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A B S T R A C T 

The systematic disco v ery of outflows in the optical spectra of low-mass X-ray binaries opened a new avenue for the study of the 
outb urst ev olution in these extreme systems. Ho we ver, the ef ficient detection of such features in a continuously gro wing data 
base requires the development of new analysis techniques with a particular focus on scalability , adaptability , and automatization. 
In this pilot study, we explore the use of machine learning algorithms to perform the identification of outflows in spectral line 
profiles observed in the optical range. We train and test the classifier on a simulated data base constructed through a combination 

of disc emission line profiles and outflow signatures, emulating typical observations of low-mass X-ray binaries. The final, 
trained classifier is applied to two sets of spectra taken during two bright outbursts that were particularly well co v ered, those of 
V404 Cyg (2015) and MAXI J1820 + 070 (2018). The resulting classification gained by this no v el approach is o v erall consistent 
with that obtained through traditional techniques, while simultaneously providing a number of key advantages over the latter, 
including the access to low-velocity outflows. This study sets the foundations for future studies on large samples of spectra from 

low-mass X-ray binaries and other compact binaries. 

Key w ords: softw are: data analysis – stars: black holes – X-rays: binaries. 
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 I N T RO D U C T I O N  

he field of X-ray binaries has grown steadily in the last 60 years
ince the disco v ery of Sco X-1, the first and brightest stellar X-ray
ource in the night sky (Giacconi et al. 1962 ). Over 200 low-mass
-ray binaries (LMXBs, a binary where a compact star accretes mass

rom a Roche lobe filling companion star via an accretion disc) have
o far been identified (see, e.g. Liu, van Paradijs & van den Heuvel
007 ) and about a third are proposed to harbour black holes (see
orral-Santana et al. 2016 ; Tetarenko et al. 2016 ). In spite of o v er
 thousand papers dedicated to the topic o v er the past six decades,
he evolution of an LMXB outburst (epochs where the brightness of
he system increases dramatically o v er the course of a few weeks
o years) remains a key outstanding question in the field. Previous
orks have established that the outburst properties are go v erned
y two intrinsically connected processes, namely the accretion and
jection of mass (see Fender & Mu ̃ noz-Darias 2016 for a re vie w). The
wo outflow signatures traditionally studied are radio jets, detected
uring the hard state (e.g. Fender, Belloni & Gallo 2004 ), and X-
ay winds, mostly detected during the soft state (e.g. Neilsen &
ee 2009 ; Ponti et al. 2012 ; D ́ıaz Trigo & Boirin 2016 ; Ponti et al.
016 ). More recently, recurrent outflows in the optical spectra of
404 Cygni during its 2015 outburst (Mu ̃ noz-Darias et al. 2016 ;
ata S ́anchez et al. 2018 ; hereafter MD16 and MS18 , respectively;
 E-mail: matasanchez.astronomy@gmail.com 

 

t  

h  

Pub
ee also Casares et al. 2019 ; Mu ̃ noz-Darias & Ponti 2022 ) were
isco v ered. Their simultaneous detection with jet emission pro v ed
hat these two mass ejection channels coexist in the hard state. Since
hen, optical outflows have been detected in up to nine LMXBs
see the most recent compilation in Panizo-Espinar et al. 2022 ),
f fecti v ely pro ving it is a common feature of the population. These
ow-ionization (a.k.a. cold) winds are primarily detected during
he hard and soft-intermediate states of the outburst (e.g. Mu ̃ noz-
arias et al. 2019 , hereafter MD19 ; also Mata S ́anchez et al. 2022 ),

hough near-infrared observations suggest they might also be present
uring the soft state (S ́anchez-Sierras & Mu ̃ noz-Darias 2020 ). The
ain tools employed for the identification of outflow features in

ptical and near-infrared spectra are limited to visual inspection
r the so-called excesses diagnostic diagram ( MS18 ). While the
ormer typically relies on simultaneous detection of a number
f features (including blue-shifted absorptions, extended emission
ings, skewed profiles, and flat-top lines) o v er different emission

ines, the latter assumes a Gaussian-like underlying component from
he accretion disc contribution at the wings of the profile (see
lso Panizo-Espinar et al. 2021 ). Ho we ver, as the population of
ystems with detected outflows continues to grow, it is required to
evelop automatic methods for the identification and classification
f these features, in order to provide scalable and reproducible
olutions. 

Machine learning (ML) methods ha ve rev olutionized most scien-
ific fields o v er the past decade. In astrophysics, these techniques
ave also been adopted, which proved to be particularly well suited
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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o analyse large data bases accumulated o v er years (e.g. Ball &
runner 2010 ; Huertas-Company & Lanusse 2023 ). The arguably 
ost widespread use case is the automatic classification of vast 

bserving samples, to the point that ML has become a standard part of
arge surv e y disco v ery pipelines (e.g. Brink et al. 2013 ; Wright et al.
015 ; Killestein et al. 2021 ). For the particular field of LMXBs, the
pplication of these techniques has just started to permeate, being 
o far focused on their X-ray emission, attending to their spectral 
nd timing properties (e.g. Pattnaik et al. 2021 ; de Beurs et al. 2022 ;
rwat-Kapola et al. 2022 ; Ricketts et al. 2023 ). 
The present work aims at constructing a neural network (NN) 

ith the purpose of automatically classifying spectroscopic features 
raditionally associated with the presence of wind-type outflows. As a 
ilot study, this work provides proof of concept on the methodology, 
echnical feasibility, and limitations of the technique. We train the 
N on a simulated data base of spectral emission lines generated 

rom theoretical disc models of LMXBs, to which we inject a variety
f outflow features (Section 2 ). This allows us to test the performance
f supervized ML methods on the simulated data (Section 3 ), after
hich we apply the trained algorithm to observational data from 

utbursts of two different LMXBs (Section 4 ). Comparison of the 
erived results with those obtained through traditional techniques 
nables us to determine if the ML approach is a convenient tool for
he study of outflow spectral features. 

 DATA  BA SES  

his pilot study employs two types of data bases, each serving to
 different aim. The purpose of simulated data bases is to train the
upervized ML algorithms at the heart of the classification. On the 
ther hand, observational data bases enable us to test the trained 
lassifiers on a real-case scenario, as well as to compare the outcome
ith traditional techniques dedicated to outflow detection. It follows 
 detailed description of each of these samples. 

.1 Simulated data bases 

e construct a simulated data base, where we emulate emission 
ine profiles arising in LMXB accretion discs, including typical 
utflow features identified in their observational spectra. Different 
omponents must be implemented in order to generate a realistic 
ample: an underlying disc profile reproducing the classic double- 
eaked emission line; the outflow features that we aim to detect and
lassify (such as P-Cygni profiles); and finally, line contaminants that 
ight bias the ML performance (such as known interstellar/telluric 

ines, or emission lines from distinct but nearby species). We will 
reate separate data bases for the most frequently observed emission 
ines in the optical range of LMXBs: H α, He I 5876, H β, and
e II 4686. The simulated data bases contain a million spectra each, 

qually split o v er fiv e different classes: disc , blue-absorption , broad ,
-Cygni , and absorbed . We provide below a detailed description of

hese classes and their associated parameters. Examples of generated 
ine profiles for each class are displayed in Fig. 1 for the reader
onvenience. 

.1.1 Disc emission line profile 

he optical spectra of LMXBs are dominated by the contribution 
rom their accretion discs, which generates a broad emission line 
rofile either single-peaked or double-peaked, depending on the 
inary parameters (e.g. orbital inclination) as well as the spectral 
esolution of the observations (defined by the particular instrumental 
et-up). 

