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ML Models for Detecting QoE Degradation in
Low-Latency Applications: A Cloud-Gaming Case
Study

Joél Roman Ky @, Bertrand Mathieu

and Raouf Boutaba,

Abstract—Detecting abnormal network events is an important
activity of Internet Service Providers particularly when running
critical applications (e.g., ultra low-latency applications in mobile
wireless networks). Abnormal events can stress the infrastructure
and lead to severe degradation of user experience. Machine
Learning (ML) models have demonstrated their relevance in
many tasks including Anomaly Detection (AD). While promising
remarkable performance compared to manual or threshold-based
detection, applying ML-based AD methods is challenging for
operators due to the proliferation of ML models and the lack of
well-established methodology and metrics to evaluate them and
select the most appropriate one.

This paper presents a comprehensive evaluation of eight
unsupervised ML models selected from different classes of ML
algorithms and applied to AD in the context of cloud gaming ap-
plications. We collect cloud gaming Key Performance Indicators
(KPIs) time-series datasets in real-world network conditions, and
we evaluate and compare the selected ML models using the same
methodology, and assess their robustness to data contamination,
their efficiency and computational complexity. In addition to the
traditional F1-score performance metric used in anomaly detec-
tion, we use Matthews Coefficient Correlation (MCC) to better
differentiate between models’ efficiencies. Our proposed method-
ology relies on window-based anomaly detection techniques as
they are more useful for network operators compared to single
point detection approaches. However, we found most existing
window-based approaches to lack in accuracy and may under or
over-estimate a model’s performance. Therefore, in this paper,
we propose a novel Window Anomaly Decision (WAD) approach
that overcomes these drawbacks. We leverage our experimental
results to provide insights about the most relevant models for
detecting QoE degradation and offer recommendations on their
suitability for different application requirements.

Index Terms—low-latency, anomaly detection, unsupervised
learning, QoE, 4G networks, metrics

I. INTRODUCTION

ECENT years have witnessed the deployment of high

performance networks, e.g., FTTH and 5G mobile net-
works, to support the stringent and requirements in terms of
latency, bandwidth, reliability, and jitter of emerging appli-
cations. For instance, remote surgery requires reliability and
low-latency for video streaming and control feedback; AR/VR
applications and the Metaverse require high-bandwidth and
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low-latency to allow human interaction with the environment.
Cloud Gaming (CG) applications also face challenges in
terms of delay and bandwidth consumption which are hardly
met by current cellular network architectures, exposing CG
users to network impairments that deteriorate their Quality
of Experience (QoE). Internet Service Providers (ISPs) need
efficient monitoring techniques to detect QoE deterioration that
their customers may experience.

A primary approach widely adopted in networking to detect
users’ QoE degradation is to rely on anomaly detection (AD)
methods which are either applied manually or rely on rule-
based techniques [1]. However, the increasing complexity of
network infrastructures tend to make these techniques imprac-
tical and inefficient. The recent advances in Machine Learning
(ML) have been leveraged in various domains, including net-
working where large amounts of data are available and could
be used to build classification and prediction models. The
popularity of ML is mainly due to the success of supervised
learning which requires a plethora of labeled data during the
training phase. However, data labeling has to be done by
domain experts and has proven to be a long and tedious
process. To circumvent the need for labeled data, unsupervised
learning techniques are increasingly adopted, in particular for
anomaly detection.

Many anomaly detection models based on ML techniques
have been proposed in the literature, including distance-based
algorithms [2], [3]], predictive algorithms, reconstruction-based
algorithms [4], [Sl], one-class algorithms [6], [7], generative
algorithms [8]], etc. The performance of these models is
usually evaluated using the Fl-score as the key performance
metric. The majority of these studies also used a point-
wise approach to compute the Fl-score, i.e., they consider
only anomalous observations. The issue with the point-wise
approach is that it disregards the fact that degradations can
occur in the form of consecutive anomalous observations.
To address this limitation, new approaches [9], [10], [11]
are proposed to better evaluate the performance of the AD
models. These approaches consider degradations as windows
of anomalies, aggregate the predictions following different
criteria and compute the F1l-score accordingly. Another issue
presented by many of existing ML models is the difficulty in
comparing them for a given application since each model is
evaluated using a different methodology, benchmark datasets
and evaluation metrics. Each method reports higher F1-score
than its competitors making it tricky for domain experts to
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choose the most appropriate approach that fits their needs.

In this paper, we present a comprehensive comparison and
analysis on the performance of unsupervised ML models
through experiments while relying on a consistent evaluation
methodology. In particular, we focus on the detection of
QoE degradation in low-latency applications using a real-
world multivariate time-series dataset of Key Performance
Indicators in CG sessions collected under different 4G network
conditions. The game sessions are recorded using the public
Google Stadia CG platform. We objectively evaluate the ability
of each model to detect anomalies that can lead to QoE
degradation for CG users. The experiments conducted under
4G conditions and the conclusions drawn from them remain
applicable to 5G networks, as the Quality of Experience (QoE)
degradation we aim to detect are related to features collected at
the CG application-level. In addition, we provide insights and
offer recommendations to network operators on the most ap-
propriate AD model that meets their application requirements
for anomaly detection, including real-time or offline inference,
detection accuracy, robustness to data contamination rate due
to different environments, etc.

The main contributions of this paper can be summarized as
follows:

o We demonstrate, based on synthetic models, the limita-
tions of existing window approaches for evaluating the
performance of AD models and then propose our Window
Anomaly Decision (WAD) approach.

e We perform an exhaustive evaluation of ML models
to assess (i) their robustness by injecting anomalies in
their training sets (i.e., data contamination), and (ii)
their capability to detect short and longer users’ QoE
degradation by varying the windows size.

« Based on our experiments, we offer recommendations to
network operators and network management experts on
the best models for different application requirements.

The remainder of this paper is organized as follows. Sec-
tion || presents the related work. Section describes our
methodology for anomaly detection and exposes the proposed
WAD approach. Section compares the performance of the
ML models and Section [V] discusses which model is best
depending on the use case scenario.

II. BACKGROUND AND RELATED WORK

In this section, we first discuss CG applications and the im-
pact of latency on their performance. Then, we review existing
unsupervised learning models and window-based approaches
used for anomaly detection using time series data.

A. Cloud Gaming applications

Cloud games are processed and executed on cloud servers
and the rendered scenes are streamed over the Internet to
client devices removing the need for having powerful gaming
computers or consoles [12]. Several works [13], [14], [15] fo-
cused on studying the behavior of CG platforms and analysed
their respective network protocols. For instance, Google Stadia
uses WebRTC for its service and relies on RTP to stream its
audio and video contents. Marchal et al. [13]] showed that link

capacity and latency are driving Stadia platform to adapt its
bitrate and resolution.

On the other hand, several works [16], [17], [18], [19]
addressed the impact of network latency on the performance
of gamers in cloud and non-cloud games. They showed that
the performance of gamers drops with the increase of latency.
Raaen et al. [17]] and Vlahovic et al. [[19] also include in their
subjective studies that most of the gamers could not tolerate a
delay above 100ms and the most demanding gamers are able
to perceive delays below 40ms. These network perturbations
can lead to QoE degradation, which this work aims to detect
using unsupervised ML algorithms.

