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Deflections of pneumatic masts and columns

J.-C. Thomas and A. Le Van

GeM (Institute for Research in Civil and Mechanical Engineering), Université de Nantes-École Centrale Nantes, Nantes 
Cedex 3, France

Like all structural elements, inflatable beams can be subjected to
combined loads. This may be the case for inflatable masts or inflatable
columns supporting floors. This study addresses inflatable beams
subjected to combinations of compression and bending. Whereas the
mechanics of inflatable beams subjected only to transverse loading is
now well established, the study of inflatable beams subjected to
combined loads has still received few investigation. Furthermore,
whereas the effects of individual loads are superimposed when beams
are made of conventional materials such as steel, the problem is more
complex for inflatable beams since compressive forces counteract the
effects of internal pressure and reduce the stiffness. This study presents
new analytical formulas for inflatable beams subjected to bending and
compressive loads. Buckling load and wrinkling limit load are also
proposed, taking into account the internal pressure.

Introduction

Pneumatic structures are an important part of lightweight tensile structures. Flexible, lightweight,

adaptable, they are easy to carry, easy to deploy and erect, easy to disassemble and easy to store.

They can be designed for short events and also for much longer duration. They can be classified

into different emblematic typologies: air-supported structures which are mono-membranes inflatable

structures, air-inflated structures also named inflatables, which are generally composed of air beams

or/and air cushions, and hybrid structures, which can be composed of both. All these typologies can

be seen on the tensinet website (Tensinet, http://www.tensinet.com).

Air beams are the simplest inflatable structure to understand key steps of the behavior: deflection

of the beam subjected to bending loading, wrinkling that occurs when a wrinkle appears somewhere

in the membrane, collapse of the beam when the bent beam does not resist any more and buckling

in the case of pure compression. Some previous studies have been conducted on these different

important topics and allow predicting precisely the behavior of inflatable beams (Fichter, 1966;

Le van & Wielgosz, 2005; Nguyen, Thomas, & Le Van, 2013a, 2015; Thomas & Bloch, 2016).

In the frame of the work of the Working Group 5 of CEN TC 250, which aims to write a Eurocode

dedicated to membrane structures, it is important to precisely know the performance of the models

used to design membrane structures. The rules of design should be obtained by reliability analysis for

which estimations of the accuracy of the design is a current and important issue. In the case of air

beams subjected to transverse loads, the analytical results have been compared with 3D simulation

results and experiments. For example, the performance of these models have been estimated by
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comparison with experimental results in the case of supported beams and used to conduct a

reliability analysis of a pedestrian inflatable bridge (Thomas, Schoefs, Caprani, & Rocher, 2018).

Whereas the behavior of inflatable beams under bending load is well mastered, the case of combined

loading has not been studied, in particular the case of the air beams subjected to both compression and

bending loads. This case can occur if one seeks to build inflatable masts, for example to support urban

lighting devices or monitoring devices, which can be heavy compared to the weight of the beams that

support these devices (Figure 1(a)). Another possibility, which is rather in the field of the prospective

today, but could quite quickly appear, concerns columns supporting floors (Figure 1(b)). The difference

between these two configurations concerns the extreme cross-section of the beam that can rotate in the

case of a mast, or remain horizontal on the case of a column supporting a floor.

When the beams are made of conventional materials like steel, aluminum or concrete for example,

it is usual to superimpose the effects of the separated actions. However, the case of air beams is

specific because there stiffness come from the pretension due to the pressure inside the beam.

This pressure acts on the ends of the beams and gives a normal load that is transmitted in the mem-

brane along the beam. The pretension leads then to a reserve of positive stresses in the axial direc-

tion. Compression forces counteract this pretension specific to air beams and it is then necessary to

conduct a study to properly account for the combination of the longitudinal effect of the internal

pressure and the compression axial load that is superimposed.

To solve this problem, in a first step, we propose to consider again the important points of the pre-

vious studies and show how to adapt the results of the bending formulas to take into account the com-

pressive stress. We will thenmake comparisons with the results of a 3D homemade code named SAFE in

the case of the inflatable mast. The code SAFE is dedicated to membrane structures, it is based on the

total Lagrangian formulation and the resulting nonlinear equilibrium equation is solved by means of

the iterative Newton scheme. With regards to material, the membrane material can be orthotropic

to represent the behavior of coated fabrics which are usually used in inflatable structures.