We employ the model described in equation (4) of Orosz et al.
 1994 ), adapted from Horne & Marsh ( 1986 ), to generate the pure
isc emission line profile. We note that this model was originally
eveloped to reproduce quiescent accretion discs, while the aim of 
he present project requires comparison with line profiles produced 
uring the outburst (as optical outflows have been detected only 
uring these brighter epochs). During the outburst, the accretion disc 
xpands and heats up, becoming brighter while pushing the region 
esponsible for the optical line formation to an outer (cooler) radius.
nder the assumption of a Keplerian distribution of velocities for 

he gas in the disc, the velocity range of the line-forming region
uring the outburst should shrink, ultimately leading to narrower 
ine profiles. This is considered the canonical profile evolution, and 
t has been observed in many LMXBs (e.g. Swift J1357.2 −0933,
orral-Santana et al. 2013 ; Mata S ́anchez et al. 2015 ; Torres et al.
015 ; MAXI J1820 + 070, MD19 , Torres et al. 2020 ). Nevertheless,
eviations from this scenario have also been reported, with the 
resence of outflows as a proposed explanation for the widening 
f the line profile during an outburst (e.g. V404 Cygni, MS18 ). For
hese reasons, we decided to employ the aforementioned models to 
enerate our simulated data base, but co v ering an adequate range
f parameters to generate narrow enough profiles comparable to 
hose observed during outburst events. The limitations and biases 
ntroduced by this decision are further discussed in Section 5 . 

The disc model presented here depends on a series of physical
arameters for the binary system. To generate a prolific enough data
ase in order to emulate all kinds of LMXB profiles, we define the
ollowing ranges for the different parameters at play: 

(i) α: following Orosz et al. ( 1994 ), we set the range for the
xponent of the disc emissivity power law to 1.5–1.6. We note that
he effect of this parameter on the line profile is small for the inspected
ange. 

(ii) r 1 : the innermost radius of the accretion disc, in units of the
uter disc radius, is suggested to vary between 0.05–0.15 (Orosz et al.
994 ). This parameter limits the maximum velocities reached at the
ings of the profile and constrains the simulated profiles within a

easonable range. 
(iii) i : the orbital inclination of the system is one of the key

arameters controlling the width of the line profile. We allowed 
his parameter to explore the full range of possible values (0–90 ◦) so
s to generate both single- and double-peaked profiles. 

(iv) v d : the outermost disc velocity ef fecti vely sets the double peak
eparation. We allow it to vary between 300 –1200 km s −1 , a range
hat encompasses typical values for outburst spectra (Orosz et al. 
994 ; Orosz & Bailyn 1995 ). 
(v) β and φorb : these two parameters allow one to emulate the 

ffect of a hotspot in the data. They essentially modify the relative
ntensity between the red and blue peaks as a function of the orbital
hase. We co v er ranges of β = 0.0–0.2 (up to a 20 per cent intensity
atio between the two peaks) and φorb = 0.0–1.0 (i.e. all possible
rbital phases). 

The abo v e parameters describe disc , normalized spectra. Ho we ver,
o reproduce experimental spectra, a handful of additional parameters 
re required: 

(i) μ: the centroid of the line profile, which allows us to simulate
he systemic velocity. We cover the range ±250 km s −1 , consistent 
ith the observed kick velocities in LMXBs (Atri et al. 2019 ). 
MNRAS 524, 338–350 (2023) 
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M

Figure 1. Examples of the final, simulated spectra for the H β line, using the instrumental setup corresponding to GTC R2500R. Each panel corresponds to the 
five different classes defined in this pilot study. From left to right: disc , blue-absorption , broad , P-Cygni , and absorbed . Note that the emission line of He I 4922 
(located at ∼3700 km s −1 ) has been also included in the data base, to better simulate the real observations. 
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(ii) h : the height of the normalized line profile ultimately depends
n the relative contribution between the emission line and the
nderlying continuum. As this ratio is known to change during
he outburst (e.g. due to differing ionization levels), we decided to
odel a range of heights consistent with those typically observed in
MXBs. In particular, depending on the modelled emission line, the
aximum allowed height was different, being the largest value for
 α ( < 20) and the lowest for He I 5876 ( < 2.0). The minimum value
as defined in terms of the signal-to-noise ratio (SNR; see Section
.1.5 ), imposing a minimum > 3 σ N detection. 
(iii) FWHM broad : a number of effects, whether intrinsic or external

o the LMXB, can lead to an additional broadening of the profile
characterized by its full width at half-maximum, FWHM broad ). The
ost straightforward is the instrumental set-up, which inevitably

ntroduces a broadening component in the observed spectrum due
o the limited instrumental resolution (FWHM inst ; we used either
00 km s −1 or 300 km s −1 for this pilot study, see Section 2.2 ).
dditionally, an intrinsic broadening component when comparing

he disc models and observations has been recently reported (Casares
t al. 2022 ). Even though the origin of this local broadening
emains unclear, we simulate it by allowing for FWHM local values
n the range 50 –650 km s −1 (following the results presented in
asares et al. 2022 ). We combine both effects by convolution
f the disc spectrum with a Gaussian kernel of FWHM broad =
 

FWHM 

2 
inst + FWHM 

2 
local . 

Each combination of the abo v e parameters generates a single
mission line profile which is e v aluated in the radial-velocity space,
efined with respect to the corresponding emission line rest wave-
ength. We decided to co v er a range of ±4000 km s −1 (which include
he fastest outflow profiles ever detected, see MD16 and MS18 ), and
mpose a pixel size determined by the dispersion of the observational
et-up (either 50 or 100 km s −1 , see Section 2.2 ). 

We then use a Monte Carlo approach to generate, for a given
bserving set-up, a data base containing a million of simulated
pectra. The parameter values employed to construct each spec-
rum were randomly drawn from uniform distributions within the
forementioned limits, except for the orbital inclination, for which a
niform distribution in cos ( i ) was employed instead (corresponding
o an isotropic distribution of i ). Out of the complete data base
enerated and with the aim to define five balanced classes, 20
er cent will be kept untouched as pure disc profiles, which will be
lassified as disc type spectra. The remaining 80 per cent spectra will
e modified to describe the four remaining classes detailed below. 
NRAS 524, 338–350 (2023) 
.1.2 Outflow features 

he observational signatures of wind-type outflows can result in
 wide variety of profiles in the optical spectra, depending on a
umber of conditions such as the outflow geometry, its density and
emperature. Complex outflow models are out of the scope of this
ilot study, which aims at detecting typical features generated by
ither optically thin or thick ejecta. As such, we focus on reproducing
he most commonly observed profiles: 

(i) Blue-absorption : an optically thick outflow launched towards
he observer produces an absorption at blue-shifted wavelengths
with respect to that of the transition). We emulate this feature with
 Gaussian of ne gativ e height (between −50 per cent of the disc
rofile normalized flux and the 3 σ N detection level), with blue-
hifted centroid (co v ering the range of −500 to −2500 km s −1 ),
elative to the centroid of the disc profile μ), and σ between that
onstrained by the spectral resolution, and the v d value (but al w ays
elow 1000 km s −1 , to a v oid unrealistically wide profiles). 
(ii) Broad : an optically thin, isotropic and homogeneous nebula

ould produce instead an emission component across a broad range
f projected velocities. This has been observed in a number of
ystems experiencing outflows, such as nova events (e.g. Iijima &
senoglu 2003 ), and more recently in LMXBs outbursts ( MD16 ).
e implement this feature as a Gaussian in emission with height
ithin the range between 3 σ N detection and 4 (up to 20 for H α, as

t has shown the most prominent examples); centroid fixed at the
isc profile μ value, and σ limited to the range between v d /2 and
 d / 2 + 1000 km s −1 (up to v d / 2 + 1300 km s −1 for H α). 

(iii) P-Cygni : the most robust outflow signatures are arguably
-Cygni profiles, present in a variety of systems (e.g. Smith &
artigan 2006 ; Th ̈one et al. 2017 ). It is naturally produced by an
omogeneous and isotropic expanding shell of matter, and produces
 blue-shifted emission (due to the material ejected towards the
bserver) superimposed to a broad emission component (produced
hrough line recombination o v er the entire shell). We will implement
his profile as a combination of the two features described abo v e
 blue-absorption and broad ), using the exact same range of values. 