B. Unsupervised Learning models for anomaly detection

Anomaly detection is a popular and a well-covered research
topic with numerous surveys [20]], [21], [22], [23] proposing
different taxonomies and categories of techniques, including
existing machine learning models for anomaly detection. Some
studies [24], [25], [26[, [27] have specifically focused on
the use of deep-learning for anomaly detection due to its
efficiency in handling multivariate and high-dimensional data.
Schmidl et al. [21] categorized anomaly detection models
for time-series data depending on the way they determine
anomalies. Reconstruction-based algorithms detect anomalies
by learning a model from normal training data. They encode
the training features into a low-dimensional (i.e., latent) space
and reconstruct the input features from the latent features. An
anomaly score is computed by comparing the reconstructed
data to the input data in order to detect anomalies. Since the
model is built on normal data only, anomalous time-series
cannot be well-reconstructed and will have a high anomaly
score (i.e., above a pre-determined threshold). This class of
algorithms, include Principal Component Analysis (PCA) and
neural network algorithms such as AutoEncoder, LSTM-VAE
[28], DAGMM [4], OmniAnomaly [29]], Donut [9], and USAD
[S].

One-class classification models detect anomalies by learning
a hypersphere that encloses the representation of normal data.
Any points that remain outside the learned hypersphere are
classified as anomalies. The most popular algorithm from this
category is the OC-SVM [6] and its neural network variant
Deep-SVDD [7]].

Furthermore, it is worth mentioning that there are other
families of unsupervised learning models for time-series data,
including Isolation methods that build an ensemble of isolation
trees to isolate anomalies. Isolation methods such as Isolation
Forest [2] assume that anomalies are easy to isolate since they
are fewer in the data and are starkly different from normal
instances. Distance-based methods (e.g., KNN [3]], LOF[30])
detect anomalous instances based on their larger distances
from normal instances. Predictive methods (e.g.,ARIMA) pre-
dict time-series sequences and compare them to original time-
series to differentiate the anomalies. Generative methods (e.g.,
GAN [8]]) train a model to generate new (i.e., normal or
anomalous) data based on real data distribution and a discrim-
inator that learns how to discriminate real data from generated
data.
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The aforementioned anomaly detection models were eval-
uated in different studies [31], [32], [23] either with broad
or domain-specific benchmark datasets. Our work provides
a comprehensive and consistent experimental evaluation of
anomaly detection models for QoE degradation detection,
while taking into account the impact of data contamination
and window size.

C. Window-based approaches for anomaly detection

Chandola et al. [20] categorize anomalies into three classes:
point anomalies which are individual observations that deviate
from normal ranges; collective anomalies that represent a
group of anomalous observations and contextual anomalies
that represent a group of observations that can be considered
as anomalous in a specific context. Point anomalies are the
most widely addressed anomalies in the literature.

In most time-series, anomalies occur as contiguous anoma-
lous observations (i.e., collective/contextual anomalies) rather
than individual point anomalies. Assessing the performance
of AD models for time-series data using point-wise (PW)
approaches is ineffective as it disregards the contiguous nature
of anomalies. To overcome this limitation, Point-adjust (PA)
approach is proposed by Xu et al. [9] and is often employed
[29], [S] to deal with windows of anomalies. PA approach
considers that all the anomalies of a window are correctly
detected by a AD model if any of the anomalous observations
in the window is correctly detected. However, it was shown
in [33], [34], [35] that PA approach presents limitations as
well and may overestimate the performance of an AD model.
The authors showed that a well-trained and efficient algorithm
provides the same Fl-score as a random model with PA
approach. Hence, with the PA, it is difficult to conclude that
a model outperforms others.

To address the limitations of PA approach, revised point-
adjust approach (RPA) [L1]] and PA%K [33] were proposed.
Unlike PA, RPA is less tolerant to high false-positive rates
by severely penalizing them. Other approaches such as Nu-
menta Anomaly Benchmark (NAB) [10] and range-based
Precision/Recall [36] have also been proposed, but they are
are too complex to be widely adopted. In this paper, we pro-
pose the WAD approach, which addresses the aforementioned
limitations and aims at fairly assessing the performance of
anomaly detection models.

III. METHODOLOGY

In this section, we describe our general methodology for
evaluating ML models to detect anomalies in cloud gaming
sessions. We first formulate the anomaly detection task for
anomalous windows in CG sessions and introduce the col-
lected datasets. Our new approach, called Window Anomaly
Decision (WAD), proposed to address the limitations of exist-
ing window approaches, is then presented. This is followed by
an introduction on the unsupervised ML models used in our
comparative evaluation.

A. Problem statement

Our goal in this paper is to detect the end-users’ QoE degrada-
tion in CG sessions. For this, we decided to base our detection
analysis using windows of observations, instead of individual
points of observation. Indeed, QoE degradation lasting Sms
is not perceptible by human beings for whom the perception
of latency is around 150ms [37]. Therefore, we evaluate the
ML models with 3 window sizes p € {10, 20,30} to perform
a detection within 50,100,150 ms respectively, and have a
representative time of perception (i.e., very reactive people to
less reactive ones, via mean value).

As such, we can formalize our problem as follows: we
denote the time-series of our datasets as = {1, z2, ..., 7},
where T is the length of z and 2y € R™ denotes a
m-dimensional vector corresponding to the values of our
m features at time ¢. For the representation of observa-
tions in windows, we split x into sequences of windows
W = {wi,ws,...,wr_py1} with stride 1 where w; =
{&¢, 2441, ... Teyp—1}, p being the window size.

Given an unsupervised anomaly detection model M, a set
of parameters WV is learnt to output an anomaly score s(Z})
for each unseen observation ;. From this anomaly score and
a carefully chosen threshold §, a binary variable g, € {0,1}
is assigned for each observation as follows:

]
Yt = 0,

The goal of the window-based detection of anomalies is to
correctly map the binary value of each observation within a
window to a binary value for the whole window. Since we
focus on perceptible end-users’s QoE degradation, a large part
of the window observations should be anomalous so that the
windows is classified as anomalous. In the remainder of the
paper, we consider a window as anomalous if at least 80% of
observations in the window are anomalous.

if S(ft) >0

otherwise.

(D

B. Data collection

We rely on the datasets used in our previous work [38ﬂ which
contain time-series features of QoE and QoS collected while
playing racing games on public cloud gaming platforms:

o Dirt 4 for Google Stadia (STD);
o TrackMania for Nvidia GeForce Now (GFN);
o F1 2021 for Microsoft Xbox Cloud (XC).

A set of 14 features (cf. Table [I[) were collected through
the Chromium WebRTC API adapted by the DECAF tool
[14]. The measurements were performed under 6 different 4G
network conditions, with 5 differing in the average downlink
throughput and 1 in a mobility scenario on a highway. More
details about the testbed, the network conditions and the
datasets are available in [38]].

The collected datasets are unlabelled (i.e., with no ground-
truths). Consequently, evaluation of the models performance
with well-known ML evaluation metrics, such as Precision,

!Datasets are available as OpenData : https://cloud- gaming-traces.lhs.loria.
fr/ANR-19-CE25-0012_std_gfn_xc_cg_webrtc_metrics.7z
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TABLE I
DESCRIPTION OF COLLECTED FEATURES

TABLE II
DATASETS SUMMARY

Features Description

Network RTT Network RTT computed during game session.

Decoding delay Delay to decode each video frame.

Delay between the time, the first packet of a
video frame enters the jitter buffer and the time
the whole frame exits the jitter buffer.

Jitter buffer delay

Video rendering jitter Time between two consecutive video frames.

Uplink Bitrate Number of bits-per-second (bps) sent by the client.

Downlink Bitrate Number of bits-per-second (bps) received by the client.

Frame rate Frames received per-second (FPS).

