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1 Introduction

The quantization of the theory of general relativity is largely an unsolved puzzle despite
steady progress over the last century. It may even be that the question is ill posed in the
sense that we are attempting to quantize a thermodynamic master field. One traditional
manner to nevertheless attack the problem is to reduce the number of degrees of freedom in
the gravitational field even further by diminishing the dimension of space-time [1, 2]. When
we move from four dimensions to three, we render the theory of gravity topological [1–3].
The topological theory still has interesting observables. Moreover, it contains physical
degrees of freedom when we study the theory on a manifold with boundary. Thus, it
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is worthwhile to quantize three-dimensional gravity, preferably in accordance with basic
principles, among which unitarity.

In this paper, we further investigate a concrete proposal to quantize pure gravity with
a negative cosmological constant. Asymptotically AdS3 space-times come equipped with
a conformal boundary which harbours degrees of freedom [4]. These degrees of freedom
interact as in a two-dimensional conformal field theory [5] which we may hope to use as a
definition of pure gravity in three dimensions.

There are various attempts at defining such a theory of pure gravity. Most of these
attempts assume desired properties of the quantum theory of gravity, often gleaned from
string theory. In the three-dimensional case, these properties include that the global AdS3
space-time is dual to a normalizable sl(2,R) ⊕ sl(2,R) invariant ground state of the dual
conformal field theory, that the spectrum of the dual conformal field theory is discrete, has
a number of states that grows with the bare central charge (and therefore explains the
Bekenstein-Hawking entropy of BTZ black holes [6]) and has primary operators with spin —
see e.g. [7, 8] for valiant attempts to realize all of these assumptions in pure gravity. String
theory in AdS3 in the D1-D5 frame does realize all of these assumptions albeit at the cost
of introducing an infinite set of extra fields — it is rather far from being pure.

The enumerated properties are natural desiderata given our current understanding of
semi-classical quantum gravity but for now all concrete theories of pure gravity that meet
these criteria have run into problems in that they fail to satisfy at least some fundamental
properties of conformal field theory like invariance under large diffeomorphisms, its existence
on general Riemann surfaces, or unitarity (see e.g. [8, 9] as well as e.g. [10]). Since the
space of two-dimensional conformal field theories is large, the existence of a pure theory
of gravity with all the above properties is surely not excluded. See e.g. [11] for the recent
observation that a consistent toroidal partition function is attainable if one includes certain
string states in the bulk spectrum, to name but one open avenue for further exploration. In
other words, it is clear that we have not yet exhausted the entire set of search directions
but it is also fair to say that we have not yet found a single theory that satisfies the full
ambitious list of requirements.

In this work, we further study the very different possibility of using the unitary Liouville
conformal field theory on the boundary of the space-time [12] as a definition of a unitary
theory of pure gravity with negative cosmological constant [13]. The properties of the
resulting quantum theory of gravity are then entirely distinct [13] and isolated from the
string theory examples that we cherish. Let us enumerate in which manner this proposal is
radically different and argue as in [13] why this remains a reasonable alternative.

Firstly, there may be a contradiction in terms in the desire for a quantum theory of pure
gravity which is statistical mechanical in nature. Indeed, pure gravity may match rather a
thermodynamic description of gravity and quantizing it would lead to an effective quantum
thermodynamical theory, but not a statistical mechanical description of all dynamics. See
e.g. [14] for a discussion of this old insight. One general indication that this will be so is
that pure gravity in anti-de Sitter space-time only has metric degrees of freedom in the bulk
and therefore only energy-momentum tensor degrees of freedom on the boundary. This is
far too few degrees of freedom to describe the degrees of freedom encoded in the discretized
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spectrum of a black hole. In three dimensions, the gravitational multiplet only gives an
effective central charge of one, despite the large semi-classical bare Brown-Henneaux central
charge. Thus in quantizing pure gravity only, we are bound to have to give up some if not
all of our desiderata. Secondly, while the existence of a sl(2,R) ⊕ sl(2,R) invariant ground
state is generally accepted in both boundary and bulk in the AdS3/CFT2 correspondence, it
is not to be taken for granted. Indeed, two-dimensional conformal field theories exist with a
non-normalizable sl(2,R) ⊕ sl(2,R) invariant state. In a holographic spirit, we should then
immediately entertain the possibility that quantum theories of AdS3 gravity may exist that
have no normalizable global AdS3 ground state. String theory provides such dual pairs [15],
giving a strong independent argument for this possibility. The dual to Liouville theory would
be such an example as well. Similarly, there are conformal field theories that have no primary
states with spin and again we may ask whether they can be holographic. We propose they
can be and that therefore there are theories of three-dimensional gravity in which black
holes with spin are absent as primary states. This is not to say that these theories have no
states with spin — rather all the spin of all states is coded in descendants (which we may
think of as boundary gravitons). Thirdly, we repeat that pure three-dimensional gravity
has no propagating degrees of freedom and that there is therefore no local Hawking pair
creation at the horizon of a black hole in such a theory. Most of the statistical mechanical
interpretation of black holes then becomes tentative at best and therefore so does the
discreteness of the spectrum and the Cardy growth of black hole states. In any case, it is
clear that the Liouville proposal for a quantum theory of three-dimensional gravity while
self-consistent (and in particular, modular invariant, crossing symmetric and unitary), will
not provide a statistical mechanical picture of black hole entropy [13]. It is an isolated
theory of quantum gravity of a novel type with surprising features which can be interpreted
as lethal by its detractors and interesting by those willing to interpret Liouville theory as
a consistent description of a bulk theory of gravity. Alternatively, we may think of it as
capturing universal features of three-dimensional gravity in a unitary manner.

In any case, we believe we should explore further the possibility of a pure theory of
three-dimensional gravity with a negative cosmological constant that satisfies the full list
of desiderata above, as well as pursue the second endeavour of studying Liouville or other
self-consistent proposals for theories of gravity with different features. Our paper is framed
in the second manner, in the vain of [13]. Most technical results of our paper, however, are
independent of this framework and can be taken on their own merit.

In order to pursue the second possibility, we need to come to terms with various features
of the link between Liouville theory and Einstein gravity. The first feature is that the
standard link leads to an unstable boundary Liouville theory [12, 16]. A second aspect that
we wish to master is the off-shell equivalence of the theories at the quantum level. To these
ends, we exploit the literature on the subject and complement it where necessary.

The plan of the paper is as follows. In section 2 we briefly review the Chern-Simons
formulation of three-dimensional gravity. We point out an important ambiguity in its
definition due to the existence of an outer automorphism of the Lie algebra sl(2,R). In
section 3 we review the classical equivalence between various formulations of the Chern-
Simons theory of gravity with negative cosmological constant. We clarify the gauge

– 3 –



J
H
E
P
0
9
(
2
0
2
3
)
0
9
3

symmetries of the model on a manifold with boundary and the role of the outer automorphism
in determining the conformal field theory on the boundary, and its stability. We moreover
provide a detailed map between on the one hand, the space of classical solutions which gives
rise to the Hilbert space of the quantum Liouville theory after quantization and on the other
hand, a definite subset of metric solutions to Einstein gravity. Finally, in section 4 we exploit
the preparatory work to provide more details on the quantum equivalence of a unitary
theory of gravity with negative cosmological constant in three dimensions and the Liouville
conformal field theory. We conclude in section 5 with a recap of the distinct features of
this quantum theory of gravity and indications on how it might be put to use to analyze
features of quantum gravity in general, or of this theory of quantum gravity in particular.