These features are injected into the disc profiles by randomly
electing parameter combinations from uniform distributions con-
trained within the previously defined limits. For each of the outflow
lasses defined abo v e, we implement the corresponding outflow
eature in 20 per cent of the simulated spectra (i.e. 60 per cent of
he simulated data base contains some kind of outflow signature). 
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.1.3 Broad absorption 

road absorption components have been observed in a number of 
utbursting LMXBs, such as Nova Muscae 91 (della Valle, Jarvis & 

est 1991 ), GRO J0422 + 32 (Callanan et al. 1995 ; Casares et al.
995 ; Shrader et al. 1997 ), Nova Velorum 93 (della Valle et al. 1997 ;
asetti, Bianchini & della Valle 1997 ), GRS J1655 −40 (Bianchini 

t al. 1997 ; Soria, Wu & Hunstead 2000 ), XTE J1118 + 480 (Dubus
t al. 2001 ), MAXI J1807 + 132 (Jim ́enez-Ibarra et al. 2019 ), MAXI
1803 −298 (Mata S ́anchez et al. 2022 ), and more recently MAXI
1348 −630 (Panizo-Espinar et al. 2022 ); to name a few. It can be
escribed as a broad absorption where the emission line is embedded, 
ith varying depth and width as the outb urst ev olves. Depending on

ts depth and centroid velocity (with respect to the emission line), 
t can give rise to a profile which might be confused with the blue-
bsorption outflow case. The origin of this feature is still under 
ebate, with the most accepted explanation invoking self-absorption 
y the accretion disc atmosphere (Dubus et al. 2001 ). The automatic
dentification of this feature will be a key tool to study its origin
hrough future population studies, but it is also required in the present
aper to a v oid flagging it as an outflow. We simulate it as a low
elocity, broad absorption Gaussian with centroid in the range of μ ±
00 km s −1 , height varying between −50 per cent of the disc profile
ormalized flux at the absorption centroid and the 3 σ N detection 
evel, and σ between 2 v d (with an absolute minimum of 300 km s −1 )
nd 1100 km s −1 (up to 1300 km s −1 for H α). We apply such broad
bsorption feature to the remaining 20 per cent of the generated 
pectra. 

.1.4 Line contaminants 

eal spectral lines of LMXBs might exhibit other features close to the
ransition of interest that ef fecti vely contaminate the observations. 
n this work, we decided to simulate separate data bases for the
ollowing emission lines: H α, He I 5876, H β, and He II 4686. The
ain contaminants for each of these lines, as well as the process to

nclude them in the simulated data bases, are as follows: 

(i) H α: a telluric line is present at 6613 Å, which could influence
he profile of particularly broad H α lines. For this reason, we 
imulated the contaminant as a Gaussian absorption component at 
he corresponding wavelength, σ defined by the spectral resolution, 
nd height randomly picked from a uniform distribution between 
0.1 and 0.0. 
(ii) He I 5876: the main contaminant to this line is the Na doublet

t 5890 Å, a pair of absorption lines with a mixed origin (telluric
nd interstellar). We simulate them as two Gaussians centred at 
he corresponding wavelengths, with σ determined by the spectral 
esolution, and height randomly picked from a uniform distribution 
etween −0.4 and −0.2. 

(iii) H β: the He I line at 4921.929 Å , even if typically weaker,
s close enough to H β to influence its profile on certain spectra.
herefore, we simulate it as an accretion disc line with the exact
ame model parameters employed for the H β line, but allowing for
lightly wider peak separation (randomly picked from a uniform 

istribution between v d and 1 . 5 v d ), due to the line being produced
t a slightly different radius, and smaller height (0.07–0.2 times that 
f H β). 
(iv) He II 4686: this is the trickiest line of our sample, due to the

resence of both the He I 4713 line, and the Bowen blend at ∼4640 Å .
he former is typically weak, and we model it as an accretion disc

ine with the same parameters as He II 4686, but height within the
.05–0.25 range. The later is a mixture of C III and N III emission
ines, which appears blended into a single broad component close 
o He II 4686 and of comparable intensity. We attempt to simulate
his complicated profile as a broad Gaussian emission line, with σ
etween 2000 –2700 km s −1 , and height of 0.1–0.55 times that of
e II 4686. 

.1.5 Simulated noise 

n order to create a more realistic data base, we decided to add noise to
he simulated spectra. We implemented it by using a single parameter: 
NR. For a given spectrum, at a particular velocity pixel, we sample a
alue from a uniform distribution in the range of SNR = 30–330, and
e create a Gaussian distribution centred at the normalized spectrum 

ux value ( f norm 

) with a standard deviation of σN = 

√ 

f norm 

/ SNR .
e randomly draw samples from this distribution, which are added 

n top of the original f norm 

of the disc spectrum. Note that this
pproximation assumes a constant underlying continuum under the 
mission line, a reasonable assumption for such a small wavelength 
ange. It also produces noise with σ N ∼ 1/SNR at the normalized 
ontinuum level while improving on the relative uncertainties at the 
eak of the emission line. 

.1.6 A zoo of profiles 

uring the generation of the simulated data base, a number of the
andomly generated line profiles attracted our interest. The most 
onspicuous among them are shown in Fig. 2 , and include flat-top,
riangular, and skewed emission lines. These have been previously 
bserved in LMXBs and associated to the presence of outflows 
e.g. S ́anchez-Sierras & Mu ̃ noz-Darias 2020 , Panizo-Espinar et al.
022 ). We are aware that similar profiles have also been observed
n other systems with outflows but without accretion discs (e.g. 
upernovae, see Smith, Mauerhan & Prieto 2014 ), which implies 
hat the double-peaked component is not mandatory to produce 
he aforementioned outflow signatures. Indeed, these can arise as 
 result of different combinations of outflow geometries and optical 
hickness. Nevertheless, this also implies that our simulated data 
ase, in spite of not employing a physical model to simulate the
utflow components, is already able to produce such profiles. While 
escribing the physical formation mechanism of the outflow profiles 
s beyond the scope of this paper, we wanted to highlight that a
imple combination of no more than two Gaussians (respectively in 
bsorption and emission) on top of the double-peaked disc profile 
s already able to naturally produce these characteristic shapes, and 
herefore, they will be considered during the algorithm training. 

.2 Obser v ational data sets 

n order to test the ML algorithm trained on the simulated data base,
omparison with real, observed normalized spectra from LMXBs is 
equired. For this pilot study, we decided to focus on two systems
or which particularly prolific data bases were compiled during their 
atest outbursts. 

(i) V404 Cygni: This LMXB, which contains the first dynamically 
onfirmed stellar-mass black hole (Casares, Charles & Naylor 1992 ) 
xhibited an extremely bright outburst in 2015 after ∼25 years 
f quiescence (Barthelmy et al. 2015 ). Intensiv e multi-wav elength 
ollow up of the event led to dozens of publications (e.g. Kimura
t al. 2016 ; Motta et al. 2017 ). Of particular rele v ance for this work
s the first systematic analysis of the appearance and evolution of
MNRAS 524, 338–350 (2023) 
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Figure 2. Simulated line profiles randomly generated with peculiar shapes reminiscent of more complex outflow-related profiles. Red colour corresponds to 
broad type and purple to P-Cygni type simulated spectra. 
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ptical outflows in a LMXB ( MD16 ), which sparked the interest of
he community in such features and their influence in the outburst
volution. In this pilot study, we will limit our analysis to a subsample
f the data base presented in MS18 . In particular, we only consider
he 510 spectra obtained with the Gran Telescopio Canarias (GTC)
nd grism R1000B, which co v er the first 15 days of the outburst. 