Height resolution Number of pixels in the frame height.

Width resolution Number of pixels in the frame width.

A freeze is count if an inter-frame delay is greater than
a value defined as maxz(3 * avgInter FrameDelay,
avgInter FrameDelay + 150ms).

Freeze

Number of video frames dropped before

Frames dropped decoding step.

Frames decoded Number of video frames decoded.

Packets received Number of packets received.

Max downlink capacity allowed by

Downlink throughput the 4G network conditions.

Recall or Fl-score is not possible. We hence create ground-
truth (y¢)¢c|1,7 (i-e., labels) for evaluation purposes (and
intrinsically to split the data), but the labels are not used by ML
algorithms during training. According to the CG platform’s
recommendations for high quality streamingE]E] we define the
ground-truths based on the following criteria (y = 1080 for
STD and XC and v = 768 for GFN):

resolution(z,) <
frameRate(x;) < 60 or

freeze(xy) = 1

7 or
1, if

Yyt = 2

0, otherwise.

We would like to stress here that the primary objective
of this paper is to compare the performance of unsupervised
ML models in detecting anomalies on a CG case study. The
objective is not to detect degradation using simple rules, but
rather to utilize such rules to establish ground-truths required
for computing the ML metrics. Although being simple, there
rules present a significant challenge for our tasks, particularly
when they are unknown a-priori as shown later in the paper
our results in Section

Using these ground-truth labels as a reference, we define
a ground-truth window as anomalous if at least 80% of the
labels of the window are anomalous.

Zhttps://support.google.com/stadia/answer/9607891 ?hl=fi/
3https://www.nvidia.com/en-us/geforce/products/geforce-now/system-reqs/

Datasets Train normal Contamination Test Test anomalies
windows set windows windows ratio (%)

STD 80486 59480 169706 52.57

GFN 27415 22667 61417 55.36

XC 83611 17918 110487 24.32

C. Data processing and splitting

The features of the datasets are resampled to have a fixed time-
step of Sms and they are normalized before training. We build
the training and testing sets following the splitting strategy
proposed by Zong et al. [4] which ensures consistency over
different experiments and allow to perform a fair evaluation.
The entire dataset is split as follows: 50% of the normal
samples are associated to the training set while the remaining
50% are considered as a test set. The test set also contains
60% of the anomalous samples. The remaining 40% of the
anomalous samples compose a set called the contamination
set. The anomalous samples in the latter set, are actual
instances of anomalies that occurred during gameplay, and
were subsequently collected in our datasets. They serve to
contaminate the training set with anomalous samples (with a
ratio ¢ € {0%, 4%, 8%, 12%,20%}) and study the robustness
of ML algorithms to data contamination. The rationale be-
hind this splitting strategy is to maintain consistency across
various experiments and ensure fairness in evaluating model
performance under conditions of data contamination. Table
shows the summary of our datasets after the splitting step.

D. Existing window evaluation approaches

As mentioned in Section PW approaches are unsuitable
for AD in CG sessions and window approaches are preferred.
PA, PA%K and RPA approaches were proposed in [9] [33]
and [[L1] respectively.

PA approach assumes that if any observation in a ground-
truth anomaly segment is correctly detected, all the obser-
vations in this segment are considered as anomalous and
correctly detected (i.e., p true positives are recorded). If none
of the observations in the ground-truth anomaly segment is
correctly detected, p false negatives are recorded. Observations
that are not in a ground-truth anomaly segment are treated as
point-wise.

RPA approach behaves in the same way as PA but for
ground-truth anomaly segment: instead of recording p true
positives, it records only 1 true positive for the whole window
if any observation in a ground-truth anomaly segment is
correctly detected. It records 1 false negative if none of the
observations in the ground-truth anomaly segment is correctly
detected. The observations that are not in a ground-truth
anomaly segment are treated as point-wise.

PA%K approach aims to minimize overestimation errors in
the PA approach by using a hyper-parameter K to adjust the
anomaly prediction threshold. Specifically, PA%K considers
an anomaly segment to be correctly detected if at least K%
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(a) Prediction on anomaly windows

Fig. 1.
anomalous or not is § = 0.5. Window size p = 5, a = 0.8.

of its observations are accurately detected (i.e. p true positives
are recorded if so and p false negatives otherwise.). The
observations outside of a ground-truth anomaly segment are
treated as point-wise.

Analysing this behavior (and later demonstrated by our
experiments in Section , we can first observe that the PA
approach is more tolerant to high false positive rates in a large
anomaly windows and hence leads to high scores, thereby
overestimating the performance of a model. In contrast, the
RPA approach gives lower scores due to its differential and
unfair evaluation between anomaly windows and normal win-
dows. Classifying a window as anomalous, based on only one
observation correctly detected (as done by PA/RPA approach)
can result in many false alarms, which can have extra un-
necessary costs and makes the detection model unpractical.
Moreover, the three aforementioned approaches necessitate
having access to accurate ground-truth segments in order to
evaluate the model.

Given the limitations and shortcomings of these approaches
when comparing various ML models, we therefore propose
a Window Anomaly Decision (WAD) approach to accurately
evaluate ML models for window-based anomaly detection.

E. Window Anomaly Decision (WAD) approach

WAD approach is designed to fairly evaluate anomalous
and normal windows. Furthermore, compared to the previous
approaches, which require a ground-truth to compute their
scores, the WAD approach only uses the model output to
classify a window as anomalous or normal. Hence, WAD is
not only an evaluation approach, but also a decision approach.

The WAD computes the score for the whole window based
on the model output for each observation. If more than a rate
a of observations are classified as anomalous, the window
itself will be classified as anomalous. Otherwise, the WAD
approach will classify the window as normal. Specifically,
WAD works as follows: given an anomalous window, a true
positive is recorded if the model correctly detects a rate of «
anomalous observations, otherwise a false negative is recorded.
For a normal window, a true negative is recorded if less than
a rate of o anomalous observations is detected, otherwise a
false positive is recorded.

(b) Prediction on normal windows

Ilustration of PW, PA, RPA and WAD approaches. O is normal and is 1 anomalous. The anomaly score threshold to decide if an observation is

The approach is formulated as follows, where w; denotes
an unseen window of observations, 14— is the characteristic
function that equals 1 if y; = 1 and 0 otherwise, and p is the
size of the window.

]'7 if (Zié{l..p} lyl:l) Z Znt(ap)

WAD(w;) =
(t0:) 0, otherwise,

(3)
with

1, ifyg;, =1

0, otherwise,

Gi=1 = “)
In this manner, WAD gives a higher score to a model that can
detect at least a rate a of all the anomalous observations in
the window and lower scores to a model that cannot.

We can use the parameter « to adjust the desired accuracy of
the model by making WAD more or less tolerant to fault (i.e.,
error of the ML model or error with the measured metric). If
the goal is to evaluate only perfect models, we can configure
o = 1. A smaller value can be chosen if a larger tolerance
is desired. We leave to the domain experts the possibility to
adjust the WAD « value according to their domain-specific
considerations. In our evaluation study, we consider that a rate
a = 0.8 is reasonable since under this rate, a window does
not contain enough anomalous observations to be considered
as anomalous with respect to CG end-users’ QoE degradation
detection.

In order to prevent the possibility of missing anomalies
spread across two consecutive windows, our approach should
be used with overlapping consecutive windows as done in this
study wherein a stride of 1 was employed.