2 Three-dimensional gravity with a twist

We briefly recall the Chern-Simons formulation of three-dimensional gravity [3, 17]. We
point out an important ambiguity in the map between the dreibein and the spin connection
on the one hand and the Chern-Simons fields on the other, rooted in an outer automorphism
of the Lie algebra sl(2,R).

2.1 The metric and the Chern-Simons theories

The metric g is related to a dreibein one-form e = eata through:

g = 2 Tr(e ⊗ e) , (2.1)

where the trace is normalized such that 2 Tr(tatb) = ηab. In three dimensions, the spin
connection ω can be dualized to a sl(2,R) Lie algebra valued one-form ω = ωata. The
action SCS of Chern-Simons theory with gauge field A is:

SCS [A] = k

4π

∫
d3x Tr

(
A ∧ dA + 2

3A ∧ A ∧ A

)
. (2.2)

The gauge algebra considered in the Chern-Simons formulation of three-dimensional gravity
with a negative cosmological constant is sl(2,R) ⊕ sl(2,R). The Riemann-Hilbert action
can be identified with the difference of two Chern-Simons actions, each with gauge algebra
sl(2,R) [3, 17]:

SCS [AL, AR] = SCS [AL] − SCS [AR] , (2.3)

where k is classically related to the radius of curvature l and the Newton constant G through
the relation k = l/(4G). Before we define the gauge fields AL,R in terms of the dreibein e

and spin connection ω, we need to discuss an aspect of the gauge algebra that gives rise to
an ambiguity in the identification.

2.2 An outer automorphism

The sl(2,R) Lie algebra has automorphism group PGL(2,R). The group PGL(2,R) has
two components. The identity component coincides with PSL(2,R). The elements with
negative determinant make up a second component. In the two-dimensional, fundamental
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representation of the Lie algebra sl(2,R) which we specify in appendix A, we can define an
element α of the second component through conjugation of the Lie algebra elements by the
PGL(2,R) matrix

hα =
(
−1 0
0 1

)
. (2.4)

The PGL(2,R) group element hα has determinant minus one. For a sl(2,R) Chern-Simons
theory, we can consider various gauge groups, like G = PSL(2,R) = SO(2, 1), SL(2,R), or
its universal cover ˜SL(2,R). In all these cases, the outer automorphism α generates a global
Z2 symmetry of the theory.

2.3 The Chern-Simons formulations of gravity

The traditional identification between the Chern-Simons fields AL,R and the dreibein e and
spin connection ω is:

AL = ω + e

l

AR = ω − e

l
. (2.5)

It is important for our purposes that another choice is equally natural. We can identify:

AL = ω + e

l

α(AR) = ω − e

l
, (2.6)

where α(AR) equals the connection AR after the action of the outer automorphism α, i.e.
α(AR) = hαARh−1

α . The metric then either takes the form:1

gId = 1
2 Tr((AL − AR) ⊗ (AL − AR)) (2.7)

or
gα = 1

2 Tr((AL − α(AR)) ⊗ (AL − α(AR))) . (2.8)

These expressions differ. While α is a global symmetry of either of the Chern-Simons
theories separately, it plays an important role when we define non-chiral quantities. The
metric g is an example of such a non-chiral object. In the analysis that follows, we will
mostly study the left and right chiral theories separately. However, we will always keep in
mind the possibility to twist one of the two chiral theories by an outer automorphism. This
will have important consequences for our interpretation of the combination of the chiral
theories as a theory of gravity.

3 Classical three-dimensional Liouville gravity

General relativity with negative cosmological constant and AdS3 boundary conditions has
been related to Liouville theory on the boundary [12]. We review this relation in this section.

1In the following we often set l = 1 for convenience.
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Liouville Theory

Null Gauged Wess-Zumino-Witten

Chiral and Anti-chiral Null Gauged Wess-Zumino-Witten

Two Chern-Simons Theories with Extended Boundary Conditions

Einstein-Hilbert Theory in Asymptotically AdS3

Figure 1. The path from boundary to bulk and back in Liouville pure three-dimensional gravity
with negative cosmological constant.

We emphasize the implementation of the boundary conditions by integrating over Lagrange
multiplier gauge fields and how these give rise to gauge symmetries on the boundary. We
identify the boundary conditions corresponding to a conformal class of boundary metrics
and remark on their similarity to opers. We moreover identify the subset of classical
solutions which are quantized in Liouville theory. The whole of the analysis is geared
towards clarifying the equivalence of a quantum Liouville theory and a three-dimensional
theory of gravity in the bulk.

Since this section contains a large number of stepping stones that relate the boundary
Liouville theory to the bulk Einstein-Hilbert theory of gravity [12], it may be useful to have
the schematic plan of the list of theories in mind. We cycle through the equivalences from
top to bottom in figure 1. At each step we keep track of the gauge symmetries that play a
crucial role. We also carry along a large set of classical solutions and list them in particular
gauges for each theory. We wind up with a particular subset of asymptotically AdS3 metric
solutions to Einstein-Hilbert gravity that form the classical phase space of our quantum
theory of gravity [13].

3.1 Liouville theory

We start out by considering a Liouville conformal field theory on the two-dimensional
plane [18, 19]. It is a unitary theory with consistent spectrum and three-point functions
that determine the full theory on any Riemann surface [20–22].2 The action of the Liouville
scalar field ϕ is:3

SLiouville = 1
2π

∫
d2x

(1
2 ∂+ϕ ∂−ϕ − M exp

√
2bϕ

)
. (3.1)

2Moreover, it is important to realize that it is hard to modify either the spectrum or the three-point
functions in a manner respecting conformal field theory axioms. See also the bootstrap [23] for arguments in
favour of the uniqueness of the theory. The analytic uniqueness arguments are strongest for values of b2

which are irrational.
3Our light-cone coordinates are defined through the relations x± = t ± x.
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We assume that there is a linear dilaton coupling to the two-dimensional curvature tensor
which gives the theory a central charge c = 1 + 6Q2 where Q = b + b−1. The exponential
potential is marginal in the quantum theory. The constant M can be absorbed through a
shift of the Liouville field ϕ such that only its sign is important.4 The equation of motion
for the scalar field ϕ is the Liouville equation:

∂+∂−ϕ +
√

2bMe
√

2bϕ = 0 . (3.2)

The classical Liouville solutions. The general solution to the Liouville equation can
be parameterized in terms of two monotonic functions F (x+) and F̃ (x−) of the light-cone
coordinates x± [18]:

e
√

2bϕ = 1
b2M

F ′F̃ ′

(1 + FF̃ )2 , (3.3)

where the prime denotes a derivative with respect to the argument of the functions. The two
functions F and F̃ must have a product of derivatives which has the sign of the parameter
M in the action since the field ϕ is real and its exponential is positive. This is the large set
of classical solutions that we will track along our road through various reformulations of
the classical theory.5

3.2 The null gauged Wess-Zumino-Witten model

The Liouville conformal field theory is equivalent to a null-gauged Wess-Zumino-Witten
model [24, 25]. The Lagrangian of the gauged model is [25]:

