing constants depending on n. We do not pursue
this here since this paper is mostly devoted to surfaces.

1.4. Strategy of proof.

1.4.1. Warm-up: proof in the graph case. Our strategy to prove Theorems 1.1 and 1.2 is partly
inspired by the proof of Theorem 1.5 worked out in [JTYZZ21]. We provide here a summary of this
proof.

Let d > 0 and let G be a connected graph with degree ≤ d, whose adjacency matrix is denoted
by AG. The authors of [JTYZZ21] introduce a subgraph H ⊂ G whose complement G \ H is an
r1-net: it means that any vertex of G is at distance at most r1 from G \H. The parameter r1 is
chosen as r1 = ⌊c log log(n)⌋, where n is the number of vertices of G and c > 0 is a small constant.

The first step is to find an upper bound for the trace of A2r1
H , where AH is the adjacency matrix

of H. For this, the authors of [JTYZZ21] leverage the usual technique of expressing a trace as a

number of closed paths. The trace Tr(A2r1
H ) is bounded above by the number of paths of length

2r1 in G, which start from a given vertex x ∈ H and do not belong to the r1-net G \H at time r1.
It follows from the definition of an r1-net that this number is smaller by at least 1 than the total
number of paths of length 2r1 in G which start from x and end at x: we call this the “gain of 1”.

This gain of 1 is transformed into a larger gain by considering the trace of A2r2
H with r2 =

⌊c log(n)⌋ ≫ r1, instead of the trace of A2r1
H . The argument to get this larger gain relies on the

Perron-Frobenius theorem and the min-max principle applied locally in balls of radius r2. The large
gain which is obtained provides a strong bound on Tr(A2r2

H ), and thus on the number of eigenvalues
of AH close to λ2(AH) (recall that λ1(AH) > λ2(AH) ≥ . . .).

Finally, the Cauchy interlacing theorem (Theorem A.1) converts this bound into a similar bound
on the eigenvalues of AG. The bounds depend on d.

1.4.2. Main steps. The main steps of our proof of Theorem 1.4 mimic the above proof, with many
additional difficulties and several new ideas. We focus on the case where vol(M) ≫ 1, since the
small volume case will be seen to follow from [HKP16].
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(i) We consider, instead of directly λ2 = λ2(M), the maximal multiplicity of e−tλ2(M) as an
eigenvalue of et∆, thus reinterpreting the problem in terms of heat kernels (and random walks).

(ii) In analogy with the graph case, we set r1 = c log log(vol(M)) where c > 0 is a small constant.
In the setting of Theorem 1.1, r1 ≈ c log log g, and the genus g plays the role of the number
of vertices n in the graph case. We choose an r1-net {x1, . . . , xℓ} ⊂ M : this means that any
point in M is at distance at most r1 from one of the xk’s. Then we fix around each xk an open
set Vk of measure ∼ 1. We define the operator P : L2(M,ν) → L2(M,ν) as the orthogonal
projection to the space of functions which are L2-orthogonal to the (normalized) characteristic
functions of the Vk’s.

(iii) We use a Cauchy interlacing theorem in Hilbert spaces (see Theorem A.1): we compare the
multiplicity m of e−r1λ2 as an eigenvalue of er1∆ with the multiplicity m′ of e−r1λ2 as an
eigenvalue of Per1∆P .

The Cauchy interlacing theorem implies that

(3) m ≤ m′ + rank(Id− P ).

Our choice of P guarantees that rank(Id−P ) = O(vol(M)/ log log(vol(M))), or even rank(Id−
P ) = O(vol(M)/ logα(vol(M))) when we work under the assumption λ2(M) ≥ δ (to prove the
second part of Theorem 1.1). The next steps prove an upper bound on m′.

(iv) We choose r2 = c log vol(M) and n ≈ ⌊r2/r1⌋ and we compute the trace of (Per1∆P )2n to
bound above m′:

(4) m′e−2nr1λ2 ≤ Tr((Per1∆P )2n).

The trace in the right-hand side may in turn be written as an integral of the form

(5) Tr((Per1∆P )2n) =

∫
M

∥(Per1∆P )nδx∥2dν(x).

(v) We leverage the averaging properties of the heat kernel to prove an inequality which roughly
looks like1

(6) ∥(Per1∆P )⌊r2/r1⌋δx∥ ≤
(
(1− ε)e−r1λ2

)⌊r2/r1⌋
for “most points” x ∈ M . The assumption on the injectivity radius in Theorem 1.4 comes
from the proof of (6), but also from the construction of the r1-net in Step (ii).
Combining (4), (5) and (6) we obtain for some C0 > 0

(7) m′ ≤ C0vol(M)(1− ε)2⌊r2/r1⌋ ≤ C0vol(M) exp (−2ε⌊r2/r1⌋)
The quantity ε > 0, which depends on the volume vol(M), is the “gain”, and we prove it to
be sufficiently large, so that Theorem 1.4 follows from (3), (7) and our choices of r1, r2, P .

The proof of Step (v) is the heart of our contribution, and a more detailed summary of this step
is provided at the beginning of Section 3.3, before its actual proof. Whereas the “gain” is straight-
forward to obtain for graphs (see Section 1.4.1), we have to face in the case of surfaces several
difficulties.

A first difficulty comes from the infinite speed of propagation of the heat kernel2. This property
a priori prevents us from using any local argument in the manifold; however, as mentioned in
Section 1.4.1, we need to apply the min-max principle locally in balls of radius ≈ r2 to obtain the
quantitative gain ε. To overcome this difficulty we introduce some cut-offs χx (approximately the

1Here we warn the reader that the sequence of inequalities we prove is actually much more subtle than (6).
2Although there exists a “random walk at speed 1” on manifolds (see for instance [LM10]), whose kernel is the

most obvious analogue of the adjacency matrix AG of Section 1.4.1, we use in this paper the heat kernel because it
seems more natural to understand the Laplacian on manifolds, and because the bounds available on the kernel of the
“random walk at speed 1” are not as good as the ones available on the heat kernel.
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characteristic function of a ball of center x and radius C ′r2 for some large C ′) commuting with P ,
and consider the compact operators Bx = Pχxe

r1∆χxP instead of Per1∆P in (6). The remainder
terms which unavoidably appear when replacing Per1∆P by Bx are handled through classical heat
kernel estimates in the universal cover of M .

Another difficulty arises from the fact that the operator Bx, which somehow plays locally around
x the role of Ar1H in Section 1.4.1, has one main difference with Ar1H : its matrix elements are not
necessarily non-negative (the condition f, g ≥ 0 does not imply that (Bxf, g) ≥ 0), and the Perron-
Frobenius theorem therefore does not apply to Bx; however, as mentioned in Section 1.4.1, we do
need to apply a Perron-Frobenius-type argument in local balls. We overcome this difficulty by
analyzing the interplay between the positive and the negative part of the top eigenvector φx of Bx.
This allows us to recover a gain ε despite the lack of positivity (in the sense of matrix elements) of
Bx.

Organization of the paper. The paper is organized as follows. We introduce useful notation
in Section 2.1, and we prove elementary results regarding r-nets in Section 2.2. In Section 2.3

we state estimates on the heat kernel in M and its universal cover M̃ . Section 3 gathers the key
lemmas used in the proof of Theorem 1.4: in Section 3.1 we compare the trace Tr((Per1∆P )n) to
an integral of local Rayleigh quotients and we estimate the error terms; in Section 3.2 we draw
several consequences from the min-max principle used to bound the previously mentioned Rayleigh
quotients; in Section 3.3, we prove the gain described in Step (v) above. In Section 4.1, we proceed
with the proof of Theorems 1.4 and 1.1, and in Section 4.2 we explain how to modify this proof to
obtain Theorem 1.2. In Section 4.3 we prove version of Theorem 1.4 involving only quantities which
are invariant under rescaling of the metric (“scale-free”). In Section 4.4 we prove Proposition 1.3,
relying on a construction due to [CC88]. In Appendix A.1, we gather several elementary results
such as the Cauchy interlacing theorem in infinite dimensional Hilbert spaces and an upper bound
for the first eigenvalues of closed negatively curved surfaces. Finally in Section A.2 we prove the
heat kernel estimates stated in Section 2.3.

Acknowledgment. The authors are thankful to Yves Colin de Verdière, Gilles Courtois, Maxime
Fortier Bourque, Laura Monk, Carl Schildkraut and Yufei Zhao for answering questions related to
this work. They also would like to thank the referees for their careful reading of the manuscript
and their suggestions which greatly improved the paper. Part of this work was done while C.L.
was supported by the Simons Foundation Grant 601948, DJ. S.M. was supported by the National
Science Foundation under Grant No. DMS-1926686.

2. Preliminaries

This section gathers notation and elementary results concerning Voronoi cells in closed surfaces,
r-nets and the heat kernel. We work in the general setting of Theorem 1.4, therefore we fix ρ > 0,
b < 0 and M a closed, connected Riemannian surface with injectivity radius inj(M) ≥ ρ and
Gaussian curvature c(x) ≥ b for any x ∈ M . We also assume that vol(M) ≥ 3, in order for
log log(vol(M)) to be well-defined; the case of small volumes will be handled separately at the end
of Section 4.1.

2.1. Notation. The Riemannian distance in M is denoted by d(·, ·) and the open ball of center
x ∈M and radius r > 0 is Bd(x, r).

We denote by ν the Riemannian volume on M , by ⟨·, ·⟩ the scalar product with respect to ν, and
by ∥ · ∥ the associated norm. We introduce the positive parameters

(8) r1 = c log log(vol(M)), r2 = c log vol(M)

where c > 0 is a small constant which will be fixed in Section 4.1 (see Remark 4.3 for an explanation
on the choice of these parameters).
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Let (M̃, d
M̃
) be the universal cover of M endowed with the lifted Riemannian metric. Let Vol

M̃

be the Riemannian volume on M̃ . We recall that the volume of any ball B(x, r) of radius r in M̃
satisfies

(9) Vol
M̃
(B(x, r)) ≤ 4π

|b|
sinh2

(√
|b|
2

r

)
according to the Bishop-Gromov inequality.

Heat kernels. We denote by kt : M̃ × M̃ → R the heat kernel in M̃ , so that for any f ∈
L2(M̃, dVol

M̃
), the solution u : R+× M̃ → R of ∂tu = ∆u with initial datum u(0, ·) = f is given by

u(t, x) =

∫
M̃
kt(x, y)f(y)dVolM̃ (y).