(ii) MAXI J1820 + 070 (herefater MAXI J1820): the disco v ery
utburst of this LMXB (Tucker et al. 2018 ) was also followed with
reat interest, due to both its brightness and accessibility from all
 v er the globe. The numerous studies dedicated to this e vent allo wed
o unveil both a high orbital inclination and a black hole nature for
he compact object (see, e.g. Torres et al. 2019 , 2020 ). The detection
f outflow features in both optical and near-infrared spectra has also
een reported ( MD19 , S ́anchez-Sierras & Mu ̃ noz-Darias 2020 ), and
 significant data base of spectra has been collected. In this pilot
tudy, we focus on the subsample of 48 spectra observed with GTC
nd grism R2500R presented in MD19 , which co v er both the hard
nd soft state of the outburst spanning o v er eight months. 

Both data bases have been previously described thoroughly in
edicated studies to each object, so we refer the reader to the
forementioned papers in order to learn the data reduction details. 

.3 Data bases homogenization 

irect comparison of the simulated and observational data bases is
ot straightforward. To this end, we extracted cuts of the observed
pectra centred at the lines of interest: H α, He I 5876, H β, and
e II 4686. We binned all the spectra in velocity space to a uniform
ixel size consistent with the dispersion of each instrument (50 and
00 km s −1 for R2500R and R1000B, respectively) and covering the
ange of ±4000 km s −1 . We then created separate, simulated data
ases using the corresponding dispersion values mentioned abo v e
nd the associated spectral resolution with each grism configuration
 FWHM inst = 200 km s −1 and 300 km s −1 for R2500R and R1000B,
espectively). 

 M E T H O D S  A N D  RESULTS  

he aim of this work is to apply ML techniques to identify outflow
eatures in LMXBs emission lines. Thanks to the e xplosiv e growth of
he ML field and its application across dif ferent disciplines, ne w tools
av e been dev eloped, tested, and made available to the community.
ll the ML classifiers implemented in this work belong to the NN

ype and have been developed making use of the open source deep
NRAS 524, 338–350 (2023) 
earning library KERAS (Chollet et al. 2015 ) with the TENSORFLOW

Abadi et al. 2015 ) back-end. 

.1 NNs classifiers 

e decided to focus on Deep Neural Networks (DNNs), which,
ince their original success for solving computer vision problems
Krizhe vsky, Sutske ver & Hinton 2012 ), have been applied to an
 xtensiv e range of cases (see e.g. Szegedy et al. 2015 ). DNNs
erformance seems to particularly excel on speech recognition (e.g.
ainath et al. 2013 ) and natural language processing tasks (e.g.
ikolov et al. 2013 ), both of which are characterized by their

equential nature, which is also a common property for time series
nd spectra. 

We explore three types of supervized classifiers of the DNN class,
iming to classify our simulated data base into the five different
lasses defined in Section 2.1 . We provide below a short description
f the parameters defining the different layers compounding each
lgorithm, while referring the reader to Ismail F a waz et al. ( 2018 )
nd references therein for an in-depth description of the algorithms
hemselves: 

(i) Multi layer perceptrons (MLP): this network treats indepen-
ently time series/spectral elements from each other, which means
he sequential aspect of the data is ignored. We constructed a network
ontaining four dense layers whose outputs are fully connected. They
re three hidden layers of 500 neurons and Rectified Linear Unit
ReLU) acti v ation function, and a final softmax classifier. Each layer
s preceded by a dropout (Sri v astav a et al. 2014 ) with rates of 0.1,
.2, 0.2, and 0.3, respectively, a form of regularization preventing
 v erfitting. 
(ii) Fully convolutional neural network (FCN): a type of convo-

utional neural network, proposed in Wang, Yan & Oates ( 2017 )
nd composed of three convolutional blocks. Each consists of a
onvolution, followed by a batch normalization (Ioffe & Szegedy
015 ; a normalization layer to help the network converge quickly),
nd a ReLU acti v ation function. The three convolution layers have
28, 256, and 128 filters; with respective lengths of 8, 5, and 3. 
(iii) Residual Network (ResNet): this architecture, also proposed

y Wang et al. ( 2017 ), consists of three residual blocks. Each of them
s composed by three convolution layers with a ReLU acti v ation
unction and preceded by a batch normalization, whose output is fed
o the input of the residual block. The convolutions within a residual
lock all have the same number of filters (which is 64, 128, or 128,
or each different residual block), and different filter lengths (8, 5,
nd 3; for each set of convolution layers within the block). 
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Table 1. Performance metrics for the MLP, FCN, and ResNet classifiers 
e v aluated o v er the test data set, corresponding to the av eraged values o v er all 
classes. 

MLP 

Line Grism Precision Recall F 1 Accuracy 
H α R1000B 0.85 0.82 0.81 0.82 

R2500R 0.81 0.78 0.77 0.78 
He I 5876 R1000B 0.91 0.90 0.90 0.90 

R2500R 0.88 0.87 0.87 0.87 
H β R1000B 0.90 0.88 0.88 0.88 
He II 4686 R1000B 0.83 0.81 0.82 0.81 

FCN 

Line Grism Precision Recall F 1 Accuracy 

H α R1000B 0.95 0.95 0.95 0.95 
R2500R 0.96 0.96 0.96 0.96 

He I 5876 R1000B 0.94 0.94 0.94 0.94 
R2500R 0.95 0.95 0.95 0.95 

H β R1000B 0.92 0.92 0.92 0.92 
He II 4686 R1000B 0.89 0.89 0.89 0.89 

ResNet 

Line Grism Precision Recall F 1 Accuracy 

H α R1000B 0.95 0.95 0.95 0.95 
R2500R 0.97 0.96 0.96 0.96 

He I 5876 R1000B 0.95 0.94 0.94 0.94 
R2500R 0.96 0.96 0.96 0.96 

H β R1000B 0.94 0.93 0.93 0.93 
He II 4686 R1000B 0.93 0.92 0.92 0.92 
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Figure 3. Confusion matrix for the ResNet classifier when applied to the H α

R2500R data base. Each cell value has been normalized by the total number 
of spectra per class. 
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.2 Training and performance assessment 

e independently trained the three algorithms described abo v e on 
he simulated spectral data bases previously introduced. This implies 
he independent training of six data bases: four for the grism set-up
1000B (one per line profile: H α, He I 5876, H β, and He II 4686)
nd two for the R2500R (H α, He I 5876). As part of the training,
e evenly split each data base into training and test samples. We
agged 30 per cent of the training data set as a validation data
et in order to assess the training performance. We compiled the 
odels with an ADAM optimizer and a CATEGORICAL CR OSSENTR OPY 

oss function. We set an early stopping condition defined by the 
ack of impro v ements o v er the last 50 epochs on the loss function,

easured in the validation set. The performance is then e v aluated
y applying the trained classifier to the unseen test data base, which
roduces the metrics reported in Table 1 (see also an example of a
onfusion matrix in Fig. 3 ). We note that the actual output of the NN
s an array containing the probability for each particular spectrum 

o be associated with each of the five classes (as determined by
he final softmax layer). We assign to each processed spectrum 

he class with the highest probability for the metric comparison 
urposes described abo v e. Inspection of the individual Receiver 
perating Characteristic (ROC) curves for each class and set- 
p reveals area under the curve (AUC) values higher than 0.98. 
e also explored the thresholds on the classification probability 

ased on the ROC curves that optimize the true positive rate (tpr)
nd the false positive rate (fpr), and derived individual results 
or each set-up, al w ays k eeping tpr > 0 . 93 and fpr < 0 . 07. The
esulting threshold values are comparable between line types and 
et-ups, but vary significantly between the different classes, with 
.5 ( absorbed ) and 0.1 ( P-Cygni ) being at the extremes, coincid-
ng with the best and worst performing classes, respectively. To 
implify our selection criteria, we will hereafter keep the most 
estrictive threshold value of 0.5. Classifications below this threshold 
hould be taken with caution, and when possible, independently 
onfirmed. 