SGW ZW [g, CL, CR] = SW ZW [g] + k

π

∫
d2x

{
CL

(
(∂+g g−1)− − µ

)
− CR

(
(g−1∂−g)+ − ν

)
− Tr

(
CLt+gCRt−g−1

)}
,

(3.4)

where g is a SL(2,R) group-valued field and CL,R are gauge fields in the null directions
t± inside the algebra sl(2,R).6 We have used the t− component of the current ∂+gg−1 =
(∂+gg−1)ata in the action and the constant µ can also be thought off as lying in the t−
direction of the Lie algebra. The gauge field CL couples to the current that generates the
left chiral symmetry while the gauge field CR couples to the right algebra. The quantum
central charge of the model with improved energy momentum tensor (and ghosts for gauge
fixing) is c = 3k/(k − 2) − 2 + 6k = 1 + 6(

√
k − 2 + 1/

√
k − 2)2 — see e.g. [26]. We can

pick the relation b−1 =
√

k − 2 (which is one out of four choices) between the Liouville
parameter b and the level of the Wess-Zumino-Witten model. The action SW ZW [g] is the
standard Wess-Zumino-Witten action:

SW ZW [g] = k

2π

∫
d2x Tr

[
g−1∂+gg−1∂−g

]
+ k

12π

∫
d3x Tr

[
(∗ĝ−1dĝ)3

]
(3.5)

4We consider the cases M ̸= 0.
5It is a larger set than the classical phase space we quantize — we will restrict to the appropriate subspace

at the end of this section.
6See appendix A for our conventions for the Lie algebra generators.
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where ĝ is an extension of g over a three-dimensional space-time with boundary equal to
our two-dimensional space-time and we pull back the one-form through the group valued
map. We will use the notation SW Z(ĝ) for the second (Wess-Zumino) term. The action is
gauge invariant under the transformations [25]:

g → αgβ−1

CL → αCLα−1 + α∂−α−1

CR → βCRβ−1 + β∂+β−1 (3.6)

where we have local group valued gauge parameters α = eα+t+ and β = eβ−t− .
To connect this theory to Liouville theory, we Gauss decompose the group SL(2,R).

Any element g of SL(2,R) can locally be written as:

g = exp(xt+) exp
(√

2bϕ t2
)

exp(yt−) . (3.7)

The left gauge transformation thus translates the group coordinate x at will, while the right
multiplication translates the field y. Only the field ϕ is physical. To see the equivalence to
the Liouville theory, we choose the gauge CL,R = 0 in which the equations of motion read:

∂+(g−1∂−g) = 0 (3.8)

Tr
(
t+∂+g g−1

)
= µ (3.9)

Tr
(
t−g−1∂−g

)
= ν . (3.10)

In coordinates, after eliminating the fields x, y through their constraints, we find the equation
of motion for the Liouville field (3.2) under the identification:

b2M = µν . (3.11)

This shows the classical equivalence of the models.

The null gauged classical solutions. The classical solutions to Liouville theory take
on a simple form in the gauged Wess-Zumino-Witten model and can be derived simply in
the latter [24]. The most general solution of the model in the CL,R = 0 gauge is:

g(x+, x−) = g+(x+) g−(x−) , (3.12)

where g+ and g− are chiral SL(2,R)-valued functions satisfying the constraints (3.9)
and (3.10). After Gauss decomposition of the left and right group valued functions,
the constraints (3.9) and (3.10) read:

∂+y+ = µe
√

2bϕ+ , ∂−x− = νe
√

2bϕ− . (3.13)

We can solve for the on-shell Liouville chiral fields ϕ±:
√

2bϕ+ = log
(
y′+/µ

)
,

√
2bϕ− = log

(
x′
−/ν

)
. (3.14)
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The general solution g to the gauged Wess-Zumino-Witten model is thus fully parameterized
by two chiral functions y+ and x−. The ϕ field in the Gauss decomposition of the group
valued function g is identified with the Liouville field and reads:

e
√

2bϕ = 1
b2M

y′+x′
−

(1 + y+x−)2 . (3.15)

The solution to the gauged model depends on a choice of gauge. It will be convenient for us
to work in a gauge where the following equations hold:

x+ = −
y′′+

2µy′
+

, y− = −
x′′
−

2νx′
−

. (3.16)

From the Wess-Zumino-Witten solution (3.12) this gauge is reached through the transfor-
mation with gauge parameters:

α = exp
[
−
(

x+ +
y′′+

2µy′
+

)
t+

]
, β = exp

[
−
(

y− +
x′′
−

2νx′
−

)
t−

]
. (3.17)

The constraints, the currents and the choice of gauge CL,R = 0 are invariant under these
residual chiral gauge transformations. After fixing the gauge in the manner described, we
can extract a solution to the Wess-Zumino-Witten model from a Liouville field through the
identification y+ ≡ F and x− ≡ F̃ :

g =
√

µν

F ′F̃ ′

2(F ′)2 − FF ′′

2µF ′ − F ′′

2µF ′

F 1




2(F̃ ′)2 − F̃ F̃ ′′

2νF̃ ′ F̃

− F̃ ′′

2νF̃ ′ 1

 . (3.18)

Thus, we proved the classical equivalence along the first step in figure 1 and we tracked a
large set of classical solutions.

3.3 Chiral gauged Wess-Zumino-Witten models

The next step we take towards the chiral Chern-Simons actions is to divide the non-chiral
Wess-Zumino-Witten model (3.4) into a purely left- and a purely right-moving gauged Wess-
Zumino-Witten model. This intricate process is reviewed in appendix B. See also [27, 28].
The upshot is that we have a chiral and an anti-chiral gauged model with fields (gL, gR)
related to the field g through the identification

g = gLgR , (3.19)

and with chiral actions:

SL[gL, CL] = k

2π

∫
d2x Tr

[
g−1

L ∂−gLg−1
L ∂xgL

]
+ SW Z(ĝL)

+ k

π

∫
d2x Tr

[
CL((∂xgLg−1

L )− − µ)
]

(3.20)
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and

SR[gR, CR] = − k

2π

∫
d2x Tr

[
g−1

R ∂+gRg−1
R ∂xgR

]
+ SW Z(ĝR)

+ k

π

∫
d2x Tr

[
CR((g−1

R ∂xgR)+ + ν)
]

.

The split of the Wess-Zumino-Witten field leaves its imprint on the chiral fields through
the local multiplication symmetry

gL → gLk−1

gR → kgR , (3.21)

where k(x+, x−) is an arbitrary group valued function. Indeed, the split has a large degree of
arbitrariness. One way to summarize these facts is to say that the action SGW ZW describes
the same theory as the action SL+SR with the left-multiplication symmetry (3.21) gauged [27,
28]. We therefore postulate throughout that the latter symmetry is indeed gauged.

Chiral gauged classical solutions. On-shell, there is a canonical split of the left and
right chirality group elements, modulo a constant group element. It is already exhibited
in the solution for the group valued map (3.18). Applying the split to our set of classical
solutions, we find solutions to the chiral gauged Wess-Zumino-Witten models:

gL =
√

µ

F ′


2(F ′)2 − FF ′′

2µF ′ − F ′′

2µF ′

F 1

 , gR =
√

ν

F̃ ′


2(F̃ ′)2 − F̃ F̃ ′′

2νF̃ ′ F̃

− F̃ ′′

2νF̃ ′ 1

 . (3.22)

We have ignored possible subtleties with the square root — if necessary one adds a sign
in both the left-moving and right-moving square roots. Once more it is possible to check
directly that these configurations solve the equations of motion of the chiral models.