By a slight abuse, in the case where M̃ has constant curvature, we use the same notation kt (with

only one argument) for the function kt : R+ → R defined by kt(dM̃ (x, y)) = kt(x, y) for any x, y ∈ M̃ .
This definition makes sense since kt(x, y) only depends on d

M̃
(x, y).

The linear operator e∆ is compact, self-adjoint in L2(M,ν), with norm 1. We denote by Kt(x, y)
the heat kernel on M , i.e., it satisfies for any t ≥ 0

et∆f(x) =

∫
M
Kt(x, y)f(y)ν(dy).

We have et∆δx = Kt(x, ·) ∈ L2(M,ν) for any t > 0 and x ∈ M . Writing M = Γ\M̃ , we have the
formula

(10) Kt(x, y) =
∑
γ∈Γ

kt(x̄, γȳ)

where x̄, ȳ are lifts of x, y in a fixed fundamental domain of M in M̃ (the convergence of this sum
is proved in the proof of Lemma 2.5 in Appendix A.2).

By rescaling the Riemannian metric on H2, we create a space M̃K of constant Gaussian curvature
K < 0, which is a simply connected space form. The universal cover of a closed surface with constant

Gaussian curvature K is isometric to M̃K .
The following lower bound on the heat kernel is proved in [DGM76, Théorème 1].

Lemma 2.1 (Comparison for the heat kernel). Let M̃ be a complete and simply connected Rie-
mannian manifold with associated distance d

M̃
and heat kernel kt(·, ·). Assume that its sectional

curvature is bounded below by b. Then for any x, x0 ∈ M̃ and any t > 0,

k
(b)
t (d

M̃
(x0, x)) ≤ kt(x0, x)

where k
(K)
t (·) denotes the heat kernel (with radial variable) on M̃K .

Concerning upper bounds on the heat kernel, our main tool is the bound (62) below, due to
[Dav93, Theorem 3] (when combined with [Cro80, Proposition 14]).

Constants. Throughout the paper we use the following conventions to denote constants:

• we keep the same notation for constants which may change from line to line.
• Constants with an integer subscript, namely C0, C1, . . ., depend on a, b and ρ only.
• C > 0 and C ′ > 0 denote two sufficiently large constants whose values are fixed in the proof
of Theorem 1.4, in (48)-(50). C and C ′ are introduced respectively in Lemma 2.4 and at
the beginning of Section 3.1.

• The constant c > 0 introduced in (8) is fixed in (51) (chosen sufficiently small).
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2.2. r-nets and Voronoi cells. As explained in Section 1.4, we need for our proof to consider a
subset V of measure of order 1 such that any point of M is at distance ≤ r1 of V . In the context of
graphs, e.g., in [JTYZZ21], such sets, called r1-nets, are subsets of the sets of vertices. In the case
of a closed negatively curved surface M , we cut M into Voronoi cells and select a (not too large)
subset of cells well distributed over M . This section gathers the necessary definitions and results.

In the sequel, an r-separated set is a set of points x1, . . . , xm ∈M such that d(xi, xj) ≥ r for any
distinct i, j ∈ {1, . . . ,m}. An r-net is a set of points x1, . . . , xm ∈M such that for any y ∈M there
exists i ∈ N such that d(y, xi) ≤ r.

The following two lemmas prove the existence of r-nets whose size is not too large.

Lemma 2.2. For any ρ > 0 there exists C0 > 0 such that for any closed, connected Riemannian
surface M with inj(M) ≥ ρ, and for any r ≥ 1, there exists an r-net in M of cardinal at most
max(1, C0vol(M)/r).

Proof. The proof follows classical arguments, see e.g. [HKP16, Lemma 2.2]. Let ρ > 0 and b < 0.
If diam(M) ≤ r, then there is an r-net of size 1. So suppose that diam(M) > r. Let x1, . . . , xℓ ∈M
be an r-separated set of maximal cardinality in M . Then X := {x1, . . . , xℓ} is an r-net of M and
Bd(xi, r/2) ∩Bd(xj , r/2) = ∅ for all i ̸= j. So

(11) ℓ min
i∈{1;...;ℓ}

vol(Bd(xi, r/2)) ≤
ℓ∑
i=1

vol(Bd(xi, r/2)) ≤ vol(M).

It thus suffices to show that for any x ∈ M , Bd(x, r/2) has volume at least C1r for some constant
C1 > 0 (depending on b < 0 and ρ > 0 only). Fix x ∈M . Take any y ∈M such that d(x, y) ≥ r/2
– there must be at least one such y since diam(M) > r – and let γ : [0; r/2] → M be a continuous
path of minimal length from x to y. Then the balls Bd(γ(n), 1/2) for n ∈ {0, . . . , ⌊(r − 1)/2⌋} are
pairwise disjoint and contained in Bd(x, r/2). There is in addition a universal constant C2 > 0 such
that vol(Bd(z, 1/2)) ≥ C2ρ

2 for all z ∈ M (due to [Cro80, Proposition 14]), and we use this for
z = γ(n), n ∈ {0, . . . , ⌊(r − 1)/2⌋}. So

(12) vol(Bd(x, r/2)) ≥
(⌊r − 1

2

⌋
+ 1

)
C2ρ

2 ≥ C2ρ
2 r

2
.

Hence, ℓ ≤ C3
ρ2

vol(M)
r for some universal constant C3 > 0. □

Lemma 2.3. For any ρ, δ > 0 and b < 0 there exists C0 > 0, such that for any closed, connected
Riemannian surface M with inj(M) ≥ ρ and spectral gap λ2(M) ≥ δ, and for any r such that 1 ≤
r ≤ 1√

|b|
log(|b|vol(M)/8π), there exists an r-net in M of cardinal at most max(1, C0vol(M)/eδ

′r)

where δ′ = max(
√
δ√
20
, δ

4
√

|b|
).

Proof. By the Buser inequality [Bus82], the Cheeger constant h(M) verifies δ ≤ λ2(M) ≤ 2h(M)
√
|b|+

10h(M)2, hence h(M) ≥ δ′. Besides, for any x ∈M and any r as in the statement, we have

vol(Bd(x, r)) ≤ Vol
M̃
(B

M̃
(r)) ≤ 4π

|b|
sinh2

(√
|b|r

2

)
≤ 1

2
vol(M)

where the second inequality comes from (9) and the third one from our assumption on r. Hence by
definition of the Cheeger constant,

dvol(Bd(x, r))

dr
= lim

ε→0

vol(Bd(x, r + ε))− vol(Bd(x, r))

ε
= |∂Bd(x, r)| ≥ δ′vol(Bd(x, r))

which implies that vol(Bd(x, r)) ≥ vol(Bd(x, 1))e
δ′r. But vol(Bd(x, 1)) ≥ C1ρ

2 for some universal
C1 > 0 (due to [Cro80, Proposition 14]). Replacing in (11) and (12) we find the result. □
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We fix a 1-separated set V = {v1, . . . , vm} of maximal cardinality m in M , and we consider the
Voronoi cells

Vk = {q ∈M | ∀i ∈ {1, . . . ,m}, d(q, vk) ≤ d(q, vi)}, k = 1, . . . ,m.

By our choice of V, there holds Bd(vk, 1/2) ⊂ Vk ⊂ Bd(vk, 1) for any k ∈ {1, . . . ,m}. We notice

that if ṽk denotes a lift of vk to a fundamental domain of M in M̃ ,

(13)
4π

|b|
sinh2

(√
|b|
2

)
≥ Vol

M̃
(B

M̃
(ṽk, 1))) ≥ vol(Vk) ≥ C0ρ

2.

for some universal C0 > 0, where the leftmost inequality comes from (9), and the rightmost inequal-
ity from [Cro80, Proposition 14].

We fix a subset N ⊂ {1, . . . ,m} with the following properties:

• #N ≤ C0vol(M)/r (or #N ≤ C0vol(M)/eδ
′r if λ2(M) ≥ δ is assumed).

• There exists a family of points (xk)k∈N forming an r1-net, such that for any k ∈ N , xk ∈ Vk.

The set N is constructed by first considering an r1-net {x1, . . . , xℓ}, and then for each j ∈ [ℓ],
putting in N the index of (one of) the Voronoi cell(s) to which xj belongs.

For any k ∈ N , we denote by ψk the normalized characteristic function of the interior V̊k of Vk,
i.e., ψk(x) =

1√
vol(Vk)

1x∈V̊k . It follows from (13) that ∥ψk∥L∞(M) ≤ C2
ρ .

We denote by P the orthogonal projection3 on the orthogonal of the ψk with respect to ν:

∀f ∈ L2(M,ν), Pf = f −
∑
k∈N

⟨f, ψk⟩ψk.

If δx denotes the Dirac mass on a manifold (defined as δx(f) = f(x)) then Pδx is a distribution,
defined as

(14) Pδx = δx −
∑
k∈N

ψk(x)ψk.

2.3. Heat kernel estimates. The following lemmas on the heat kernels in M̃ and M (see defini-
tions in Section 2.1) will be instrumental in the proof of Theorem 1.4. The proof of these lemmas
is postponed to Appendix A.2.

Estimate (15) reflects the fact that the mass of kt(x, ·) is small outside a ball of radius Ct around
x for C sufficiently large. Then, the estimate (16) shows that when restricting to the interior of a
ball of radius Ct, the heat kernel varies not too wildly over scales ≤ 4t (any other constant than 4
would also work, but 4 is the right constant for Lemma 3.7).

Lemma 2.4 (Estimates on the heat kernel in M̃). The following estimates hold:

• (L1 norm outside a ball of radius Ct). There exists C0 > 0 such that for any C ≥ 8
√
|b|+4,

t ≥ 1 and x ∈ M̃ ,

(15) ∥kt(x, ·)∥L1(M̃\B
M̃

(x,Ct))
≤ C0 exp

(
|b|t− C2t

16

)
.