The behavior of coated fabric membrane structures is complex. The results of biaxial tensile exper-

iments highlight the non-linear behavior of the material (Bridgens, Gosling, Jou, & Hsu, 2012; Galliot &

Luchsinger, 2009; Quaglini, Corazza, & Pogi, 2008). Different models have been proposed to represent

the behavior of coated fabrics. For example (Bridgens & Gosling, 2004) proposed a model based on

response surfaces, (Galliot & Luchsinger, 2009) proposed an approach based on a linear elastic ortho-

tropic model with constants varying according to the loading ratio between the warp and the weft,

and more recently, Motevalli, Uhlemann, Stranghöner, and Balzani (2019) has proposed an approach

based on hyperelastic orthotropic energy functions. These models are often complicated to

implement in computer codes and, for the moment, the common practice is to use linear elastic con-

stitutive laws from an engineering point of view.

Figure 1. Inflatable mast (left) and column (right).
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In our study, non-linearities are taken into account by using the total Lagrangian formulation. The

assumption used for the material is an orthotropic linear elastic constitutive law and the non-linear

behavior of the structure is addressed from the angle of geometric non-linearities. This model is used

to write analytical formulae for inflatable beams and it is also the approach used in the 3D code SAFE

that we use as a reference in the laboratory. These analytical models and the results of the numerical

computations have proved very satisfactory in previous works on inflatable structures, and in particu-

lar with comparisons with experiments, for example for the inflation of pneumatic beams (Nguyen,

Thomas, & Le Van, 2013b) or for the study of deflections and vibrations of inflatable beams (Thomas,

Le Van, Aduriz, & Jiang, 2005).

In a second step, we will revisit the theory to present more rigorous formulas in order to improve

the model. Finally, we will propose new formulas for the different cases proposed: inflatable mast and

inflatable column. The buckling forces are also calculated, giving the upper bounds for the compres-

sive loads.

Behavior of air beams

The natural state and notations

As explained above, the membrane is assumed to follow a linear orthotropic elastic constitutive law,

within the framework of a total Lagrangian approach to represent the behavior of a coated fabric

usually used to built such structures. Here, the fabric will be assumed to be oriented so that one

of the main directions of the fabric, weft or warp, is parallel to the axis of the beam. Also, the mem-

brane modeling the fabric has one of the orthotropic directions aligned with the beam axis. At any

point on the membrane, it is therefore possible to define a local basis with the unit vectors eℓ
�

aligned

with the longitudinal direction, et
�

locally tangential to the fabric and orthogonal to eℓ
�

, and en
�

com-

pleting the direct basis and being locally normal to the membrane (see Figure 2). On this figure, the

mesh represents the beam in the natural state, when the beam is not pressurized. The own weight of

the membrane is neglected, so that the natural state is a cylinder. Due to symmetries, only one half of

the beam is represented.

The bending movement of the beam is defined in the global coordinate system (x, y, z). We will

only consider movements parallel to the (x, y) plane.

Key steps of the behavior of pneumatic beams

To fully understand the different states, let us look at the numerical results for a simply sup-

ported beam. Figures 3 and 4 show the specific stages of the beam’s behavior. The red

mesh corresponds to the natural state, and the grey mesh corresponds to the state of the

Figure 2. Local orthotropy basis.
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pressurized and possibly loaded beam. Figure 3(a) represents the pressurization step which is an

important step. At the end of this step the beam goes from the natural state to the initial state.

This step is important for the rest of the study, as it defines the initial geometry, including the

radius and the length. It also makes it possible to define the pre-tension stresses and the

stiffness of the structure. The characteristic quantities will be denoted with a symbol ø when

they are relative to the natural state, and without any particular sign when relative to the

initial state. Thus, R∅ and L∅ are the radius and length of the beam in the natural state,

while R and L correspond to these same dimensions in the initial state.

Figure 3(b) corresponds to the deflected state. Under transverse loading, the beam moves from

the initial state to the actual state. Previous studies have shown that as long as a wrinkle does not

appear, the relationship between deflection and loading can be considered linear (Nguyen et al.,

2015; Thomas & Bloch, 2016). The load which should not be exceeded to avoid the onset of the

wrinkle is called the wrinkling load. For conventional materials like aluminum, steel, concrete or

wood, the material strength study is conducted between the initial and actual state and there

exists no natural state. For inflatable beams, the pre-tensioning step is important and the transition

from the natural to the initial state must also be considered.