3.4 Two Chern-Simons theories

The third step in figure 1 — see also [12] — is to exploit the relation between chiral
Wess-Zumino-Witten models on a two-dimensional boundary and Chern-Simons theories
on a three-manifold [29, 30]. To that end, we introduce a radial coordinate r that moves
inside a three-dimensional space-time and that goes to infinity as we approach the boundary.
We wish to extend our two-dimensional group valued fields gL and gR into the bulk. The
chiral Wess-Zumino-Witten actions can be rewritten as the difference of two Chern-Simons
actions, each with gauge algebra sl(2,R) on a three-manifold M whose boundary ∂M is
the two-dimensional space-time Σ we started out with. To prove the equivalence, and to
connect to the gravity theory later on, we assume particular boundary conditions on the
left and right fields. On the left, one boundary condition will be

AL,− =|∂ 0 (3.23)
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and on the right
AR,+ =|∂ 0 . (3.24)

These boundary conditions which set to zero a component of the gauge field along the
boundary guarantee that the variational principle for the Chern-Simons theory on a manifold
with boundary is well-defined [30]. Given these boundary conditions, for the left-moving
action, it is convenient to define the new coordinates:

(t′, x′, r′) = (t, x + t, r) . (3.25)

The boundary condition (3.23) is then transformed into the more traditional boundary
condition A′

t′ = 0 which allows us to directly recuperate the result for the Chern-Simons
action on a manifold with boundary written in terms of a chiral Wess-Zumino-Witten
model [30]:

SCS [AL] = SW Z(ĝL) + k

4π

∫
∂M

Tr(g−1
L ∂x′gLg−1

L ∂t′gL) , (3.26)

where the other gauge field components

ÃL = −d̃ĝLĝ−1
L (3.27)

solve the Gauss constraint and the quantities with a tilde refer to the x′ and r′ directions
only. The map ĝL is a three-dimensional extension of the boundary map gL. In the original
coordinates, we then have:

SCS [AL] = SW Z(ĝL) + k

2π

∫
∂M

Tr(g−1
L ∂xgLg−1

L ∂−gL) = SL[gL] , (3.28)

where the last action is the chiral Wess-Zumino-Witten model action.
The boundary term in (3.20) proportional to the gauge field CL comes along for the

ride. The result is independent of the extension ĝL of the group valued field gL to the
three-dimensional bulk. For the right action, we set:

ÃR = ĝ−1
R d̃ĝR . (3.29)

This gives the relation:
SCS [AR] = −SR[gR] (3.30)

between the Chern-Simons and the anti-chiral Wess-Zumino-Witten action. In short, we
find the equality:

SL[gL,CL]+SR[gR,CR] = SCS [AL]−SCS [AR]+ k

π

∫
∂M

d2x (−)CL

(
A−

L,x+µ
)

+CR

(
A+

R,x+ν
)

.

Let us briefly comment on how global and gauge symmetries interplay in the various
formulations of our theory. The gauge symmetries of the Chern-Simons theory became
global symmetries on the boundary. The null algebras that we gauge on the boundary are
embedded in these global symmetry algebras. On the other hand, the boundary gauge
symmetry we use to glue the chiral and anti-chiral Wess-Zumino-Witten models is a hidden
gauge symmetry of the combination of Chern-Simons theories on a manifold with boundary,
restricted to an appropriate set of observables.
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The asymptotics. The next stage is a more subtle and important step. Firstly, we slightly
move our boundary into the bulk towards r−1 = ϵ > 0 where ϵ can later be interpreted as a
bulk infrared cut-off. Secondly, we perform formal radial gauge transformations

AL → h−1
L ALhL + h−1

L dhL (3.31)
AR → h−1

R ARhR + h−1
R dhR (3.32)

with gauge parameters

hL =
(√

r 0
0 1√

r

)
, hR =

( 1√
r

0
0

√
r

)
(3.33)

which are everywhere well-defined on the manifold with cut-off. This has the effect of
redefining the group valued radial extension:

GL =
( 1√

r
0

0
√

r

)
ĝL, GR = ĝR

( 1√
r

0
0

√
r

)
. (3.34)

The gauge transformation leaves the boundary condition A′
t′ = 0 invariant and therefore

also our previous reasoning that links the Chern-Simons and the chiral Wess-Zumino-Witten
actions. The gauge transformation induces a boundary term at the infinite past and future
that influences the description of the asymptotic states, but it will not influence the theory
on the radial boundary of the infinite cylinder. The formal gauge transformation does allow
us to reproduce the asymptotics of AdS3, in particular in the Fefferman-Graham gauge [31].
Indeed, originally, we start out with an asymptotic behaviour near the boundary at r = ∞
of the form

AL,r = 0 , AL,− =
(

0 0
0 0

)
, AL,+ =

(
0 O(1)
−µ 0

)
. (3.35)

One can check that these boundary conditions are consistent with the equations of motion
which require that the Chern-Simons connections be flat and do correctly implement
the boundary condition, the constraint and the fixing of the bulk and boundary gauge
symmetries. If we then perform the radius dependent gauge transformation (3.34), we
create a radial asymptotics AL,r = t2/(2r) and AR,r = −t2/(2r) at large r. In this gauge
for AL,r, the boundary conditions and radial behaviour can be summarized as:

AL ∼

 dr

2r
O(1/r)

−µrdx+ −dr

2r

 , AR ∼

 −dr

2r
νrdx−

O(1/r) dr

2r

 . (3.36)

This matches the AdS3 boundary conditions [12]. We add the observation that the right
upper entry of AL is proportional to dx+ only, to order O(1/r). This is true in the Chern-
Simons formulation of the theory because the variational principle for the Chern-Simons
action must be well-defined in the presence of a boundary. By the transformation of the
components of the boundary gauge fields, the actions become:

SL[AL] = SCS [AL] − k

π

∫
d2x[CL(A−

L,+ + µ r)] (3.37)

SR[AR] = SCS [AR] + k

π

∫
d2x[CR(A+

R,− − ν r)] . (3.38)
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Finally, we note that these boundary conditions are a close cousin to an oper. Indeed, the
boundary conditions:

Aop,r = 0 , Aop,− =
(

0 0
0 0

)
, Aop,+ =

(
0 0
−µ 0

)
(3.39)

were gauge transformed precisely in the manner above and discussed in [32] in gauge invariant
terms. We note that the double pole in asymptotically AdS metrics [33], which are directly
related to the fact that the boundary carries a conformal class of metrics, is translated in
the (’square root’) Chern-Simons formulation as a simple pole boundary behaviour. The
polar boundary conditions above may thus also allow for an invariant formulation of AdS
boundary conditions in the Chern-Simons formulation of three-dimensional gravity.

The equations (3.36) define the set of allowed configurations in the gravitational theory.
A crucial point is that all the gravitational configurations in our phase space are gauge
inequivalent with respect to all the gauge symmetries discussed in the previous section.