The comparison of the performance of the different methods 
attending only to their average metrics) reveals that the MLP script is
roducing the less accurate classification, down to 0.78 for some data
ases. The average accuracy of both the FCN and ResNet algorithms
s significantly better (0.89–0.97), with a slightly better performance 
a v ouring the ResNet case (0.92–0.97). A closer inspection of each
ndividual confusion matrix shows that the main bulk of miss- 
lassified spectra actually corresponds to blends of outflow classes 
i.e. blue-absorption , broad and P-Cygni class). Spectra from the P-
ygni type leak into the blue-absorption and broad classes (with 

ypical recall values for the P-Cygni class of ∼0.85–0.90), or 
lternatively, blue-absorption and broad class spectra are classified 
s P-Cygni (with recalls of ∼0.90–0.97 and ∼0.92–0.97 for the blue-
bsorption and broad classes, respectively). This is not unexpected, 
s the P-Cygni class is generated as a combination of profiles from the
wo other outflow categories. Therefore, if one of the two components 
either the blue-shifted absorption or the broad wing emission) is too
hallow (we simulate outflow features with depth/high o v er the > 3 σ
hreshold defined by the SNR), the algorithm might not be able to
lassify them correctly. On the other hand, the disc and absorbed
lasses show a much more consistent performance, with stable recall 
alues of > 0.96. 

To further investigate the origin of these miss-classifications, we 
roduced histograms of the parameters employed during the data 
ase simulation, and compared them with those incorrectly classified. 
his allows us to inspect possible caveats in the parameters range
etermination when creating the data base, as well as to explore the
imitations of the ML classifiers. We conclude that their accuracy is

ainly affected by the following cases: 

(i) Low velocity and shallow P-Cygni profiles: the low velocity P- 
ygni profiles ( � 1000 km s −1 ), specially if they are also shallow, are
arder to identify as they fall between the peaks of the disc emission
ine profile. Rather than a clear absorption, this ef fecti vely creates an
symmetry in the line profile, which might be confused with those
roduced by a hotspot. 
(ii) Low height and narrow emission wings: the detection of a 

hallow broad wing component is specially challenging if the outflow 

omponents are relatively narrow ( σ � 500 km s −1 ). In such a case,
MNRAS 524, 338–350 (2023) 



344 D. Mata S ́anchez et al. 

M

Table 2. Results from applying the ATM classifier to real data bases, where we report the number of 
spectra belonging to each class. Note that for each combination of line and grism, ATM was trained with 
a slightly different simulated data base in order to better reproduce the corresponding setup conditions. 
We also report within parentheses those spectra whose classification is uncertain, as it falls below the 
0.5 threshold described in Section 3.2 . 

Data base Line Disc Blue-absorption Broad P-Cygni Absorbed 

V404 Cygni H α 6 (4) 0 (0) 235 (40) 269 (4) 0 
He I 5876 203 (4) 193 (6) 48 (1) 65 (2) 1 (0) 

H β 246 (0) 80 (2) 87 (3) 87 (4) 10 (0) 
He II 4686 67 (5) 268 (3) 51 (6) 65 (3) 59 (3) 

MAXI J1820 H α 36 (0) 0 (0) 12 (0) 0 (0) 0 (0) 
He I 5876 28 (1) 19 (1) 0 (0) 0 (0) 1 (0) 
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nly the central region of the disc profile is altered, an effect that
an be mimicked through slight modifications of the disc profile
arameters. 
(iii) Low SNR: the detection of features in noisy spectra is a

hallenging task, but it does not seem to be a critical parameter
or the range considered (30–330), as the number of miss-classified
pectra between the extremes does not vary drastically (typically a
actor < 3). It is only the dominant factor for the disc class spectra. 

All of the abo v e are expected limitations not e xclusiv e to the ML
pproach. On this regard, it is worth remarking that the ML technique
oes not appear to introduce any new biases, other than those inherent
o the data quality and particular outflow properties. 

 APPLICATION  TO  OBSERVATIONA L  

PECTRA  

fter assessing the performance of the different NNs on the test and
alidation data sets, we select ResNet as the most efficient among
hem. Further discussion will be limited to results produced by this
lassifier, which will be hereafter referred to as the Ask The Machine
ATM) algorithm. 

We applied the trained ATM classifiers to the real spectroscopic
ata sets described in Section 2.2 . For the V404 Cygni data set,
his includes four classifiers dedicated to each of the lines detected
ith the R1000B grism set-up, while for MAXI J1820 data, it only

ncludes the two lines co v ered by the R2500R grism. A summary of
he results from each classification is collected in Table 2 , but also
iscussed below for each data set and line separately. 
We will compare the ATM classification with the two most

idely used traditional techniques for outflow detection: the ex-
esses diagnostic diagram and the visual inspection. The excesses
iagnostic diagram was first introduced in MS18 and further refined
n Panizo-Espinar et al. 2021 . It is based on the assumption that
epartures in the wings of the inspected profile from a Gaussian
unction are due to the presence of outflows. After a Gaussian
t is subtracted from the line profile and the core of the line

s masked (on a case-by-case basis), equi v alent widths (EWs)
re measured on the residuals at regions corresponding to the
ed and blue wings of the profile ( EW r and EW b , respectively).
he position of a particular spectrum in the excess diagnostic
iagram ( EW b against EW r ) determines the presence and class
f the outflow feature. On the other hand, detection of outflow
ignatures through visual inspection typically requires the pres-
nce of simultaneous features associated with outflows in different
ines. 
NRAS 524, 338–350 (2023) 
.1 V404 Cygni 

he large data base collected during the 2015 outburst of V404 Cygni
s e xtremely div erse, showing a wide range of profiles for each of
he inspected lines. We report in Fig. 4 the results from applying
TM to a particular epoch (day 6, compound of 85 individual
pectra and showing a large variety of outflow profiles) as a visual
xample of the classification results. We also exhibit the complete
xcesses diagnostic diagrams for the entire V404 Cygni data base
n H α, He I 5876, and H β (see Fig. 5 ). In addition, we include their
TM classification in order to compare both techniques. It follows a
etailed description for each line. 

.1.1 H α

ut of the complete sample consisting of 510 spectra, all but six
re classified by ATM as having outflows in H α (see Table 2 ).
n particular, the algorithm detects outflows of two types: either
road (46 per cent) or P-Cygni (53 per cent) profiles. The scarce
umber of spectra without outflow features is shocking, as such
eatures are typically elusive in most LMXBs outburst events. Indeed,
hese outflows have only been detected systematically during the
ast few years through dedicated observations with the largest
vailable telescopes. At this point, it is worth considering that a
awed design/training of ATM classification algorithm might be at
lay, biasing it to flag outflows in most spectra. Ho we ver, it will
ecome clear in the following sections that the ATM script is indeed
ble to identify disc profiles (without outflows) in other lines and
argets. Furthermore, previous works on the 2015 outburst of V404
ygni ( MD16 , MS18 , Casares et al. 2019 ) have shown the dramatic
volution of the H α line profile, including extreme EWs, the detection
f high-velocity outflows and a FWHM above the quiescence level
uring most of the event (opposite to the canonical behaviour, see
ection 2.1.1 ). For these reasons, we believe the results from the
TM classification to be correct, and instead reveal V404 Cygni
utburst as an extraordinarily rich event where outflows are al w ays
resent. As a matter of fact, X-ray observations contemporaneous to
hose used here also show the presence of X-ray winds with similar
bservational properties to the optical ones (Mu ̃ noz-Darias & Ponti
022 ; see also King et al. 2015 ). 
Direct comparison of the results of the ATM with those drawn in
S18 from the excesses diagnostic diagram shows that this technique

lso found numerous P-Cygni-like and nebular phase-like profiles
 P-Cygni and broad classes in this work, respecti vely). We sho w an
pdated version (following Panizo-Espinar et al. 2021 prescription)
f the H α excesses diagnostic diagram in Fig. 5 (top left-hand panel),
hich remains consistent with the original presented in MS18 . This
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Figure 4. Top row: pie chart representation of the classification with ATM for V404 Cygni spectra observed during day 6, where each colour corresponds 
to a different class as described in the legend. Bottom row: the resulting averaged spectrum from the combination of all the observed spectra during this run, 
separated by the identified classes and following the same colour code. 
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eveals an overall agreement with the ATM results: broad spectra 
re mainly clustered in the top-right region of the diagram, while 
-Cygni type spectra dominate the bottom-right region (i.e. the P- 
ygni region). It is worth remarking that the excesses diagnostic 
iagram only e v aluates the wings of the line by comparing them with
 Gaussian model, while it disregards asymmetries of the core of the
ine (which is ef fecti vely masked). Therefore, it is not surprising to
nd spectra in the nebular phase region being classified by ATM 

s P-Cygni type: this suggests that, while broad wings are probably 
ominant at the edge of the profile, blue-shifted absorptions are 
lso required to reproduce the observations. Another limitation of 
he traditional excesses diagnostic diagram, already highlighted in 