The above mentioned loading level not to be exceeded to remain in the linear domain corre-

sponds to the beginning of plasticity in the cases of conventional materials. The case of inflatable

beams is specific and different. The first phase of linear behavior ends as soon as a wrinkle

appears at the upper surface of the beam in the case of the supported beam. It is also important

to note that the appearance of the wrinkle does not imply that the beam collapses. There still

exists a reserve of stiffness. Increasing the load beyond the wrinkling load leads to a propagation

of the wrinkle around the section (Figure 4(a)) and the collapse occurs when the wrinkle reaches

the middle of the beam section (Figure 4(b)). This property had been theoretically and experimentally

verified (Thomas & Bloch, 2016).

A parallel can be drawn between the plasticity loads in the case of conventional materials and the

collapse loads of inflatable beams.

Note that there exists another interesting specificity of inflatables: when unloaded, inflatable

beams come back to their initial state. It means that, if creep effects are neglected, the behavior

can be considered as reversible. Reversible collapse might not be an appropriate terminology, but

it is a physical reality in the case of inflatable beams.

Figure 3. Inflation and bending of an inflatable beam. (a) First step: inflation. (b) Second step: bending.

Figure 4. Inflated bended beam: propagation of wrinkle and collapse. (a) Wrinkle in the cross section. (b) Collapse of the beam.
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Stresses in the membrane

To understand the behavior of inflatable beams, it is necessary to detail with precision the distri-

bution of longitudinal stresses in the various cases of loading. Figure 5(a) shows the distribution of

stresses when no wrinkle appears in the membrane. The longitudinal stresses due to the inflation

(in grey) are superimposed with the longitudinal stresses due to the bending (in black). This leads

to the final distribution (in blue). In the case shown, all the longitudinal stresses remain positive.

Figure 5(b) presents the distribution of the stresses when a wrinkle appears in the membrane. This

happens when one of the principal stress of the beam vanishes, as located by the red circle.

This allows to define a criterion: the wrinkling load is attained when the longitudinal stress

vanishes in a point of the membrane. For example, in the case of a cantilever inflatable beam, it is

possible to calculate the wrinkling load in terms of the pressure p and the geometric parameters:

FW =
ppR3

2L
. (1)

Note that this result does not depend on the material coefficients (i.e. the elasticity moduli). They only

affect the length and the radius in the initial state which are calculated from the length and the radius

in the natural state. For moderate pressures, the radius and length are linear functions of the pressure.

These following formulas can easily be obtained:

R = R∅ 1+
pR∅

2∅Et
(2− ∅

ntℓ)

( )

and L = L∅ 1+
pR∅

2∅Eℓ
(1− 2∅nℓt

( )

, (2)

where ∅Eℓ and
∅Et are the elasticity moduli in the longitudinal and transverse directions, ∅ntℓ is a Pois-

son’s coefficient.

Deflection of an uncompressed air beam

The details of the equations used in this paragraph can be found in Le van and Wielgosz (2005) and

Nguyen et al. (2013a, 2015). These equations were obtained by applying the principle of virtual

powers in large deformations in order to correctly take into account the effect of pressure on the

side walls, using the total Lagrangian formulation. Since inflatable beams are very thin-walled

beams, they are sensitive to shear. This is why it is necessary to use Timoshenko’s kinematics: the

cross-section of the beam remains plane after deformation while it does not remain perpendicular

to the neutral line of the beam.

The air-beams made of coated fabrics are modeled in this study by orthotropic linear elastic mem-

branes. The constitutive laws used are Sxx = S
0
xx + EℓExx for the normal stress, and

Figure 5. Distribution of the longitudinal stresses in the membrane. (a) Inflation and bending. (b) Onset of a wrinkle.
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Sxy = S
0
xy + GℓtExy . Here, S

0
xx is the initial normal stress, and Sxx is the actual normal stress. The same

distinction applies to the shear stress between S
0
xy and Sxy . Eℓ is the Young modulus in the longitudi-

nal direction, and Gℓt is the shear modulus.

It was shown in Nguyen et al. (2013a, 2015) that the elastic moduli Eℓ and Gℓt defined from the

initial configuration differ from the moduli ∅Eℓ and
∅Gℓt based on the natural configuration by the fol-

lowing relationships (Equation (3)), involving the coefficients that characterize the geometry changes

due to the pressurization phase. Thus, kx = L/L∅ is related to the change in the beam length, and

ku = R/R∅ is related to the change in the radius, i.e. in the tube circumference.