Following the previous explanations, Fig |I| presents an
example of how the PA, PA%K, RPA and WAD approaches
work given anomalous and normal windows. There are four
scenarios (two on anomalous windows and two on normal
windows), each with the anomaly score predicted by an unsu-
pervised model for some input windows of p = 5 observations,
whose ground-truths are depicted. Given the anomaly score
and a threshold § = 0.5, each approach assigns a binary
variable either at the observation level (for PW, PA and RPA)
or at the window level (WAD and RPA). WAD approach
is used with @ = 0.8 and PA%K with K = 80 for fair
comparison.
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FE. Performance evaluation metrics

The performance of the unsupervised ML algorithms is as-
sessed using Precision (P), Recall (R) and F1-score (F1) which
are defined as follows:

TP

P=Tpirp ®)
P

B=TprFN ©
P.R

F1=2. 7
P+R 2

where TP, FP, FN denote the number of True Positives, False
Positives and False Negatives, respectively. Precision denotes
the fraction of relevant anomalies among all the instances
identified as anomalous by the model, while Recall denotes the
fraction of relevant anomalies among all the actual anomalies
in the dataset. F1-score is the harmonic mean of Precision and
Recall. The aforementioned performance metrics have a score
of 1 (or 100%) if the model is perfect, and 0 (0%) otherwise.

However, we note that Fl-score presents some limitations:
F1-score does not consider the number of True Negatives (TN)
and is not invariant to class swapping (i.e., if the positive class
becomes the negative class and vice versa). These limitations
are highlighted and discussed in [39] and the Matthews
Coefficient Correlation (MCC) score is recommended for a
better evaluation of AD models.

MCC score [40] is a binary classification metric that is
similar to the Pearson coefficient correlation. It gives a score of
+1 (100%) for a model that correctly predicts the anomalous
and normal instances (i.e., positive and negative class, respec-
tively), 0 (0%) for a model that is not better than a random
guessing classifier, and —1 (-100%) for the worst model. MCC
is defined as follows:

TPTN - FPFN
MCC =

/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

In AD tasks, taking the negative class (here the number
of normal observations detected) into consideration can be
seen as meaningless since the goal is to detect anomalies
(the positive class). However, we experimentally show that
ignoring the negative class while using the Fl-score can lead
to unreliable conclusions about the model performance.

In our experiments, we both considered F1-score and MCC
to compare the ML models. We do not include the AUC score
which can lead to misleading results when the datasets are
imbalanced [41], [38]].

G. Unsupervised anomaly detection models

We present below the descriptions of eight unsupervised
AD models that are used in our comparative evaluation. We
only focus on reconstruction-based, one-class classification
and isolation-based algorithms because they are the most
widely studied in the literature, while generative and predictive

algorithms suffer from limitations such as higher computa-
tional complexity and expensive training due to instability and
reproduction issues [22].

The eight unsupervised models evaluated in this paper
have been selected since they are used in many evaluations
studies or to benchmark new approaches for various anomaly
detection tasks [42]], [43], [44].

o PCA: Principal Component Analysis is often used as a
baseline for AD tasks. It performs a lossy reconstruction
using the principal components computed with the Singu-
lar Value Decomposition (SVD). We choose a number of
principal components that preserve 90% of the variance
in the data in our Scikit-Learn implementation.

« iForest: Isolation Forest uses isolation trees to recursively
isolate anomalies. Its performance relies on the number of
trees t, the sub-sampling size ¢, and the assumed amount
of contamination in the dataset. We use the default values
of these hyper-parameters in the Scikit-Learn library.

e OC-SVM: One-Class SVM [6] is a popular and efficient
shallow ML model. OC-SVM uses a hyper-parameter,
v, which is an upper bound on the fraction of outliers
in the dataset. We use Scikit-Learn implementation of
OC-SVM with rbf function and v = 0.1, which is the
default parameter used in [6]. Due to the computational
complexity of OC-SVM, we process the training inputs
with PCA by retaining 70% explained variance.

o Deep-SVDD: Deep Support Vector Data Description [7]]
can be seen as a deep learning implementation of OC-
SVM. Deep-SVDD benefits from the efficiency of deep
learning on large, high-dimensional data. We use the
soft-boundary objective function which assumes that the
training data may contain a ratio v of anomalies. We use
the PyTorch implementation of Deep-SVDD on Githubﬂ

o AE: AutoEncoder (AE) is a neural network architecture
composed of an encoder, that encodes input data into a
low-dimensional space and a decoder that reconstructs
input data from the low-dimensional features. We choose
an AE with feed-forward network and 7anh activation
function for our custom implementation in PyTorch.

e LSTM-VAE: It combines a neural network designed for
time-series, the LSTM, to an autoencoder with bayesian
inference for reconstruction of input data [28]]. The recon-
struction error is used as anomaly score and we provide a
custom implementation of LSTM-VAE in PyTorch based
on TensorFlow implementation on Github

e DAGMM: Deep Autoencoder Gaussian Mixture Model
combines an autoencoder and a gaussian mixture model,
where the representation given by the autoencoder is
feed to the gaussian model to produce an energy used
as anomaly score. We process the training inputs with
PCA by retaining 90% explained variance to decorrelate
the features for DAGMM and avoid runtime issues. Our
implementation is based on the PyTorch implementation
on Githubf]

4https://github.com/lukasruff/Deep-SVDD-PyTorch
Shttps://github.com/paya54/Anomaly_Detect_LSTM_VAE
Ohttps://github.com/danieltan07/dagmm
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TABLE III
COMPARISON OF WAD, PA, PA%K AND RPA APPROACHES WITH MCC AND F1 SCORE.

1-s
Score perfect) PA RPA WADa:o,g PA%KK:80 WADa:o,g PA%KK:90 WADa:l PA%KK:lOO
detector
0.05 95.31 (£0.02) 87.01 (£0.06) 97.93 (£0.02) 93.38 (£0.03) 90.62 (£0.07) 85.61 (£0.05) 64.30 (£0.08) 58.97 (£0.05)
® 0.1 90.70 (0.03) 76.34 (£0.07) 9136 (£0.03) 81.94 (£0.02) 74.56 (£0.08) 63.81 (£0.07) 44.79 (£0.11) 33.37 (0.09)
5 0.15 86.13 (£0.01) 67.20 (£0.04) 80.80 (£0.07) 65.74 (£0.07) 59.19 (£0.08) 42.11 (£0.08) 32.07 (£0.09) 13.37 (£0.09)
8 0.2 81.60 (£0.01) 59.17 (£0.08) 68.60 (£0.11) 47.36 (£0.10) 46.18 (£0.05) 22.09 (£0.03) 23.03 (£0.05) -03.02 (£0.06)
S 0.25 77.11 (£0.02) 51.97 (£0.09) 56.48 (£0.20) 28.66 (£0.16) 35.51 (£0.06) 3.96 (£0.06) 16.40 (£0.09) -16.08 (£0.10)
= 0.3 72.62 (£0.02) 43.35 (£0.09) 45.23 (£0.15) 10.50 (£0.11) 26.78 (£0.09) -12.09 (£0.09) 11.39 (£0.08) -26.28 (£0.11)
0.5 54.11 (£0.03) 21.96 (£0.07) 0.13 (£0.13) -46.37 (£0.07) 00.15 (£0.06) -51.71 (£0.06) 00.04 (£0.19) -52.06 (£0.09)
0.05 98.06 (£0.01) 89.29 (£0.06) 99.04 (£0.01) 97.31 (£0.01) 95.20 (£0.04) 93.72 (£0.03) 74.89 (£0.08) 75.93 (£0.06)
° 0.1 96.19 (£0.01) 80.31 (£0.07) 95.72 (£0.02) 92.44 (£0.01) 84.42 (£0.06) 82.14 (£0.05) 51.60 (£0.16) 54.66 (£0.13)
5 0.15 94.36 (£0.01) 72.63 (£0.06) 89.34 (£0.05) 84.81 (£0.04) 70.10 (£0.08) 67.79 (£0.06) 32.85 (£0.13) 38.24 (£0.12)
7 0.2 92.60 (£0.01) 66.02 (£0.09) 79.95 (£0.09) 74.63 (£0.06) 54.23 (£0.06) 52.78 (£0.03) 19.40 (£0.06) 26.74 (£0.06)
EI 0.25 90.89 (£0.02) 60.28 (£0.10) 68.05 (£0.19) 62.60 (£0.13) 38.91 (£0.08) 39.04 (£0.07) 10.69 (£0.10) 19.25 (£0.08)
0.3 89.23 (£0.02) 55.23 (£0.10) 54.56 (£0.17) 49.79 (£0.11) 25.75 (£0.12) 27.74 (£0.08)  5.49 (£0.06) 14.53 (£0.09)
0.5 82.99 (£0.02) 39.88 (£0.08) 10.00 (0.07) 12.15 (£0.07) 02.11 (0.04) 07.48 (0.05) 00.19 (£0.02) 07.18 (£0.07)