3The idea of considering these projections is inspired by the paper [Bus77], which shows that in a closed hyperbolic
surface M of genus g, the number of eigenvalues below 1/4 is bounded above by 4g−2. The proof goes by considering
a triangulation of M into 4g − 2 geodesic triangles, and showing that in each of these triangles, the smallest positive
eigenvalue of the Neumann problem is at least 1/4. The functions which are considered in the Rayleigh quotient
minimization problem are orthogonal to the characteristic functions of the geodesic triangles.
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• (Variations over larger scales inside a ball of radius Ct). There exists C0 > 0 such that for

any t ≥ 1, C > 0, x, y, z ∈ M̃ with d(x, y) ≤ Ct and |d(x, y)− d(x, z)| ≤ 4t+ 4, there holds

(16)
kt(x, z)

kt(x, y)
≥ C0 exp (−5(1 + |b|)(1 + C)t) .

The following lemma on the L∞ norm of the heat kernel in M is not sharp, but it is sufficient
for our purpose. A proof can be found in Appendix A.2.

Lemma 2.5 (L∞ norm of the heat kernel in M). There exists C1 > 0 such that for any t ≥ 1 there
holds

∥Kt(·, ·)∥L∞(M×M) ≤ C1 exp(4|b|t).

3. Key lemmas

This section is devoted to the proof of several lemmas which are key ingredients of the proof of
Theorem 1.4 provided in Section 4.1. As in Section 2, we fix ρ > 0, b < 0 andM a closed, connected
Riemannian surface with inj(M) ≥ ρ and c(x) ≥ b for any x ∈ M . We also assume that vol(M) is
sufficiently large, so that r1 is well-defined and ≥ 1.

3.1. Error term estimates. As explained in Section 1.4, our proof relies on finding an upper
bound on the trace of the trace-class operator (Per1∆P )n, and the first step is to write this trace
as an integral

(17) Tr((Per1∆P )2n) =

∫
M

∥(Per1∆P )nδx∥2dν(x)

(see Lemma A.3). We actually choose n = ⌊r2/r1⌋+ 1.
To leverage the gain of ε that we will obtain in Section 3.3 (and which is described in Step (v)

of Section 1.4), we have to compare ∥(Per1∆P )nδx∥2 to a quantity of the form ∥(Per1∆P )nφ∥2 for
some well-chosen φ ∈ L2(M,ν) depending on x ∈ M , see (19) below. We work this out in the
present section, and we provide estimates for the error terms which unavoidably appear along the
way.

We denote by χx the indicator function of the subset

(18)
⋃

k∈N , Vk∩Bd(x,C′r2) ̸=∅

Vk,

where C ′ will be fixed in Section 4.1. This subset contains Bd(x,C
′r2). Besides, [χx, P ] = 0 for

any x ∈ M , as a consequence of the definition of P and the equality ⟨χxf, ψk⟩ψk = ⟨f, χxψk⟩ψk =
⟨f, ψk⟩χxψk, valid for any f ∈ L2(M,ν) and any k = 1, . . . ,m.

The main result of this section is the following one.

Lemma 3.1. There exists C0 > 0 such that if C ′ ≥ 32
√
|b|+ 16, then for any x ∈M ,

∥(Per1∆P )⌊r2/r1⌋+1δx∥ ≤ C0

(
sup

∥φ∥=1
∥(Pχxer1∆χxP )⌊r2/r1⌋φ∥+ exp

(
−C

′2r2
32

))
.(19)

The proof of Lemma 3.1 relies on the following intermediate result.

Lemma 3.2. There exists C0 > 0 such that if C ′ ≥ 32
√
|b|+ 16, then for any x ∈M ,

∥
(
Per1∆P

)⌊r2/r1⌋+1
δx −

(
Pχxe

r1∆χxP
)⌊r2/r1⌋+1

δx∥ ≤ C0 exp

(
−C

′2r2
32

)
.
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Remark 3.3. The cut-offs χx are introduced to overcome the difficulty caused by the infinite speed of
propagation of the heat kernel. We expect that most of the mass of (Per1∆P )⌊r2/r1⌋+1δx is contained
in a ball of radius C ′r2. Lemma 3.2 proves that the remainder term coming from the complement
of supp(χx) is small.

Proof of Lemma 3.2. Write n := ⌊r2/r1⌋ + 1. We first notice that the difference
(
Per1∆P

)n
δx −(

Pχxe
r1∆χxP

)n
δx is equal to the telescopic sum

(20)
n−1∑
l=0

(
Pχxe

r1∆
)n−l−1

P (1− χx)
(
er1∆P

)l+1
δx

(to show this, write P (1 − χx) = P − Pχx, recall that [P, χx] = 0, and after removing telescoping
terms, use χxδx = δx).

Next, we estimate the norm of each term of (20) individually. For n− 1 ≥ l ≥ 0, the quantity

||
(
Pχxe

r1∆
)n−l−1

P (1− χx)
(
er1∆P

)l+1
δx||

is bounded above by

(21) || (1− χx)
(
er1∆P

)l+1
δx||

because e∆, χx and P have operator norm 1. We start by estimating this last quantity when l = 0.
We remark first of all that

(22) ||(1− χx)e
r1∆Pδx|| ≤ ||(1− χx)e

(r1−1)∆
∣∣e∆Pδx∣∣ ||

according to the triangle inequality. In order to make sense of the right-hand side, notice that
e∆Pδx is equal to the element ϕ of L2(M,ν) defined by

ϕ : y 7−→ K1(y, x)− ψkx(x)

∫
M
K1(y, z)ψkx(z)dν(z)

Here kx denotes the unique k ∈ N such that ψk(x) ̸= 0 if it exists (then kx is automatically unique),
and ψkx = 0 otherwise. The notation |e∆Pδx| then corresponds to the absolute value of ϕ.

We provide now an estimate of the right-hand side of (22). As a general fact, we have for any
t > 0,

||(1− χx)e
t∆
∣∣e∆Pδx∣∣ || ≤ || (1− χx) e

t∆K1(·, x)||+ C0|| (1− χx) e
t∆(e∆ψkx)||

where we have used that |ψkx(x)| ≤ C0 for any x (see Section 2.2). We have moreover according to
(18)

(23) || (1− χx) e
t∆K1(·, x)|| ≤ ||Kt+1(·, x)||L2(M\Bd(x,C′r2)).

Now, since the ψk’s are bounded above by C0 and supported on subsets of diameter bounded
above by 2, using (10) and Lemma 2.1 we obtain that there is a constant C1 such that K1(y, x) ≥
k1(d(x, y)) ≥ k

(b)
1 (d(x, y)) ≥ C1ψkx(y). Hence,

|| (1− χx) e
t∆(e∆ψkx)|| ≤ C1|| (1− χx) e

(t+1)∆K1(·, x)|| ≤ C1||Kt+2(·, x)||L2(M\Bd(x,C′r2))

According to Lemma 2.5,

||Kt+2(·, x)||L2(M\Bd(x,C′r2)) ≤ C2 exp(2|b|t)||Kt+2(·, x)||1/2L1(M\Bd(x,C′r2))

≤ C2 exp(2|b|t)||kt+2(·, x)||1/2
L1(M̃\B

M̃
(x,C′r2))
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where in the last line we used (10). The same argument applied to the right-hand side of (23) yields
the same bound, at time t+1. From now on, we assume t ∈ [0, 2r2]. Using the heat kernel estimate

(15) applied with C = C ′r2/(t+ 2) ≥ 8
√
|b|+ 4 and C = C ′r2/(t+ 1) ≥ 8

√
|b|+ 4 we thus have

(24) ||(1− χx)e
t∆
∣∣e∆Pδx∣∣ || ≤ C3 exp

(
5

2
|b|t− C ′2r22

8(t+ 2)

)
.

Applying to t = r1 − 1 and combining with (22) we get an upper bound for (21) for l = 0.
We turn now to the case l ≥ 1. For any f ∈ L2(M,ν), t ≥ 0 and y ∈M we have

|Pet∆f(y)| ≤ et∆|f |(y) +
∑
k∈N

ψk(y)

∫
M×M

ψk(w)Kt(w, z)|f(z)|dν(w)dν(z).

The ψk’s are bounded by C0 and supported on pairwise disjoint subsets of diameter bounded above
by 2. Therefore, there is a constant C4 > 0 such that for any y, w ∈M ,∑

k∈N
ψk(y)ψk(w) ≤ C4k

(b)
1 (d

M̃
(y, w)) ≤ C4k1(y, w) ≤ C4K1(y, w)

(where we used Lemma 2.1 and (10)). This yields∑
k∈N

ψk(y)

∫
M
ψk(w)Kt(w, z)|f(z)|dν(w)dν(z) ≤ C4e

(t+1)∆|f |(y).

Hence,

(25) |Pet∆f(y)| ≤ (et∆ + C4e
(t+1)∆)|f |(y).

A simple induction then shows that,

|P
(
et∆P

)l−1
f(y)| ≤ (et∆ + C4e

(t+1)∆)l−1|Pf |(y).

Applying the above with t = r1 and f = er1∆Pδx yields

|| (1− χx)
(
er1∆P

)l+1
δx|| ≤ ||(1− χx)e

r1∆(er1∆ + C4e
(r1+1)∆)l−1|Per1∆Pδx|||.

Applying (25) with t = r1 − 1 and f = e∆Pδx we find

|Per1∆Pδx|(y) ≤ (e(r1−1)∆ + C4e
r1∆)|e∆Pδx|(y)

for all y ∈M . So the triangle inequality yields

|| (1− χx)
(
er1∆P

)l+1
δx|| ≤

l∑
j=0

(
l

j

)
Cj4 ||(1− χx)e

((l+1)r1+j−1)∆
∣∣e∆Pδx∣∣ ||.(26)

All in all, we have, using successively (26) and (24) (since (l+ 1)r1 + j + 1 ≤ (l+ 1)(r1 + 1) ≤ 2r2)

||
(
Pχxe

r1∆
)n−l−1

P (1− χx)
(
er1∆P

)l+1
δx|| ≤

l∑
j=0

(
l

j

)
Cj4 ||(1− χx)e

((l+1)r1+j−1)∆
∣∣e∆Pδx∣∣ ||

≤
l∑

j=0

(
l

j

)
Cj4C3 exp

(
5

2
|b|r2 −

C ′2r22
8 (l + 1) (r1 + 1)

)

= (1 + C4)
lC3 exp

(
5

2
|b|r2 −

C ′2r22
8 (l + 1) (r1 + 1)

)
.(27)
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Finally, combining (20) with the estimate (27) and the estimate on the l = 0 term, we find

||
((
Per1∆P

)n − (Pχxer1∆χxP )n) δx||
≤ C3 exp

(
5

2
|b|r2 −

C ′2r22
8(r1 + 1)

)
+
n−1∑
l=1

(1 + C4)
lC3 exp

(
5

2
|b|r2 −

C ′2r22
8 (l + 1) (r1 + 1)

)
(28)

≤ C3 exp

(
5

2
|b|r2 −

C ′2r22
8(r1 + 1)

)
+ C3n(1 + C4)

n exp

(
5

2
|b|r2 −

C ′2r22
8n (r1 + 1)

)
(29)

≤ C5 exp

(
−C

′2r2
32

)
(30)

where we have estimated all terms of the sum by the maximal one in going from (28) to (29), and
we used that n(r1 +1) ≤ 2r2 and that n(1 +C4)

n is negligible compared to exp(|b|r2/2) to go from

(29) to (30) (together with the fact that C ′ ≥ 32
√
|b|+ 16). □

The end of this section is devoted to the proof of Lemma 3.1.