Eℓ
∅Eℓ

=
k3x
ku

and
Gℓt

∅Gℓt

= kxku. (3)

Finally, the non-linear equations obtained are linearized in order to obtain the following system of

linear equations (Equations (4) to (9)), including equilibrium equations and boundary conditions.

The configuration chosen is presented in Figure 6. The grey beam on the figure is subjected to

loads applied at its ends that can be represented by forces in the xy-plane and torques orthogonal

to this plane. For the strength of materials point of view, the entire study is reduced to the neutral

line, in black on the figure. Thus, the axial forces Fx1 and Fx2, the transverse forces Fy1 and Fy2, and

the torques G1 and G2 are theoretically applied at the ends of the line. The deformation of the

beam is represented by its cross-section rotation u(x) and the deflection v(x) in the xy-plane.

The linearized equations are:

−
dN(x)

dx
= 0 (4)

−(N + kGℓtS)
d2v(x)

dx2
+ (P + kGℓtS)

du(x)

dx
= 0 (5)

EℓI +
NI

S

( )

d2
u(x)

dx2
+ (P + kGℓtS)

dv(x)

dx
− u

( )

= 0. (6)

Here, N is the normal force, S is the area of the cross-section, P = ppR2 where p is the internal

pressure, and I is the second moment of area. Note that P is equal to the force induced by the internal

pressure on the circular end of the beam. Coefficient k is a weighting factor to account for the fact

that shear stresses are not uniform in the section. k is 0.5 for thin-walled circular cross-sections.

The boundary conditions are:

N(0)− P = −Fx1 N(L)− P = Fx2 (7)

(N(0)+ kGℓtS)
dv

dx
(0)− (P + kGℓtS)u(0) = −Fy1

(N0(L)+ kGℓtS)
dv

dx
(L)− (P + kGℓtS)u(L) = Fy2 (8)

Figure 6. Forces and torques applied on an air-beam.
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and

EℓI +
NI

S

( )

du

dx
(0) = −G1 EℓI +

NI

S

( )

du

dx
(L) = G2. (9)

Equation (4) shows that the normal load is uniform, N(x) = cste. In the case studied in this section,

Fx1 = Fx2 = 0, then Equation (7) gives

N(x) = P. (10)

This equality allows to notably simplify Equation (5) by collecting the term P + kGℓtS and ones finally

finds (P + kGℓtS)(d
2v/dx2 − du/dx) = 0. Then using the boundary condition (8) yields

dv(x)

dx
= u(x)+

Fy2

P + kGℓtS
. (11)

The last equation clearly shows the influence of the shear: the cross-section of the beam does not

remain orthogonal to the neutral fiber since dv
dx
= u. Let us consider now a cantilever air-beam, sub-

jected to a transverse force Fy2 = F and a torque G2 = G. Equation (6) gives

(EI + NI/S)(d2
u/dx2) = −F. Taking into account the boundary conditions (9) and u(0) = 0 and

v(0) = 0 leads to:

u(x) =
1

EℓI +
PI

S

F Lx −
x2

2

( )

+ Gx

( )

, (12)

v(x) =
1

EℓI +
PI

S

F L
x2

2
−

x3

6

( )

+
Gx2

2

( )

+
Fx

P + kGℓtS
. (13)

This result shows clearly the influence of the internal pressure on both stiffness: it increases the

bending stiffness EℓI and the shear stiffness kGℓtS. This is in line with intuition: the higher the internal

pressure, the more rigid the beam becomes.

It is then possible to determine the stiffness of inflatable beams in both mast and column configur-

ations, neglecting here the compression of the beam. The case of the column supporting an upper

floor can be modeled, noting that the straight section linked to the floor does not rotate. The con-

nection at this end can be modeled by a sliding clamp as shown in Figure 7.

Finally, the mast is modeled as a classic cantilever beam, and the column as a clamped beam at

one end, and connected at the other end by a sliding clamp.

Figure 7. Clamp and sliding clamp for the column.
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The stiffness of the beams in both configurations are obtained by applying a transverse force F

bending the beams (see Figure 8), and calculating their deflections v1(L) for the configuration 1 repre-

senting the mast and v2(L) for the configuration 2 corresponding to the column.

The formula (13) allows to obtain the results almost directly. For the first configuration, just put

G = 0 in Equation (13), and for the second configuration, the corresponding moment Γ can be calcu-

lated using u(L) =0 in the Equation (12), which gives G = −FL/2. It then remains to replace Γ by its

value in (13).