S18 , was the detection of apparent inverse P-Cygni profiles on day
 (top-left region of the diagram). Visual inspection rev ealed the y are
ctually caused by the presence of the intense P-Cygni profiles of the
earby He I 6678 line, as well as a clearly asymmetric H α line. On
he other hand, ATM directly classifies day 6 spectra as either broad
r P-Cygni types (see Fig. 4 ), with the sole exception of two spectra
hat are classified as disc at a probability below the threshold level
f 0.5 (see Section 3.2 ). This shows the ability of ATM to o v ercome
revious classification issues. 

.1.2 He I 5876 

TM classification of this line profile reveals the following distribu- 
ion among classes: 40 per cent disc spectra, 60 per cent with outflow
eatures (distributed as 63 per cent blue-absorption , 16 per cent 
road and 21 per cent P-Cygni profiles), and a single spectra of
he absorbed type. The detection of a significant number of disc 
rofiles is reassuring, supporting the aforementioned argument that 
he continuous presence of outflows in H α is real, rather than derived
rom fundamental issues in ATM design and training. Most of the 
rofiles classified as outflows contain a blue-shifted absorption, 
ometimes accompanied by a broad emission component. This is 
onsistent with the results of the excesses diagnostic diagram (see 
op right-hand panel in Fig. 5 ), where deep, P-Cygni features are
etected in a significant fraction of the spectra, while no nebular
hase spectra are reported outside the 5 σ confidence region. The 
andful of spectra classified by ATM as broad type do lie in
he nebular region of the excesses diagnostic diagram, though 
heir inclusion within the 3 σ confidence region would not trigger 
 detection from the traditional method alone. This might be a
onsequence of ATMs inspecting the full line profile rather than 
nly the wings, eventually leading to more sensitive detection. The 
act that only one spectrum was classified as absorbed suggests that
he inclusion of a simulated Na I doublet feature in the training data
et was able to mitigate potential missclassifications to a remarkable 
egree. 

.1.3 H β

lassification of these profiles reveals 48 per cent disc spectra, 50
er cent containing some kind of outflows, and 2 per cent absorbed .
he higher ratio of disc spectra for H β, specially when compared
ith the almost null ratio for H α, shows that the extreme behaviour
bserved in the latter line is not present in H β. Indeed, the Balmer
ecrement variability reported in MS18 is driven by the more 
ramatic changes in H α (typically EW ∼ 20 –300 Å, but spiking 
p to EW ∼ 2000 Å), while H β is typically EW ∼ 10 –50 Å (with
ertain epochs reaching up to EW ∼ 300 Å). This view is fully
onsistent with the reported ratio of outflow types, being 32 per cent
lue-absorption , 34 per cent broad , and 34 per cent P-Cygni . An
 v erall agreement can be confirmed by inspecting Fig. 5 , bottom
eft-hand panel, where the ATM classification populates the expected 
egions of the diagram. Finally, 2 per cent of the spectra are classified
s absorbed . Absorption features have been seen before in a number
f LMXBs (see Dubus et al. 2001 and references therein), and while
hey are predominantly reported in hydrogen lines, they have also 
een observed in He lines (e.g. Soria et al. 2000 ). A visual inspection
f the affected lines in our data base shows that spectra classified as
MNRAS 524, 338–350 (2023) 
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Figure 5. Excesses diagnostic diagram applied to the lines of interest in each of the individual spectra from V404 Cygni and J1820 observational data sets. We 
do not show He I 4686 for V404 Cygni neither H β for MAXI J1820 due to their line contaminants, which prevent a reliable application of the traditional method. 
The colour code matches that of Fig. 4 , depicting the ATM classification for each of the spectra: disc (black dots), blue-absorption (blue empty circles), broad 
(red empty squares), P-Cygni (purple empty diamonds), and absorbed (green empty triangles) types. V404 Cygni correspond to the top panels, from left to 
right, H α (( ±)1000 –4000 km s −1 ; including an inset of the central region) and He I 5876 ( −4000 to −500 km s −1 ; 1250 to 4000 km s −1 ; asymmetric due to the 
Na I interstellar doublet). Bottom left-hand panel also corresponds to V404 Cygni, but focused on the profile of H β (( ±)1000 –2500 km s −1 ). Bottom right-hand 
panel shows the MAXI J1820 excess diagram for the H α line (( ±)1000 –4000 km s −1 ). All diagrams also include the 3 σ (shaded) and 5 σ (solid line) ellipses 
defining the excess diagram detection limits. 
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bsorbed type probably arise from the presence of P-Cygni profiles in

he nearby He I 4922 line. This might be confused with a red-shifted
omponent for the H β line and, when combined with a blue-shifted
bsorption, result in the aforementioned classification. Furthermore,
he detections are all restricted to the same epoch (day 6 of the
utburst, see Fig. 4 ), while typical broad absorption features are
ather persistent, lasting from tens of minutes to days. For the above
easons, we believe that ATM classification for these spectra might
ot highlight an intrinsic feature of the system, and should be taken
ith caution. 

.1.4 He II 4686 

TM classification of this line profile resulted in 19 per cent
isc profiles, 77 per cent with outflow components, and 4 per cent
NRAS 524, 338–350 (2023) 
bsorbed . The large number of detected outflow profiles is surprising
or a high-ionization line. If true, it would require explaining both
he absence of previous outflow reports in this line, and the fact
hat high densities are required for this emission line to form, which
ampers the visibility of outflow features (see Charles et al. 2019 for
 discussion). 

For this reason, we perform a visual inspection of the profiles
nd found that the detection of blue-shifted absorptions is heavily
iased by the presence of the nearby Bowen blend. Indeed, this very
ontamination has hampered any attempts to produce an excesses di-
gnostic diagram for this line. This feature is a combination of various
, N, and O emission lines, with both narrow and broad components
nd blended together (McClintock, Canizares & Tarter 1975 ). They
re thought to arise from both the companion star’s irradiated face
hrough a fluorescence cascade (producing narrow emission line
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omponents), or from regions in the accretion disc where similar 
onditions to form the lines occur (giving rise to broader components, 
ue to the velocity distribution; see e.g. Steeghs & Casares 2002 ).
or this reason, deriving a precise theoretical model of the Bowen 
lend is a challenging task. We injected into the simulated data base a
road Gaussian profile to try to emulate this contaminant, but in light
f the results, we do not believe it is an acceptable approximation,
pecially given that the Bowen blend component intensity can be 
omparable to that of the line of interest. For this reason, we strongly
eliev e that an y outflow detection in He II 4686 is probably biased,
nd it should be taken with the utmost caution. 