o USAD: UnSupervised Anomaly Detection [5] adversely
trains two autoencoders sharing the same encoder under
two objectives: (i) reconstruct input data, and (ii) discrim-
inate real data from reconstructed data. Our implementa-
tion of USAD is based on the PyTorch implementation
on Github[]

The aforementioned reconstruction-based algorithms require
a threshold that needs to be carefully chosen. We found in
our previous work [38] that using the 3¢ rule-of-thumb as a
thresholding rule may lead to poor scores, due to a threshold
too low to detect all the anomalies in the test set (i.e., low
recall scores). In this paper, we use a different strategy: we
randomly select 20% of the test set and select the threshold &
that gives the best Fl-score on this sample of the test set. This
threshold is then kept and used for evaluation on the remaining
80% of the test set. This thresholding strategy often used in
AD [4], [5] reports the best performance that the model can
achieve.

We do not perform any hyper-parameters tuning in this
study. Instead, we adopt the parameter settings documented in
the respective papers of each model, as these configurations
have been validated across multiple datasets and determined
to be the optimal choices. We then train the neural network
models using Adam optimizer with a learning rate of 1073
and a batch size of 128 during 100 epochs. Early stopping
is applied to avoid overfitting and longer training time, i.e.,
training is stopped when the validation loss do not decrease
during 10 consecutive epochs. For each experiment, the mod-
els are evaluated five times to draw reliable conclusions except
for OC-SVM which is run once due to its computational
complexity. The details on our implementations are available
on Githubf]

IV. EXPERIMENTAL EVALUATION
In this section we first validate the proposed WAD approach
by showing that it produces more accurate results compared

Thttps://github.com/manigalati/usad
8https://github.com/mosaico-anr/unsupervised-ml-ad-qoe-deg

to the existing approaches. Furthermore, we experimentally
demonstrate with synthetic datasets that Fl-score presents
some limitations. We then perform comparative evaluations
of the eight aforementioned models while studying the impact
of data contamination ¢ and window size p.

A. Comparison of WAD with existing approaches

In this section, we show that the WAD approach can
yield more accurate performance results compared to existing
approaches. We then define a synthetic model that produce
a rate 3 of detection errors on the test set. Specifically, this
model has an incorrect prediction for 5 * 100 observations
over a set of 100 observations. We refer to this model as
(1 — B)-perfect detector, which is perfect when 5 = 0 and
is always wrong when § = 1. We select different values for
B €{0.05,0.1,0.15,0.2,0.25,0.3,0.5} and compute F1-score
and MCC score accordingly. Table [[II] depicts the F1 and MCC
score of the (1 — (3)-perfect detector for the WAD approach.

We notice that both MCC and F1-scores decrease for each
window approach as the error rate of the synthetic model
increases. On the one hand, when 3 varies from 0.05 to 0.25,
PA still gives high scores to the model (from a F1-score of 98%
to 90%), while RPA results in low scores (from a Fl-score of
89% to 60%). On the other hand, WAD,—q. s and PA% K i —g9
strike a balance to provide a more accurate reflection of model
quality. For instance, MCC score decreases from 98% to 68%
for WAD and from 93% to 47% for PA% K. Both approaches
increase their penalization as [ increases. However, when (3
reaches 0.5, which corresponds to random predictions, WAD
approach reports an MCC score of 0%, while PA% K continues
to penalize the model and produces negative MCC scores
(worse than a random model). The reason behind this behavior
of PA%K is related to its way of adjusting differently for
anomalous and normal segments prediction compared to WAD
approach, which handles both segment types similarly.

As for the PA%K approach, the score reported with WAD
also depends on a tolerance parameter, here «. Increasing o
from 0.8 to 1, results in low scores, even lower than those
reported with RPA on a near-perfect model. For instance,
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MCC score of the models depending on window-based approaches and data contamination c

100

100

100

100

o Cw _® _ 80
£ % : ;
: " 2 o s g 60
=} g ; :
N I e ———— S | " a0
.
g g ﬁ_,;_:‘_,,;3'_’:::;’:;-7_,;__, § E
. " 20
iForest SV
] 4 [ 2 e 0 4 . ” ?
%,
100 < %) 100
&g : : ;
B €0 2 g 60
=} g ; n
i 40 ; : - H .
g : E E
- » 20
. LSTM-VAE DAGMM =

12 20 0 4 12 20

< (%)

—— WAD

PA

4 12 20 12 20

(%) (%)

-4+~ PA%K - RPA

Fig. 2. MCC score of unsupervised ML models with STD dataset according to the evaluation window-based approaches and the data contamination ratio c.

TABLE IV
COMPARISON BETWEEN F1-SCORE AND MCC COMPUTED ON SYNTHETIC
MODELS.
Model  Window approach  Precision Recall Fl-score @ MCC
PW 58.38 100 73.72 0.0
2 PA 58.38 100 73.72 0.0
2 RPA 19.06 100 32.02 0.0
£ WAD,—0.8 54.34 100 70.41 0.0
N PA%K i —s0 58.38 100 73.72 0.0
WAD,—1 52.57 100 68.92 0.0
PA%K k=100 58.38 100 73.72 0.0
PW 58.37 49.97 53.89 0.0
£ PA 73.97 96.20 82.99 54.10
< RPA 28.61 77.77 39.88 21.95
g WAD,—0.8 54.32 5.47 9.94 -0.01
~ PA% K i —g0 19.70 8.74 12.11 -46.40
WAD,—1 52.19 0.10 0.20 -0.03
PA%K i —s0 12.40 5.05 7.18 -52.06

a model with a low error rate (8 = 0.05) and WAD with
tolerance o« = 1, achieves an Fl-score of 74%, while the
PA and RPA approaches report a Fl-score of 98% and 89%,
respectively. We obtain such scores because with a tolerance
a = 1, only models that can detect all anomalies in the
window get high scores.

Unlike PA, PA%K and RPA, the WAD approach offers a
more accurate evaluation of model performance by equally
adjusting the prediction for anomalous and normal segments
and the score obtained by a model is proportional to its ability
to accurately detect a sequence of anomalous observations
long enough to be severe.