The results are:

v1(x) =
F(L

x2

2
−

x3

6
)

EℓI +
PI

S

+
Fx

P + kGℓtS
⇒ v1(L) =

FL3

3(EℓI +
PI

S
)

+
Fℓ

P + kGℓtS
(14)

and

v2(x) =
F(L

x2

4
−

x3

6
)

EℓI +
PI

S

+
Fx

P + kGℓtS
⇒ v2(L) =

FL3

12(EℓI +
PI

S
)

+
Fℓ

P + kGℓtS
. (15)

Behavior of compressed air beams

Including the compression in the air-beam model

The equations in the previous sections do not take into account the compressive force that can be

applied to the beam. The next step is to work on the following models: the cantilever beam subjected

to an additional compressive force Q, which corresponds to a model of the compressed mast, and the

beam clamped at one end, connected by a sliding clamp at its other end and compressed, which

corresponds to the column carrying a load. In the case of the column, it should be noted that the

sliding clamp connection is not a connection with the base, as in the uncompressed case. It is necess-

ary to add an additional component that is in translation with respect to the base to be able to trans-

mit the compression force and for the beam to contract freely in length. The models and boundary

conditions are shown in Figure 9.

A new initial state

In both cases, it is necessary to redefine the initial state, which no longer corresponds to the press-

urized beam but to the pressurized and compressed beam. This should logically reduce the initial

length compared to the uncompressed beam and increase its radius. These variations will be com-

puted assuming small deformations during this step. The constitutive law is then:

eℓℓ
ett
eℓt

⎧

⎨

⎩

⎫

⎬

⎭

=

1
∅Eℓ

−
∅ntℓ
∅Et

0

−
∅nℓt
∅Eℓ

1
∅Et

0

0 0 1
∅Gℓt

⎡

⎢

⎢

⎣

⎤

⎥

⎥

⎦

sℓℓ

stt

sℓt

⎧

⎨

⎩

⎫

⎬

⎭

(16)

Figure 8. Uncompressed mast and column beam models.
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The small deformation hypothesis allows the use of Cauchy stresses sℓℓ, stt and sℓt , and the strains

eℓℓ, ett and eℓt .

The pressure p and force Q are related to the stresses by:

sℓℓ = p
R∅

2
−

Q

2pR∅
and stt = pR∅. (17)

Using eℓℓ = (L− L∅)/L∅ and ett = (R− R∅)/R∅ leads to:

R = R∅ 1+
pR∅

2∅Et
2−∅ntℓ 1−

Q

P

( )( )( )

(18)

and

L = L∅ 1+
pR∅

2∅Eℓ
1− 2∅nℓt −

Q

P

( )( )

. (19)

In Equations (18) and (19), the increase in Q leads to a decrease in the length of the beam, and an

increase in its radius. Logically, if Q =0, the expressions reduce to equation (2) for the pressurized

and uncompressed beam.

Solution obtained by adapting the inflatable beam solution

The compression counteracts the background effect P = ppR2 applied to the ends of the beam. The

normal effort P is replaced by P−Q. It seems logical then to take into account the influence of com-

pression by replacing P by P−Q in the solutions (14) and (15). This immediately provides the solution

for the mast-type beam v3(x) and the solution for the column-type beam v4(x):

v3(x) =
F(L

x2

2
−

x3

6
)

EℓI +
(P − Q)I

S

+
Fx

P − Q+ kGℓtS
so v3(L) =

FL3

3(EℓI +
(P − Q)I

S
)

+
Fℓ

P − Q+ kGℓtS
(20)

and

v4(x) =
F(L

x2

4
−

x3

6
)

EℓI +
(P − Q)I

S

+
Fx

P − Q+ kGℓtS
so v4(L) =

FL3

12(EℓI +
(P − Q)I

S
)

+
Fℓ

P − Q+ kGℓtS
. (21)

These expressions have been obtained without proof and it is necessary to justify their validation

before going any further. In the following paragraph, the analytical solution corresponding to the

mast v3(x) will be compared with those of the 3D code SAFE.

Comparison with the numerical 3D results

To assess the accuracy of the previous model, we propose to compare the results in the simplest case:

the inflatable mast. The dimensions of the selected beam are given in Table 1. The ratio of the trans-

verse dimension to the longitudinal dimension is 5. The longitudinal and transverse elastic moduli are

Figure 9. Compressed mast and column beam models.
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taken equal, assuming a balanced fabric. The chosen elastic moduli have classical orders of magni-

tude for coated fabrics, whose shear modulus is much lower than the longitudinal and transverse

elastic moduli.