The Chern-Simons classical solutions. Finally, when we trace the classical solutions
to the bulk Chern-Simons theory after the radial gauge transformation, we end up with the
flat connections:

AL =

 dr

2r
{F,x+}

2µr dx+

−µr dx+ −dr

2r

 , AR =

 −dr

2r
νr dx−

−{F̃ ,x−}
2νr dx− dr

2r

 . (3.40)

In these matrices, the curly brackets { , } stand for the Schwartzian derivative:

{F (x+), x+} = 2F ′F ′′′ − 3(F ′′)2

2(F ′)2 . (3.41)

Note that we have taken AL,− and AR,+ to vanish in the above. Given the other components
of the gauge fields, this is necessary to satisfy the equations of motion of the Chern-Simons
theories. We turn to the final step in figure 1 which is to translate these Chern-Simons
fields into the metric theory of gravity.

3.5 The Einstein Hilbert theory

The Einstein-Hilbert theory of pure gravity has a classical equation of motion that demands
that the metric in vacuum be Ricci flat. Moreover, one assumes that the connection
has zero torsion. Under the field re-definitions (2.5) or (2.6) between the dreibein e, spin-
connection ω and the gauge fields AL,R, these conditions are equivalent to the zero curvature
equations of motion of the Chern-Simons theory. Thus, the classical theories are once more
equivalent [3, 17]. Moreover, the boundary conditions on the Chern-Simons theories lead to
a prescribed asymptotic behaviour for the boundary metric [12]. We stressed in section 2
that in the identification between Chern-Simons gauge fields and the bulk metric, an outer
automorphism plays an important role. It is finally time to prove this at the hand of the
classical solutions and to discuss how it even affects the stability of the theory.

– 13 –



J
H
E
P
0
9
(
2
0
2
3
)
0
9
3

The classical solutions of gravity with a negative cosmological constant. We can
identify the classical solutions of gravity that correspond to the solutions (3.3) of Liouville
theory. We compute the metrics (2.7) and (2.8) by plugging in the on-shell Chern-Simons
fields (3.40):

ds2
Id/α = l2

r2 dr2±µν

(
r2+ 1

r2
L(x+)

µ2
L̃(x−)

ν2

)
dx+dx−+L(x+)(dx+)2+L̃(x−)(dx−)2 (3.42)

where the tensor components L and L̃ are:

L = −1
2{F, x+} , L̃ = −1

2{F̃ , x−} . (3.43)

The upper sign in equation (3.42) corresponds to the choice of identity automorphism while
the lower sign corresponds to the choice of outer automorphism α. Only the sign of µν

plays a role in the metric — its absolute value can always be absorbed in the coordinates
x+, x− and the functions L, L̃, or shifted freely by a Liouville field redefinition. Note that
even the leading asymptotic behaviour and therefore the boundary metric itself depends
on the choice of outer automorphism α. The functions L and L̃ appearing in the metric
are the components of the stress-energy tensor of Liouville theory. Indeed, plugging the
solutions (3.3) in the stress-energy tensor, one finds:

T++ = − 1
2b2 {F, x+} = L

b2 , T−− = L̃

b2 . (3.44)

The fact that fluctuations around the AdS metric can be parameterized in terms of a (e.g.
Liouville) stress-energy tensor is well-known [34].

3.6 The stability and the metric

We combine the facts we reviewed about the classical relation between Liouville theory, Wess-
Zumino-Witten models, Chern-Simons theories and Einstein gravity with our observation
in section 2.2 on the ambiguity in the definition of the Chern-Simons formulation of gravity.
This allows us to make a crucial observation. If we wish our asymptotic metric (3.42) to
take a standard AdS3 form in which the boundary time is identified with the Liouville time
t, then the product µν = b2M needs to be negative if we choose our automorphism to be
the identity and it needs to be positive for the choice of a non-trivial outer automorphism α.
In other words, in order for the classical Liouville theory to be stable and the metric theory
to be asymptotically AdS3 with a standard induced boundary time, we must choose the
Chern-Simons formulation of gravity with the non-trivial outer automorphism identification.
This is a crucial observation.

Let us briefly discuss proposals that would render the theory with the identity automor-
phism internally consistent. An existing proposal is to perform a non-local field redefinition
in Liouville theory in order to flip the sign of the potential [16]. Unfortunately, even if one
could track the field redefinition in the quantum path integral, this is bound to interfere
with the unitarity of the boundary theory since the operation relates a potential which is
bounded from below to one that is unbounded from below. Another proposal is to perform
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an analytic continuation in the parameter M . Correlators in Liouville theory have a very
mild dependence on this parameter and one may be optimistic that one can implement
such an analytic continuation, but again, one would need to continue the unitary structure
of the theory as well. Finally, one can act on the gravitational side of the analysis and
propose an analytic continuation of all metrics in the radial coordinate, r → ir. That too is
an interesting option.

In this paper, we will stick to identifying the Chern-Simons and gravity formulations
using the non-trivial outer automorphism α, guaranteeing the stability and the unitarity of
the boundary Liouville theory.

3.7 The classical solutions with hyperbolic monodromy

Our boundary Liouville conformal field theory is equipped with a unitary Hilbert space with
fixed spectrum [22]. The Hilbert space corresponds to the quantization of a well-defined
subset of classical solutions. Since we wish to define our bulk theory of gravity in terms of
the boundary Liouville conformal field theory, we will accept that our bulk theory of gravity
is a quantization of a definite subset of bulk metric solutions. It is certainly interesting in
the context of attempts to quantize gravity to explicitly state which subsets of metrics this
is. The solutions that give rise to the quantum Hilbert space of Liouville theory are those
with hyperbolic monodromies. Thus, we follow these solutions along our equivalence maps
and state which on-shell metrics correspond to Liouville solutions with these monodromies.

The primary hyperbolic solutions for a space-time with cylindrical boundary are given
in terms of the chiral functions — see e.g. [19]:

F = exp
(
ax+

)
, F̃ = exp

(
ax−) . (3.45)

To obtain a periodic Liouville field on the cylinder, it is crucial that the left and right
monodromy a be equal. These correspond to tensors:

L = a2

4 , L̃ = a2

4 . (3.46)

For completeness, we review how these metrics are related to the BTZ black holes [35]. In
Fefferman-Graham coordinates [31], the BTZ metric reads:

ds2 = dρ2

ρ2 − ρ2

4

(
dx+ − (r+ − r−)2

ρ2 dx−
)(

dx− − (r+ + r−)2

ρ2 dx+
)

. (3.47)

This is identical to the metric solution (3.42) with outer automorphism α when we identify
the parameters as:

L = (r+ + r−)2

4 = a2

4

L̃ = (r+ − r−)2

4 = a2

4 . (3.48)

Thus, the primary hyperbolic solutions have zero spin [13], as do the primaries in the
Liouville theory spectrum, and they correspond to BTZ metric solutions with mass

M = r2
+ = a2 . (3.49)
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The energy-momentum tensor of Liouville theory as well as the energy-momentum tensor
in the gravity solution equals

T++ = a2

4b2 (3.50)

in the classical limit.
We can moreover use the Bäcklund transformation from Liouville theory to a free

field theory to parameterize the Liouville energy-momentum tensor in terms of a free field
energy-momentum tensor (supplemented with a linear dilaton). The hyperbolic monodromy
becomes the momentum of the free field while the boundary gravitons correspond to Fourier
modes excited in the free field energy-momentum tensor.7 Thus, we know exactly which
space of classical Liouville solutions corresponds to the quantum Hilbert space and are able
to translate this space into a set of classical solutions of three-dimensional gravity: they are
the BTZ black holes with positive mass dressed with boundary gravitons [13].