Proof of Lemma 3.1. Notice that the operator Pχxe
r1∆χxP is compact as an operator on L2(M,ν),

as a composition of bounded (linear) operators with the compact operator er1∆. Now we notice
that

∥(Per1∆P )⌊r2/r1⌋+1δx∥ ≤ ∥(Pχxer1∆χxP )⌊r2/r1⌋+1δx∥+ C0 exp

(
−C

′2r2
32

)
for some C0 > 0 due to Lemma 3.2. Then we set Bx = Pχxe

r1∆χxP . We prove below that
∥Bxδx∥ ≤ C1 for some C1 > 0 (as always, depending only on (a, b, ρ) ∈ T ). Therefore,

∥(Per1∆P )⌊r2/r1⌋+1δx∥ ≤ ∥B⌊r2/r1⌋
x Bxδx∥+ C0 exp

(
−C

′2r2
32

)
≤ C1 sup

∥φ∥=1
∥B⌊r2/r1⌋

x φ∥+ C0 exp

(
−C

′2r2
32

)
,

which is exactly (19). There remains to justify that ∥Bxδx∥ ≤ C1. We first have

(31) ∥Bxδx∥ ≤ ∥e∆χxPδx∥
since the operator norms of P , χx and e(r1−1)∆ are all equal to 1. If we denote by kx the only k ∈ N
such that x ∈ Vkx when it exists (and ψkx = 0 otherwise), then by definition of P we have

(32) ∥e∆χxPδx∥ = ∥e∆Pχxδx∥ ≤ ∥e∆δx∥+ C0∥e∆ψkx∥ ≤ ∥e∆δx∥+ C0

where we used that ∥ψk∥ = 1 and that the operator norm of e∆ : L2(M,ν) → L2(M,ν) is equal to
1. Using (10), we get

(33) ∥e∆δx∥2 = ∥K1(x, ·)∥2 ≤ ∥K1(x, ·)∥L∞∥K1(x, ·)∥L1 = ∥K1(x, ·)∥L∞ ≤ C2

where the last inequality is a consequence of Lemma 2.5. Combining (31), (32), (33), we get
∥Bxδx∥ ≤ C1, which concludes the proof. □

3.2. Applications of the min-max. Our proof of Theorem 1.4 relies fundamentally on the
Courant–Fischer min-max lemma (see e.g. [RS78, Theorem XIII.1]) through the lemma proved
in this section. In all the sequel,

µ2 = e−λ2(M)

denotes the largest eigenvalue of e∆ strictly smaller than 1.
As in Section 3.1, the main quantity of interest in this section is, for any fixed x ∈M ,

(34) sup
∥φ∥=1

∥Pχxer1∆χxPφ∥.



14 C. LETROUIT AND S. MACHADO

We denote by φx ∈ L2(M,ν) a function which attains the supremum (34), i.e.,

(35) ∥Pχxer1∆χxPφx∥ = sup
∥φ∥=1

∥Pχxer1∆χxPφ∥, ∥φx∥ = 1.

By the min-max principle φx is an eigenfunction of the compact, self-adjoint and non-negative
operator Pχxe

r1∆χxP . Since [χx, P ] = 0 and P and the operator of multiplication by χx are
orthogonal projections, the eigenfunction φx verifies

(36) Pφx = φx and χxφx = φx.

The following result serves as a replacement for the bound on the set U in the proof of [JTYZZ21,
Theorem 2.2].

Lemma 3.4. Assume that C′2

16 ≥ 5|b| + 2C ′√|b| + C ′. Then there exists C0, C2 > 0 and a subset

S ⊂M of area ν(S) ≤ C0 exp(3C
′r2
√

|b|) such that for any x /∈ S,

(37) ∥er1∆|φx|∥2 ≤ µ2r12 + C2 exp(−C ′r2).

Proof. Assume by contradiction that it is possible to find x1, x2 ∈M at distance > 3C ′r2 + 4 such
that (37) does not hold, with C2 = 2C0C1, where C0, C1 are the constants appearing respectively

in (15) and Lemma 2.5. Then ∥er1∆|φx1 |∥2 and ∥er1∆|φx2 |∥2 are both strictly greater than µ2r12 +
C2 exp(−C ′r2). We show below that

(38) |⟨e2r1∆|φx1 |, |φx2 |⟩| ≤ C0C1 exp(−C ′r2).

Before proving (38), let us explain how to finish the proof. Let u, v ≥ 0 with u2 + v2 = 1 such
that φ = u|φx1 |+ v|φx2 | verifies

∫
M φ(x)dν(x) = 0. Then ∥φ∥ = 1 since φx1 and φx2 have disjoint

support (due to (36)) and ∥er1∆φ∥ > µr12 , so φ contradicts the min-max principle for e2r1∆ in
L2(M,ν). This proves (37) and shows that S has diameter ≤ 3C ′r2 + 4. Finally, take x ∈ S (if not
empty) and notice that

ν(S) ≤ ν(Bd(x, 3C
′r2 + 4)) ≤ 4π

|b|
exp((3C ′r2 + 4)

√
|b|)

by (9), which concludes the proof.
There remains to prove (38). For y ∈ M such that χx2(y) = 1, we have according to (15) and
Lemma 2.5∫
M
χx1(x)K2r1(x, y)

2dν(x) ≤ C1 exp(4|b|t)
∫
M
χx1(x)K2r1(x, y)dν(x) ≤ C0C1 exp

(
5|b|r2 −

C ′2r2
16

)
since the supports of χx1 and χx2 are at distance ≥ C ′r2 (recall (18) and the fact that the Vk have
diameter at most 2). We deduce using Cauchy-Schwarz and ∥φx1∥ = ∥φx2∥ = 1 that

⟨e2r1∆|φx1 |, |φx2 |⟩2 ≤
∫
M×M

χx1(x)χx2(y)K2r1(x, y)
2dν(x)dν(y)

≤ C0C1 exp
(√

|b|(C ′r2 + 1) + 5|b|r2 −
C ′2r2
16

)
which implies (38) if C ′ is chosen as in the statement. □

3.3. Estimate of the gain ε. The heart of our proof, the “gain of ε”, corresponding to Step (v)
in the strategy of proof in Section 1.4, is carried out in this section.

At the beginning of the proof of Theorem 1.4 in Section 4.1, we will prove using Section 3.2 that
m′ is controlled by the integral in x of the quantity ∥Pχxer1∆χxPφx∥ where φx has been introduced
in (35).

In the present section we show that the quantity ∥Pχxer1∆χxPφx∥ = ∥Pχxer1∆φx∥ (see (36)) is,
in turn, bounded above by (1−ε)∥er1∆|φx|∥ up to remainders, where ε is “not too small” (depending
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on the volume). This gain of a quantitative ε, combined with an upper bound on ∥er1∆|φx|∥ obtained
through Lemma 3.4, is sufficient to conclude the proof of Theorem 1.4 in Section 4.1.

The gain of ε is proved by writing the identity (full details are provided in the proof of Lemma
3.8)

∥er1∆|φx|∥2 − ∥Pχxer1∆χxPφx∥2 = 4⟨er1∆φ+, e
r1∆φ−⟩︸ ︷︷ ︸

:=G1

+
∑
k∈Nx

(⟨er1∆φ+, ψk⟩ − ⟨er1∆φ−, ψk⟩)2︸ ︷︷ ︸
:=G2

+ ∥(1− χx)e
r1∆φx∥2

where φ± = max(±φx, 0) and Nx is introduced in (45). The key observation is that G1 and G2 play
opposite roles. While G1 quantifies the interaction (or lack thereof) between er1∆φ+ and er1∆φ−,
G2 measures the discrepancy between the mass left by er1∆φ+ and er1∆φ− on the Voronoi cells Vk.
Since the variations of er1∆φ+ and er1∆φ− are very well controlled at scale O(1) (see Lemma 3.5,
which is a consequence of (16)), er1∆φ+ and er1∆φ− must interact on the Voronoi cells Vk in order
for G2 to be small. In turn, this prevents G1 from being small. In other words, G1 +G2 (hence ε)
cannot be small. This will be expressed in practice as a lower bound for G1 + G2 in terms of the
L2-norm of er1∆|φx|.

The following lemma, used in the end for r = r1 but valid for any r ≥ 1, illustrates the idea that
the solutions of the heat equation at time r do not vary too much over scales of size ≲ r. We set

(39) wC(r) = C0 exp (−5(1 + |b|)(1 + C)r) .

where C0 is given in (16).

Lemma 3.5 (Small scale invariance). There exists C0 > 0 such that for any C ≥ max(8
√

|b|+4, 16),
any r ≥ 1, and any positive function f with ∥f∥ = 1 there exists R ∈ C0(M) with

∥R∥ ≤ C0 exp

(
|b|r − C2r

64

)
and the inequality

er∆f(x) ≥ wC(r)(e
r∆f(x′)−R(x′)) ≥ 0

holds for any x, x′ ∈M at distance at most 4r + 4 from each other.