The numerical simulations are performed with the code SAFE. The configuration used is the one on

the right of the Figure 10 for practical reasons. It is a beam linked to the support by a sliding clamp at

one end and a sliding support at its other end where it is subjected to compressive load. From the

mechanical point of view, its behavior is completely identical to that of the left configuration.

Figure 11 shows the results of the 3D code for two different compression loads. The pressure is the

same in both cases. The three transverse loads applied are of the same order of magnitude for both

beams: F = 60N, 156 N and 267 N for Q = 100 N, and F = 61N, 169 N and 248 N for Q = 300N. As

these loads are very close for each calculation series, it can be deduced that the compression

softens the beam. There is therefore a loss of rigidity. For the Q = 300N case, note that the wrinkling

load has been exceeded and a wrinkle has appeared, as shown by the red circle. This means that this

result does not apply in this study since it is assumed that there are no wrinkle and that the cross-

section of the beam remains circular.

Figure 12 shows the results of the 3D computations and the results of the analytical solution v3(x).

It can be seen that for quite low compressive loads (Q = 100 N), v3 gives correct results, but that as

soon as the compressive load increases (Q = 300 N), the difference between the numerical result and

the analytical result is significant, e.g. 43% for the example chosen for the highest transverse load. The

model used here is therefore not satisfactory except for small compression.

Table 1. Elasticity material coefficients and geometrical parameters.

Parameter in the natural state Symbol Value

Length L∅ 2.5 m
Radius R∅ 0.125
Longitudinal elasticity modulus ∅Eℓ 210 kN/m
Transverse elasticity modulus ∅Et 210 kN/m
Shear elasticity modulus ∅Gℓt 50 kN/m
Poisson’s coefficient ∅nℓt 0.2

Figure 10. Boudary conditions for the 3D computations of the compressed bended beam.

Figure 11. Results of the numerical 3D membrane computations. (a) Q = 100 N. (b) Q = 300 N.

10 | 17



Theory for compressed and bent inflatable beams

General solution

To obtain more rigorous results for pressurized and compressed air-beams, it is necessary to restart

from the equilibrium equations (4), (5) and (6) and from the boundary conditions (7), (8) and (9). For

the general solution, the configuration chosen, the loads applied and the notation used in the follow-

ing developments are the same as in Figure 6. The initial configuration is the one of the compressed

pressurized beam, and the radius R and the length L are obtained with the Equations (18) and (19).

This also allows one to calculate the elasticity moduli in the initial configuration from Equations (3).

The normal force is obtained by means of (4) and (7):

N(x) = P − Q. (22)

Using (5) and (8) leads to

dv(x)

dx
− u(x) = −

Fx2

N + kGℓtS
u(x)+

Fy2

N + kGℓtS
. (23)

Inserting this result in (6) gives the following differential equation:

d2u(x)

dx2
−

(P + kGℓtS)Fx2

(N + kGℓtS)(EℓI + N
I

S
)

u(x) = −Fy2
(P + kGℓtS)

(N + kGℓtS)(EℓI + N
I

S
)

. (24)

As Fx2 = −Q is negative, the equation can be put in the following form:

d2u(x)

dx2
+V

2
u(x) = V

2 Fy2

Fx2
where V

2
= −

P + kGℓtS

(N + kGℓtS)(EℓI + N
I

S
)

Fx2. (25)

The solution of this equation is

u(x) = A cosVx + B sinVx +
Fy2

Fx2
, (26)

where A and B are constants to be determined with the boundary conditions. Equation (23) can be

rewritten:

dv(x)

dx
=

P + kGℓtS

N + kGℓtS
u(x)+

Fy2

N + kGℓtS
. (27)

The general form of the deflection is deduced by a simple integration which generates an additional

Figure 12. Comparaison between the 3D numerical results ans the theoretical results. (a) Q = 100 N. (b) Q = 300 N.
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constant C to be determined:

v(x) =
P + kGℓtS

N + kGℓtS

A sinVx

V
−

B cosVx

V
+

Fy2

Fx2
x + C

( )

+
Fy2

N + kGℓtS
x. (28)

The three constants A, B and C must be calculated using the boundary conditions.