B. Comparison between FI1-score and MCC

We compare in this section the Fl-score and MCC metrics
on synthetic anomaly detection models. We first consider a
zero-rule model that always outputs y; = 1V 2; (i.e., this
model always classifies any input x; as an anomaly). This
model, if deployed, triggers false alarms and may introduce
high anomaly mitigation costs. We report the Fl-score and

the MCC of the zero-rule model on our datasets with each
window approach strategy in Table

The results of Table show that Fl-score reports higher
scores (~ 70%) for each window approach (except for RPA),
while the MCC reports a score of 0% (i.e., worse than a
tossing coin classifier) regardless of the approach. High F1-
scores are mainly due to perfect recall scores, i.e., the model
detects all the anomalies in the datasets. But these F1-scores
are misleading as the model identifies many normal instances
as anomalous and then outputs a high number of false positives
but no true negatives, which are not taken into account the F1-
score. Consequently, when evaluating models having a low rate
of true negatives, the F1-score metric should be carefully used.

Furthermore, we make the same observations in Table
with a random guessing model. Indeed, we notice that F1-score
is higher than MCC score, particularly for each approach.
For instance, Fl-score reported with PA (resp. WAD,—¢.s)
is 83% (resp. 9.9%), while the MCC score is 54% (resp. 0%).
Since PA is known to overestimate the model performance,
we also compute the Fl-score and the MCC with the PW
approach which are 53% and 0% respectively. The high F1-
score obtained with this model regardless of the approach used
asserts the observations made with zero-rule model.

If considering all conditions (TP, TN, FP, FN) of the models
is required, the MCC score should be preferred over the F1-
score. The results of this experiment confirm the conclusions
drawn by Chicco et al. [39]. In general, we recommend to
use the MCC score and Fl1-score metrics together to avoid
unreliable conclusions.

C. Data contamination impact on unsupervised models

This section presents the evaluation results for the eight
unsupervised ML models. We first present the impact of
data contamination on the performance of these models while
using window-based approaches (WAD, PA, PA% K and RPA).
Fig. |2| depicts the variation of their MCC scores using data
contamination ratio ¢ € {0%, 4%, 8%, 12%, 20%} on the STD
dataset. We choose these values for data contamination as there
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TABLE V
OVERALL PERFORMANCE (MEAN AND STANDARD DEVIATIONS OVER 5 RUNS) ACCORDING TO THE TRAINING SET’S DATA CONTAMINATION RATIO ¢ AND
USING THE WAD APPROACHES ON THE 3 DATASETS. BOLD VALUES INDICATE THE BEST SCORE FOR EACH MODEL.

GFN

F1

MCC

F1

MCC

25.65(+2.19)
49~89(i0.89)
501510 85)
48.58(i0.25)
48.00(+0.46)

19.20(41.74)
37‘26(i0.72)
37.49 10 s0)
36.42(40.38)

36.16(+0.36)

54‘36(i3.26)
49~69(i3,40)
48.66<i3'20)
46.01(+2.26)
433911 46)

48'60(i2.82)
44.34 (42 96)
44.34 (12 43)

423713 28
40.98(+1.34)

69.88
70.37
68.68
67.02
63.47

29.41
30.36
28.24
26.19
21.78

66.27
65.15
64.18
63.32
62.03

51.79
48.51
46.60
44.98
42.65

66.07(+7.34)
67'49(i4.78)
65.03(+6.16)
6744 (16 68)

68.3(17.69)

8.69(+20.27)
12.07(113.27)
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11.69(+19.17)
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49.61(+14.19)
46.57 (117.96)
62.87 (113 46)
37.07 17.50)
34.8(4+10.89)

31.72(119.7)
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46.74 (19 20)
13.64(19.18)
7.70(+15.14)
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-2.19(10.52)
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-3.25(4.0.24)

36.38(10.29)
33.32(10.24)
33.85(10.66)
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35.43(+0.39)

10.96 (1.0 25)
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79.44 (1.4 08)
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644810 11)

4717 £10.72)
10'98(ﬂ:4.32)
10.02(42 25)
8.36(+4.97)
0.59(16.83)

76.84(1.6.48)

49.23(+10.70)
40.77 +2.66)

45'74<i8.53)
42.98<i2_75)

68.12(1g 43)
3097 (115.82)
18'98(i2463)
2525(111.12)
21,1543 36)

79.30(40.63)
76.87(i0.45)

74'94(i1.23)
73-00(i1.58)
70.28(10.86)

50'68(i1.65)
43.28(10.81)
38.09(13.25)
34.56(1+4.25)

312411 gg)

64.15112 44)
63.50(12.31)
59.05(14.17)
57.75(10.53)
5329(11.82)

54.95(+£11.11)
51.90(+3.41)
45.65(i4_99)
44-44(i0‘65)

39.16(+2.85)

74.31(11 86)
76'72(i1.81)

75.09(13.04)
73.86(+2.9)

71.66(43.16)

32085 6a)

38.08(43.87)
34.47(17.15)

31'32(i7.31)
24.80(+6.55)

681012 g2)
66.16(11.34)
63.02(12 98)
03.04 (12 48)

60.10(43.14)

55.76(13 82)
53.18(12.13)
49.17 (+3.80)
49.14 (1 3.20)
45.54(4.4.05)

STD
Categories  Models c (%) F1 MccC
-§ 0 48.68(i9'33) 36-45(i6A97)
3 ‘ 4 90.9910.12) 82.70(40.10)
o iForest 8 90.93(+0.15) 82.59(+0.40)
_% 12 90.82(10.19) 82.39(10.36)
§ 20 83~77(i1,48) 72-13(12.11)
Ll
j 0 77.67 47.24
g 4 71.35 46.93
8 0OC-SVM 8 76.79 46.23
< 12 74.20 41.87
g 20 71.77 38.66
&
g 0 9091 (10.59) 88.85(10.83)
z 4 74-05(i10A99) 43-64(i25A11)
5 Deep-SVDD 8 56.48(119.1) 7.63(+41.11)
12 53.08(1+23.06)  -2-13(151.12)
20 68.82(1.7.65) 31.9(+17.65)
0 61.79(10.090)  18.33(11.73)
4 58.26(:‘:0‘21) 7-64(:5:129)
PCA 8 58.80(10.24) 6.87(1:0.49)
12 58.92(10.13) 7.50(10.25)
20 58.66(x0.14)  6-87(x0.58)
0 86.73(12.04)  73.05(1461)
4 74.09(+2.56) 42.38(16.03)
g AE 8 79-01(i1.85) 54’-44’(i3A47)
2 12 78.29(45.32) 53.1(+6.84)
z 20 79.67(40.86) 55.85(10.99)
2 0 94.44(1057) 881311 30)
Z 4 81.9(42.02) 64.23(13.78)
g LSTM-VAE 8 76.51(40.93) 55.26(+1.56)
é 12 74'14(:‘:5'12) 4961(i123)
20 71.91 (42 62) 47.55(14.23)
0 91.23(10.71) 83.11(41.37)
4 91.84(10.77)  83.95(11.96)
DAGMM 8 91.50(+0.79)  82.83(11.74)
12 91.33(40.48) 81.92(41 19
20 91~43(i043) 82-12(i0.65)
0 92.79(+0.11)  84.57(10.20)
4 92-09(i0'20) 8?’-23(i0A41)
USAD 8 91.78(40.14) 83.44(10.28)
12 91.63(10.08)  82.82(10.55)
20 91'36(i0.17) 82-48(iOA13)

76.73(10.a1)
76.64(+0.66)
75‘25(i0.77)

75.06(+0.38)
74.64(41.30)

38.77(11.08)
38.04(+1 56)
34.31 (£2.80)
33.69(11.03)
32.23(42.99)

73.27 (11 52)
65.74(+1.56)
65.16<i3'45)
61 '24(:E4.49)
61.06(+5.74)

623011 87)
52.60(+2.03)
51.77(+4.31)
47.97 +4.65)
46.38(i7‘02)

are only few anomalies encountered in production networks,
and these values are those encountered in previous works [45]],
[31]. We go up to 20% to stress the models.