Proof. Recall that er∆f(x) =
∫
M Kr(x, y)f(y)dy. For every x, y ∈M define

K≤C
r (x, y) :=

∑
γ∈Γ, d

M̃
(x̄,γȳ)≤Cr

kr(x̄, γȳ)

and

K>C
r (x, y) :=

∑
γ∈Γ, d

M̃
(x̄,γȳ)>Cr

kr(x̄, γȳ)

for any choice of lifts x̄, ȳ of x, y to M̃ . We have Kr = K>C
r +K≤C

r according to (10).
For x ∈M we set

(40) R>C(x) :=

∫
M
K>C
r (x, y)f(y)dν(y).

Notice that R>C ∈ C0(M). It follows from the Schur test that

(41) ||R>C ||L2 ≤ sup
x∈M

||K>C
r (x, ·)||L1 ||f ||L2 .
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Take x ∈M and choose x̄ ∈ M̃ a lift of x. We have

||K>C
r (x, ·)||L1 =

∫
M̃\B

M̃
(x̄,Cr)

kr(x̄, ȳ)dȳ ≤ C0 exp

(
|b|r − C2r

16

)
(42)

according to (15). Besides, K≤C has controlled variations in terms of C: we prove that for all
x, x′, y ∈M with d(x, x′) ≤ 4r + 4 we have

(43) K≤C
r (x, y) ≥ wC(r)K

≤C−8
r (x′, y).

For this, we fix lifts x̄, x̄′ of x, x′ at distance ≤ 4r + 4. Using that if d
M̃
(x̄′, γȳ) ≤ (C − 8)r, then

d
M̃
(x̄, γȳ) ≤ Cr, together with (16) applied with t = r we get

K≤C
r (x, y) =

∑
γ∈Γ,d

M̃
(x̄,γȳ)≤Cr

kr(dM̃ (x̄, γȳ))

≥ wC(r)
∑

γ∈Γ,d
M̃

(x̄,γȳ)≤Cr

kr(dM̃ (x̄′, γȳ))

≥ wC(r)
∑

γ∈Γ,d
M̃

(x̄′,γȳ)≤(C−8)r

kr(dM̃ (x̄′, γȳ)) = wC(r)K
≤C−8
r (x′, y).

We deduce from (43) and positivity of the heat kernel

er∆f(x) ≥ wC(r)(e
r∆f(x′)−R>C−8(x

′)).

Set R = min(R>C−8, e
r∆f). Combining (41), (42) and the inequality C − 8 ≥ C/2 we obtain the

lemma. □

For f ∈ L2(M,ν) we set f± = max(±f, 0). The next lemma, when used for r = r1, shows that the
interaction ⟨er1∆f+, er1∆f−⟩ between positive and negative parts can already be detected coarsely
on the Voronoi cells Vk. Its proof relies on Lemma 3.5.

Lemma 3.6. There exist C0, C1 > 0 such that for any C ≥ max(8
√

|b| + 4, 16), any r ≥ 1, and
any f ∈ L2(M,ν) with ∥f∥ = 1, there holds

⟨er∆f+, er∆f−⟩ ≥ C0wC(r)
2
∑
k∈N

m+
km

−
k − C1 exp

(
|b|r − C2r

64

)
where m±

k = ⟨f±, er∆ψk⟩.

Instead of wC(r)
2 we could put the better wC(2)

2 in the right-hand side. But for simplicity of
notation, since wC(r) appears at other places in the sequel whereas wC(2) does not, we present the
statement in the above form.

Proof of Lemma 3.6. We denote by R± the remainder corresponding to f± in Lemma 3.5. We recall
that C0 ≤ vol(supp(ψk)) ≤ C1 (see (13)).

Let k ∈ N and x ∈ supp(ψk). Averaging over x′ in the support of ψk and using that 4r + 4 ≥
2 ≥ diam(Vk) and ∥ψk∥L∞ ≤ C2 (see Section 2.2), we deduce from Lemma 3.5 that

er∆f±(x) ≥
C−1
2 wC(r)

vol(supp(ψk))
(⟨er∆f±, ψk⟩ − ⟨R±, ψk⟩) ≥ C3wC(r)m

±
k − C4∥R±∥L2(supp(ψk)) ≥ 0(44)

where we used the Cauchy-Schwarz inequality for the second term.
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We notice that

∑
k∈N

m−
k ∥R

+∥L2(supp(ψk)) ≤

(∑
k∈N

∥R+∥2L2(supp(ψk))

) 1
2
(∑
k∈N

(
m−
k

)2) 1
2

≤ C5 exp

(
|b|r − C2r

64

)
and similarly for the sum with switched signs, i.e., with m+

k and R−. Then using (44) and the fact
that wC(r) ≤ 1 we obtain

⟨er∆f+, er∆f−⟩ ≥
∑
k∈N

∫
supp(ψk)

er∆f+(x)e
r∆f−(x)dν(x)

≥ C0

∑
k∈N

(
C3wC(r)m

+
k − C4∥R+∥L2(supp(ψk))

) (
C3wC(r)m

−
k − C4∥R−∥L2(supp(ψk))

)
≥ C6wC(r)

2
∑
k∈N

m+
km

−
k − C7 exp

(
|b|r − C2r

64

)
which concludes the proof. □

We provide now what will serve as the lower bound for G1 + G2 alluded to at the beginning of
this section.

Lemma 3.7. For any x ∈M set

(45) Nx = {k ∈ N | supp(ψk) ∩Bd(x,C ′r2) ̸= ∅}.

There exist constants C0, C1 > 0 such that for any C ≥ max(8
√

|b|+ 4, 16), any f ∈ L2(M,ν) with
∥f∥ = 1, any x ∈M ,∑

k∈Nx

⟨er1∆|f |, ψk⟩2 ≥ C0 exp(−2r1
√
|b|)wC(r1)2∥χxer1∆|f |∥2 − C1 exp

(
|b|r1 −

C2r1
64

)
.

Proof. For any k ∈ N , we denote by yk a point where e
r1∆|f | attains its minimum on Vk = supp(ψk).

We first show that

(46) supp(χx) ⊂
⋃
k∈Nx

Bd(yk, 2r1 + 2).

Let z ∈ supp(χx). If z ∈ supp(χx) \ Bd(x,C ′r2), then z ∈ Vk for some k ∈ N , and d(z, yk) ≤
diam(Vk) ≤ 2r1 + 2. Otherwise, z ∈ Bd(x,C

′r2), and therefore there exists z′ ∈ Bd(x,C
′r2 − r1) at

distance at most r1 from z. We have Bd(z
′, r1) ⊂ B(x,C ′r2), therefore there exists an element of

the r1-net xk ∈ B(x,C ′r2) with d(xk, z
′) ≤ r1. It follows that

d(yk, z) ≤ d(yk, xk) + d(xk, z
′) + d(z′, z) < 2r1 + 2.

Using Lemma 3.5 and noticing that 4r1 + 4 is the diameter of the ball Bd(yk, 2r1 + 2), we have

⟨er1∆|f |, ψk⟩2 ≥ C0(e
r1∆|f |(yk))2

≥ C0 exp(−2r1
√
|b|)wC(r1)2

∫
Bd(yk,2r1+2)

(er1∆|f |(x′)−R(x′))2ν(dx′)



18 C. LETROUIT AND S. MACHADO

where we used that vol(Bd(yk, 2r1 +2)) ≤ C1 exp(2r1
√

|b|) according to (9). Summing over k ∈ Nx

and using (46), we obtain∑
k∈Nx

⟨er1∆|f |, ψk⟩2 ≥ C0 exp(−2r1
√
|b|)wC(r1)2

∫
M
χx(x

′)(er1∆|f |(x′)−R(x′))2ν(dx′)

≥ C0 exp(−2r1
√
|b|)wC(r1)2∥χxer1∆|f |∥2 − C2∥R∥

where in the last line we developed the square in the right-hand side, we used the Cauchy-Schwarz
inequality in L2(M,ν) and the bound ∥er1∆|f |∥ ≤ 1. □

Lemma 3.8. Let φx be a function which attains the supremum in (34). There exist C0, C1 > 0

such that for any C ≥ max(8
√

|b|+ 4, 16) and any x ∈M ,

∥(Pχxer1∆χxP )φx∥2 ≤ (1− C0 exp(−2r1
√
|b|)wC(r1)4)∥er1∆|φx|∥2

+ C1 exp

(
|b|r1 −

C2r1
64

)
.

Proof. We fix x ∈M . We compute ε = ∥er1∆χx|φx|∥2−∥Pχxer1∆χxPφx∥2 which can be simplified
to

ε = ∥er1∆|φx|∥2 − ∥Pχxer1∆φx∥2

due to (36). First we compute without the absolute value on φx, and we use from line 1 to line 2
that χx ∈ {0, 1}:

∥er1∆φx∥2 − ∥Pχxer1∆φx∥2 = ⟨(Id− χxPχx)e
r1∆φx, e

r1∆φx⟩
= ∥(1− χx)e

r1∆φx∥2 + ∥(Id− P )χxe
r1∆φx∥2

= ∥(1− χx)e
r1∆φx∥2 +

∑
k∈Nx

⟨er1∆φx, ψk⟩2

where Nx has been introduced in (45).
Then we notice the following identity:

∥er1∆|φx|∥2 − ∥er1∆φx∥2 = 4⟨er1∆φ+, e
r1∆φ−⟩

where φ± = max(±φx, 0). All in all,

ε = 4⟨er1∆φ+, e
r1∆φ−⟩+ ∥(1− χx)e

r1∆φx∥2 +
∑
k∈Nx

(⟨er1∆φ+, ψk⟩ − ⟨er1∆φ−, ψk⟩)2

(we write the last term as a difference on purpose). Using Lemma 3.6, its notation and the fact
that m+

k +m−
k = ⟨er1∆|φx|, ψk⟩ we have

ε ≥
∑
k∈Nx

(m+
k −m−

k )
2 + 2

(
C0wC(r1)

2
∑
k∈N

m+
km

−
k − C1 exp

(
|b|r1 −

C2r1
64

))
+ 2⟨er1∆φ+, e

r1∆φ−⟩+ ∥(1− χx)e
r1∆φx∥2

≥ min

(
1,
C0wC(r1)

2

2

) ∑
k∈Nx

⟨er1∆|φx|, ψk⟩2 − 2C1 exp

(
|b|r1 −

C2r1
64

)
+

∥(1− χx)e
r1∆|φx|∥2

2
.