.2 MAXI J1820 

hile MAXI J1820 spectral sample is significantly smaller than that 
f V404 Cygni, it enables us to test ATM in a different system and
sing higher resolution spectra. This allows us to inspect how ATM 

ehaves when applied to different scenarios as well as strengthen the 
onclusions derived from this novel approach when compared with 
raditional techniques. To aid this purpose, we show the excesses 
iagnostic diagram for the H α line of the J1820 data base in Fig. 5
bottom-right-hand panel). 

.2.1 H α

he resulting classification of the H α line shows a radically different 
ituation to that of V404 Cygni: most of the spectra are identified as
isc (75 per cent) and the remaining (25 per cent) correspond to the
road class. No other outflows containing blue-shifted absorptions 
re found, which is roughly consistent with the o v erall description
f the data presented in MD19 and the excesses diagnostic diagram 

n Fig. 5 (bottom right-hand panel; constructed from the individual 
pectra instead of averaging in each epoch). A closer inspection 
f each particular spectrum reveals some discrepancies between 
TM and the classification proposed in MD19 , especially for those 
etermined from visual inspection. 
Most of the differences occur during the initial hard state of the

utburst, where outflows have been traditionally observed. First, 
D19 reports on a P-Cygni profile for epoch-3 and broad wings 

or epoch-4, while ATM classifies all of them as disc . We note that
he original paper reports that the epoch-3 P-Cygni did not follow 

 traditional shape. A visual inspection confirms the profile departs 
rom our simpler models, which would explain why ATM did not 
ick up the feature properly. On another vein, ATM classifications of
poch-5 to -10 reveal broad profiles, which match the results reported 
n MD19 except for epoch-7 (where they report a P-Cygni component 
n top of the broad wings). The profile of this latter epoch is clearly
ominated by its emission component, one of the strongest of all the
nalysed spectra. Furthermore, the confirmation of the blue-shifted 
bsorption component in MD19 relied on the simultaneous detection 
f a similar outflow feature in the nearby He I 6678 line; a piece
f information ATM was not trained to identify. Together, they can 
xplain the difference in the classification. 

Epoch-11 is classified as having broad wings by MD19 , but ATM
uggests they can be reproduced as disc profiles. Indeed, visual 
nspection of the spectra shows that the broad wings present until the
revious epoch are much less prominent at epoch-11, which might 
ither fa v our the results from ATM or suggest it is not able to detect
uch subtle features. The remaining part of the data set corresponds
o soft state spectra (except for the last three low-luminosity hard 
tate epochs), and they are classified as disc profiles by both MD19
nd ATM, providing further reassurance on the capabilities of the 
N to not o v erestimate the presence of outflows in the data. This

s consistent with the current picture of outflows not being detected
uring this accretion state in the optical regime (see, e.g. S ́anchez-
ierras & Mu ̃ noz-Darias 2020 ). The only notable exception is the

atest spectrum of the sample (epoch-37, hard state), where ATM 

eveals a broad emission component. It is worth remarking that this
s the highest EW epoch of our sample, and the terminal velocities
f the profile wings are similar to or larger than any of the other
pochs classified as possessing broad wings. Nebular phases have 
een observed in a handful of systems, such as the canonical V404
ygni ( MD16 , MS18 ), GX 339–4 (Rahoui, Coriat & Lee 2014 ),
nd more recently Aquila X-1 (Panizo-Espinar et al. 2021 ). They
re characterized by the presence of a broad emission component 
ypically observed in H α, which becomes particularly prominent 
uring the latest stage of the outburst decay (the so-called low hard
tate). Comparison with the closest spectrum in our sample (epoch- 
6, observed two weeks prior but still during the hard state decay)
hows that the H α line in epoch-37 was remarkably stronger (see
ig. 6 ). The asymmetry on the line core (redshifted from the rest
avelength) also hints towards an underlying emission component. 
hile the feature in J1820 is not as clear as in the aforementioned
orks (where the single-peak nature of the line eases their detection),
e fa v our the ATM classification in this particular case. 

.2.2 He I 5876 

he classification of this line profile results in 58 per cent of disc and
0 per cent blue absorption (as well as a single absorbed spectrum
hat we believe is due to normalization issues). This seems consistent
ith the o v erall reported detection in the original paper, though the

atter also reported two epochs of broad wing components classified 
s blue-absorption profiles by ATM. Unfortunately, the excesses 
iagnostic diagram for this line was not reliable due to the narrowness
f the line profile (with wings extending up to < 1000 km s −1 ), which
ade the red wing cross the continuum within the Na I interstellar

oublet (i.e. limiting our ability to measure EW r values). Therefore, 
he original paper identification relied on visual inspection and 
MNRAS 524, 338–350 (2023) 
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omparison with other epochs to define them as such. Ho we ver, the
gnostic approach of ATM suggests that similarly broad profiles can
e generated using only disc models, as long as a hotspot contribution
s included to account for the line asymmetry. We cannot confidently
laim that broad wings are unambiguously detected. 

Regarding the detection of blue-absorption profiles, they are
ainly detected during the hard state, including all epochs reported

n MD19 . The potential detection of blue absorption by ATM in
poch-8 is interesting. Visual inspection of the data obtained for this
poch, ho we ver, does not show a clear blue absorption in the data.
nstead, the profile for this particular date is remarkably different
rom those of the rest of the outburst: it consists of a single broad
eak, clearly skewed towards blue wavelengths. ATM classification
s actually not particularly conclusive, with a split probability of
0–30 between blue-absorption and disc profiles. We conclude that
his reflects the limitations of the simulated data base to reproduce
uch profiles, rather than a definiti ve outflo w feature. The remaining
etections of blue absorptions by ATM correspond to ambiguous
pectra obtained during the soft state. Previous detections of optical
utflows have been reported during the bright soft intermediate state
see Mata S ́anchez et al. 2021 ; Panizo-Espinar et al. 2022 ), but they
ave yet to be found during the longer-lived soft state. On the other
and, the detection of NIR outflows during most of the outbursts
n this very system (see S ́anchez-Sierras & Mu ̃ noz-Darias 2020 )
ro v es that the y remain at all epochs. Indeed, visual inspection also
uggests the presence of a blue absorption in our highlighted spectra.
evertheless, the ATM probability associated with the classification

s not particularly high (between 40–80 per cent), which combined
ith the lower SNR (due to a combination of lower exposure times

nd the brightness of the system) forbids us from reporting a definitive
onfirmation. 

.3 Additional tests 

e performed a handful of tests to e v aluate the performance and
imitations of the ATM script defined abo v e. A non-e xhaustiv e list
ith the most remarkable among them follows: 

(i) Gaussian disc profiles: we created an independent data base,
here the disc profiles are constructed through the combination of

wo Gaussians. The Gaussian parameters were selected so as to
roduce double-peaked profiles comparable to those observed in
MXBs, and the ML algorithm was trained on this new data base.
egarding the performance on the separation between classes for the

est data set, the results were fundamentally similar to those obtained
ith the disc models described in the paper. This further strengthens

he case for the retrainability of the NN if new, more complex disc
rofiles are proposed in the future. Classification of the observed
pectra produced different outcomes in the final classification for
 number of them, while others remained the same (e.g. most of
he V404 Cygni H α spectra are still classified as being broad or P-
ygni types). We still fa v our using the disc profiles o v er the Gaussian
pproach, as the former are based on a physical description of the
ystem, even if simplified. 