Solution for the mast and the column

To solve the problem, we use the configuration in Figure 13, for which the clamped end provides two

kinematic boundary conditions v(0) = 0 and u(0) = 0. The missing equation to determine the three

constants comes from the boundary condition (9) that allows to introduce the torque Γ in the

solution.

Imposing G = 0 in the solution found allows to obtain directly the solution for the mast. In this

case, the deflection is denoted v5(x). As for the solution for the column, Γ must be identified using

the condition u(L) = 0 and reinserted into the deflection solution. The expression obtained is v6(x).

Eventually, the solutions for the cantilever compressed air-beam submitted to a transverse load F

and a torque Γ at its free end is

u(x) =
F

Q
−1+ cosVx + tanVL sinVx( ) +

G

(EℓI + N
I

S
)

sinVx

V cosVL
(29)

and

v(x) =
F

Q

P + kGℓtS

N + kGℓtS
−x +

sinVx

V
+

tanVL

V
(1− cosVx)

( )

+ G
P + kGℓtS

(EℓI + N
I

S
)(N + kGℓtS)

(1− cosVx

V
2 cosVL

+
Fx

N + kGℓtS
.

(30)

In the case of the mast, the deflection relation simplifies to

v5(x) =
F

N + kGℓtS

P + kGℓtS

Q
−x +

sinVx

V
+

tanVL

V
(1− cosVx)

( )

+ x

( )

. (31)

The influence of the compressive load Q on the stiffness of the beam is not as visible as in expression

(20) for v3(x), especially since Ω also depends on Q.

In order to determine v6(x) for the column, the torque Γ is computed from Equation (29) and

u(L) = 0:

G = EℓI + N
I

S

( )

V
cosVL− 1

sinVL

( )

F

Q
(32)

The solution v6(x) is given by replacing Γ by its expression (32) in Equation (30). The resulting

expression, rather lengthy, is not given here.

Figure 13. Compressed bended air-beam: notations.
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Case of small compressive loads

A question then arises, considering the case of the inflatable mast for example, are the solutions v3(x)

Equation (20) and the new solutions v5(x) consistent?

To answer this question, we shall compare the results given by v3(x) with the results given by the

code SAFE. For small compressive loads, the deflections are found to be correctly calculated. If Q tends

to 0, then Ω tends to 0 also. It is then possible to use the Taylor expansions for sinVx and cosVx:

sinVx ≃ Vx −V
3x3/6 and cosVx ≃ 1−V

2x2/2. As Ω is supposed very small, the approximation

tanVL ≃ VL also holds. Equation (31) then becomes

v7(x) =
F

N + kGℓtS

P + kGℓtS

Q
V

2 L
x2

2
−

x3

6
+ x

( )( )

. (33)

Replacing V
2 with its expression (25) leads to:

v7(x) = F
(P + kGℓtS)

2

(N + kGℓtS)
2

1

(EℓI + N
I

S
)

L
x2

2
−

x3

6

( )

+
x

N + kGℓtS)

⎛

⎜

⎝

⎞

⎟

⎠
. (34)

If Q tends to zero, N + kGℓtS is equivalent to P + kGℓtS, and finally the Equation (34) becomes:

v7(x) = F
1

(EℓI + N
I

S
)

L
x2

2
−

x3

6

( )

+
x

N + kGℓtS)

⎛

⎜

⎝

⎞

⎟

⎠
. (35)

Since N(x) = P − Q, this gives finally:

v7(x) = F
1

(EℓI + (P − Q)
I

S
)

L
x2

2
−

x3

6

( )

+
x

P − Q+ kGℓtS)

⎛

⎜

⎝

⎞

⎟

⎠
. (36)

v7(x) is identical to v3(x) (see (20)). By extension to other configurations, this means that it is possible

to account the compression effect of the compressive loads by replacing P with P−Q in the ’usual’

solutions of the air-beams in case of low compression.