4 Liouville three-dimensional quantum gravity

In this subsection we review and complete the evidence that the classical equivalences we
tracked can be promoted to dualities of the quantum theories. Most of the individual
links between theories are known [12], but the detailed chain of reasoning that leads to an
equivalence between three-dimensional gravity and Liouville theory in the quantum theory
deserves a review.

4.1 From Liouville to chiral Wess-Zumino-Witten models

Firstly, we discuss the quantum incarnation of the first step in our equivalence path drawn in
figure 1. A generic reasoning at each step is to state that the classical solution spaces that we
identified (consisting of primary hyperbolic monodromies and descendants, or equivalently,
of black holes dressed with boundary gravitons) are identical, that the symplectic forms
coded in their equal actions are the same and that therefore we can choose an equivalent
quantization for all of these phase spaces. This is a solid reasoning to identify the Hilbert
spaces and through the action, the interactions as well. Our discussion of the individual
steps fleshes out this sturdy skeleton.

The path integral equivalence of the Liouville and the null gauged Wess-Zumino-Witten
model ∫

dgdCLdCReiSGW ZW [g,CL,CR] =
∫

dϕeiSLiouville[ϕ] (4.1)

was discussed in great detail in [40, 41]. Keeping careful track of the measures in the path
integration indeed gives rise to the quantum mechanically exact identification

√
k − 2 = b−1 (4.2)

of the respective coupling constants in the actions. It is possible to further improve on this
path integral calculation of the partition function [40, 41] by performing the computation in
the presence of gauge invariant insertions. For this analysis, it may well be useful to exploit

7Details of this fact are discussed in the periodic case i.e. of a cylindrical boundary in e.g. [36, 37].
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the map between the Euclidean H+
3 and Liouville conformal field theory correlators [38], in

particular in its path integral derivation [39] as a starting point for the null gauging. The
correspondence involves the standard map between sl(2,R) spins j = 1/2 + is and Liouville
momenta α = Q/2 + ip:

p = s/
√

k − 2 . (4.3)

The second step which involves the splitting of the (gauged) Wess-Zumino-Witten
model into two chiralities is also discussed in great detail in the literature in the path
integral formalism in [27] and includes a careful discussion of the gauge symmetry in [28].
Indeed, these references show that the classical treatment in our appendix B can be carried
over to the quantum path integral. The basic but central observation is that the following
path integrals match:∫

dgLdgR

Gauge Group VolumeeiSW ZW [gLgR] =
∫

dgeiSW ZW [g] . (4.4)

The only small difference in our quantum equivalence between chiral and non-chiral models
is that we have a null gauge symmetry, but the adaptation is entirely straightforward.
To claim this though, our off-shell treatment of the splitting procedure in appendix B is
paramount, and this is one crucial distinction between our analysis and those performed
previously. It is important to note that the gluing gauge symmetry ensures that the spin j

in the gauged Wess-Zumino-Witten model is diagonal, as is the Liouville momentum p in
the Liouville path integral.8

Moreover, the (Lagrangian) path integral splitting is complemented by a Hamiltonian
Drinfeld-Sokolov reduction procedure that leads to the same quantum equivalence of theories.
The latter manifestly matches the quantum Virasoro symmetries of the models [26] and
the equivalence then boils down to a matching of the spectrum and correlation functions
which has been analyzed in detail in the literature [26, 38, 39]. Various subtleties in these
equivalences (like the insertion of degenerate operators in correlation functions) may deserve
further scrutiny in the gravitational setting. It should be noted that our equivalences are mild
extensions of those in the literature. E.g. the term linear in the boundary gauge fields CL,R

in the chiral/anti-chiral Wess-Zumino-Witten models has to be carried along in the analysis.
The associated path integrations are algebraic and have trivial measure factors associated
to them and exact quantum constraints — they hardly complicate the proofs of equivalence.

Up to this stage, the equivalences are between two-dimensional conformal field theories.
They are rather rigorously established for instance in terms of operator realizations of the
left and right Virasoro symmetry algebras (e.g. in terms of coset conformal field theories).
An illustration is the equivalence of the quantum energy-momentum tensors

TLiouville = Tsl(2,R) + Tghosts + Timprov , (4.5)

where the formula is a schematic representation of the Liouville, the (chiral) Wess-Zumino-
Witten model, the (gauge fixing) ghosts and the improvement energy momentum tensors

8We already saw from the classical Liouville solution on the cylinder that the periodic nature of the field
enforces equal left and right monodromy.
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— see e.g. [26] for all the details. Rather, the non-trivial part of the equivalence is to
appropriately choose the Hilbert space in each guise of the theory — we do this by fiat.

4.2 From Wess-Zumino-Witten models to Chern-Simons theories

The equivalence of the chiral boundary Wess-Zumino-Witten model with a Chern-Simons
theory was established at the quantum level in [29, 30]. The extension of the quantum
equivalence to the bulk involves the field redefinition from the three-dimensional gauge field
components ÃL to the group valued field gL:∫

DÃLδ(F̃L)eiSCS [ÃL] · · · =
∫

dgLeScW ZW [gL] . . . (4.6)

where we made explicit the constraint on the field strength components F̃L solved for e.g.
in equation (3.27). This field redefinition has unit Jacobian [30] and therefore the quantum
measure on both sides of the equivalence is standard. To this analysis we add the boundary
gauge field term which goes along for the ride once more. To reach the Chern-Simons
theories with polar boundary conditions, we performed a gauge transformation which is a
symmetry in the quantum theory.

Thus, we wind up with a quantum equivalence between Liouville theory and Chern-
Simons theories which have prescribed radial boundary conditions. As stressed in the
treatment of the classical theory, we still have a gauged boundary symmetry which serves
to glue the left and right modes in the chiral and anti-chiral theories.

4.3 From Chern-Simons to metric gravity

As far as quantum equivalences are concerned, only the equivalence between the integration
over Chern-Simons gauge fields and metrics is hard to fathom. This is a main point of
our approach: the quantum theory of gravity is defined to correspond to the standard
integration measure in Liouville theory [13]. We can be more precise about what this
entails. In our final step, we start out with an integration over gauge fields AL,R with
standard measure dAL,R and chiral boundary conditions supplemented with those imposed
by a functional integration over the boundary gauge fields CL,R. The change of variables
from the connections AL,R to the dreibein e and spin connection ω is linear and has trivial
Jacobian. ∫

dALdAReiSCS [AL]−iSCS [AR] · · · =
∫

dωdeeiSEH [e,ω] . . . (4.7)

Classically, the zero torsion and zero curvature equations match the zero Chern-Simons
curvature equations of motion. The left hand side arose from the Liouville path integral
with standard Liouville measure. The right hand gravitational path integral also has a
natural measure, in the Palatini formulation of gravity. The metric formulation of this
integration measure is considerably more complicated. It was already remarked in [3] that
the integral over the Chern-Simons fields or the spin connection and dreibein includes an
integral over degenerate metrics. It was proposed that metric gravity can be thought off as
a broken phase of Chern-Simons gravity. We note that in asymptotically AdS3 space-times,
the situation is intermediate in the following sense. The boundary values of the metric are
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fixed and non-degenerate while it remains true that in the interior of the space-time, we are
also integrating over possibly degenerate metric fluctuations.