As depicted in Fig [2] data contamination impacts the ML
models differently depending on the model family. Isolation-
based models appear to benefit from data contamination. iFor-
est shows low MCC score when there is no data contamination.
Its performance largely increases with data contamination
¢ = 4% and slightly decreases as data contamination ratio
increases. This is the expected behavior of iForest which
assumes that anomalies are present in the training set but in
few quantity and starkly differ from normal instances. The

presence of anomalies helps iForest during training but with
the increasing anomalies in training set, its performance drops
when c reaches 20%. Therefore, the iForest can not efficiently
isolate anomalies when there are a lot of anomalies in the
training set.

One-class classification models, OC-SVM and Deep-
SVDD, have their best performance with no data contami-
nation (MCCyap of 47.24% and 88.65%, respectively for
instance). However, their performance decreases when anoma-
lies are included in the training set. MCC score of OC-SVM
slightly decreases and remains at a similar level. Surprisingly,
Deep-SVDD performance (which has the best MCC score
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Fig. 3. Visualization of normal and anomalous windows for the three datasets in a two-dimensional space by t-SNE. Normal windows in blue and anomalous

windows in orange.

among all the models without data contamination), drops
significantly and becomes even worse than a random classifier
when ¢ = 12% (i.e., MCCyap = —2%) and presents high
standard deviations errors (i.e., 51%). Deep-SVDD, although
being a neural implementation of OC-SVM with the same
objective function, presents high variability in results from one
run to another. Moreover, it is difficult to contrast these results
on Deep-SVDD with previous works as there is, to the best of
our knowledge, either no work on data contamination impact
with time-series data using Deep-SVDD or the existing works
focus on image datasets.

Reconstruction-based models present two different behavior
when facing data contamination. On one hand, we note that
PCA, AE and LSTM-VAE are less robust to the presence of
anomalies in the training set. PCA, which is the less efficient
model for anomaly detection, achieves a MCCyy 4p score of
18% when ¢ = 0% which drops to 7% when ¢ 41%.
From this contamination level, increasing the rate of anomalies
seems to have no significant impact on the PCA model, as
its performance remains at the same level. AE and LSTM-
VAE report a MCCyy sop score of 73% and 88%, respectively
which decreases to 55% and 47%, respectively, when data
contamination ratio reaches ¢ = 20%. AE and LSTM-VAE
are the most impacted models to data contamination since
a contamination ratio of ¢ = 4% is enough to deteriorate
their performance by up to 30%. On the other hand, the
impact of data contamination on the performance of DAGMM
and USAD models is negligible. USAD presents its highest
score at c 0% with the lowest standard deviation. The
performance of DAGMM model peaks at 83% MCCyy 4p with
¢ = 4%. Unlike our previous work [38], the performance
of reconstruction-based models does not collapse with data
contamination. This is the consequence of the thresholding
rule used in this work, which is better than 30 thresholding
rule. Fl-score reported for AE and USAD in this work are
in the same magnitude as those presented in previous works
[31], [5]. The only surprising results are those with DAGMM
which contradict those in previous works. The DAGMM model
in this study is less impacted by data contamination, while in
[4], [31], [45] the performance drop is between 10-50% with
a data contamination rate of 12%. A reason behind the better
performance of DAGMM in this work is the datasets used that

present correlated features. DAGMM model use Cholesky ma-
trix factorization to compute the anomaly score. However, this
factorization fails with our datasets because matrices computed
from our features present negative eigenvalues when Cholesky
factorization requires strictly positive eigenvalues. Hence, to
run DAGMM model on our datasets, a PCA processing step
is required to decorrelate the features.

Table |V| presents the Fl-score and MCC score obtained
using the WAD window approach on the three datasets (STD,
GFN and XC). Our study show that the impact of data
contamination observed with the STD dataset is consistent
across all three datasets. In particular, our analysis reveals the
following key findings:

« iForest model benefits from moderate data contamination
when applied to the GFN dataset but its performance
declines when applied to the XC dataset;

o OC-SVM model’s performance decreases with increasing
levels of data contamination while Deep-SVDD model’s
performance exhibits more fluctuation with varying de-
grees of data contamination when applied to GFN and
XC datasets, as well as STD dataset;

o Reconstruction-based models’ performance significantly
decline as data contamination increases.

However, the models performance with GFN and XC datasets
are not as impressive as those achieved with the STD dataset.
For instance, LSTM-VAE without data contamination achieves
a MCC of 50.68% for GFN and 54.95% for XC. Similarly
to the results on STD dataset, iForest, DAGMM and USAD
models remain robust to data contamination in GFN and XC
datasets, but their performance levels are lower. To further
understand this difference, we use t-SNE projection [46] to
visualize in a two-dimensional representation the normal and
anomalous windows of each dataset. As depicted in Fig. [3]
the GFN and XC datasets have numerous overlaps between
normal and anomalous windows, while the STD dataset’s
normal windows cluster in the center of the figure. Conse-
quently, detecting anomalies in the former datasets may be
more challenging since anomalous and normal windows are
indistinguishable.

Based on our evaluation, we can conclude that while
isolation-based models may benefit from data contamination
up to a certain moderate level, reconstruction and one-class
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models show a decrease in their performance when faced with
anomalies in the training sets.

D. Impact of window size

We also analyze the impact of window size on model per-
formance. The window size represents the duration of the
anomalous events that can occur during CG sessions. We
choose 3 different values for window size (p € {10, 20, 30}) to
have window length representative of user perceptions (50ms,
100ms and 150ms) and to analyze if the models can efficiently
detect short or long anomalous events in CG sessions. Fig. []
depicts the MCC score of each model along with the standard
deviations with STD dataset. For each model, we represent the
impact of the window size p and the contamination ratio ¢ on
its performance.

It is worth noting that increasing the window size seems
to slightly improve the performance of iForest, DAGMM and
USAD models. For instance, the iForest model shows a +30%
increase with ¢ = 0% when the window size varies from
10 to 30. DAGMM and USAD show a moderate increase in
performance (i.e., +4%). Their performance remain better with
higher window size regardless of the data contamination ratio.

4. MCC score of unsupervised ML models with STD dataset according to data contamination ratio ¢ and window size p.
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Conversely, OC-SVM, PCA and LSTM-VAE models achieve
high performance value with a window size of 10, which
decreases as the window size increases. The high variability
of Deep-SVDD and the performance variation of AE do not
allow to observe a significant pattern. Our findings remain
consistent upon studying the impact of window size on both
the GFN and XC datasets: increasing the window size may
improve very slightly the performance of iForest and USAD
but not the other models.

Apart from the USAD model, to the best of our knowledge,
there are no studies on the impact of window size on the
AD learning models. Moreover, Audibert et al. [5] showed
that increasing the window size has insignificant impact on
the performance of USAD, while, in our case, it leads to an
increase in model performance. We attribute the performance
improvement of iForest and DAGMM (and in the same way
the performance degradation of OC-SVM, PCA and AE) to
the fact that increasing window sizes leads to the presence of
anomalous observations in the training set that may improve
(or deteriorate for OC-SVM, PCA and AE) the performance
of the models.