Using Lemma 3.7 and its notation we obtain that there exist C2, C3 > 0 such that

ε ≥ C2 exp(−2r1
√

|b|)wC(r1)4∥χxer1∆|φx|∥2 +
∥(1− χx)e

r1∆|φx|∥2

2
− C3 exp

(
|b|r1 −

C2r1
64

)
≥ C2 exp(−2r1

√
|b|)wC(r1)4∥er1∆|φx|∥2 − C3 exp

(
|b|r1 −

C2r1
64

)
,
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which concludes the proof. □

4. Proof of the main results

4.1. Proof of Theorems 1.1 and 1.4. Building upon the results of Section 3, we proceed with
the proof of Theorem 1.4, and we explain at the end of the section how to deduce Theorem 1.1. We
fix ρ > 0, b < 0 and M a closed, connected Riemannian surface with inj(M) ≥ ρ and c(x) ≥ b for
any x ∈ M . We also assume vol(M) ≥ 3 in order for r1, r2 to be well-defined. The case of small
volumes is handled at the end.

We recall that µ2 = e−λ2(M). We denote by m the multiplicity of λ2(M) as an eigenvalue of −∆.
Then, m is also the multiplicity of µr12 as an eigenvalue of er1∆. We denote by m′ the multiplicity
of µr12 as an eigenvalue of Per1∆P , which is also compact, self-adjoint and non-negative.

In the sequel, we provide an upper bound on m′ which will be seen to be sufficient to bound m
(see (57) below).

Since e∆ is a trace-class operator, (Per1∆P )2⌊r2/r1⌋+2 is also trace-class. We have by Lemma A.3

m′µ
2r1(⌊r2/r1⌋+1)
2 ≤ Tr((Per1∆P )2⌊r2/r1⌋+2) =

∫
M

∥(Per1∆P )⌊r2/r1⌋+1δx∥2dν(x)

The right-hand side is bounded above by

C0

(
exp

(
−C

′2r2
32

)
vol(M) +

∫
M

sup
∥φx∥=1

∥(Pχxer1∆χxP )⌊r2/r1⌋φx∥2dν(x)

)
due to Lemma 3.1. This last expression is equal to

(47) C0

exp

(
−C

′2r2
32

)
vol(M) +

∫
M

(
sup

∥φx∥=1
∥(Pχxer1∆χxP )φx∥2

)⌊r2/r1⌋

dν(x)


since Pχxe

r1∆χxP is self-adjoint on L2(M,ν).
To continue, we need to fix the parameters C, C ′ and the parameter c introduced in (8). We

denote by C2 ∈ (0, 1) a constant such that µ2 ≥ C2 for any M of curvature ≥ b (thanks to Lemma
A.2). We choose successively (in this order) C ′, C and c > 0 such that

C ′2

32
≥ max(5|b|+ 2C ′√|b|+ C ′, 32

√
|b|+ 16,−4 logC2 + 1)(48)

C2

64
≥ |b|+ 25(1 + |b|)(1 + C)− 2 log(C2)(49)

and C ≥ max(8
√

|b|+ 4, 16)(50)

1

4
≥
(
3C ′√|b| − 4 logC2 + 25(1 + |b|)(1 + C)

)
c.(51)

We also assume vol(M) large enough so that r1 ≥ 1. We separate the integral in (47) into an
integral over S and an integral over M \ S, where S is chosen as in Lemma 3.4. Due to Lemma

3.4, the integral over S is bounded above by ν(S) ≤ C1 exp(3C
′r2
√
|b|) since the operator norms of

er1∆, χx and P are equal to 1. The integral over M \ S is bounded above by

(52)

∫
M\S

(
(1− C4 exp(−hr1))2 ∥er1∆|φx|∥2 + C3 exp

(
|b|r1 −

C2r1
64

))⌊r2/r1⌋
dν(x)

by Lemma 3.8 (which we can apply thanks to (50)), where

h = 25(1 + |b|)(1 + C).
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For any x ∈M \ S, we have by definition of S
(53)

(1− C4 exp(−hr1))2 ∥er1∆|φx|∥2 ≤ (1− C4 exp(−hr1))2
(
µ2r12 + C5 exp(−C ′r2)

)
≤ (1−C6 exp(−hr1))2µ2r12 .

Thanks to (49),
C2

64
r1 ≥ |b|r1 + hr1 − 2 log(C2)r1.

Therefore we get, again for vol(M) large enough,

C6

2
exp

(
|b|r1 −

C2r1
64

)
≤ C6

2
exp(−hr1)µ2r12

≤ µ2r12

(
1− C6

2
exp(−hr1)

)2

− µ2r12 (1− C6 exp(−hr1))2.

Combining with (53), we obtain that (52) is bounded above by

C0µ
2r1⌊r2/r1⌋
2

∫
M\S

(
1− C6

2
exp(−hr1)

)2⌊r2/r1⌋
dν(x) ≤ C0vol(M)

(
µr12

(
1− C6

2
exp(−hr1)

))2⌊r2/r1⌋

due to Lemma 3.4. Summarizing, we have obtained

m′µ
2r1(⌊r2/r1⌋+1)
2 ≤ C0vol(M)

(
µr12

(
1− C6

2
exp(−hr1)

))2⌊r2/r1⌋
(54)

+ C0 exp(2C
′r2
√
|b|) + C0 exp

(
−C

′2r2
32

)
vol(M)

We divide by µ
2r1(⌊r2/r1⌋+1)
2 and use the inequality 1 − x ≤ e−x to deduce that m′ is bounded

above by

(55) C0

(
vol(M)

µ2r12

exp (−C7 exp(−hr1)⌊r2/r1⌋) +
exp(3C ′r2

√
|b|) + exp(−C ′2r2/32)vol(M)

µ4r22

)
Thanks to our choice of parameters (48) and (51) we get that

exp(3C ′r2
√

|b|) + exp(−C ′2r2/32)vol(M)

µ4r22

≤ vol(M)
1
2 + vol(M)1−c.

Thanks to (51) we have for vol(M) sufficiently large

vol(M)

µ2r12

exp (−C7 exp(−hr1)⌊r2/r1⌋) ≤ vol(M) exp
(
−C8 log

2/3 vol(M)
)
.

All in all, we find that for vol(M) sufficiently large,

(56) m′ ≤ C0vol(M) exp
(
−C8 log

2/3 vol(M)
)
.

By the Cauchy interlacing theorem (Theorem A.1) there holds

(57) m ≤ m′ + rank(Id− P ).

Under the assumptions of Theorem 1.4 we can choose the r1-net in a way that rank(Id − P ) ≤
C0vol(M)/r1 according to Lemma 2.2, which together with (56) and (57) concludes the proof in
this first case for vol(M) large enough. Combining with [HKP16, Corollary 1.1] we get the result
for any vol(M).

Under the additional assumption that λ2(M) ≥ δ, we can choose the r1-net in a way that

rank(Id − P ) ≤ C0vol(M)/eδ
′r1 according to Lemma 2.3 (with δ′ given in this lemma), which

together with (56) and (57) proves the following statement:
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Theorem 4.1. For any ρ > 0, b < 0 and δ > 0 there exist C0, α > 0 such that for any closed, con-
nected Riemannian surfaceM with inj(M) ≥ ρ, Gaussian curvature ≥ b and spectral gap λ2(M) ≥ δ,

the multiplicity of λ2(M) is at most C0(1 +
vol(M)

logα(3+vol(M))).

The first part of Theorem 1.1 follows from Theorem 1.4 together with the Gauss-Bonnet theorem,
which implies that vol(M) ≤ 4π

|a| (g − 1). Similarly, the second part of Theorem 1.1 follows from

Theorem 4.1 together with the Gauss-Bonnet theorem.

Remark 4.2. To make the constants C0, C1 and α in Theorem 1.1 explicit, we first multiply

the Riemannian metric on M by |b|
1
2 + ρ−1 to obtain M ′. Then M ′ ∈ M(a′,−1,1) where a′ =

a
(
|b|

1
2 + ρ−1

)−2
. Combining Theorem 1.4 (resp. Theorem 4.1) applied to M ′ with parameters

b = −1 and ρ = 1 (resp. b = −1, ρ = 1 and δ(
|b|

1
2+ρ−1

)2 ) and the Gauss–Bonnet formula we get

that C0, C1, α may be taken as

C0 = C1 = Cu
|b|+ ρ−2

|a|
and α = cu

max

( √
δ√
20
, δ

4
√

|b|

)
|b|

1
2 + ρ−1

where Cu > 0 and cu > 0 are two universal constants computable - in principle - from our methods.

Remark 4.3. One can draw from (55) a justification for our choices of r1 and r2 as (8). Indeed,

our goal is to make (55) sublinear in vol(M). For the term exp(2C ′r2
√
|b|)/µ4r22 , this requires

r2 = O(log vol(M)). At the heuristic level, beyond time log vol(M), the heat kernel is spread almost
uniformly over M (whose typical diameter is of order log vol(M) for negatively curved surfaces
under the spectral gap assumption), and extracting any kind of information from its analysis becomes
difficult.

In turn, the term vol(M)

µ
2r1
2

exp (−C7 exp(−hr1)⌊r2/r1⌋) requires exp(−hr1)⌊r2/r1⌋ → 0 as vol(M) →
+∞, in particular r1 = O(log(r2)). We need r1 largest possible due to (57) and the fact that
rank(Id − P ) is a decreasing function of r1 (see Lemma 2.2 and Lemma 2.3). This explains our
choice of r1 = Θ(log log vol(M)) and r2 = Θ(log vol(M)).

In particular, the term rank(Id− P ) in the right-hand side of (57) cannot be made smaller than
vol(M)

log log vol(M) with our arguments (or vol(M)
logα vol(M) , if the spectral gap assumption is made). And we

notice that this term is precisely the one which one would need to improve in order to enhance the
final bound on m, since the bound (56) on m′ is indeed already much better.

4.2. Proof of Theorem 1.2. Theorem 1.2 is a direct consequence of the Gauss-Bonnet formula
together with the following result, which we prove in this section through elementary modifications
of Section 4.1.

Theorem 4.4. For any j ∈ N≥2, any ρ,K, β > 0 and b < 0 there exist C0, v0 > 0 such that for any
closed, connected Riemannian surface M with inj(M) ≥ ρ, vol(M) ≥ v0, and Gaussian curvature

≥ b, the number of eigenvalues in [λj(M), (1+ K
logβ vol(M)

)λj(M)] is at most C0(1+
vol(M)

log log(3+vol(M))).