Buckling load

Before going any further, it is necessary to know the load limits that can be applied to the beam,

whether it is a transverse or a compressive load. The compressive load must be lower than the buck-

ling load. This load must be known, and it must be added to the key loads of the beam study: the

wrinkling load Fw and the collapse load Fc . The calculation is based on the same equations as for

the bending but with Fy2 = 0. One easily obtains

d2
u(x)

dx2
+V

2
u(x) = 0 (37)

whose solution is

u(x) = A cosVx + B sinVx. (38)

The two constants A and B can be computed with the boundary conditions. For example, for the mast

problem the boundary conditions are u(0) = 0 and du/dx(L) = 0. This leads to cosVL = 0 and

VL =
p

2
+ np with n = 1..1 (39)
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Using the expression of V2:

V
2
= −

P + kGℓtS

(N + kGℓtS)(EℓI + N
I

S
)

Fx2 =
P + kGℓtS

(P − Q+ kGℓtS)(EℓI +
(P − Q)I

S
)

Q (40)

it then follows that

V
2 Q2I

S
− Q EℓI +

PI

S
+

I

S
(P + kGℓtS)

( )

+ (P + kGℓtS) EℓI +
PI

S

( )[ ]

= (P + kGℓtS)Q. (41)

The term Q2I/S is often negligible compared to the other terms. The buckling

load is then obtained by replacing VL with its smallest value: VL = p/2. The buckling load FB is

then

FB =
EℓI +

PI

S

EℓI +
PI

S
P + kGℓtS

+
4L2

p2
+

I

S

. (42)

Wrinkling load for the compressed air-beam

The second limit load for the study is the transverse load that causes a wrinkle to appear.

The distribution of axial stresses is given in Figure 14. The grey distribution represents the

result of the pre-tension. The distribution of normal stresses due to the compressive load Q is

in red whereas the bending stresses are in black. These distributions can be superimposed to

obtain the distribution of normal stresses in the beam represented in blue in Figure 14.

The inclined blue line represents the limit of normal stresses when there is no compression.

Compression must therefore also be taken into account when determining the wrinkling load.

The longitudinal stress is calculated:

Sxx =
P − Q

2pR
=

pR

2
−

Q

2pR
. (43)

The relation between the bending moment and the stresses at the upper point of the membrane

is Sxx = FL/pR2. This leads finally to the wrinkling load:

FW =
ppR3

2L
−

QR

2L
. (44)

Figure 14. Distribution of the longitudinal stresses in the case of a compresssed bended air-beam.
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Comparison with the 3D numerical results

The results for the inflatable mast are compared with the 3D code results in order to assess the com-

pressed inflatable beam formula. On both graphs in Figure 15, the results of the 3D code are in blue,

those of the bending beam v3(x) in which P is replaced with P−Q in orange, and those of the com-

plete formulation v5(x) in green. As can be clearly seen, the results of the formulation of the com-

pressed inflatable beam are satisfactory. This is particularly evident on the right graph

corresponding to the 300N compression load, for which the v3(x) formula is clearly not satisfactory,

while the difference between v5(x) and the 3D code results is very small in comparison.

Analysis of results

Influence of Q in the case of an inflatable mast

Figure 16 shows the influence of the compressive load Q. To study this influence, let us consider the

case of the mast, where the inside pressure is constant, the same transverse load is taken equal to

F = 100N in all computations, and the compressive load Q is given different values. This shows

clearly the effect of the compression. For this example, the radius in the initial position is 0.125 m

thus the force P is almost 12 kN which is much larger than the values of Q used for the simulations:

100 N, 200 N, 300 N and 400 N. The ratio between P and Q is less than 4%, but Q has a very significant

effect on the deflection. The deflection of the beam without any compression is in red in Figure 16.

So, ignoring the effect of the compression can lead to important errors.

Analysis of the results in the case of an inflatable column

Figure 17 gives the results for two configurations: mast and column with the loads already used in the

comparison between the analytical results and the 3D code results. As predicted, it can be seen that the

column is more rigid than the mast. This seems logical, because in the classical beam theory, it can be

Figure 16. Example of the influence of Q.

Figure 15. Comparison between the 3D results ans the theoretical results. (a) Q=100 N. (b) Q=300 N.
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shown that the ratio is 4 between the two configurations in Figure 8. Even if there is an influence of

shear and compression, the main tendency is maintained. Similar results are found for the column

and the mast: for the same transverse load, increasing compression means decreasing stiffness.

Conclusion

Air-beams are often subjected to load combinations, mainly bending loads and compression loads.

While the theory of bended inflatable beams is well known, the account of the influence of com-

pression on the stiffness of beams has been little studied. In this work, two approaches have been

proposed to solve the problem. The first one consists in a direct adaptation of the beam formulas.

Its validity domain is very limited because it requires very low compression. A new general

formula has been developed and the solutions for the mast and column have been given. A compari-

son between the new analytical results and the numerical results of the 3D code SAFE shows that the

model is very satisfactory.
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