Our prescription is considerably more specific though. We define a theory in which
we integrate over metric fluctuations determined by the Liouville field through the energy-
momentum operator with a measure determined by the Liouville field itself (and not as a
naive approach might suggest, by the metric fluctuation). Moreover, as stressed on several
occasions, we give a clear prescription on which metrics to allow in the integration and
which not. Indeed, we want to stress that our theory allows for singular metrics in the
same sense that Liouville theory allows for the integration over singular configurations once
vertex operators are inserted. On the bulk side, if one allows for black hole metrics (as we
do), one allows for the same type of singularities in the path integration. In the Liouville
path integral, on the boundary torus for instance, one integrates over well-defined (for
instance doubly periodic) configurations. These include configurations that can be regularly
extended to gauge fields in the bulk as well as configurations that have monodromies around
non-trivial boundary cycles that are contractible in the bulk. The latter are singular bulk
configurations — by definition we include them in our integration measure. Thus, we can
intuitively describe the (AL, AR) or (e, ω) configurations over which we integrate as having
a diagonal hyperbolic monodromy and otherwise entirely regular in the bulk. This is true
classically, as in subsection 3.7 as well as quantum mechanically [13].

We can obtain an implicit off-shell description of the metric (and torsion) we are
integrating over, as follows. We explicitly solve the constraint:

(∂xgLg−1
L )− = µ (4.8)

and gauge fix the diagonal components of AL,x = −∂xgLg−1
L to zero. We then find that the

left gauge field is given in terms of the group valued field gL:

gL =
√

µ

∂xyL

(
yL∂2

xyL−2(∂xyL)2

2µ∂xyL
− ∂2

xyL

2µ∂xyL

yL 1

)
, (4.9)

where yL(t, x) is the coefficient of t− in the Gauss decomposition of gL. A similar equation
holds for the right-movers. We can then parameterize the metric in terms of the chiral
Liouville fields off-shell:

ds2 = dr2

r2 ±µν

(
r2+ b4

µ2ν2r2

(1
2(∂xϕL)2− 1√

2b
∂2

xϕL

)(1
2(∂xϕR)2− 1√

2b
∂2

xϕR

))
dx+dx−

+b4
(1

2(∂xϕL)2− 1√
2b

∂2
xϕL

)2
(dx+)2+b4

(1
2(∂xϕR)2− 1√

2b
∂2

xϕR

)2
(dx−)2 (4.10)

Possible terms arising from the gauge field components AL,− and AR,+ only start to
contribute at order 1/r4. There is an implicit link between the fields ϕL and ϕR and the
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Liouville field ϕ via the set of equations:

e
√

2bϕ = 1
b2M

∂xyL∂xxR

1 + xRyL

e
√

2bϕL = 1
µ

∂xyL

e
√

2bϕR = 1
ν

∂xxR . (4.11)

One can check that this metric reduces to our earlier expression (3.42) on-shell. Our
final specification is that it is the field ϕ which is fundamental and well-defined on the
boundary surface.

We can point to several properties of the theory we define which differ from other
metric quantizations of pure gravity. One difference is that in the quantum Chern-Simons
theory, we path integrate over configurations with torsion. Indeed, this is rather intrinsic to
the Chern-Simons formulation of quantum gravity. We note that on-shell configurations
do have zero torsion. Even when they have monodromy, they have equal left and right
hyperbolic monodromy and still have zero torsion. Moreover, these on-shell configurations
represent the quantum Hilbert space well. A second observation is that the Liouville field
parameterizes a one-dimensional subspace of multiple Einstein equations. In particular,
when the Liouville stress tensor is off-shell, it can be non-conserved. These are two classical
equations which are quantized along a one-dimensional slice parameterized by the Liouville
field. Finally, note that the quantization is over metrics that factorize into a left- and a
right-moving part such that the Virasoro algebras are neatly separated. Modular invariance
is guaranteed by gluing.

5 Conclusions

In this paper, we further analyzed the link between the Liouville conformal field theory
on the boundary and a theory of pure gravity with negative cosmological constant in the
bulk [12]. We demonstrated that the classical arguments that relate the action principles
need to be twisted by an outer automorphism of the sl(2,R) algebra in order to make
two requirements consistent: that the boundary theory be stable and that the metric of
the boundary theory agree with the metric induced from the bulk. In this manner, we
constructed a stable Lorentzian Liouville theory dual to a well-defined set of metrics in
the bulk. We moreover proved the equivalence of the theories off-shell which is important
to lift it to the quantum theory. Our detailed derivation renders the proposal of the
quantum equivalence of the theories and its consequences [13] even more concrete. The
unitary Liouville conformal field theory has a well-defined spectrum that can be traced
back to a particular subset of classical solutions. It is these solutions that we tracked to the
gravitational bulk in order to argue clearly which set of metrics is quantized in the dual
Liouville theory. This confirms the salient features of the quantum Liouville theory of pure
three-dimensional gravity discussed in [13] and renders it stable.

We added comments on the boundary conditions of asymptotic AdS3 space-times in the
Chern-Simons formulation. Firstly, we argued that an infrared regularization of space-time
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is necessary in order to relate those boundary conditions to the standard null gauging of the
Wess-Zumino-Witten model. Secondly, we established a partial analogy with oper boundary
conditions and stressed the relation between the single pole gauge field boundary conditions
and the double pole metric boundary conditions in asymptotically AdS space-times. We
also emphasized the importance of the gauging of a left-right multiplication symmetry in
order to glue the chiral-anti-chiral description of the theory.

There are many open directions for further research. It would be interesting to perform
an analogous classical and quantum analysis in the Euclidean. Since the local gauge group
is different, there are many important details that will change. Note that in the Euclidean
setting, there is no standard Euclidean Weyl factor instability [42] due to the topological
bulk on the one hand, and the fact that the leading order asymptotic metric is fixed. Thus,
one may have an entirely well-defined Euclidean path integration problem. It would also be
worthwhile to match the semi-classical analysis of Liouville correlators to a semi-classical
analysis of the behaviour of classical solutions in three-dimensional gravity, in particular
in regard to black hole merger. Moreover, one can extend our analysis to more general
leading order boundary metrics. We also note that when the boundary metric is curved, the
inclusion of the outer automorphism again ensures an accord between the induced metric
on the boundary and the metric used to define the Liouville action. This follows from
combining our analysis with the results of e.g. [43].

Finally, let us recall a few salient features of our three-dimensional theory of pure
quantum gravity with negative cosmological constant [13]. We differ in the ground state
with most of the literature in that we consider the conformal invariant vacuum to be
non-normalizable — the conformal field theory spectrum is gapped. Moreover, our spectrum
is continuous and consists solely of spinless (primary) black holes, dressed with (descendant)
boundary gravitons. Due to the topological nature of pure three-dimensional gravity
there is no Hawking radiation which may be related to a lack of a statistical mechanical
interpretation of a tentative thermodynamics. Thus, this theory is isolated from e.g. the
string theories in AdS3 that have largely the opposite properties. An interesting exception is
string theory in AdS3 at high curvature where the SL(2,C) invariant ground state becomes
non-renormalizable [15].