Proof. We need the following straightforward adaptation of Lemma 3.4.

Lemma 4.5. For any j ∈ N≥2, there exists C ′
j > 0 and a subset S ⊂ M of area ν(S) ≤

C ′
j exp(3C

′r2
√
|b|) such that for any x /∈ S,

∥er1∆|φx|∥2 ≤ µ2r1j + C ′
j exp(−C ′r2).

where φx has been introduced in Section 3.2.
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Fix j ∈ N≥1 and β,K > 0. We denote by m′ the number of eigenvalues of Per1∆P contained in

[µr1j (1− δ), µr1j ] where δ = K log log vol(M)

logβ vol(M)
. Compared to (48)-(51), the constants C ′ and C are fixed

using Cj (coming from Lemma A.2) instead of C2, and (51) is replaced by

β

4
≥
(
3C ′√|b| − 4 logCj + 25(1 + |b|)(1 + C)

)
c.

Instead of (54) we obtain using Lemma 4.5

m′µ
2r1(⌊r2/r1⌋+1)
j (1− δ)2⌊r2/r1⌋+2 ≤ C0vol(M)

(
µr1j

(
1− C6

2
exp(−hr1)

))2⌊r2/r1⌋
+ C0 exp(2C

′r2
√
|b|)

+ C0 exp

(
−C

′2r2
32

)
vol(M).

Dividing by µ
2r1(⌊r2/r1⌋+1)
j (1 − δ)2⌊r2/r1⌋+2 and proceeding as in Section 4.1, we obtain instead of

(56)

m′ ≤ C0vol(M) exp
(
− log1−

β
2 vol(M)

)
(1− δ)−2⌊r2/r1⌋−2

and thanks to the definition of δ and the inequality (1 − δ)n ≤ e−nδ, we finally get for sufficiently
large g

m′ ≤ C0g exp
(
(4K log1−β vol(M))− (log1−

β
2 vol(M))

)
≤ C0

vol(M)

log log vol(M)
.

By the Cauchy interlacing theorem (Theorem A.1) we obtain that the number m of eigenvalues

of er1∆ in [µr1j (1 − δ), µr1j ] is bounded above by C0
vol(M)

log log vol(M) . It implies the same bound for the

number of eigenvalues of e∆ in [µj(1− K
2c logβ vol(M)

), µj ], and Theorem 4.4 follows. □

Theorem 1.2 follows directly from Theorem 4.4 together with the Gauss-Bonnet formula which

implies that vol(M) ≤ 4π
|a|g for M ∈ M(a,b,ρ)

g .

Remark 4.6. In the present paper, we rely on the trace method to bound eigenvalue multiplicity.
The natural time scale of the trace which we consider, namely (Per1∆P )⌊r2/r1⌋+1 ≈ e⌊r2/r1⌋r1∆, is
O(r1⌊r2/r1⌋) = O(c log vol(M)). With this time scale, it is impossible to distinguish eigenvalues
that differ by O(1/ log vol(M)). Analogously, the spectral bounds obtained in [Mon22, Theorems 4

and 5] do not give precise information in spectral windows of size ≪ 1/
√
log(g).

4.3. Scale-free version of Theorem 1.4. We conclude this section with a version of Theorem
1.4 which involves only quantities which are invariant under rescaling of the metric, in the spirit
of [HKP16, Corollary 1.1]. For a closed connected Riemannian surface M , we define κ(M) as the
smallest κ ≥ 0 such that c(x) ≥ −κ for any x ∈M . We set

G(M) = vol(M)(κ(M) + inj(M)−2)

which is a scale-free quantity, meaning that if the metric on M is multiplied by a factor R > 0,
G(M) remains unchanged.

Theorem 4.7. There exists C0 > 0 such that for any closed, connected Riemannian surface M ,

the multiplicity of λ2(M) is at most C0(1 +
G(M)

log log(3+G(M))).

Theorem 4.7 improves (for surfaces) over the bound (1.14) in [HKP16], which is linear in G(M).
It is possible to prove scale-free bounds similar to Theorem 4.7 which generalize the second part of
Theorem 1.1 (with spectral gap assumption), and Theorems 1.2 and 4.4.
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Proof of Theorem 4.7. LetM be a closed connected Riemannian surface. Denote byMR the surface
obtained by multiplying the metric on M by R > 0. For some R0 ≤ max(κ(M)1/2, inj(M)−1), we
have inj(MR) ≥ 1 and κ(MR) ≤ 1 for any R ≥ R0. Applying Theorem 1.4 to MR0 , we obtain

that the multiplicity of λ2(MR0) is ≤ C0(1 +
vol(MR0

)

log log(3+vol(MR0
))), and the same bound holds for the

multiplicity of λ2(M) since multiplicity is preserved under scaling. Since vol(MR0) ≤ G(M), we get
the result. □

4.4. Proof of Proposition 1.3. Our proof of Proposition 1.3 essentially relies on the following
lemma, extracted from [CC88].

Lemma 4.8 (Extracted from [CC88]). Let G = (V,E) be a non-oriented finite graph, possibly with
loops and multiedges, whose vertices have degrees di ≥ 3 for any i ∈ V , and whose edge lengths are
denoted by (θi,j){i,j}∈E. Then there exists a sequence of closed hyperbolic surfaces (Xε)ε>0 of genus
|E| − |V | + 1 whose first |V | eigenvalues of the positive Laplacian λ1(ε) ≤ . . . ≤ λ|V |(ε) (repeated

according to multiplicities) satisfy λj(ε) = εζj +O(ε2) where ζ1 ≤ . . . ≤ ζ|V | are the |V | eigenvalues
of the quadratic form

(58) qθ(x) =
1

π

∑
{i,j}∈E

θi,j |xi − xj |2, x ∈ RV

on L2(V, µ) and µ = 2π
∑

i∈V (di − 2)δi with δi the Dirac mass on i ∈ V .

Sketch of proof of Lemma 4.8 extracted from [CC88]. For any i ∈ V , we denote by Vi the multiset
of j ∈ V such that {i, j} ∈ E (the fact that Vi is a multiset comes from the fact that we allow loops
and multiedges). The degree of i ∈ V is di = |Vi| ≥ 3.

The authors of [CC88] first construct a closed hyperbolic surface X as follows: to the vertex i ∈ V
is associated Xi, a compact hyperbolic surface with di free geodesics (γi,j)j∈Vi on its boundary, by
gluing di− 2 pants (see [CC88, Section VI] and its figures for the case of the complete graph). This
is done in a way that the length ℓ(γi,j) is equal to θi,j . To construct the surface X we glue the
pieces Xi as indicated by the graph G: for {i, i′} ∈ E, we glue Xi and Xi′ by identifying γi,i′ with
γi′,i without twist. In particular if i = i′, i.e. the edge {i, i′} is a loop, we identify without twist
one γi,i with another γi,i.

In [CC88, Section II], the authors construct from X a family of closed hyperbolic surfaces Xε

(0 < ε ≤ 1) as follows. The geodesics in the pant decomposition of X which do not belong to the
boundary of one of the Xi, i ∈ V , remain of fixed length. For {i, j} ∈ E, the geodesic γi,j of X is
replaced in Xε by a geodesic γεi,j of length ℓεi,j = εθi,j . Note that vol(Xε

i ) = vol(Xi) = 2π(di − 2)
for any i ∈ V , by the Gauss-Bonnet formula.

Then, in [CC88, Section V], the authors consider the measure µ = 2π
∑

i∈V (di − 2)δi on G, and

the quadratic form qθ on L2(V, µ) given by (58), which is the Dirichlet form on G endowed with
edge lengths θ = (θi,j){i,j}∈E . Then in [CC88, Sections I and V] they exhibit a quadratic form qεθ on

L2(V, µ) (depending continuously on the geometric parameter θ) whose spectrum is the set of first
|V | eigenvalues of Xε and such that limε→0 ∥(qεθ/ε)−qθ∥ = 0, uniformly in θ ∈W for every compact

W ⋐ (R>0)
E . In particular it implies that the eigenvalues (λi(ε))i∈V of Xε verify λi(ε) ∼ εζi

(ε→ 0) where the (ζi)i∈V are the eigenvalues of qθ on L2(V, µ).
The genus of Xε is equal to (p + 2)/2 where p =

∑
i∈V (di − 2) = 2|E| − 2|V | is the number of

pants used in the decomposition. This concludes the proof of Lemma 4.8. □

End of the proof of Proposition 1.3. Let n ∈ N≥3. We consider the star graph Fn with n branches
(i.e. n edges and n+1 vertices). Since this graph has leaves (vertices of degree 1), we cannot apply
Lemma 4.8 directly to Fn. Therefore, we also consider Gn the graph obtained by adding a loop at
each of the n leaves of Fn. The central vertex of Gn has degree n, and all n other vertices of Gn have
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degree 3. All edges of Fn and Gn have length 1. We denote by Vn the vertex set of Gn, and by En
its multiset of edges. We have |Vn| = n+1 and |En| = 2n. Finally, we set µn = 2π

∑
i∈Vn(di− 2)δi.

The eigenvalues of the quadratic form qθ given by (58) (for Gn) on L
2(Vn, µn) are equal to those

of the (positive) Laplacian on Gn given by

(∆x)i =
1

di − 2

∑
j∈Vi

xi − xj

(see e.g. [Col88, Section 4]). Its eigenvalues are 2n−2
n−2 , 1 and 0, with respective multiplicities 1, n−1

and 1.
For a given n, we use Lemma 4.8 for sufficiently small εn. We obtain a closed connected hyperbolic

surface Mgn of genus

(59) gn = |En| − |Vn|+ 1 = n.

having at least n− 1 eigenvalues in [λ2(Mgn), (1 + Cnεn)λ2(Mgn)] for some Cn > 0 which does not
depend on εn. Taking εn < εgn/Cn, this concludes the proof. □

Appendix A. Appendix

We gather in this appendix several statements and proofs of elementary facts that are used
throughout the proof of our main results.

A.1. Eigenvalues and trace. We first prove an infinite-dimensional version of the Cauchy inter-
lacing theorem (see also [DD87, Theorem 2]).