(ii) Universal grism approach: we explore the possibility of
raining the ML classifier on a single data base, which can then
e applied to both R1000B (V404 Cygni) and R2500R (MAXI
1820) spectra. The effect on the spectral resolution parameter is
traightforward to include, as we are already accounting for a range
f broadening values due to the local broadening component (see
ection 2.1.1 ). The different dispersion values for each grism implies

he y are co v ering the same range of velocities with a different step
NRAS 524, 338–350 (2023) 
ize. We created a data base with the thinnest step size out of the two
rism set-ups, and allowed for a high enough range of broadening
alues to co v er both spectral resolutions. After training the NN on
his data base, we applied it to the observed data sets. Application to

AXI J1820 produced fully consistent results with those presented
n the previous section (using the R2500R set-up), as expected due
o the almost identical nature of the data bases. On the other hand,
pplication to V404 Cygni required interpolation of the observed
pectrum (R1000B) to a thinner velocity grid (that of R2500R) before
he ML script could be applied. The o v erall resulting classification is
imilar to that obtained with the NN trained with an adequate grism
et-up. Ho we ver, we found a larger ratio of spectra miss-classified
s absorbed (for H β and He I 5876). This could be an unwanted by-
roduct of the necessary interpolation, which might create artificial
hallow features out of the noise. Taking into account that this effect
ould be even more critical for thinner grids, we fa v our using a NN

rained on the particular observing set-up. 
(iii) Observational uncertainties: when dealing with observational

ata sets, it is reasonable to assume the inherent uncertainties will
imit our outflow detection ability, as shallow features are bound
o smear within the noise. This is indeed a limitation intrinsic to
he observed spectra that the ML technique cannot fully o v ercome.

e accounted for its effect by including the uncertainties into the
imulated spectral flux through the SNR parameter. Nevertheless,
TM remains agnostic to the observed uncertainties when classifying
 particular spectrum. We attempt to e v aluate this ef fect by generating
 set of 100 spectra using a Monte Carlo approach, employing the
bserved spectrum as a seed and the uncertainties on each individual
ux value as the standard deviation (effectively constructing a normal
istribution). The resulting spectra were then classified using the
rained ML algorithm. The classification rate for each type was
eported, ef fecti v ely pro viding an uncertainty in the classification
ue to the observation noise. We applied this method to some
f the spectra where the SNR might have contributed to a more
ncertain classification, and found evenly distributed probabilities
mong a few classes, as expected. When applied to the remaining
pectra, the effect was negligible, and the results were consistent
ith the original classification. Ne vertheless, gi ven that the NN was

lready trained with noisy simulated spectra and that the observed
pectra have the noise information indirectly engraved in their
ux array, we fear double counting of the noise effect might be
t play on the final classification, leading to a too conserv ati ve
pproach. Additionally, the NN itself provides us with a classification
robability value (determined by the final softmax layer). Properly
ccounting for this effect requires the implementation of a Bayesian
pproach. Ne vertheless, gi ven that the classification results were not
ignificantly impacted (except for a handful of low SNR spectra), we
ecided not to pursue this approach further and limit this work to the
efault analysis presented in the previous sections. 

 DI SCUSSI ON  

he pilot study presented in this paper aims to explore the capabilities
f ML techniques in identifying the elusive outflow features in the op-
ical spectra of LMXBs. The trained ATM algorithm produced o v erall
onsistent results with those derived via traditional methods when
pplied to real spectra, co v ering different line profiles and obtained
uring distinct outburst events of different LMXBs. In addition, this
romising ML approach possesses a number of advantages compared
ith the traditional excess diagnostic diagram technique. The latter

ssumes Gaussian-like wings for the accretion disc line profile.
urthermore, it is dependent on the selection of the core mask, which,
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ue to the wide variety of profiles, ultimately relies on the observer’s
ubjective decision and is bound to differ between systems. Finally, 
ecause of this very mask, information about the core of the line
s neglected therefore rendering it extremely difficult to detect low- 
elocity outflow features. On the other hand, ATM can be applied 
o virtually any LMXB e vent, gi ven that the observational set-up
s properly accounted for during the construction of the simulated 
ata base. It inspects the full emission line profile, and it accounts for
nown contaminants in order to minimize false detections. Extension 
o any given instrument and set-up configuration is straightforward, 
s only the spectral resolution and the dispersion of the instrument 
re required, which enables universal application of the script. ATM 

as been designed in a modular way, such that it is easy to explore
ifferent disc profiles than those presented here. That includes 
epartures from the Keplerian distribution of velocities, such as 
dvection-dominated accretion flows (ADAFs; see e.g. Narayan & 

i 1995 ), but also a more physical modelling of hotspot profiles
n the disc. On the other hand, the code can be easily tweaked to
nclude dif ferent outflo w profiles (e.g. based on physical models; 
ee Koljonen et al. 2023 ), allowing us to simulate more complex
eatures, such as boxy profiles (e.g. S ́anchez-Sierras & Mu ̃ noz-Darias 
020 ) or even inflows (e.g. C ́uneo et al. 2020 ). Finally, ATM can
e easily extended to any line in other wavelength ranges (such as
he near-infrared or the ultraviolet), as long as any contaminants 
re properly accounted for. Application to other accreting objects 
xhibiting outflows, such as cataclysmic variables or even quasi- 
tellar objects, is also feasible, though a revision of the theoretical 
odels would be required to accommodate each case. 
At this point, it is worth highlighting a number of limitations of

he ML approach that this pilot study revealed. First, a small number
f spectra were miss-classified as belonging to the absorbed class. 
xploring these particular spectra revealed the origin of this effect in 
 combination of normalization issues and contamination by nearby 
ines, which produced signatures apparently similar to broad absorp- 
ions. The most extreme example is illustrated by our attempts to 
lassify the He II 4686 emission line, which, due to the presence of the 
earby Bowen blend, resulted in a biased classification. Additionally, 
t is worth remarking that the classification of a particular spectrum 

s ultimately conditioned by the data base employed to train the 
lgorithm. As such, any deviations not accounted for in the profile 
imulation might end up generating an incorrect classification of 
he observed spectra. On this regard, domain adaptation techniques 
av e pro v en to be able to mitigate this effect ( ́Ciprijanovi ́c et al.
021 , 2023 ; Huertas-Company et al. 2023 ). Finally, detection of
utliers to flag observed spectra too distinct from the simulated 
ata sets would require a complementary approach using different 
rchitectures better suited for the task (e.g. autoencoders). 

The pilot study presented in this paper has pro v en the success
nd capabilities of ML techniques when applied to our particular 
ase. Our intent is to make ATM open-source to be exploited by the
ommunity. Future plans for ATM before its public release include 
he development of a user-friendly interface, further development to 
pply it to any instrumental set-up configuration (e.g. creating a grid 
f classifiers), and the addition of a utility for outlier detection (to
ighlight profiles not reproduced by the simulated data base). 

 C O N C L U S I O N S  

e present a pilot study aiming to automatically identify outflow 

eatures in LMXB spectra using a new method based on supervised 
L techniques. In order to train and test the performance of the ML

lgorithm, we build a simulated data base containing a million spectra 
ith line profiles based on theoretical disc models. In a fraction
f these, we also injected different types of outflow features in a
raction of them. After application of three different architectures 
o four separate line profiles (H α, He I 5876, H β, and He II 4686),
e conclude that the best performance is attained with the ResNet

lassifier set-up (which we name as ATM), showing an accuracy and
ecall o v er 93 per cent for all the rele v ant profiles. Comparison of the
utflow detection and classification provided by this new technique 
ith that attained via the traditional excesses diagnostic diagram 

howed o v erall consistent results, but with a number of associated
dvantages. First, we remo v e the dependence on the subjectiv e
etermination of a mask for the analysis, as well as enable the
etection of low-velocity outflow features. Secondly, the underlying 
ccretion disc model is now physically moti v ated, and the algorithm
as been designed to ease future implementation of more complex 
nd precise models both for the accretion disc and outflow features.
e also discuss the current limitations of this technique, such as

ts biased performance on heavily contaminated lines or its intrinsic 
ependence on the theoretical models themselves. 
The notable success of ATM at classifying optical spectra for the

wo analysed LMXB outbursts in this pilot study (V404 Cygni and
AXI J1820) paves the way for its application to larger and more

eterogeneous data sets. This tool immediately enables automatic 
etection and classification of outflows in future outburst events, 
s well as it sets the foundations for studies of the whole known
opulation. 
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