It would certainly be interesting to extend our interpretation of this seemingly isolated
theory of quantum gravity to other set-ups. An example is to extend it to spaces with
two asymptotic regions [44]. In as far as the boundary gravitons only are concerned, the
recent contribution [45] computes their partition function in greater generality. It would be
interesting to add the spectrum of black holes states to these analyses and further explore
the properties of pure quantum gravity with negative cosmological constant on more general
space-times with self-consistent conformal field theory duals.
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A Conventions

The sl(2,R) Lie algebra has signature (−, +, +) in the Killing metric. It has the commutation
relations:

[t2, t±] = ±t± , [t+, t−] = 2t2 . (A.1)

We denote the generators by ta. A two-dimensional representation is given by

t+ =
(

0 1
0 0

)
, t− =

(
0 0
1 0

)
, t2 = 1

2

(
1 0
0 −1

)
. (A.2)

We have that:
Tr(t2t2) = 1

2 , Tr(t+t−) = 1 (A.3)

and the convention that the non-zero components of the metric in the Lie algebra are:

η22 = 1 , η+− = 2 (A.4)

such that the formula
Tr(tatb) = 1

2ηab (A.5)

holds.

B Splitting a gauged Wess-Zumino-Witten model

This appendix demonstrates how to separate a null gauged Wess-Zumino-Witten model
into a chiral and an anti-chiral gauged Wess-Zumino-Witten model. The appendix makes
reasonings spread broadly in the literature more readily accessible.

B.1 The gauged Wess-Zumino-Witten model

The first matter to recall is that when one gauges a Wess-Zumino-Witten model classically,
it is a challenge to render the Wess-Zumino term gauge invariant. In fact, this can only
be achieved in particular circumstances, amply discussed in the appendix to [46]. We are
in the circumstance in which both the single left generator and the single right generator
we gauge are null. In that favorable case, the naive gauging of the Wess-Zumino-Witten
model goes through, without the need for a local counterterm, and the gauged action is
straightforwardly obtained [25].

Firstly, one records the Polyakov-Wiegmann identity, which in our conventions reads:

SW ZW [gLgR] = SW ZW [gL] + SW ZW [gR] + k

π

∫
d2x Tr

[
g−1

L ∂−gL∂+gRg−1
R

]
. (B.1)

The cross-term arises from a (symmetric) kinetic term contribution and an (anti-symmetric)
Wess-Zumino Stokes term. These combine with equal coefficients to give a term consistent
with the chiral global symmetry of the Wess-Zumino-Witten model. Secondly, for the
gauging of the null left and right symmetries, one proposes the action:

SGW ZW (g, h, h̃) = SW ZW (hgh̃−1) (B.2)
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where the left null group element h and the right null group element h̃ are seen as parame-
terizations of the corresponding (chiral) gauge fields CL,R. The action has a manifest gauge
symmetry by left and right multiplication of the group valued map g combined with right
and left multiplication of h and h̃. One computes the action through application of the
Polyakov-Wiegmann identity and finds:

SGW ZW (g,h, h̃) = SW ZW (g) (B.3)

+ k

π

∫
d2xTr

[
h−1∂−h∂+gg−1−g−1h−1∂−hgh̃−1∂+h̃−g−1∂−gh̃−1∂+h̃

]
.

The null Wess-Zumino-Witten actions SW ZW (h) and SW ZW (h̃) are zero. We now introduce
the gauge field components:

CLt+ = h−1∂−h

CRt− = h̃−1∂+h̃ , (B.4)

and find the action [24, 25]:

SGW ZW (g,h, h̃) = SW ZW (g)+ k

π

∫
d2xTr

[
CLt+∂+gg−1−CRt−g−1∂−g−g−1CLt+gCRt−

]
.

This agrees with the action in the bulk of the paper, up to the extra terms proportional to
the constants (µ, ν) which can be added by hand — they are separately gauge invariant for
the abelian gauge algebra.

B.2 The split

In this subsection, we wish to demonstrate the equivalence between the chiral/anti-chiral
and the ordinary gauged Wess-Zumino-Witten model. We follow the technique described
in [27, 28]. We split the field g in the gauged action SGW ZW into two further group elements
gL and gR and introduce a gauge field component B [27, 28]:

ScGW ZW (hgL, gRh̃−1; B) (B.5)

= SW ZW (hgLgRh̃−1) − 2k

π

∫
d2x Tr

(
B − 1

2(∂+(gRh̃−1)(gRh̃−1)−1 + (hgL)−1∂−(hgL))
)2

.

It is clear that if we consider B-independent observables and perform the quadratic integra-
tion over B, then we obtain a model with a gauge invariance (gL, gR) → (gLk−1, kgR) which
is equivalent to the original gauged model SGW ZW . Alternatively, one can choose the gauge
B = 0 which gives rise to a field-independent determinant factor that one can neglect [27, 28].
In this gauge, we find that the model is equivalent to two chiral gauged Wess-Zumino-Witten
models. The point of the square we add is to kill a Polyakov-Wiegmann cross term and to
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render the two other terms chiral. In practice, this goes through the calculation:

ScGW ZW (hgL, gRh̃; 0) = SW ZW (hgLgRh̃−1)

− k

2π

∫
d2x Tr

(
∂+(gRh̃−1)(gRh̃−1)−1 + (hgL)−1∂−(hgL)

)2
)

= SW ZW (hgL) + SW ZW (gRh̃−1)

− k

2π

∫
d2x Tr

(
∂+(gRh̃−1)(gRh̃−1)−1

)2
+
(
(hgL)−1∂−(hgL))2

)
= SL(hgL) + SR(gRh̃−1) , (B.6)

where we defined the chiral actions:

SL(gL) = SW ZW (gL) − k

2π

∫
d2x Tr

(
g−1

L ∂−gLg−1
L ∂−gL

)
(B.7)

and
SR(gR) = SW ZW (gR) − k

2π

∫
d2x Tr

(
g−1

R ∂+gRg−1
R ∂+gR

)
. (B.8)

Again, the null group fields h and h̃ are to be identified with gauge field components. Indeed,
the gauged chiral left action is:

SL(hgL) = SW ZW (hgL) − k

2π

∫
d2x Tr

(
(hgL)−1∂−(hgL)(hg−1

L )∂−(hgL)
)

= SW ZW (h) + SW ZW (gL) + k

π

∫
d2x Tr

[
h−1∂−h∂+gLg−1

L

]
− k

2π

∫
d2x Tr

(
g−1

L ∂−gL + g−1
L h−1∂−hgL

)2

= SL(gL) + k

π

∫
d2x Tr

[
CLt+∂xgLg−1

L

]
= k

2π

∫
d2x Tr

[
g−1

L ∂−gLg−1
L ∂xgL

]
+ SW Z(gL)

+ k

π

∫
d2x Tr

[
CLt+∂xgLg−1

L

]
. (B.9)

For the right-movers, we similarly find for the anti-chiral gauged action:

SR(gRh̃−1) = SW ZW (gRh̃−1) − k

2π

∫
d2x Tr

[
((gRh̃−1)−1∂+(gRh̃−1))2

]
= SW ZW (gR) + k

π

∫
d2x Tr

[
g−1

R ∂−gR∂+(h̃−1)h̃
]

− k

2π

∫
d2x Tr

(
−∂+h̃h̃−1 + h̃g−1

R ∂+gRh̃−1
)2

= SR(gR) + k

π

∫
d2x Tr

[
CRt−g−1

R ∂xgR

]
= − k

2π

∫
d2x Tr

[
g−1

R ∂+gRg−1
R ∂xgR

]
+ SW Z(gR)

+ k

π

∫
d2x Tr

[
CRt−g−1

R ∂xgR

]
. (B.10)

Again, the terms proportional to the constants (µ, ν) can be added to the action.
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