The takeaway from these experiments is that detecting
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longer anomalous events is less efficient for most of the
unsupervised models except for iForest, DAGMM and USAD
which are able to better learn anomalies over larger windows.

E. Computational time performance

This section analyzes the computational performance of unsu-
pervised ML models. We measure the training time for each
model on the training set and compute the average time taken
by each model for inference given a window size of 10. The
models are trained and tested on a Google Cloud Platform
(GCP) VM with 8 CPUs and 30GB RAM. To accelerate the
training of LSTM-VAE, a NVIDIA T4 GPU is used. Fig. [j]
presents the training and inference times.

PCA takes the lowest training time (i.e., 2s) while iForest
training time is 20x longer. Neural networks based models
present longer training time ranging from 970s for AE to 2500s
for DAGMM. Despite the use of GPU, LSTM-VAE takes
4,6 times longer than DAGMM to complete its training. The
high variability in their training times is due to early stopping
strategy that prevents the models from overfitting. The most
time consuming model is OC-SVM that takes 44700s for its
training. Compared to other shallow models such as iForest,
OC-SVM require 1000x longer to train. We make similar
observations when comparing the inference time for a window
of observations of size p = 10. Deep learning based models
have inference time between 89 and 126ps (except for LSTM-
VAE that goes up to 900us with GPU). Unlike neural network
models, shallow models like iForest and OC-SVM take much
more inference time, i.e., iForest takes 1213us and OC-SVM
takes 360x longer.

Algorithms with the lowest training/inference time like PCA
or with highest training/inference time like OC-SVM or LSTM-
VAE do not provide as good qualitative results as iForest,
DAGMM and USAD models. The latter present good perfor-
mance and robustness with reasonable training and test times.

V. DISCUSSION
A. ML Models recommendation

Based on our comparative study, we highlight the advan-
tages and benefits of the models and provide recommendations
to network operators according to the following requirements
(summarized in Tab [VI):

Performance: Deep-SVDD and LSTM-VAE are the models
with the best performance without data contamination. They
achieve near-optimal detection of anomalies in the dataset
with low false alarms. However, they present performance
degradation when anomalies are present in the training set.
The performance instability of Deep-SVDD in the face of
anomalies makes it unreliable. The LSTM-VAE model based
on LSTM neural networks has high computing cost during
training and testing (e.g., requiring more GPUs) incurring high
costs in energy consumption in deployment.

Robustness: There is no guarantee that data from produc-
tion network environments are free of anomalies and removing
them for training the models is a difficult task. Therefore, we
recommend the use of algorithms such as iForest, DAGMM
and USAD in such situations since they are robust to data

TABLE VI
ML MODELS RECOMMENDATION
Model Performance Robustness Deployment Explainability
iForest + ++ - -
OC-SVM - + - - - -
Deep-SVDD ++ - - ++ - -
PCA - - ++ ++ ++
AE + - ++ - -
LSTM-VAE ++ - - - - -
DAGMM ++ ++ + - -
USAD ++ ++ + - -

++: good; +: somewhat good; -: somewhat bad; = =: bad.

contamination and will ensure reasonable performance when
data contamination is not too high.

Deployment: For deployment recommendations, we con-
sider the training and inference time. All the models used
in this work are trained offfine. Neural networks are trained
during several epochs and take a long time for their training
phase while PCA and iForest are fast to train. In production,
deep learning models like DAGMM and USAD can be used
for real-time prediction since they have low inference latency.
Real-time inference with iForest or LSTM-VAE can be diffi-
cult due to their high inference time which also exacerbates
scalability issues for the former and resource requirements for
the latter.

Explainability: Machine-learning techniques are known
to suffer from the lack of transparency and explainability.
Network experts in practice need to better understand the de-
cisions taken by ML models to efficiently monitor and manage
network systems. None of the algorithms used in this study
achieve the trade-off between efficiency and explainability.
iForest and neural networks-based algorithms (LSTM-VAE,
DAGMM, USAD) are seen as black-box and do not allow for
easy interpretation of their anomaly detection.

B. Limitations

This work presents some limitations worth discussing. First,
the thresholding strategy used in this evaluation, which selects
the threshold that lead to the best score, is not applicable in
practice since it requires the use ground-truth test sets. Further
investigations should be carried out to automatically determine
and select the best threshold values. Some works [47], [48]
advocate for the use of evaluation metrics insensitive to the
selected threshold. Second, the chosen criteria to introduce
anomalies in the collected datasets may result in introducing
too many of them (cf. which can raise questions worthy
of further investigation. Additionally, as discussed in Section
IV-C| a PCA processing step was employed to decorrelate the
features before utilizing the DAGMM model. It is worth noting
that the performance of this model may differ when applied
to datasets with correlated or uncorrelated features. Moreover,
as mentioned in Section we could not include in our
evaluation study, generative and predictive models since they
may suffer from computational constraints.
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Furthermore, in our methodology, we used the DECAF
tool [14] to collect the QoE/QoS time-series features on the
client-side. However, this tool is only compatible with CG
platforms based on WebRTC and cannot be used with other
CG platforms to collect the time-series features employed in
our study. Finally, network operators may not always have
the possibility to gather such information at the client-side.
Consequently, they may need to develop QoE degradation
detection algorithms based on features that can be readily
collected at the network edge, such as network packets.

VI. CONCLUSION AND FUTURE WORK

In this paper, we performed a comparative evaluation of
eight unsupervised ML models applied to the detection of
users’ QoE degradation in CG sessions. Our evaluation showed
that the Fl-score metric, which is widely used for model
evaluation, has limitations and should be combined with the
MCC score for more accurate model evaluation. Moreover,
existing window-based approaches, used to cover sequences
of events including anomalies, lead to erroneous conclusions
regarding model performance. To address these limitations,
we proposed the WAD approach to allow for a fair and
better assessment. The WAD approach offers the possibility of
parameter calibration to detect more or less severe anomalies.
As practical considerations in the use of ML models in
networking, we also showed that data contamination has a
considerable impact on unsupervised ML models, and revealed
their disparity with respect to their computational performance.
Our study has shown that the use of models such as those
included in our evaluation in an industrial context requires
further investigation of their applicability and calibration.
Highly performing state-of-the art ML models have not been
necessarily designed with industrial considerations in mind
such as robustness, energy consumption, explainability and
likely others. Many of these considerations can be conflict-
ing with commonly used performance evaluation metrics. In
summary, our evaluation study emphasizes the importance of
employing a consistent methodology and appropriate metrics
when evaluating ML models. In particular, we found no
one-size-fits-all solution as some solutions may be preferred
to others depending on the requirements of the operational
environment under consideration.

As future work, we plan to investigate and develop anomaly
detection models capable to achieve the right trade-offs be-
tween these seemingly conflicting goals when approaching the
detection of abnormal network events and their impact on user
QoE particularly in the case of demanding applications such
as low-latency applications. To address these objectives, we
will specifically focus on QoE degradation detection based
on network packets collected at the network edge. We will
collect these packets in various experimental and in-production
scenarios, which will enable us to build more robust and
generalizable ML models. Furthermore, we will conduct root-
cause analysis for the identified abnormal network events,
which is critical to automatically initiate mitigation opera-
tions. Our ultimate aim is to advance the state-of-the-art in
anomaly detection techniques for efficient troubleshooting of

low-latency applications and for minimizing the impact of
abnormal events on user QoE.
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