Theorem A.1 (Cauchy interlacing theorem). Let A be a positive compact self-adjoint operator on
a Hilbert space H. Let P = P⊤ be an orthogonal projection onto a subspace of H of codimension
k ∈ N. We denote by α1 ≥ α2 ≥ . . . the eigenvalues of A, and by β1 ≥ β2 ≥ . . . those of B = PAP .
Then for any j ∈ N,

αj ≥ βj ≥ αj+k.

Proof of Theorem A.1. Since B is compact and self-adjoint, the spectral theorem provides a basis
(bj)j∈N of normalized eigenvectors of B, with Bbj = βjbj for any j ∈ N (notice that to order the βj
we use that B ≥ 0). We set Sj = Span(b1, . . . , bj) and we notice that Sj ⊂ Im(P ). We compute

βj = min
x∈Sj , ∥x∥=1

(PAPx, x) = min
x∈Sj , ∥x∥=1

(Ax, x)

≤ max
V, dim(V )=j

min
x∈V, ∥x∥=1

(Ax, x) = αj .

Also, noticing that PS⊥
j−1 has codimension at most k + j − 1 we obtain

βj = max
x∈S⊥

j−1, ∥x∥=1
(PAPx, x) ≥ max

x∈PS⊥
j−1, ∥x∥=1

(PAPx, x)

= max
x∈PS⊥

j−1, ∥x∥=1
(Ax, x) ≥ min

V, codim V≤k+j−1
max

x∈V, ∥x∥=1
(Ax, x) = αk+j

which concludes the proof. □

We recall the following estimate:

Lemma A.2 (Upper bound on eigenvalues). For any b ∈ R and any j ∈ N≥2, there exists Cj > 0
such that any closed surface M with curvature bounded below by b verifies λj(M) ≤ Cj.
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Proof. The diameter d of a closed surface M with curvature bounded below by b is bounded below

since for any x ∈ M̃ ,

4π

|b|
≤ vol(M) ≤ Vol

M̃
(B

M̃
(x, d)) ≤ 4π

|b|
sinh2

(
d

2

√
|b|
)

where the left-hand side comes from Gauss-Bonnet and the right-hand side from (9). Combining
with [Che75, Corollary 2.3] we get the result. □

Lemma A.3 (Computation of the trace). For any n ∈ N≥1 and t ≥ 1, there holds

Tr((Pet∆P )2n) =

∫
M

∥(Pet∆P )nδx∥2dν(x).

Proof. We set Q = Pet∆P . Let (uj)j∈N denote an orthonormal basis of eigenfunctions of the
compact and self-adjoint operator Qn, with associated eigenvalues ζj . For any x ∈ M we set
ux =

∑
j∈N ζjuj(x)uj . We know that Q2n is trace-class since e∆ is trace-class, and

(60) Tr(Q2n) =
∑
j∈N

ζ2j =

∫
M

∑
j∈N

ζ2j uj(x)
2

 ν(dx) =

∫
M

∥ux∥2ν(dx).

In particular, ux ∈ L2(M,ν) for ν-almost every x ∈ M . For any such x and any f ∈ C∞(M),
written as f =

∑
j∈N ajuj , we have

⟨Qnδx, f⟩D′,D = ⟨Pδx, et∆PQn−1f⟩D′,D = et∆PQn−1f(x)−
∑
k∈N

⟨et∆PQn−1f, ψk⟩ψk(x)

= Qnf(x) =
∑
j∈N

ajζjuj(x) =

∫
M
ux(y)f(y)ν(dy)

where the first equality comes from the fact that the transpose (in the sense of distributions) of the
continuous linear map from smooth functions to smooth functions et∆PQn−1 is Qn−1Pet∆; and the
second equality follows from (14). We deduce from this computation that Qnδx coincides with the
distribution ⟨ux, ·⟩L2(M,ν), which is identified to ux ∈ L2(M,ν). Plugging into (60), this concludes
the proof. □

A.2. Heat kernel: comparison and estimates. We provide here the proofs of Lemma 2.4 and

2.5 on the heat kernel in M̃ and M .

Proof of Lemma 2.4. We recall from [Dav89, Theorem 5.7.2] that there exist constants c1, c2 > 0
such that for any η, t > 0,

c1g1(t, η) ≤ kH
2

t (η)

where kH
2
denotes the heat kernel in the hyperbolic plane (equal to k(−1) with the notation of

Lemma 2.1) and

g1(t, η) =
1

t

1 + η

(1 + η + t)
1
2

exp

(
− t

4
− η

2
− η2

4t

)
.

For K < 0 we consider

g|K|(t, η) = |K|g1(|K|t, |K|
1
2 η) =

1

t

1 + |K|
1
2 η

(1 + |K|
1
2 η + |K|t)

1
2

exp

(
−|K|t

4
− |K|

1
2 η

2
− η2

4t

)
,

which is the analogue of g1 on the space form M̃K introduced in Section 2.1. Using Lemma 2.1 we

obtain for the heat kernel kt(·, ·) in M̃ that

(61) c1g|b|(t, dM̃ (x, y)) ≤ kt(x, y)



26 C. LETROUIT AND S. MACHADO

for any x, y ∈ M̃ and any t > 0. Combining [Dav93, Theorem 3] and [Cro80, Proposition 14] we
also get the bound

(62) kt(x, y) ≤ C0
1

t

(
1 +

d
M̃
(x, y)2

t

)
exp

(
−
d
M̃
(x, y)2

4t

)
where C0 > 0 depends on b and ρ.

For (15), we set for n ∈ N

An =
{
y ∈ M̃ | Ct+ n ≤ d

M̃
(x, y) < Ct+ n+ 1

}
⊂ M̃.

Then Vol
M̃
(An) ≤ Vol

M̃
(B(x,Ct + n + 1)) ≤ C0 exp((Ct + n)

√
|b|) according to (9). We write

M̃ \B
M̃
(x,Ct) =

⋃∞
n=0An, and then using (62) and the fact that C, t ≥ 1, we obtain

∥kt(x, ·)∥L1(M̃\B
M̃

(x,Ct))
≤ C3

∞∑
n=0

(Ct+ n)2

t
exp

(
−(Ct+ n)2

4t

)
Vol

M̃
(An)

≤ C3

∫ ∞

Ct−1

η2

t
exp

(
−η

2

4t

)
exp(η

√
|b|)dη

≤ C3 exp(|b|t)
∫ ∞

Ct−1

η2

t
exp

(
−
(η − 2t

√
|b|)2

4t

)
dη(63)

where C3 = C0
ρ2
(1 + |b|2) for some universal constant C0 > 0. We make the change of variables

η′ = η − 2t
√

|b| and we use that Ct − 1 − 2t
√
|b| ≥ 3Ct/4 and η + 2t

√
|b| ≤ 2η for η ≥ 3Ct/4 to

obtain that (63) is bounded above by

C3 exp(|b|t)
∫ ∞

3Ct/4

η2

t
exp

(
−η

2

4t

)
dη.

Computing this last integral gives the result.
For (16), we set η = d

M̃
(x, y) and α = d

M̃
(x, z)− d

M̃
(x, y). We have, using again (61) and (62),

(64)
kt(x, z)

kt(x, y)
≥ C4

tg|b|(t, η + α)(
1 + η2

t

)
exp

(
−η2

4t

) = C4

t
(
1 + |b|

1
2 (η + α)

)
(
1 + η2

t

)(
1 + |b|

1
2 (η + α) + |b|t

) 1
2

h(α, η)

where

h(α, η) = exp

(
−|b|t

4
− |b|

1
2 (η + α)

2
− (η + α)2

4t
+
η2

4t

)

≥ C5 exp

(
−|b|t

4
− |b|

1
2 (C + 4)t

2
− 2C(t+ 1)− 4t

)

≥ C5 exp

(
−|b|t

4
− (1 + |b|)(C + 4)t

4
− 4(C + 1)t

)
(65)

where we used in the second line η ≤ Ct and |α| ≤ 4t+ 4, and in the last line that (1 + |b|) ≥ 2|b|
1
2

and t ≥ 1. Combining (64) and (65), and using η ≤ Ct and |α| ≤ 4t+ 4 again, we get (16). □

Proof of Lemma 2.5. We write M = Γ\M̃ . We prove that there exists C0 > 0 universal such that

for any η ≥ 0 and any x̄ ∈ M̃ , the number of elements γ ∈ Γ such that d
M̃
(x̄, γx̄) < η+1 is at most

C0ρ
−2eη

√
|b|. By definition of the injectivity radius ρ, the open balls Bγ of center γx̄ and radius

ρ/2, for γ ∈ Γ, are disjoint. If γ ∈ Γ is such that d
M̃
(x̄, γx̄) < η+ 1, then Bγ is included in the ball
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of center x̄ and radius η+1+ρ/2. According to (9), the volume of a ball of radius η+1+ρ/2 in M

is at most 4π
|b| sinh

2(12(η + 1 + ρ/2)
√

|b|), and according to [Cro80, Proposition 14], the volume of a

ball of radius ρ/2 is at least C1ρ
2 > 0. Therefore, the number of γ ∈ Γ such that d

M̃
(x̄, γx̄) < η+1

is smaller than
C0

ρ2|b|
sinh2

(
1

2

(
η + 1 +

ρ

2

)√
|b|
)

which in turn is bounded above by C0|b|−1ρ−2eη
√

|b|.

As a consequence, for any x̄, ȳ ∈ M̃ and η ≥ 0,

(66) #{γ ∈ Γ | η ≤ d(x̄, γȳ) < η + 1} ≤ C0

|b|ρ2
e2η

√
|b|.

Below, x̄, ȳ are lifts of given x, y ∈ M to a fundamental domain of M in M̃ . For any y ∈ M we
have, using (62) in the first line and (66) in the second line,∑

γ∈Γ
kt(x̄, γȳ) ≤ C1

∞∑
η=0

(#{γ ∈ Γ | η ≤ d(x̄, γȳ) < η + 1}) 1
t

(
1 +

η2

t

)
exp

(
−η

2

4t

)

≤ C1

∞∑
η=0

1

t

(
1 +

η2

t

)
exp

(
2η
√
|b| − η2

4t

)
where C1 > 0 depends on b and ρ. For any t > 0 this sum converges. Using then a series-integral
comparison for the last inequality (cutting the sum at η = 4t

√
|b|) and (10) we get the result. □
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